Stanford Artificial Intelligence Laboratory
Memo AIM-303

Computer Science Department
Report No. STAN-CS-7 7-63 1

October 1977

INFERENCE RULES FOR PROGRAM ANNOTATION

by

Nachum Dershowitz and Zohar Manna

Research sponsored by
United States Air Force
Nat ional Science Foundat ion

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

4 HSdhl‘:‘f‘w .

Stanford Artificial Intelligence Laboratory October 1977
Memo AIM-303

Computer Science Department
Report No. STAN-CS-7 7-63 1

INFERENCE RULES FOR PROGRAM ANNOTATION

by

Nachum Dershowitz and Zohar Manna

ABSTRACT

Methods are presented whereby an Aigoi-like program, given together with its
specifications, can be documented automatically. The program is incrementally annotated
with invariant relationships that hold between program variables at intermediate points in
the program and explain the actual workings of the program regardless of whether the
program is correct. Thus this documentation can be used for proving the correctness of
the program or may serve as an aid in the debugging of an incorrect program.

The annotation techniques are formulated as Hoare-like inference rules which derive
invariants from the assighment statements, from the control structure of the program, or,
heuristically, from suggested invariants. The application of these rules is demonstrated
by two examples which have run on an experimental implementation.

T ke authors are also dffiliated with the Department of Applied Mathematics of the Weizmann
Institute of Science, Rehovot,Israel.

T his research was supported in part by the United States Air Force Office of Scientific Research
under Grant RFOSR-76-2909 (sponsored bythe Rome Air Development Center, Griffiss AFB,
NY), by the National Science Foundation under Grant MCS 76-83655 and by the Advanced
Research Projects Agency of the Department of Defense under Contract MDA 903-76-C-0206.

T he views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University or theU. S. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 22161.

Inference Rule8 for Program Annotation I

I. INTRODUCTION

A convenient form for expressing many facts about a program is a set of invariant
assertions (invartants, for short) which detail relationships between the different variables
manipulated by the program. invariant assertions play an important role in many aspects of
programming, including: proving correctness and termination, proving incorrectness, guiding
debugging, analyzing efficiency and aiding in optimization.

Program annotation is the process of discovering these invariants. We are given an
Algoi-like program along with an output specification stating the desired relationship among
the program variables upon termination, and an input specification defining the set of inputs
on which the program is intended to operate. it is, however, not known whether .or not the
program is correct and satisfies those specifications. Our task is to generate the invariant
assertions describing the workings of the program as is, independent of its correctness or
incorrectness.

in the following sections, we present a unified approach to program annotation, using
annotation rules — in the style of Hoare [1969] — to derive invariants, Section ii presents
an overview of our approach. it is followed by two detailed examples: the first (Section
ii 1) illustrates the basic technique8 on a single-loop program; the second (Section IV)
applies the techniques to a program with nested loops and arrays, A catalog of annotation
rules is included in the Appendix.

We have implemented the strategies described in this paper in QLISP (Wiiber [1976]),
which resides in an INTERLISP environment (Teiteiman [1974]). The two examples
presented here are among those that have run successfully on our experimental system.
Three earlier annotation systems are:
® the system described in Eispas [1974], based mainly upon the solution of difference
equations;
® VISTA (German [1974], German and Wegbreit [1976]), based upon the top-down
heuristics of Wegbreit [1974]; and
® ADI (Tamir [1878]), an interactive system based upon the method8 of Katz and Manna
[1976] and Katz [1976].

Our system, as described here, attempts to incorporate and expand upon those systems.

Inference Rules for Program Annotation 2

II. OVERVIEW

in this section, we first define some terminology and then, in an attempt to impart the
flavor of the general approach, present samples of each type of annotation rule.

1. Notation and Terminology

Given a program with its specifications, our goal is to document the program
automatically with invariants. if the program is correct with respect to the specifications,
we would like the invariants to provide sufficient information to prove its correctness; if
the program is incorrect, we would like information helpful in determining what is wrong with
it. Three types of invariant8 will play a role in our discussion:
® Global invariants are relations that hold at all places (i.e.,, labels) and at all times during
the execution of some program segment. We shall write

{a}) inP

to indicate that the relation « is a global invariant in the program segment P.

