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Abstract

By exploiting the relation of the QL algorithmto inverse iteration

we obtain a proof of global convergence which is nore conceptual and less

computational than previous analyses. The proof uses a new, but sinple,

error estimate for the first step of inverse iteration.
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I. Introduction

The QR Algorithmhas become the preferred method for finding all the

eigenvalues of a given matrix, symmetric or nonsymnetric. One of the high

points in the field of matrix computations is Wlkinson's discovery

[W1lkinson, 1968] that the algorithm when used with the proper shift

strategy, converges for all symmetric, tridiagonal matrices. This result

permits us to write clean efficient programs for computing these eigenvalues;

there is no need for routine checking for rare unacceptable cases. The

excellent asynptotic convergence rate for the method was already known.

Each iteration in the algorithmis effected by making a sequence of

specially chosen plane rotations. Wlkinson's proof is based on a careful

scrutiny of the last three of these rotations and a rather complicated com

putation is involved. Acareful, detailed exposition of the proof can be

found in [Lawson and Hanson, 1974, Appendix BJ].

The result is so nice that one is tempted to seek a proof which does

not require explicit formulae for the elements of the next matrix in the

OR sequence. The one presented here abandons the plane rotations in favor

of the relation of the QR algorithmto inverse iteration, see for instance

[Parlett and Poole, 1973]. The discussion is in terms of the QL algorithm

which 1s a convenient variation of the original QR algorithm Section 3

gives nore details.

W try to adhere to the standard notational conventions: lower case

roman letters for column vectors, lower case greek letters for scalars (all

real here), and upper case roman letters for matrices (reserving symmetric

letters for symmetric matrices). W write 7! for the transpose of Z,

I for (e,e55...5e ), and A-A for A—H. All matrices are nxn unless

the contrary is stated, [xl= AR and we write tridiagonal matrices A
as shown bel ow
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The QL transformation, with shift o, transforms symmetric tridiagonal

A into symmetric tridiagonal A = 0'AQ where Q = (9y5G55--.50,) 18
orthogonal and depends on oO.

For the busy reader who is famliar with the subject we present a

brief outline of the argument now. One special piece of notation 1s needed:

MP, denotes the set of all monic polynomials (leading coefficient 1) of

degree k. We observe that

8,58, = mn I9(A)q, » Lanczos,
d EMP,

< I (A-a,) (A-0)a, ll, the artful choice,

= H{A-a, Je Tl , the connection with inverse iteration, Lemm 2,
= [8,17 ,» since Ais tridiagonal,

< oo] @ Bpl, if ois Wilkinson's shift, Lem 4,

< | 8485] , by a characteristic property of
Wilkinson's shift.

Only the strict inequality 1s really new and a sharper form

of 1t 1s used in Sections 5 and 6 to show that (a1 Jg{kt1 hy? <
< (2/5) (8{k-Vg{k-1)y2 for all k and also that pe < [81B,|/¥2. This
establishes global convergence, i.e. tk) > 0, in a clean way.



ol

5

2. Orthogonal Reduction to Tridiagonal Form

Any symmetric matrix Mmay be reduced to tridiagonal form A by an

orthognoal simlarity transformation. In symbols

(0) A-6Ma., 1 =-66=66.

In fact, when the off diagonal elenents B are not zero then A 18
conpletely determ ned by 93 (or by q.). Our interest 1S 1n eXpressions

for products of the Bis) =1,2,.... From the pioneering work [Lanczos,
1950] we can deduce that

8, ...B,] = minla(M)g,

over all mONic polynomials ¢ of degree j with equality only when ¢(}\)

is the leading principal j xJ minor of XA

However we prefer to use sone alternative formulas which yield rather

more information and are also quite well known.

A useful way of understanding the relationships hidden in (0) 1s to

equate columns on each side of the equation

(1) GA = MG

and deduce that the columns 1975955. + +295} form an orthonormal basis for

the so-called Krylov subspace K; of R" which is spanned by
2 | -1

g1:Mgy,Mgq,..MW 9;

Let P. denote the orthogonal projection of R" ont o Ks and let PS be
T T T

its conplement. For exanple, P, = 9,91» Py = 9194 + 9,9,.
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LEMMA 1. Let GA = MG with G = (945-..59) orthogonal, then

9,87 = PiMgy

938,68, = PMPMg,

Proof. BY equating the (1,1), (1,2), and (2,2) elenents on each side

of (I) we find

A _ T — T - T A = T
(2) | 1 - 91M9, ’ B = g.Mg, 9oMa, ’ 0s g,Mg, .

