
CM CONVERGENCE OF TRIGONOMETRIC INTERPOLANTS

by

Kenneth P. Bube

STAN-CS-77-636

OCTOBER 1977

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY





n

|

ol CONVERGENCE OF TRIGONOMETRIC INTERPOLANTS

*

Kenneth P. Bube

ABSTRACT

For m > 0, we obtain sharp estimates of the uniform accuracy of

the m-th derivative of the n-point trigonometric interpolant of a

function for two classes of periodic functions on JR. As a corollary,

the n-point interpolant of a function in ck uniformly approximates
1/2-kthe function to order o(n / ), improving the recent estimate of

s(n 7K). These results remain valid 1f we replace the trigonometric

interpolant by its K-th partial sum, replacing n by K in the estimates.
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: 1. Introduction and Notation
| Using the concept of aliasing, Snider [6] obtains an O(n’ K

estimate of the uniform accuracy of the n-point trigonometric inter-

polants of periodic ok functions for k > 2, improving the

a(n?) estimate for 0° functions presented 1n Isaacson and Keller

[2]. Kreiss and Oliger [4] use aliasing to show that if the Fourier

coefficients v(t) of a periodic function v(x) satisfy

v(E) = oC |e |P) withB > 1, then the trigonometric interpolants of

v uniformly approximate vv to order o(ntP). Thhs also gives an

(nt 7E) estimate for ct functions since the largest Bp we can use

in general 1s PB = k. We use aliasing and a different property of the

Fourier coefficients of ct functions—-the fact that ck 1s contained

in the Sobolev space HE to obtain an o(nt/27K) estimate for

k> 1.

In [5], Kreiss and Oliger estimate the 1° accuracy of trigonometric

interpolants and their derivatives for functions 1n Sobolev spaces.

This paper applies their approach and an extension of a theorem appearing

in Zygmund[7] to obtain an o(nt/2-8) estimate of the uniform

accuracy of the m-th derivatives of trigonometric interpolants of func-

tions in the Sobolev spaces BH for s > = + me By similar methods
we obtain an o(n™ ¥) eatinste for functions in O° whose k-th

derivatives have absolutely converging Fourier series 1f k > m, and

we show that these two estimates are sharp. We also obtain an

o ni 2Tm-k=Cy estimate for functions in the Holder space ctr if

OK<KOo<1l and k + > 5 + m. These results remain valid 1f we replace
the trigonometric interpolant by its K-th partial sum, replacing n by
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- K 1n the estimates.
|

| All functions considered will be assumed to be defined onIR and

one-periodic. We use the following notation.

Ivll ~~ denotes sup|v(x)].

1° 1s the set of complex-valued measurable functions v(x) for

which

1
2 2

Ili= [ Iv)Pax <=
| O

The Fourier series of a function v(x) € 12 1s

©

A PMiEx
Tv £)e”

| § ==co

| 1
where v( £) = [ v(x )e ogy :

“0

k k k k
D"v denotes d v/dx". If we say that Dv € B for some space

of functions B, we mean that pity 1s an indefinite integral

of the function Dy in B. ct 1s the set of functions with k

continuous derivatives.

Mi, = 3 Io]= JY |iDVv

®t 30 >

For a real number s > 0, H 1s the set of functions v(x) € 1°

such that

2 Za 2 - Og | A 2m7,= 1v(0)[" + Elent[]|v(e)]" <=
H gE =mo0

2
A 1s the set of functions v(x) € L with absolutely converging

Fourier series, 1.e.,
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© A

Love) <w
E=-co

For 0 < 0 < 1, let

[vl], = [v(x)-v(y)|o Sup a
X,y€R [x.y]

k,& k
For an integer k > 0, C 1s the set of functions v(x) €C

such that [Dv], < oo.

If v € A, then v 1s equal a.e. to a continuous function. Since

we are interested 1n interpolation, we will tacitly assume that

0 CL S © 1

Ac C and similarly that H CC for s > 5 For an integer

k >1, Hk is the set of functions v(x) such that Hy € he and

thus C CH A See Agmon [1] for a discussion of I. derivatives.
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2. Trigonometric Interpolation

We state some well known results on trigonometric interpolation.

These appear in this form for odd n in Kreissand Oliger [4]. See

also Isaacson and Keller [2] and Zygmund [7].