® [ocal invariants are associated with specific points in the program, and hold for the
current values of the variables whenever control passes through the corresponding point.
Thus,

{a) atl

means that the relation a« holds each time control is at label L.

® Candidates for invariants, also associated with specific points, are relations that are
believed to be local invariants, but which have not yet been verified. Using question marks
to emphasize that these relations are just candidates, we write

{? «a 7} at L .

Consider the following simple program, meant to compute the quotient ¢ and
remainder r of the integer input values ¢ and d :

Inf ® rence Rules for Program Annotation 3

Py begin comment integer division
B: { ceN, deNt)
qg:=0
ri=c
loop L { ...}
until r<d
q = q+l
7 :=1-d
repeat
E:{?qeN ,6qgs od, o/d <ql, r=¢-qd ?}
end ,

where N is the set of natural numbers, and N* is the set of positive integers. We use
the loop-until-repeat construct, to Indicate that the two loop-body assignments,
g =q+1 and r:=r-d , are repeated until the exit test r<d is true for the first time,
This program will be used only to lllustrate various aspects of program annotation;
examples of full annotation are given in Sections lit and IV.

The invariant

{ceN, deNt)

attached to the begin label B, is the input specification of the program defining the
class of "legal" inputs. it indicates that whenever computation starts at B, , the variable

c is a natural number and d Is a positlve integer. The input specification is assumed to
hold, regardless of whether the program is correct or not. Since it is a local invariant at
B, , we refer to it as

{ceN, deN*} at B,.

The candidate
{(?qeN | 4 scld,cld <g+l, 1 =cgd ?)

attached to the end label E , Is the output specification of the program, It states that
the desired outcome of the program I8 that ¢ be the largest Integer that is not larger than

Inference Rules for Program Annotation 4

c/d and r be the remainder. Since one cannot assume that the programmer has not
erred, initially ail programmer-supplied assertions — including the program’s output
specification — are only candidates for invariants.

In order to verify that a candidate is indeed a local invariant, we must show that
whenever control reaches the corresponding point, the candidate holds, Suppose that we
are given a candidate for a loop invariant

{? r=cqd?} atlL,.

To prove that it is an invariant, one must show that the relation holds at L when the loop
is first entered, and that once it holds at L, it remains true each subsequent time control

returns to L, . if we succeed, then we would write
{r=cqd} atlL,.

Furthermore, if r= C-q°d holds whenever oontrol is at Lo, then it will also hold whenever

control leaves the loop and reaches E,. In other words,r® ¢c-g*d would also be an
invariant at £, , and may be removed from the list of candidates at £, . in that case, we

would write

{?qeN gscd, /d <¢+1?} and {r =¢c-¢qd} at E .

Global invariants often express the range of variables. For example, since the
variable g is first initialized to zero and is subsequently incremented by ones, it is obvious
that the value of g is always a natural number, Thus we have' the global invariant

{geN} in P

0

which relates to the program as a whole, and states that g € N throughout execution of
the program segment P .

in this paper, we describe various annotation techniques. These techniques are
expressed as rules: the antecedents of each rule are usually annotated program
segments, containing invariants or candidate invariants, and the consequent is either an
invariant or a candidate. We list about forty such rules in the Appendix; they are
numbered < 1>,{2>, etc. This list is representative of the kinds of rules that may be
used for annotation; it is not, however, meant to be a complete list. Not only are these

Inference Rules for Program Annotation 6

rules useful for automatlo annotation, but they may also help oiarity the relationships
between program text and invariant8 for the human programmer.

We differentiate between three types of rules: assignment rules, control rules and
heuristic rules.
® Assignment rules yield global invariants based only upon the assignment statements of
the program.
® Control rules yield local invariants based upon the control structure of the program.
® Heuristic rules have candidates as their consequents. These candidates, though
promising, are not guaranteed to be invarlants.
The assignment and control rules are algorithmic in the sense that they derive relations in
such a manner as to guarantee that they are invariants. The heuristics are rules of plausible
inference, ref iecting common programming practice.