Now equate first columns on each side of the equation GA = MG and rearrange:

9p81 = Mgy = 9199
T i

N = Mg; - 9,(g;Mg;) , using (2) ,T

= PM, :

Next equate the second columms on each side and rearrange:

938 = Map = 950, - 998
T T .

y = Mg, - 9,(a,Mg,) -g,(gyMg,) , using (2) ,T 7

= (1-9,95-949; Mg, ’

= P.Mg, :

Mil tiply (4) by B; and use (3) to obtain the formulas 1n the lem. 0

In the next section we will apply this lemm to the case when M= A

is also tridiagonal and Mg, lies in the plane of 94 and e-
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3. The QL Transformand Inverse Iteration

The QL transformof A is denoted by A, has the same formas A,

and is defined by

(1) A = q'ag

where Q 1s the orthogonal matrix which satisfies

(2) A- a=QL

and L 1s lower triangular with positive diagonal elements. The scalar ©

is called the shift. Note that Q is the result of performng the Gram-

Schmdt orthonormalizing process to the columms of A-a fromright to left.

The QL algorithm iterates the QL transform choosing an appropriate shift

at each step.

The QL transformis related to the earlier QR transformin a very sinple way:

1 f i = (e je | se-0s8y) and A 1s the QL transformof A then IAI 1S
the QR transformof IAI. The QL algorithmhas some mnor advantages from

the programmer's point of view and has becone the preferred method. Conse-

quently we will present our results in 1ts term nology.

In practice the matrix Q which turns Ainto Ris never formed

explicitly. Even in theory the colums of Q are determned in the order

SP A EEREEL PELE Nevertheless A is conpletely determ ned by q, and

9, connects the QL transformation with sinpler processes like inverse
iteration.

W are now going to formulate a result which 1s quite well known.
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LEMWA 2. Let QTAQ = A be the OL transform of unreduced tridia-

gonal A with real shift ©. Then 9, = Qe, satisfies

(A-0)aq; = eT.

If o is an eigenvalue of A then T = 0; othemise T is the

~-1

scale factor which ensures that lq l= 1; so1 = 1/lI(A~0) e, ll.

Proof. Transpose equation (2) above, post multiply by Q and use

Q'Q ='] to find

T

Equatingcolumn 1 on each side shows that

- _ >(4) (A-0)ay = e875 2720,

[If 0 is not an eigenvalue then

_ -1
(5) = lag = 10) Tel Og

and we have written T for SIE If 0 is an eigenvalue then

0 = det(A-a) = det Qe-det L .

The Gram Schmi dt process begins with 9, = (A-c)e 7%. Because A 1s

unr educed fn = | (A-c)e | # 0. Mreover, for the same reason, the last
(n-1) columns of A-a are linearly independent. Consequently

243 > 0 , i =n,n-1,...,3,2,

for all o. It follows that on the last step of the Gram Schm dt process

a null vector is obtained. Hence 211 =1T = 0 and 9, may be any unit
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vector orthogonal to all the other q's. This gives only a choice of sign

for a and in either case (A-0)q, = 0. cl

Equation (4) shows that the first columm of Q is the normalized

result of one step of inverse iteration with shift oO.

W now use Lemmm 2 to get expressions for the off diagonal elenents

which are produced in the course of the QL algorithm

| T
LEMMA 3. Let A = O AQ be the QU transform of A with real shift

0. Then

8 | = 1|sin 9,1
18,8, = lg, sino,|.

where 8. 15 the angle between e. and the Krylov space Ks

- = 1,2.