A. n 1s odd. Let N > 0 be an integer and h = me and let
X, = vh forv = 0,1,2,...,2N. There 1s a unique trigonometric

polynomial Lv(x) of order at most N which interpolates v(x) at

the points x for 0 < v < 2N given by

N
2N1EX

(1) Iv(x) = Tae)”
£=-N

where

2N -enigx

(2) a(g) = h T v(x)e
V=0

The effect called aliasing 1s the fact that

© ~N
(3) a(t) = T v(g + j(an+l)) lel sw

j =o

provided that the Fourier series for v(x) converges at the points x

for 0 < v <2,

Following the notation of Zygmund, define for 1 < K << N

K
2niéx

(Lh) Lo vx) = TageKC Hy

where a(t) is given by(2). Li Kv is the K-th partial sum of Lvs2

and n,n _ yve If v(x) 1s real-valued, so 1s IN gv
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B. N is even. Let N > 0 be an integer and h = = and let

xX, = vh for 0 < v < 2N-1. There 1s a unique trigonometric polynomial

Byv(x) of order at most N which interpolates v(x) at the points

x for 0 < v < 2N-1 given by

N
J 2n1ExX

(5) Ev(x) = TT a(f)e
£=-N

which also satisfies

a(-N) = a(N) .

The Y' notation indicates that the first and last terms are multiplied

by 1/2. The coefficients are given by

eN=-1 -enifx

(6) a(¢) . nT vix))e

Provided that the Fourier series for V(X) converges at the points

x, for 0 < v < 2N-1, we have

(00)

(7) a (E)= T W(&+ j(en)) BEE
j=-oo

Define for 1 < K < N

K .
2niéx

(8) B v(x) = © alt)J —
E=-K

where a(t) is given by (6), and let EN Nv _ Bye If v(x) 1sp J =

real-valued, so 1s Ey x for K < N. If w(x) 1s a trigonometric poly-J

nomial of order at most N and w(N) = w(-N), then Ew = Ww.
6
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3, Accuracy Estimation

Define

m m

(v,m,N,K) = [Dv - D (Ty, x) le
m m

The m = 0 case of the following lemma appears in Theorem 5.16 of

Chapter 10 in Zygmund [7].

Lemma 1. Let m > 0 be an integer, and suppose that u = Dy€ A.

Then

5(v,m,N,K) <2 » |a(e)]
lt] >K

Proof. Let

K A 2nNiEx A 2niEx
(9) v(x) = © W(t) v(x) = © Wee

E=-X le] >K

0 =

(10) wy _ kL "zr © Ivx"R

Then v = vi, t vg and x" _ Yo, Re Since Wp = Vp,

(11) Vv o- Iv, x" = Vp = Wp

SO

m m

(12) &(v,m,N,K) < ID vel + |p ell .

By (3),



& Soa 2niEx
w(x) = TT vp+ J andl Je

E=-K j=-o

m XK m ® A .
Dwell,< T lene|T zm [Ppl + 3(an+1)))

E=-K J==

K CS mo
< © T lene + j(awar )[T]vp(E + (aw)

t=-K j=-o

< x lene|"E (8)
=-o0

0)

(13) Noll, <0 luce)
l&] > K

Also

(14) ID", < r lace)
[6] > K

Combining (12), (13), and (14) gives the lemma.

Lemma 2. Let m > 0 be an integer, and suppose that u = Dv € A.

Then

€(v,m,N,K) < 2 pd u(E)| for K < N
le] > x

€(v,m,N,N) < 2 2 [GED]
€ > N

Proof. For K < N, the proof is the same as in Lemma 1.
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Using (9) with K = N - 1 and replacing (10) by

(15) = AL Vr = "y'R

we obtain

m m

(16) (vmN,N) < [DPvgl, + Pll

By (7),

N © ori
w(x) = pt TV (& + j(aw))e” HX
R A . R

== J==o

m N - mi»
IDNoll, < Tr lane + gam) |Tvg(e + (an)

E=-N j==co

° m
= T |ent|7 [i(8)]

=-co

and the lemma follows as'in the proof of Lemma 1.

Theorem1. Let m > 0 be an integer and v ce 1° with s > = + m.
Then for each K,

+ m-

(17) sup 6&(v,m,N,K) < CR, (v)K 2 mes
N >K

where

2 (2n)"°
Cc = T

S = 5 - m

9



and

R(v) =( » |ent]|®3 PR
t|>K

Also

(18) sup €(v,m,N,K) < CR, (vk 2S
N>K

and

19) e(v,m,K,K) < CR, (V) (k-1)1/2 + m-s

Note that since v € 5, Rv) —»0 as Ko ow.