2. Assignment Rules

} Many of the algorithmic rules depend only upon the assignment statements of the
program and not upon its control structure. In other words, whether the assignments
appear within an iterative or recursive loop or on some branch of a conditional statement is
irrelevant. Since the location and order In which the assignments are executed does not
affect the validity of the rules, these rules yield global invariants.

The various assignment rules relate to particular operators occurring In the assignment
statements of the program. Some of the rules for addition, for example, are: an addition
rule, which gives the range of a variable which is updated by adding (or subtracting) a
constant; a set-addition rule for the case where the variable is added to another variable
whose range is already known; and an addition-relation rule which relates two variables
that are always incremented by similar expressions. Corresponding rules apply to other
operators,

in- dealing with sets, we find the following notation convenient: The set of elements
fGs,,5,, . .. ,5,) such that 5,68, ,5,€S5,,,.., 5, €5, — where fis any expression
and m20 — is denoted by f(§,,5,,... ,§,). For example, since N denotes the set of
natural numbers, the set f(N ,N)sa#+N+a ! containg all elements a+m+a " such that m
and n are natural numbers.

Inference Rules for Program Annotation 6

Using this notation, we have the addition rule <1>

x:= g |x+a |x+a,| . .. inP

{xeapra N+asN+. ..) in P,
where P is a program segment and the expressions a, are of constant value within P .
T h e antecedant

x:=aq | xta | xta, |. .. in P

indicates that the only assignments to the variable x in P are x:= a, , x:= xta, ,

x := xta, , etc. The consequent

{xeat+a N+asN+ . ..) inP
is a global invariant indicating that x belongs to the set a#+a,N+a, N+ ... throughout
execution of P— but only from the point when x first receives a defined value in P.
[After any execution of x:=a, clearly xeaqra N+a N+ . .. with
x=a+a°0+a,0+..., and if x=a#+em+an+. .. for some m ,n , .. . before
executing X:= x+a, , then xwaga (mel)eaon+. .. after executing the assignment.

Thus, m represents the number of executions of ¥:= xta, since ¥:= a, was executed
last, n Is the number of executions of ¥:i=X+a, , etc.] From such an Invariant, more

specific properties may be derived. For example a bound on ¥ may be derived using
methods of interval arithmetic (see, c.g.. Gibb [1961]). Note that no restrictions are placed
on the order in which the assignments to x are executed, except that prior to the first
execution of x:= a,, the invariant may not hold.

in our simple program P, the assignments to the variable ¢ are
q:=20 q:=q+l .

So we can apply the addition rule, letting a =0and a, =1, and obtain the global invariant

qe0+I°N ,ie.,
-{qe N) inP.

The assignments to rin P are

Inf erence Rules for Program Annotatioa 7

rimC r=Yd ,
Applying the same rule to them, letting 6,® c and @, *-d , yields the invariant
{recdN} In P, .

Given that d is positive, we may conclude that rsc.

The set-addition rule is a more general form of the above addition wie, applicable to
nondeterministic assignments of the form x:€ f(S) , where an arbitrary element of f(S) is
assigned to x. Note that an assignment x:= f(7) , where it is only known that se S,
may be viewed as the nondeterministic assignment x:€ f(S) . The set-addition rule <8 is

x:€ S, | x+5 | x+5,]... inP
{xeS+ZS+ESH ...} in P,

where 2§ denotes the set of sums S#s# ... +S, for (not necessarily distinct) addends
s; inS. ifm=0, the sum is 0; if S contains the single element s, then ZS=s5N,
(This rule applies analogously to any associative and commutative operator "@®".) These
assignment rules for global invariant8 are related to the weak interpretation method of
Sintzoff [I 872] (see also Wegbreit [1876] and Harrison [1877]) which has been

implemented by Scheriis [1974].

