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ABSTRACT

For m > 0, we obtain sharp estimates of the uniform accuracy of
the m-th derivative of the n-point trigonometric interpolant of a
function for two classes of periodic functions on JR. As a corollary,
the n-point interpolant of a function in ck uniformly approximates

the function to order o(nl/z_k)

nl-k)

» 1lmproving the recent estimate of

o( . These results remain valid if we replace the trigonometric

interpolant by its K-th partial sum, replacing n by K in the estimates.
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1. Introduction and Notation

Using the concept of aliasing, Snider [6] obtains an O(nl_k

estimate of the uniform accuracy of the n-point trigonometric inter-
polants of periodic Ck functions for k > 2, improving the

O(n_l/z) estimate for 02 functions presented in Isaacson and Keller
[2]. Kreiss and Oliger [4] use aliasing to show that if the Fourier
coefficients v(&) of a periodic function v(x) satisfy

() = 0(|§|_B) with B > 1, then the trigonometric interpolants of
v uniformly approximate v to order O(nlwﬁ). Thhs also gives an
U(nl-k) estimate for Ck functions since the largest B we can use
in general is B = k. We use aliasing and a different property of the
Fourier coefficients of Ck functions--the fact that Ck is contained

n1/2—k)

in the Sobolev space ﬂk—— to obtain an o estimate for

k> 1.

In [5], Kreiss and Oliger estimate the Le accuracy of trigonometric
interpolants and their derivatives for functions in Sobolev spaces.
This paper applies their approach and an extension of a theorem appearing

l/2+m-s)

in Zygmnd [7] to obtain an o(n estimate of the uniform

accuracy of the m-th derivatives of trigonometric interpolants of func-
tions in the Sobolev spaces 1 for s > % + m. By similar methods

we obtain an o(nm_k) estimate for functions in Ck whose k-th
derivatives have absolutely converging Fourier series if k > m, and
we show that these two estimates are sharp. We also obtain an

K,

estimate for functions in the Holder space C

O0<a<l and k +0O> % + m. These results remain valid if we replace

the trigonometric interpolant by its K-th partial sum, replacing n by



K in the estimates.

All functions considered will be assumed to be defined on IR and

one-periodic. We use the following notation.

[vll, denotes sup|v(x)|.

L2 is the set of complex-valued measurable functions v (x) for
which

1
nw§=&|wnﬁu<m :

The Fourier series of a function v(x) € L2 is

5 G(é)e2ni§x

E=-o

where v(E) = ﬁ v(x)e-zﬂigxdx
Y0

Dkv denotes dkv/dxk. If we say that Dkv € B for some space
of functions B, we mean that Dk-lv is an indefinite integral
of the function Dkv in B. Ck is the set of functions with k

continuous derivatives.

k .
IVl . = = lip?v]
Ck J=0 ®

For a real number s > 0, HS is the set of functions v (x) € L2

such that

WIE, = I + 2 lonsl®19(0)1° < =

. . 2 . .
A is the set of functions v(x) € L with absolutely converging

Fourier series, i.e.,



For 0 < & < 1, let

v, = e L))

LyeR  |x.y|?

For an integer k > 0, C is the set of functions v (x) € C

such that [Dkv]a < o

If v € A, then v is equal a.e. to a continuous function. Since
we are interested in interpolation, we will tacitly assume that

o A 8 o} 1 .
A cC and similarly that H < C for s > 5 For an integer
k > 1, Hk 1is the set of functions v (x) such that Dkv € L2 and

. . 2
thus Ck c I-lk See Agmon [1] for a discussion of I~ derivatives.



2. Trigonometric Interpolation

We state some well known results on trigonometric interpolation.
These appear in this form for odd n in Kreiss and Oliger [4]. See

also Isaacson and Keller [2] and Zyegmnd [7].

A. n 1s odd. Let N > 0 be an integer and h = 2Nil and let
X, = vh for v = 0,1,2,...,2N. There is a unique trigonometric

polynomial INv(x) of order at most N which interpolates Vv (x) at

the points X, for 0 < v < 2N given by

N .
(1) Lv(x) = T a(g)eH
£=-N

where

2N —2ni§xv
(2) a(8) = h T v(x)e

V=0
The effect called aliasing is the fact that
(3) a(g) = © V(& + y(aw)) le] <

J ==e

provided that the Fourier series for v(x) converges at the points X,
for 0 < v < 2N,
Following the notation of Zygmund, define for 1 < K <N
K

th) IN,K‘V(X) = g—EK

a(g)eEnigx

where a(t) is given by (2). IN KV is the K-th partial sum of INV,
2

. i - i IN V.
and IN,NV _ INv If v(x) is real-valued, so is LK



B. N is even. Let N > 0 be an integer and h = % and let

X, = vh for 0 < v < 2N-1. There is a unique trigonometric polynomial

ENv(x) of order at most N which interpolates v(x) at the points

x, for 0 < v £ 2N-1 given by

N .
(5) () = 2 a(g)e” ™

which also satisfies

The ¥' notation indicates that the first and last terms are multiplied

by 1/2. The coefficients are given by

2N-1 -Qﬂing
(6) a(é) . h T V(xv)e

Provided that the Fourier series for V(x) converges at the points
X, for 0 < v < 2N-1, we have

©

(7) a(E)= I v(&+ j(an)) le]l cn

j=me

Define for 1 < K < N

al t )eEnigx

™M=

8 =
(8) B0 = B

where a(&) is given by (6), and let EN N o Byve If v(x) 1is
’ 3

real-valued, so is EN K for K < N. If w(x) is a trigonometric poly-
J

nomial of order at most N and w(N) = w(-N), then BW = w.

6
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3. Accuracy Estimation

Define

8(v,m,N,K) = [D"v - Dm(IN,KV)“w
e(v,m,N,K) = [p"v - Dm(EN,Kv)H°°

The m = 0 case of the following lemma appears in Theorem 5.16 of

Chapter 10 in Zygmund [T7].

Lemma 1. Let m > 0 be an integer, and suppose that u = D™ € A.

Then
8(v,mN,K) <2 L |a(e)]
le| >k
Proof. Let
K ~ 2nitx A 2niéx

(9) v (x) = T (& v(x) = T (e

£=- el >
(10) Wy _ Iy, k'L g = Iy, k"R
Then v = Vi, T Vg and IN;KV _ vy s Wpe Since Vo= Voo
(11) v - IN,KV = Vg - g
SO
(12) 8(v,m,N,K) < “Dm'VRH°° + “Dm’wR“°° .

By (3),



K ©
) < BB e e

2niéx

©

K
Mgl < £ leme|™ z 90 + ()]
£=-K j=-w
K ® _—
< T T lex(e + g(amd )|T|VR(E + g(am))]
E=-K j=-oo
< ¢ leme M)l
==
SO
(13) HmeRllwg v lace)]
le] >k
_ Also
(14) ID™vll, < T [ace)]
le]> K

Combining (12), (13), and (14) gives the lemma.

Lemma 2. Let m > 0 be an integer, and suppose that u = Dmv € A.

Then
G(V)m)N:K) <2 z ‘a(g)l for K< N
le] > x
€(v,mN,N) < 2 T lace)]
El >N

Proof. For K < N, the proof is the same as in Lemma 1.



TR

Using (9) with K = N - 1 and replacing (10) by

(15) "L = AL g = 'R
we obtain
(16) e(v,m¥,N) < vl + IDMgll
By (7),
) N, JaRN . 2niEx
wR(x =§£N j=2-co VR(E + j(an))e
il N 2 m)a
ID%eglly, < Iy T |on(e + 3(2n)) | Flvp(e + 5(an))|
O

. |2 [P 9(8)

£=-c0

and the lemma follows as'in the proof of Lemma 1.

+ m.

ol

Theorem 1. Let m > 0 be an integer and v € 1° with s >

Then for each K,

(27) sup  5(v,mN,K) < OR(v)K/ 2 IS
N > K
where
o (2n)"®
c = T
S = E - m



and

_ ’ o 25 & 2y1/2 .
Re(v) = ( ggK lene |77 v £)[7)
Also
(18) sup €(v,m,N,K) < CR.K(V)K‘]‘/Qﬂn“S
N >K
and
19) e(v,m,K,K) < CR_, (v) (K-l)l/2+m_s

Note that since v € H°, R(v) >0 as K-

Proof. By Lemma 1, for N > K we have

s(v,m,N,K) <2 T |oxt|"|9(¢)]
t[>K

<o ¢ |emt )PP 5 |eng|Pinms)y/2

T >k le| >k

mes K;+2(m-s) 1/2
<2 RK(V)(2ﬂ) (2 §T§:ﬁj~:ﬁf)

and (17) follows. (18) and (19) follow similarly from Lemma 2.

Theorem 2. Let k >m > O Dbe integers, and suppose Dkv € A. Then

for each K,



(20) sup &(v,m,N,K) < CTK(V)Km-k

N> K
where
c = 2(2ﬂ)m-k
and
Ky
) = lemElRCe)]
le]>&
Also
(21) sup €(v,m,N,K) < CrK(v)Km-k
N > K
and
Km-k
(22) e(v,mK,K) < CrK_l(v)
Note that since v € A, rK(v)—eo as K — w.

Proof. By Lemma 1, for N > K we have

s(v,mN,K) <2 T |ene|"[9(e)]
le] >k

<o) % |lone 5 [¥(e) |
l¢[>k

and (20) follows. (21) and (22) follow similarly from Lemma 2.

k, o .
Theorem 3. Let m >0 be an integer and Vv € C?7 with

k +a> % + m. Then for each K,

11



(23) sup &(v,m,N,K) < C[Dkv]Q;;/2+m'k'a

N> K
where
.- 2Ol+l/2ﬂm—k
1_21/2+mrk-a
Also
-k=0l
(24) sup €(v,m,N,K) < C[Dkv]a K;/2+m K

N>K

Proof. The method of proof is similar to that of Bernstein's theorem

that Co’a cA for a> %. See Katznelson [3]. Let u = 0™ and

2nitt
£ = Dv. Ift=%2'\’ and 2v§]g|52\’+]‘, then |e -1l >V 3,

SO since

HOEE T 278 L1 218(e) 1
2v<l§?s2\’+l‘ S5 2V < e[ <" -
< 2 leCere) - 2 ()5
1 )IE
<3 et ) - £2(),
< % tga[f]i
< % 2'2Va[f]§

12



By the Schwarz inequality,

ROl ICAN Jw OlR s

\Y) Z \Y]
2V < [e] < V< |e] <

v+l f £ e 1/2

= (2 P )
2V < |g|<2"+l |2:r§,122 k-m

IN

(gﬂ)m-k 2v(l/2+m-k)(2 . |§>|3<2v+l If(é)lg)l/g

< (gn)m—k 2v(l/2+m-k-oc) [£]
- 04

. . j+
Given K, let j satisfy 2j < K < 2! l. Then by Lemma 1, for

N > K we have

5(V:m:N:K) <2 z |ﬁ(§)|
le|> &

> 3 [4(e) |
v=g 2¥<| &f< 2Vt

IN

< 2 zn)m'k[f]a T
V=J

ov(1/2+m-k-t)

(23 /l/2+m-k-oc

oy _ ol/24m-k-0

o(en)"(£]

IN

> 29 and %+m-k-a<0. (24) follows

nof =
|

and (23) follows since

similarly from Lemma 2.

13



4. Sharpness of Estimates

Theorem 1 shows that if v € B> and s > % + m, then
s(v,m,N,K) and €(v,mN,K) are o(Kl/2+m_s), independent of N > K.
Theorem 2 shows that if D'v € A and k > m, then §(v,m,N,K) and
e(v,m,N,K) are o(Km-k), independent of N > K. We prove in this
section that these estimates are sharp: they cannot be improved for

these two classes of functions.

Theorem 4. Let {7\)] be a sequence of positive numbers converging to

1
0. Let m > 0 be an integer, and s > 5 + m. Then there exists a
v € B such that
inf 5
(25) lin sup N> ¥
K-> 2+m-s
© 7K Kl/

(V:m)N:K)

= &

Proof. Let Py = 1 and define a strictly increasing sequence {pj}
of positive integers inductively such that for j > 1, if j 1s odd
Pj = 2;pj 17 and if j 1is even p:] is a power of 2 such that

(26) 7, < p~J for v/

Define the sequence {b\)} forv> 1 by

(27) M
27 b =(———/— for pj§v<p.+l
Then X b\) = b p> bv = ¥ 2-] < o,

V= J=0 PJS\)<PJ+1 J=0



T T TG r—

Note that b\) > bv+l for v > 1 since p:._J >—2p'—l for 3>0. Let

J
(28) v(x) = D (-1)V —E— p 27X
v=l (2ny)® v
. ot 2514, 112 _ o .2
Since §=E12ﬂ§| Siv(é)l = €=£> v< ©, v e H. Define Vi Vgs Wi,
and wp as in (9) and (10). By (11),
(29) 6(v,m,N,K) 2 ||DmVR“°° - ||meR”°°
NOW
1 A i -
D™= | T (2nie)™( ) = & (2mv)™Sp
leb k v>K v
so
(30) ™l > £ (209)" %
v>K :
By (3),
K
ve(x) = I a(g)e” X
£=-
where for |&]| < K,
a(8) = T vplt +3(@+41)) = £ W& + j(ana))
Jj== j:l

Since 2N + 1 is odd, this last series is an alternating series of

terms decreasing in absolute value, so

15



la(e)| < [v(g +en + 1)] .

Hence

lone |™|a(e)|

N
™

P, <

S§§£%“ 2N+ L)["5(e + v + 1))

2N+1+K
z (Qﬂv)m-sb
v=_N+1-K v

1

3K+1
< T (2nv
v=K+1

)m-Sb
\Y

. , .
since the b\) s form a decreasing sequen,, Combining this with (29)

and (30) yields

@
§(v,mN,K) > ¥ (2m)™ 5
v=3K+2 v

For even j > L4, let K. = p./k. Then since _
’ J Z/ Pjs1 = QPJ"

«©
s(v,m,N,K.) > ¥ (2nv)™ b
Jd° = Y
V=D,
dJ
> z (2nv )m-s(pj?j )'1/2
Py Sv <Pj+l

3\ - - 2P .
> (p,29) M P(en)m® [ Fy
J ) sS—m

Pj X

2P

Now j‘ ] dx 1-6

= Cc.p.
BpJ where

™

16



1-

2 -1
<5 for B }é 1
c:B =
log 2 for B =1
. 1-38 -
so if dB - o8, BCB,

-j/2 m-s_ 1/2+m-
(v MK 2 o 27/ P () M/

-4 2-j/2Kl/2+m-s
s-m J

Thus (26) implies that

v,m,N,K. .
8( M, N, J) 3/2
> d 2
Kl72+m- =~ "s-m
K.

J

and the theorem follows.

Theorem 5. Let {7\)} be a sequence of positive numbers converging to
0. Let k >m > 0 be integers. Then there exists a v with
Dkv € A such that

inf §(v,m,N,K)

n>K

(31) lim sup -
K=o 7K Km K

Proof. Same as the proof of Theorem 4 with the following alterations.

Replace s by k throughout the proof. Replace (26) by

(26") y <2729

J4 .
o = for vaJ/

17



-J
2
Define b = —m— — for Pj S v < P. .
V. Py T P g+l

(-] ==} k a k
Then % b < e and T |ene||v(E)] <= so D'veA. We have
v=1 f=-o

for even j > 4

@ m-k
e(v,m,N,KJ.) > T (2w) o

V=P,

k, 3yl
> % (2v)"(p27)
pj S\)<p‘j+l

(A%

‘ _ 2p.
(o 2))Hea) [

D Xk-m
dJ
= Ck-me—j (2n)m-kpgl-k
Thus (26') implies that
G(V:m’N:Kj)

1 J

Km-k Z 2 dk-m2
4 .
KJ J

and the theorem follows.

The following lemma is geometrically obvious.

Lemma 3. Let {Bv} be a decreasing sequence of positive numbers

2niv/3

o<}
converging to 0. Then ¥ Bve converges and

v=L1

e eniv/3
| Z Be By -

Ve

18
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Theorem 6. Let {7\)} be a sequence of positive numbers converging

to O. Let m > 0 be an integer, and s > 32'- + m. Then there exists

a v €H such that

inf €(v,m,N,K)

(32) lim sup N>K,3 | N
K->w 7K Kl72+m-s

and

(33) 1lim sup v ?g:\] = o .
N = 7NN m-s

If k is an integer with k > m, then there exists a v with Dkv €A
such that
inf €(v,m,N,K)
(34) lim sup N>K, 4N = = o
Kow y K
K
and
(35) lim sup E(_VL%M = @
N - o ™ N

Proof. The proof of (32) is the same as the proof of Theorem 4 with

the following alterations. Replace (28) by

e2n1v/5 1 b efnlvx

v(x) = ; S
v=1 (2nv)

For N > K, we have

€(V,m,N,K) > ||Dva“°° - ||DmWR”°°

19



where v, is given by (9) and W = EN,KVR- Now

R
3 = | B (eme)(e)e ™) - B (em)"
I§|>\‘ K v>K
s0 gl > T (2v)™
v>K Vo
By (7),
X 2migx
wp(x) = T a(t)e
§=—

where for |&] < K,

@©

©
a(t) = T vp(t +j(aw)) = V(e + () .
j=-e 3=1
Suppose 3 ,k N. Then j(2N) cycles through the equivalence classes

mod 3, so by Lemma 3,

la(e)| < |¥(e + an)| .

Hence, as before,

Il BKﬂ( yroe
Dw < ¥ (2nv b
RV ~y=K+1 v

and the rest of the proof goes through, establishing (32).
To prove (33) for this v, imitate the proof of Theorem 4 as above
with-the following changes. Define v and v, by (9) with K = N - 1,

R

and define Wy

and wp by (15). Then
m
€(v,m,N,N ) > iz VRHQ - HDmWR”m .

20



As above,

D™ |l > = (2nv)" %
R " v
By (7),
N .
We(x) = T a(t)e?IEX
E=-N
where
a(g) = T (& + j(aw)) for |e] <w
3=1
a(-N) = a(N) = % v(N + j(aN))
3=0
ForN=Kjforevenj>h,3]N,so by Lemma 3,
la(e)| < |9(g + 2w)]| for [e] <m
la(-w)| = |a@)| < [¥(w)]
Hence
m N m
ID%ell, < o |2 |"|a(e)]
E=-N
N-1 _— X
<z len(e 4+ an)|Mv(e + an)| + e |™v(w)]
E==N+1
3N-1
= 5 (20v)™ 5
v=N v

S0

o
€(v,m,N,N) > (QTEV)m-Sb
v=3N v
and (33) follows.

21



(34) and (35) follow by similar alterations to the proof of

Theorem 5.

Remarks. Theorem 4 shows that the O(K;/2+m—s) estimate of

§(v,m,N,K) given by Theorem 1 is sharp by showing that there is no
function g(K) going to 0 faster than K;/2+m_s for which
s(v,m,N,K) = &(g(K)) for all v € H°. Note that we can obtain a
real-valued function in H° satisfying (25): since the trigonometric
interpolants of real-valued functions are real-valued, at least one

of the real or imaginary parts of the v constructed must also satisfy
(25). Similar statements hold for Theorem 5 and 6. Also, many of the

details of the constructions are for convenience, e.g. making the pj's

powers of 2, and placing the singularities at x = % in the odd case and

2
at x = 3 in the even case.

22



5. Corollaries and Summary

Let v, denote the n-point trigonometric interpolant of v.

i.e., if n =2N + 1, Wn=INV and if n=21\1,wn=ENv.

Corollary 1. TLet m > 0 be an integer. If v € Hs with s > % + m,

then

[v - || =o(a™/?m"8)

If Dkv € A and k > m, then

IV - | ")

E

Ly m, then

vaeck’a andk+oz>-2-

”V _ Wn“ _ O,(nl/2+m-k—05)

"

The m = 0 case gives the improved estimate for ck functions:

Corollary 2. If v € Ck and k > 1, then

_ 1/2-k
IV - s ll, = ofa™/")
These corollaries also hold for the K-th partial swnsofwnifwereplace

n by K in the estimates.
Although we gain an extra half power of n in the estimate for
general Ck functions over the recent c(nl"k) estimate, there are

other classes of functions for which Kreiss and Oliger's g(nl'B)

estimate for functions satisfying G(g) = o |g|'5) yields better

23



. k . .
results. For example, if D v is not necessarily continuous but

|51

is of bounded variation, then \;(E,) = ¢ |§ s SO

[v - w = U(n-k). Or, if Dk-lv is absolutely continuous (or

o e

equivalently if pfv e Ll), then v(&) = of |§|-k), and Kreiss and
. 1-ky .

Oliger's proof shows that v - wnllm =o(n ) if k > 1. See

Katznelson [3] and Zygmund [T] for discussions of the growth of

Fourier coefficients. We conclude with a table of estimates.

If Dkv S then ||v - wn”m = for
Lt o(nl_k) k>2
12 of nt/27E) k> 1
050 o(nl/27k"2) o %
Hs o(n112—k—s) kK +8> %
B.V. d(n"k) k>1
A o(n-k) k>0
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