Proof. By Lemma 1, for N > K we have

s(vymN,K) <2 § [ems |"|¥(e)]
HE:

25 A -

co m lems|B) PMP pene |Pimos))/A
t|>K lt] >K

+2(m-s) 1/2ms, K-
<2 R(v)(2x) (2 CEE

and (17) follows. (18) and (19) follow similarly from Lemma 2.

Theorem 2. Let k >m > O be integers, and suppose Dy € A. Then

for each K,



~k

(20) sup 6(v,m,N,K) < Cry (VK
N>K

where

c = p(2n)E

and

Ka

rv) = © |emg|T[v(e)|
[e[>K

Also

(21) sup €(v,m,N,K) < Cr (v EE
N > K

and

gk(22) e(v,m,K,K) < Cry_(v)

k

Note that since Dv€ A, rv) = 0 as K = wo.

Proof. By Lemma 1, for N > K we have

mia

s(v,mN,K) <2 TL |eme|T{v(¢)]
le] >K

m=-k kia
< 2(2nK) rene" |v(e)]

[£]>K

and (20) follows. (21) and (22) follow similarly from Lemma 2.

k,a
Theorem3. Let m >0 be an integer and Vv €C with

k + a> = + m. Then for each K,

11
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k 2+tm=K=-0

(23) sup §(v,m,N,K) < C[D vl x
N>K

where

. SOL/2 mek
| _ol/2Hmk-0

Also |

Hn =X =O

(24) sup €(v,m,N,K) < c[Dvl, i 2 m-k
N > K

Proof. The method of proof is similar to that of Bernstein's theorem

that o0sC CA for O> x See Katznelson [3]. Let u = Dv and
okRv

f= Dv. ft =z 27 and 2 < |e] < ov, then |e -1| > 3,
SO since

® i A P2nitx
f(x+t) - f(x) = I (e°TLET = 1)P(e)e

E==c0

Parseval's relation implies that

A 2 1 2nitt 2a 2

Doug EO <s3z om le - 17 |£(e)|
2V< |e] <2 2¥< Jef <2

1 a2
= +t) - £(X< 3 leer) - 2 (x)

1 2

< Flext) = 2(0)IE

1 20, .42

< 3 t [£],

1-20, 42

<z° v (£1,

12
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| | By the Schwarz inequality,
|

A +1 ~ 2

LD lace) < (2 Tg lA(e)B)A
2¥<lel<2 2V<|e] <2Y

|

_ V+1 ft A 1/2
| = (2 V z v+1l 2(k-m )

2¥<|e|<2 | ont |

| m-k 1/2+m-k A 21/2
< (erik WBE) mR)

2v< |g | <2

| < (2m) kK oV(1/24m=k-0) os

| ]

Given K, let j satisfy 27 < K < pdt, Then by Lemma 1, for

N > K we have

le]>K

«©

<2 3 [ae)]
mj SIRpvt

©

< 2 ox)" Ke] > >v(1/2+m-k-0t)
v=]

< 2(2n)"7 [£] pdciti= 0 1/2+m-k-0
1-2

K J 1
and (23) follows since 52 2° and 5 +m-k « <0. (24) follows

similarly from Lemma 2.
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4. Sharpness of Estimates
1

Theorem 1 shows that if v € H and s > 5 + m, then
2+m-

s(v,m,N,K) and €(v,m,N,K) are o(x/ i >), independent of N > K.

Theorem 2 shows that 1f py € A and k > m, then &(v,m,N,K) and

¢(v,m,N,K) are o(K™5), independent of N > K. We prove in this

section that these estimates are sharp: they cannot be improved for

these two classes of functions.

Theorem 4. Let {7} be a sequence of positive numbers converging to
1

0. Let m > 0 be an integer, and s > 5 + m. Then there exists a

v € 5 such that

inf

(25) lim sup _ ~ ©0_
410) =

K —» wo ee 1/2 m=s

Proof. Let Py = 1 and define a strictly increasing sequence {P,}
of positive integers inductively such that for j > 1, if j 1s odd

Pi = 2p; 19 and if j 1s even P. is a power of 2 such that

(26) 7, < od for v > p/h .