In our program P, the assignments to r were
ri=C ri= r-d .

Since we are given that ¢ € N and d € N* | we may view these as the nondeterministic
assignments

r:e N r :€ r-N* |

and by applying the set-addition rule, we obtain the global invariant r e N-ZN* . This
simplifies to

{rel'} inP, ,

[}

where | is the set of ail integers.

Inference Rules for Program Annotation 8

To relate different variables appearing in a program, we have an addition-relation rule
<11)>:

(x,9) = (a,,b) | (x+apou,y+bou) | (x+aov,94bv) | ... in P
{ o (y-b) = b(x-a)} in P,

where u,v,..., are arbitrary (not necessarily constant) expressions. The invariant
begins to hold when the multiple assignment (x, y):= (a,, 6,) has been executed for the

first time. [The invariant a (y-b)=b(x-a) clearly holds when x= a, and y = 6, .
Assuming it holds before executing (x,y):= (x+a u, y+b-u) , then after executing the
assignment, both sides of the equality are increased by a0 u , and the invariant stilt
holds.] The multiple assignments in the antecedent of the rule, e.g.,
(x , 9):= (x+a u, y+b+u), may represent the cumulative effect of individual assignments
lying on a path between two labels, with the understanding that whenever x:=x+a -uis
executed, so is y := y+b u for the same value of the expression u . In that case, the
invariant will not, in general, hold between the individual assignments.

In our example, the assignments in the initialization path give us
(g,7):=(0,¢) ,
and for the loop-body path we have
(g, r):=(g+!, r-d) .

By a simple- application of the addition-relation rule with 4,=0,6,=c,a,=u=v=1,and
6, = -d , we derive the invariant I+(r-c) = -d+(g-0) , which simplifies to

{r=cqd} in P .
We note that this addition-relation rule (as well as several other relation rules in the
Appendix) may be derived from the following general relation-rule schema:

(x,9):= (a,,b) | (x®(uBa)) , y®ud})) | (x®(¥®a) , y@@S)) | ... inP
{ (a,®)®(y®a) = (x@)®(®)) In P,

s v—

laf erence Rules £ or Program Annotation 9

where the operator & is commutative and associative, operator ® satisfies
(a®b)®¢ = (a®c)®b , and (a®b)®c¢ = (a®¢)®(B®¢c) . (These relation rules are related to the
approach in Captain [1976].)

Before turning to the control rules, we mention an additional useful teshnique: the
augmentation of a program with counters. For example, by initializing a counter to zero
upon entering a loop and Incrementing it by one with each iteration, the value of the
counter wilt indicate the number of times that the loop has been executed. Then relations
between the program variables and the counter can be found. (The variable ¢ serves a
loop counter in the example program Po-) By deriving upper/iower bounds on the counter
upon loop exit, the termination of the loop may be proved and time complexity analyzed.
Loop counters may also be used to discover relations between variables by solving
first-order difference equations (see,¢.g.,Eispas[1874] and Katz and Manna [1976]).

3. Control Rules

Unlike the previous rules which completely ignore the control structure of the program,
there are also control rules that derive important invariants from the program structure.
(They are related to the verification rules of Hoare[1869].) For example, the forward
loop~exit rule <3 1 7,

loop P’
{a)}
until ¢
L’
PII
repeat
L”.‘
{a, =t} at U
{a,t} at L,

reflects the fact that if a loop is exited and control is at L” , then the exit test ¢ must
have just held, while if the loop is continued at L’, the exit test was false. Furthermore,
any relation a that held just prior to the test, also holds immediately after. The forward
loop-body rule<29>,

Inference Rules for Program Annotation 10

{a)}
loop L:
P

{8}

repeat

{avf) atlL ,

states that for control to be at the head of a loop, at L , either the loop has just been
entered, or the loop body has been executed and the loop is being repeated. Therefore
the disjunction a V § of an invariant @ known to hold just before the loop with an

invariant 8 known to hold at the end of the loop body, must hold at L.

Applying the first rule to the loop In the integer-division program P, yields the
invariant r<dat £ ,and r2d at the head of the loop body:

qg:=0

Y i=(C

loop L,:
until r<d
{rzd}
q =g+l
ri= r-d
repeat

Epx { r<d } .

To propagate invariants, such as r2d , past assignment statements, we have a
forward assignment rule 21>,

{ alx ,y))
x = f(x,y)
L:

{ alf (x,9),%) } atr L ,

where f is the inverse of the function f in the first argument, ie, £ (f(x , 9 ,9 = x , In

Inference Rules for Program Annotation 11

our example, since the first loop-body assignment ¢:=¢+! does not affect any variable
appearing in the Invariant r2 4 , the invarlant is pushed forward unchanged. To propagate
r > d past the second assignment, r := r-d , we replace r by the inverse of r-d , that Is

r+d , yielding r+d2 d, or
{r201} ,

at the end of the loop body.

The assignment axiom €182,

{x=a)
(the expression a may not contain x), gives us the invariant

{r=c)

prior to entering the loop. Thus, by the forward loop-body rule (29>, we get the loop
invariant

{r=cVvVr20} atlL,.

0

Since, by the input specification 0 s ¢ , the first disjunct Is subsumed by the second, i.c., if
the first disjunct is true, then the second must also hold, and the Invariant simplifies to

{r20} atldL,.

To generate invariants from conditional statements, we have a forward test rule <25>:

{«a}

if t then L's; P
else L":3 P"
fi

{ a t}) at L’
{a,-t} at L”

That is, for the then branch to be taken ¢ must be true, while for the else branch to be
taken It must be false. And anything that held before the test, holds after.

Inference Rules for Program Annotation 12

To lllustrate the control rules, consider the following single-loop, single-condltlonal,
program schema:

P* begin

Z:=c

loop L*:{...}
until #(z)
2= fQ)
if s(z) then 2 m=g(z) else 2 = A(z) fi
repeat

end .

We shall assume that the inverse functions f , & and A~ are available whenever
required by the rules.

The assignment axiom <18>, when applied to the initial assignment z:= c , yields the
invariant

{z=c)
before the loop. The forward loop-exit rule €31> generates the invariant -¢(z) at the head

‘of the loop body, immediately after the until clause, and then the forward assignment rule

<2 1> gives -¢(f~(z)) preceding the conditional. So far we have the loop body

until #(x)
2= f(2)

(@))
if s(2) then 2 1= g(2) else 2 := A(2) fi .

The forward test rule 286> propagates that invariant forward and adds s(2) at the head of
the then clause of the conditional, and -s(z) at the head of the else clause:

if s(z) then {-t(f (2)) A s(z)};2:= g(z)

else {~t(f (@) A-s5(2) }; 2:= h(z)
fi .

By pushing -¢(f"(z)) and s(z) through the then -branch assignment z:=g(z) , and
=t(f(2)) and -s(z) through the else -branch assignment z:= h(x) , we get

Inference Rules for Program Annotation 13

if s(z) then 2z g(r); {~t{f (g @NAs(g ()}

else z:=h(2);{~t{(f (A (2))) A -s(h~(2)) }
fi .

After a conditional statement, we know that one of the two branches must have been
taken. This is expressed by the forward branch rule <27>

if ¢tthen P'; { a)
else P"; (B)
fi

L:

{aV@} atlL.

Thus, by disjoining the invariants from the two different paths, one gets

{ [~ @) A s(g@N] V [~ (2) A -s(h7(2))] }

after the conditional, at the end of the loop body.

The forward loop-body rule 29> expressed the fact that If control is at the head of a
loop, either the loop-initialization Invariant or the loop-body invariant must hold. Applying ,
this rule to our schema

{z=c}

loop L*i (...}
until ¢(z)
1 :-f(7)

if s(2) then 2 = g(z) else 2 = h(z) fi

{ [~ @@ A s(g@@)N] vV [~ (r () A =s(h~(2))] }
repeat ,

we derive the loop invariant

{z=c V[@ A s@ @] V [~ @) A ~st- ()]} atl*.

Inference Rules for Program Annotation 14

This loop invariant embodies two facts about the control structure of this schema:

® cxit lemma: Whenever control is at L* , either the loop has just been entered, or the
loop-exit test was false the last time around the loop. That is,

{z=¢c V ~t(f(g())) V -t(f (A ()} atL*.

The first disjunct is the result of the initialization path; the second states that the exit
test was false for the value of z when L* was last visited, assuming control came via
the then path of the conditional; the third disjunct says the same for the case when
control came via the else path.

® test lemmas Whenever control is at L* , either the loop has just been entered, or the
conditional test was true the last time around and the then path was taken, or the test
was false and the else path was taken. That lIs,

{z=cvs(g@)V -sth(2)} at L* .

The following forall rule <38> is valuable for programs with universally-quantified
output specification. Given a loop Invariant a(x) at L , containing the Integer variable (or
expression) x and no other variables, check if x Is monotonically Increasing by one. If it
is, then we have as a loop invariant at L , that « still holds for all Intermediate values
lying between the initial and current values. That Is

{x=a)
loop L:{a(x))
P
{ x=x41)
repeat

{¢(vieD@s1s xa()$) at L,

where a is an integer expression with a constant value In P and ¥, is the value of

when last at L . (This rule is similar to the universal-quantification technique for arrays in
Katz and Manna [1973].) The rule may be broadened to apply when x is increasing by an
amount-other than | , or for a decreasing x. Note that any loop counter will satisfy the
conditions on x.

As a simple example, consider the loop

Inference Rules for Program Annotation 15

i -0

loop L:
until (i)
i= i+l
repeat

E:

We clearly have i = 0 upon entering the loop, and é=i +I at the end of the loop body.

By the exit lemma, we have
{i=0V -ti-1)} at L,

and generalization of this invariant yields (VI)(0 S ! S i)(I=0 V =t(l-])) at L , Simplifying,
we get

(VD0 s 1 <i)t())) at L

This invariant may be pushed forward to £ , where we also have the Invariant (i) ,
Together they imply

(i=pni0)) atE.

4, Heuristic Rules

In contrast with the above rules which are algorithmic in the sense that they derive
relations that are guaranteed to be Invariants, there Is another class of rules, heuristic
nules, that can only suggest candidates for invariants. These candidates must be verified.
[Since we have not implemented a theorem prover, our system suggests candidates, but
does not verify them.]

As an example, consider the following disjunction heuristic (38>

- if t then P 3{a}
else P";{8)
fi

L:

(?a .87 at L .

R TS

Inference Rules for Program Annotation 16

Since we know that a holds if the then path P’ is taken, while 8 holds if the else
path P ” is taken, clearly their disjunction a V 8 holds at L in either case (that was
expressed in the forward branch rule <27>). However, since in constructing a program, a
conditional statement is often used to achieve the same relation in alternative cases, it is

plausible that a (or, by the same token, 8) may hold true for both the then and else
paths.

Wegbreit [1974] and Katz and Manna [1976] have suggested a more general form of
this heuristic <39>:

{aVB) atlL
{?a'ﬂ?} at L

However, as they remark, this heuristic should not be applied indiscriminantly to any
disjunctive invariant. We would not, for example, want to replace all occurrences of an
invariant x 2 0 with the candidates x> 0 and x= (0 . Special cases, such as the above
disjunction heuristic, are needed to indicate where the strategy is relatively likely to be .
profitable.

As mentioned earlier, the output specification and user-supplied assertions are the
initial set of candidates. Candidates are propagated over assignment and conditional
statements using the same control rules as for invariants, and the rop-down heuristic 38>,

{7}

loop ™
L'
until ¢
PI’
repeat

L": {2 v 7}

{(? v 7 at L',

may be used to push a candidate backwards into a loop, Though {27 would be a
sufficiently strong loop invariant at L’ to establish ¥ at L” upon loop exit, the
heuristic suggests a stronger candidate, Y itself, at L’. