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By exploiting the relation of the QL algorithm to inverse iteration

we obtain a proof of global convergence which is nore conceptual and less

conputational than previous analyses. The proof uses a new, but sinple,

error estimate for the first step of inverse iteration.
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l. Introduction

The QR Algorithm has become the preferred method for finding alZl the
eigenvalues of a given matrix, symmetric or nonsymmetric. One of the high
points in the field of matrix computations is Wlkinson's discovery
[Wlkinson, 1968] that the algorithm when used with the proper shift
strategy, converges for qll symmetric, tridiagonal mmtrices. This result
permts us to wite clean efficient programs for conputing these eigenvalues;
there is no need for routine checking for rare unacceptable cases. The
excellent asynptotic convergence rate for the nethod was already known.

Each iteration in the algorithmis effected by making a sequence of
specially chosen plane rotations. WIlkinson's proof is based on a careful
scrutiny of the last three of these rotations and a rather conplicated com
putation is involved. A careful, detailed exposition of the proof can be
found in [Lawson and Hanson, 1974, Appendix B].

The result is so nice that one is tenpted to seek a proof which does
not require explicit formulae for the elenments of the next matrix in the
OR sequence. The one presented here abandons the plane rotations in favor
of the relation of the QR algorithm to inverse iteration, see for instance
[Parlett and Poole, 1973]. The discussion is in terms of the QL algorithm
which is a convenient variation of the original QR algorithm Section 3
gives nore details.

W try to adhere to the standard notational conventions: lower case
romn letters for columm vectors, lower case greek letters for scalars (all
real here), and upper case roman letters for matrices (reserving symmetric
letters for symmetric natrices). W write ZT for the transpose of Z,

I for (e],ez,...,en), and A-A for A—H. Al mtrices are nxn unless

. LT . o .
the contrary is stated, l[xl = VX x and we wite tridiagonal matrices A

as shown bel ow
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By % B
A= 0 82 as s
Bl
Bool %0 -

The QL transformation, with shift o, transforms symmetric tridiagonal
Ainto symetric tridiagonal 2\: QTAQ where Q = (q.l,qz,...,qn) is
orthogonal and depends on O.

For the busy reader who is famliar with the subject we present a
brief outline of the argument now. One special piece of notation is needed:
MP, denotes the set of all monic polynomals (leading coefficient 1) of

k
degree k. W observe that

= mn q, anczos,
8182 in l$p(A) ]Il L
¢)EMP2
< lI(A-a])(A-o)q]II, the artful choice,
= ||(A-0L])e]’r|| , the connection with inverse iteration, Lemm 2,
= |8]|T » since Ais tridiagonal,
< |a]-o|. |Bp|, if 0is Wlkinson's shift, Lemm 4,
< |8182| , by a characteristic property of

Wlkinson's shift.

Only the strict inequality is really new and a sharper form

k+ k+1 )42
of it is used in Sections 5 and 6 to show that (B% ])B( ])) <

2
< (2/5)(3%"'”3&"'”)2 for all k and also that é% < 1848,1/v2. This

. k .
establishes global convergence, 1.e. 8]( )—> 0, in a clean way.



2. Orthogonal Reduction to Tridiagonal Form

Any symmetric matrix Mmay be reduced to tridiagonal form A by an

orthognoal simlarity transformation. 1In synbols
(0) A=cMa, 1 -6G=-66.

In fact, when the off diagonal elenents @j are not zero then A is
conpletely determned by 9y (or by gn). Our interest is in expressions
for products of the éj,j =1,2,.... Fromthe pioneering work [Lanczos,

1950] we can deduce that

A

B ...

| BJ.I = m1n||¢(M)g.' I

over all monic polynomials ¢ of degree j with equality only when ¢(})
is the leading principal j xJ mnor of XA

However we prefer to use some alternative formulas which yield rather
more information and are also quite well known.

A useful way of understanding the relationships hidden in (0) is to

equate colums on each side of the equation
(1) GA = MG

and deduce that the colums {91’92”"’gj} form an orthonormal basis for

the so-called Krylov subspace Kj of R" which is spanned by

2 -
g1:May Mgy, Mg
Let P.J denote the orthogonal projection of Rn ont o Kj and let ISJ. be

its conmplement. For exanple, P1 = g1g-]r, P2 = 919-:-+929-2r°
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LEMMA 1. Let GA = MG with G = (g.l,...,gn) orthogonal, then
g3§2§] = P,MP Mg, .

Proof. By equating the (1,1), (1,2), and (2,2) elenents on each side

of (1) we find

T

T T
2Mg2 .

AL _ = al A=
Nowequate first columms on each side of the equation GA = MG and rearrange:

951 =My - 9

= Mg] 'g](g:]l-Mg]) ., using(2) ,

T
(I"g]g] )Mg] ’
= P}Mg].

Next equate the second columns on each side and rearrange:

938, = Mg, - 950, - 948,
T T )
= Mg, - 9,(9,Mg,) - gq(g9Mg,) , using (2) ,
T T
= (1'9292'9191 )M92 s
= P2M92'

Miltiply (4) by @-I and use (3) to obtain the formulas in the lemm. O

In the next section we will apply this lemm to the case when M= A

is also tridiagonal and Mg.l lies in the plane of 9 and e,



3. The QL Transform and Inverse Iteration

The QL transform of A is denoted by ﬁ, has the same form as A

and is defined by
(1) A =q'ag

where Q is the orthogonal mmtrix which satisfies
(2) A- a=QL

and L is lower triangular with positive diagonal elements. The scalar ©
is called the shift. Note that Qis the result of performng the Gram-
Schm dt orthonormnlizing process to the colums of A-a fromright to left.
The QL algorithm iterates the QL transform choosing an appropriate shift
at each step.
The QL transformis related to the earlier QR transformin a very sinple way:

~

if I= (e .,e.l) and K is the QL transform of A then fﬂf is

nsn-1 0"
the QR transform of IAT. The QL algorithm has some mnor advantages from
the programmer's point of view and has becone the preferred method. Conse-
quently we will present our results in its termnology.

In practice the matrix Q which turns A into R is never forned
explicitly. Even in theory the colums of Q are determned in the order
qn,qn_],...,qz,q]. Nevertheless A is conpletely determned by q] and
q] connects the QL transformation with sinpler processes like inverse

iteration.

W are now going to formulate a result which is quite well known.



LEMWA 2. Let QTAQ = A be the QL transform of unreduced tridia-

gonal A with real shift ©. Then 9, = Qe.I satisfies

(A-o)q1 = eT .
If 0 is an eigenvalue of A then T = 0; othemise T is the
-1
scale factor which ensures that ||CI-|||= 1; s 1 = 1/I(A-0) 91“~

Proof. Transpose equation (2) above, post multiply by Q and use

QTQ =1 to find
T
(3) (A-O)Q =L .
Equatingcolumn 1 on each side shows that
(4) (A-o)q] = el Ay >0 |
If 0 is not an eigenvalue then
_ -1
(5) =gyl = o) e @ g
and we have written T for 52,”. If 0 is an eigenvalue then

0= det(A-a) = det Qe+det L .

The Gram Schmidt process begins with qn = (A—O)en/ﬂ,nn. Because A is

unr educed Q,nn = | (A-O')enll # 0. Mreover, for the sane reason, the last

(n-1) colums of A-a are linearly independent. Consequently

ij >0, j =n,n-1,...,3,2,

for all o. It follows that on the last step of the Gram Schm dt process

a null vector is obtained. Hence 2” =1 =0 and Q-I my be any unit



vector orthogonal to all the other q's. This gives only a choice of sign

for q] and in either case (A-G)q.l = 0. cl

Equation (4) shows that the first colum of Qis the normmlized
result of one step of inverse iteration with shift o.
W now use Lemmm 2 to get expressions for the off diagonal elenents

which are produced in the course of the QL algorithm

LEMVA 3. Let A = QTAQ be the QUL transform of A with real shift

0. Then

fos)d
1]

T|sin e]] ,

!
—

i
S
|

= 1|8, s1‘n_92| ,

where 8.] is the angle between e, and the Krylov space KI’

i=1,2.

. 5 T 5 T o
Proof. Recall that in Lerma 1 P.I =1 - 419y P2 =1 - 949y - PEPY
W have
QZé'l = ﬁ'IAQ] s Lemma 1
= P](q]0+e]T) , Lemmm 2
= P.le]T
= T(e.I - q] cos 9]) )
Further

q38162 = PZAP1Aq1 , Lemma 1

TISZA(e.I -q.I cos 8.') , two lines up,

Tﬁz(e]oc] "‘GZB-l -q] cos 6]) , Ais tridiagonal,

T8,Poe, | I32 annihilates K, = span(q;,Aq;)
= span(qy,e;) .

On taking norms the results follow El
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Using the same technique it can be shown that

8182 ...8. = 8182...8_

sin6. .
j i-1" i

Lemma 3 holds for any shift strategy but the global convergence follows

from a sinple bound on T which holds when Wlkinson's shift is used.

4. Wlkinson's Shift

a, B
Given A then Wlkinson's shift w is that eigenvalue of [ ! ]

B1 %
which is closer to a, In case of a tie either eigenvalue may be used.
So we have

2
(a] '&))((12'(1)) = B-I =0

and

|a]-w| f_la]-w'| .

Let us write S = (OL2~OL-‘)/2 and observe that

w, w' = (a]+a2)/2 + /8 +BT )

This shows that

|a]—w| §_|a2-w|

with equality if, and only if, § = 0. By noting that |B1| is the geonetric

nean of IO‘]"”I and [az-wl we have

oy -w] i B
B] Iaz'wl

Q-0
_|<'l
Q=W

with e-quality if, and only if, 8 = 0.



5. A Residual Estimate for Inverse Iteration

Since Ais symetric and tridiagonal we know that when B.l is smll
conpared with IOL]-OLZI then €, 1is a good approximmtion to an eigenvector
and Wlkinson's shift w is an even better eigenvalue approximation than
ay- A well known way to obtain an inproved normmlized eigenvector is to

solve for 1 the equation
(1) (A'w)q] = e]T

where T is the positive scale factor which ensures that qu1II = 1.

Our concern here is at the opposite extrene. If B.I is not necessarily
small and e is a poor approximation to an eigenvector of A how bad can
(w,q]) be as an approximate eigenpair.? A good measure for this approxim-
tion is,

/Al

which is the norm of the "residual" vector (A-m)q] relative to [IAl.
W now show that (w,q]) cannot be arbitrarily bad; in fact T < '82|'

For convenience we write

and define p = (1T.|,1T2,1r3,...

(2) (A-w)p = e].

LEMVA 4. When Wilkinson's shift w is used in (1) then

2 2 2.
2 < [—4%—22--811 By ARt

- =2, .. - -
a*thy 096y By
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Proof. If wis an eigenvalue of A then the QL transform will mmke
qy an eigenvector, so T = 0. From now on assune that A-w is invertible.

From (1) and (2) we have

qy = p/lpl
and

(3) T = 1/IpF < 1/(njempems)

The first two equations in (2) are

(4) (X-I'ﬂ'] + B]'ﬂ'z =1 ’
(5) B]ﬂ] +C£2T1'2 + 82'”3 =0 .

Recall the definition of w and fornl(B]/&l)X(4)— (5) to find
(6) 0+0-821T3 =B.’/oc.l .

In fact (6), together with the fact, from (4), that u and T,
cannot vanish sinmultaneously, is sufficient to prove that T <|52|-
2. .2
However, we can easily bound ﬂi'*ﬂé away from 0. By elenentary geonetry

the distance of the origin fromthe line (4) in the ﬂ],ﬂz plane is

1/¢a%+8%. Hence

0 v nd > 1/(a0+ed)
and the result follows readily from using (6) and (7) in (3). a

The surprisingly sinple expression (6) for Ty ensures, by itself, that
8182 is nmonotone decreasing. The extra information contained in (7) shows
that the decrease is linear right from the start

Lenma 4 gives nore information than we need. To sinplify later discus-

sion we use the harnmonic nmean, defined for positive &, n by

H(E,n) = 2/ 1)



AT T AT

13

On mmjorizing |&1| by B.I Lemma 4 sinplifies to the useful

|
COROLLARY. % < H 812 -;—83)

6. Global Convergence -of the QL Algorithm

The QL al gorithm produces a sequence of unreduced symmetric tridiagonal

A0

mtrices

4 (6)

., k =1,2,... and the glorious fact is that, always,

» 0 rapidly as k > «, revealing oal(k) as an increasingly good

approximtion to an eigenvalue of A(]). Wien B%k) is accepted as

negligible the algorithm continues to transform all but the first row and

A(K)

colum of and thus all the eigenvalues may be found in turn.

The convergence of IB.fk)| need not be monotonic but the key fact is

. that {IB-EK)Bék)I, k=1,2,...1 is nonotone decreasing and its limt is O.
Using the corollary of Lemma 4 in Lemma 3 and noting that H(&,n) < VEn

we obtain

| LEMWA 5.  When Wilkinson's shift is used in the QL algorithm,

~2 2 . 2 .2
(a) By < 71" < min{28,85,]8,8,1/V2} ,

~ a2 2.2 ¢ e 2
() (B,8,)° < B77° <(8,8,) H(B}/B5.3) <(8,8)) ©.

This establishes the monotonic decline of |B-§k)B§k)] but to see that
the limt is zero it suffices to consider two successive steps in the
algorithm and so the superscript k can be dropped.

Lemma 5(b) shows that the reduction in 8182 is substantial unless

|32/B]| is smll. However Lemnma 5(a) shows that such an unfortunate ratio



cannot persist.

harnmonic nean,
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The next result mmkes this precise.

H(E,n),

of positive nunbers & and n

W recall that the

is symetric, honpgeneous

(of degree 1) and nonotonic increasing in each of its argunents separately,

THEOREM 1.

sequence u

A o
Let A, A, A be three successive terms in the QL

sing Wilkinson's shift. Then

(818)% < (88,)°2/ (305 < (2/5) (8,8,)°

Proof. 08262 < é?%z , Lemma 5b for ﬁ,
—_— 172 1
< é?H(§12,12'§§) , Lemma 4 Corollary for ii,
= H(éfl '%?lég) , honogeneity of H
< H(T4,'12"62T2) » nonotonicity and Lemma 5 for A
= T2H(£qf|',’f2) , homogeneity and symmetry of H
21,2 1,2 2 1.2
< H(81’§62)'H(§6]’H(B]’§BZ)) , Lemma 4 Corollary for A
")‘_ 2 Il 1 l‘ ‘l . l_’) |.2
= ByBoH(5:p JH(5:H(1,50)) | homogeneity of H, o = B5/8] .
<B1ZB§2/(3+/5—) , maximzing over all p > 0.
W note that
1T -1 1 1 2 - 2
H(Zp )-H(ZH(50)) = (2+p)m
2 p

=B+ Go+o )2

< ]/[%+1/—§] .

COROLLARY 1.

For the QL algorithm with Wilkinson
B%k)Bék) —~ 0 as k — o,

's shift
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(2k+1) o( 2|<+1)l < IB(Zk (2k)| < (2548 (1)8( )|

Proof. IB °@

c 1

The asynptotic convergence rate is much better than this. Waat is
remrkable is that convergence is linear, with a good ratio, right from

the start.

ICOROLLARY 2. For the QU algorithm with Wi{lkinson's shift

81(k)

— 0 as k— o .

Proof. By Lemma 5(a), é? <‘B](32l/»/2_. Convergence follows from

Corollary 1. a
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7. Local Convergence

W suppress the fact that all the elenents al, 81,etc. depend on k,

the iteration count. W know that as k - « both &]-+ 0, &l+ 0.

In the usual case 82 +~ (0 as well. In this case &2 +~ 8 # 0 because

the eigenvalues of an unreduced tridiagonal matrix are distinct (although

sonetinmes very close). The question we take up now is the asynptotic
convergence rate. From Lemmm 3 |§1| = T|sin 9]|, but the estimate for T
in Lemma 4 does not reflect the asynptotic regime. In fact, as k » =,
= 1/lpl = 0(1/|ﬂ1|)
where (A-w)p = ey
Solving these equations as before yields
T,y = Y
37 B85,
. 0ol _B3w4
2 =, 2 B, ’
Bify 2
525 0BT
= Z3 273 4 _%
1 7 2.2 B,B
8182 B
In the usual regine
2
T+ - 1/2 ﬂ
. 2 n 2
sin o, | ] =0t
1 ﬂz;ﬂz+. .+ﬂ2 ™M
12 n
and using the first terns in the expressions for IT, and IT2

By ~ B]BZ g 0) -

This is better than cubic convergence
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W have not been able to prove that the analysis given above always
obtains. The possibility remmins open that &2 -+ 0, 82 >n#0. In this
case T, still dom nates the other elements of 7 but it is the third

termin the above expression for ™ which brings this about, Thus, in

such a case

2, ~ -
T~ B]/Iazl = la]| s
. -~ - 2
|sin 611 B]a3/62 ,
and
AL - _ 2
IB]I - 0('0‘181[) = O(B]) .

Thus quadratic convergence occurs even in this unstable, and very special,

eventuality.
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