Define the sequence {bo} forv> 1 by

(27) ed Ve27 b =(——— for Pj SV <DP.q

Then XZ ob = Y p> LN = ¥ 2-7] < o.
v=l J=0 Ps SVS<Pyq 7=0

1h
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:

Note that B > LN) for v > 1 since Ps 7 eR for 3>0. Let

«© []
(28) v(x) = § (-1)Y 1 b eo THvX

v=1 (2my)° Vv

- 28 2 > 2
Since plant[T|v(€)| = T b° < =, ven’. Define v.,v., w

== v=1 V 1” "RL

and wp as in (9) and (10). By (11),

m m

(29) 8(vym,N,K) > [ID well = [loll

NOW

m 1 . A aul | -
DME)= |Z (emie)™( e)eY = © (2w)™ 5p

lth K v>K v

SO

(30) I™v ll, > (ev)

By (3),

K
5

we(x) = EL a(g)e”™EH
E=-K

where for |&] < kK,

’ ~ © a (oo)
a(t) = T vp(e + j(av+1)) = © (e+ j(an+1))

Since 2N + 1 1s odd, this last series 1s an alternating series of

terms decreasing 1n absolute value, so

15
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la(e)| < [v(& +2 + 1).

Hence

m X m
Phils © lent [Place]

£=-K

K

< T [en(e +on + 1)|"|F(e + an + 1)
E=-K

2N+1+K

= > (2m)™5p
v=2N+1-K Vv

3K+1

< % (2nv)™5p
v=K+1 V

since the o's form a decreasing sequen. Combining this with (29)
and (30) yields

QQ

§(v,m,N,K) > 2 (2nv )" 5p y
v=3K+2 V

For even j > L4, let K. = p./4. Then since _
’ J Psy = “Ps

oo)

s(v,m,N,K.)> T (2m)p
Jo = \Y

vV=p.
J

> z (2m) (p 29) 71/2
PJ SV SPs,

i \ - - 2P

> (p29) (2n)ms #0 8xJ s—m
Py] X

2P-
dx -

Now [ JZ =. pr P where
D. a BJ
J

16
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1-8
2 ~-1

<5 for B # 1
C —_—

B

log 2 for B = 1

1-5B_-B
so if d_, = 2 T C

B Bg’

-j/2 m=-s_1/2+m-s

6(v,m,N,K, ) > Comm 2 3/ (2x) Pi /

= a 27/%1/2Hm-s
sS=-m 3

Thus (26) implies that

&§(v,m,N,K. .

> d 2

A/2Hm-s = S=-m
Tp Bo

3 J

and the theorem follows.

Theorem5. Let {r,} be a sequence of positive numbers converging to

0. Let k >m > 0 be integers. Then there exists a v with

Dry € A such that

inf 6(v,m,N,K)
n>K

K->ow 14s K"

Proof. Same as the proof of Theorem 4 with the following alterations.

Replace s by k throughout the proof. Replace (26) by

! -2J
(26) 7, 2 for v > p/h .

17
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Define b =— for Pj < Vv <p...

(oo) oo)
kK» k

Then XX b <« and b> |one | [v(e)| < = so Dv € A. We have
v= VY E=moo

for even J > 4

iy m-k
6(v,m,N,K, ) > T (2av) ob

> oz (en) ee)
Ps SV<Psy

. 2p.
Jy=1 m-k J dx

> (p27) (en) [OY ==
p. X
J

_ -J m=-K_me-k
=c 2 (on) 12

1 - Jj. m=k
= 5 Ge pt KJ

Thus (26') implies that

gk =~ 2 mm04 :
K. J
J

and the theorem follows.

The following lemma is geometrically obvious.

Lemma 3. Let {B,} be a decreasing sequence of positive numbers
o/ -

converging to 0. Then ¥ B 2/3 converges and
v=l VY

0

27iV

| p27 <p,
_ V - 1

v=1

18



-

Theorem 6. Let {7,} be a sequence of positive numbers converging
to O. Let m > 0 be an integer, and gs > + me. Then there exists

a Vv € H such that

inf ~~ &(v,m,N,K)

(32) lim sup N>K,2 i = o
K = oo y xt m=-s

K

and

(33) lim up LLB .N — o a N m-s

: If k is an integer with k > m, then there exists a v with Dy € A

such that

inf ¢(v,m,N,K)

K—->o 04 kKK

and

(35) lim sup vm N,N) _ |
N = o Y NE

N

Proof. The proof of (32) is the same as the proof of Theorem 4 with

the following alterations. Replace (28) by

= 2miv/3 1 211]
v(x)= FT e —— be

v=l (2nv) v .