Proof. Recall that in Lerma1 P =1-q q P =1-q ql - qa.
— ] 171° 2 171 272

W have

0,8, = P. Aq, . Lemma 1
= P +P.(gy0 eT) , Lemma 2

= Piet

= t(e, - % CoS 67)
Further

9,845, = PAP. Aq , Lemna 1

= PoA(e, - Gy cos 6.) , two lines up,
— n + - . . .TP, (eg, €,84 a COS 61) A is tridiagonal,

= T8,Po8, Ps annihilates Ks = span(q,,Aq,)

= span(q,,e,).

On taking norms the results follow El
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| Using the same technique it can be shown that

Lemma 3 holds for any shift strategy but the global convergence follows

froma sinple bound on T which holds when Wlkinson's shift is used.

4. Wilkinson's Shift

[oq 8
Given A then Wilkinson's shift w is that eigenvalue of

Bp 9%

which 1s closer to a, In case of a tie either eigenvalue may be used.

So we have

2

(oy -w) (y=) - B] = 0
and

ag -w] < ay -w' |.

[et us write § = (0y-017)/2 and observe that

wy, w' = (ay ta,)/2 + V6 +65
This shows that

og | < | ctp mu]

with equality if, and only if, &§ = 0. By noting that 8] is the geonetric

nean of [ay =u] and |etp-w] we have

loq-ol = i = pe < 1]
B [or Ww] Oy=W| —1 2 2

with e-quality 1f, and only if, 8 = 0.
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5. A Residual Estimate for Inverse Iteration

Since Ais symmetric and tridiagonal we know that when By 1s small

conpared with | =0is | t hen ©; 1s a good approximation to an eigenvector
and Wlkinson's shift w 1s an even better eigenvalue approximation than

ay. A well known way to obtain an improved normalized eigenvector 1s to

sol ve for 94 the equation

(1) (A-w)q, = eT

where T is the positive scale factor which ensures that la, = 1.

Our concern here is at the opposite extreme. If B1 1s not necessarily

small and € 1s a poor approximation to an eigenvector of A how bad can

(0,9, ) be as an approximate eigenpair.? A good neasure for this approxim-
tion 18,

t/IAl

which is the norm of the "residual" vector (A-w)q, relative to [AL.

W now show that (w,q,) cannot be arbitrarily bad; in fact T< 8,1.
For convenience we write

O. = QO. =W

and define p = (m,,7,,m 7 b127°2°7°3° y

(2) (A-w)p = SE

LEMMA 4. When Wilkinson's shift w is used in (1) then

| 2 2 Dupe4 < or yall
— 2, ,- — -

+
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Proof. If wis an eigenvalue of A then the QL transform will make

9; an eigenvector, so T = 0. From now on assune that A-w is invertible.

From (1) and (2) we have

and

fA g2 ©

(3) = 1/IpF < 1/(ny4motms)|

The first two equations in (2) are

+ =

(5) ByTy Foy + ByTa = 0

Recall the definition of w and form (B/a,) x (4) - (5) to find

+0 - = Y(6) 0+0 BT 5 By/ag

In fact (6), together with the fact, from (4), t hat T and T,

cannot vanish simultaneously, is sufficient to prove that T <|B,].
2. 2

However, we can easily bound UETR away from 0. By elenentary geonetry

the distance of the origin fromthe line (4) in the TysTo plane 1s

1//a3+87. Hence

2, 2 -2,.2

and the result follows readily from using (6) and (7) 1n (3). u

The surprisingly sinple expression (6) for Tq ensures, by itself, that

B89 is monotone decreasing. The extra information contained in (7) shows
that the decrease is linear right from the start.

Lemma 4 gives nore information than we need. To sinplify later discus-

sion we use the harmonic nean, defined for positive &, Nn by

_ -1, ~1
H(g,n) = 2/(8 "+n 7) |
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On mmjorizing ay | by B Lemma 4 sinplifies to the useful

|

COROLLARY, tf < HBS 585)

6. Global Convergence -of the QL Algorithm

The QL algorithm produces a sequence of unreduced symmetric tridiagonal

matrices alk) k = 1,2,... and the glorious fact is that, always,
(Kk) . (Kk) |

81 > 0 rapidly as k =» ©, revealing a, as an increasingly good

approximation to an eigenvalue of A Wien ak) 1s accepted as
negligible the algorithm continues to transform all but the first row and

column of alk) and thus all the eigenvalues may be found in turn,

The convergence of 188K)) need not be monotonic but the key fact 1s
(K)o(k)y oq 0 Co. that {]8; Bs |, 1,2,...1 is nonotone decreasing and its limit is O.

Using the corollary of Lemmn 4 in Lemma 3 and noting that H(&,n) < En

we obtain

| LEMMA 5. When Wilkinson's shift is used in the QL algorithm,
~2 2 . 2 2

AA 2 2 2 ) ee hl 2
< < i(b) (8,8) B11" < (B18) H(BY/B5H%) <(By8,) ©.

This establishes the monotonic decline of 8ik)glk)) but to see that
the limt is zero it suffices to consider two successive steps in the

al gorithm and so the superscript k can be dropped.

Lemma 5(b) shows that the reduction in B18, 1s substantial unless

| 85/8, | is small. However Lerma 5(a) shows that such an unfortunate ratio
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cannot persist. The next result makes this precise. W recall that the

harmonic mean, H(E,n), of positive nunbers & and n is symmetric, homogeneous

(of degree 1) and nonotonic increasing in each of 1ts arguments separately,

THEOREM 1. Let A A, A be three successive terms in the QL

sequence using Wilkinson's shift. Then

(8,80)% < (8,8,)%2/(3+/5) < (2/5)(8,8,)?172 172 172° =

Proof. 322 < 3272 , Lemma 5b for A,— 172 1

< BZH(BS 80) , Lemma 4 Corollary for ii,
= HES AA5B0) , homogeneity of H,
< H(t? 5877) , monotonicity and Lemma 5 for A
= TH(87, 7) , homogeneity and symmetry of H,

2 1,2 1,2 2 1,2

< H(By 5585) «HB, HB; 585)) , Lemma 4 Corollary for A,
2 2 1, 1 i! 1, . iY, 2

= BB H(Zsp JH(zH(1,50)) , homogeneity of H, op = B,/By

<B2852/ (3+/5) , maximizing over all p> 0.

W note that

HE HLH TOY) = (tr)
2° 2 2) = 2+0 54 d+ ’

2p
_ 3,5 -1

3,./5

COROLLARY 1. For the QL algorithm with Wilkinson's shift

A — 0 as k — «©,
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(2k+1) (21) (2K) (2K) | (5 ey ki o(1)o(1)

The asymptotic convergence rate is nuch better than this. Wat 1s

remarkable is that convergence 1s linear, with a good ratio, right from

the start.

| COROLLARY 2. For the QL algorithm with Wilkinson's shift

atk) — 0 as k — oo ,

AL

Proof. By Lemma 5(a), 81 <|88,1/V2. Convergence follows from

Corollary 1. uo
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7. Local Convergence

W suppress the fact that all the elements al, Bis ete. depend on Kk,

the iteration count. We know that as k => « both oy > 0, By > 0.

In the usual case By 0 as well. In this case 0, > 8 # 0 because

the eigenvalues of an unreduced tridiagonal matrix are distinct (although

sonetines very close). The question we take up now is the asymptotic

convergence rate. From Lemmm 3 |B, | = 1]sin 6:1 but the estimatefor T
in Lemma 4 does not reflect the asynptotic regine. In fact, as k - «,

where (A-w)p = e,.

Solving these equations as before yields

My = 2
37 BB,

C3 Pa
2 =, 2 RB, °’

BiB 2

523 0nBaT,
= A 2"374 | 2

1 7 2.2 B48 2
318 re

In the usual regine

FERRIES 1/2 my
sin 6] |Fm—3  =o()(IN | DRRE| 1

1 2 n

and using the first terms in the expressions for 11, and IT,

~ 3,2,-2 3,2

B, ~ ByBy/a, = 0(ByBa) .

This 1s better than cubic convergence.
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W have not been able to prove that the analysis given above always

obtains. The possibility remains open that is > 0, By > n 7? 0. In this

case still dom nates the other elements of m but it is the third

termin the above expression for m which brings this about, Thus, 1n

such a case

2,1~ 1 _ q-

. - 2

lsin 0,1 B10i5/ BS ,
and

18,1 = 0(la;81)= og?)1 171 17°

Thus quadratic convergence occurs even in this unstable, and very special,

eventuality.
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