For N > K, we have
i

m m

(vm ,K) > [Dl = oP

19
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where wv. is given by (9) and Wp, = By kre Now

R m-s

De = | TD (eme)™(e)eEO] =p (200) Fp
BER: v>K

m m-s

50 ID™vell, > = (20)
v>K vo

By (7),

K
2niEx

we(x) = © ale)”
E=-K

where for |&] < K,

x oo R

a(t) = IT veg + j(an)) = T(E + jaw)
J== J=1

Suppose 3 / N. Then j{(2N) cycles through the equivalence classes

mod 3, so by Lemma 3,

la(e)] < [v(e + aw)|

Hence, as before,

m oK+l m-s
Il, <TD (2m)

v=K+1 v

and the rest of the proof goes through, establishing (32).

To prove (33) for this v, imitate the proof of Theorem 4 as above

with-the following changes. Define v; and vp by (9) with K = N = 1,

and define w, and wp by (15). Then

m m

e(v,m,N,N ) > [Dv = ID well -

20



As above,

Dv. > © (ew)fp
Rie v>N d

By (7),

N .

wo(x) = T' a(t)e? EX
E=-N

where

a(g) = T (ge + j(an)) for [|e] <n
5=1

a(-N) = a(N) =F v(N + j(aN))
3=0

For N =X, for evenj> 4,3 f N,so by Lemma 3,

a(t) < [v(e + 2N) | for 3 <N

la(-w)| = |a(w)| < [F)|

Hence

m N m
Pell, <2 feng |Ma(e)]

E=-N

N-1 _ )
< Tents + 2m) |e + an)| + omy|™|W)

E=-N+1

3N-1

= © (2v)"
v=N v

£0

e(v,m,N,N) > LU (2nv)""p
v=3N v

and (33) follows.

21
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(34) and (35) follow by similar alterations to the proof of

Theorem 5.

Remarks. Theorem 4 shows that the o(K/2¥m-8) estimate of

| s(v,m,N,K) given by Theorem 1 1s sharp by showing that there 1s no
| function g(K) going to 0 faster than x 2m for which

s(v,m,N,K) = 0(g(K)) for all v ¢ H°. Note that we can obtain a

real-valued function in HK satisfying (25): since the trigonometric

interpolants of real-valued functions are real-valued, at least one

of the real or imaginary parts of the v constructed must also satisfy

| (25). Similar statements hold for Theorem 5 and 6. Also, many of the

details of the constructions are for convenience, e.g. making the P;'s

powers of 2, and placing the singularities at x = in the odd case and

at x = = in the even case.

22



J. Corollaries and Summary

Let Vo denote the n-point trigonometric interpolant of wv.

Te ™ i] = + — 4 p— —
ie€e,if n = 2N 1, w_ NY and if n Ny, w_ Ev.

Corollary 1. Let m > 0 be an integer. If v € H° with s > : + m,
then

1/2+m~-s

tv = yl = of n/2*m"8)
k

If Dv eA and k > m, then

m-k

IV = wll y= oa")

If v e co and k + @ > 5 +m, then

1/24m-k-C

tv = lg = ots )
The m = 0 case gives the improved estimate for ck functions:

k
Corollary 2. If v €C and k > 1, then

1/2-k

IV - wll, = o(a™2)

These corollaries also hold for the K-th partial sumsof w if wereplace

n by K in the estimates.

Although we gain an extra half power of n in the estimate for

k 1-k
general C functions over the recent @&(n ) estimate, there are

other classes of functions for which Kreiss and Oliger's O(n")

estimate for functions satisfying T(E) = of le] P| yields better

25



results. For example, 1f Dey 1s not necessarily continuous but

is of bounded variation, then v( &) = of |e 75-1, SO
~k k-1

|v -w ll, =0@®™). or, if Dv is absolutely continuous (or
k A ~ :

equivalently if Dv € 1,1), then v(&) = of |e | ky and Kreiss and

Oliger's proof shows that |v - vl, = o(nt7E) if k > 1. See
Katznelson [3] and Zygmund [7] for discussions of the growth of

Fourier coefficients. We conclude with a table of estimates.

k

If Dv Ee then |v -W I = for
no

rt o(nt7F) kK > 2

1° of o/27K k > 1

Or o(nl/?7K72) kK + o>

H o(ntt?7k78) k +5 > :

B.V. g(n"F) k > 1

A o(n™¥) k>0.
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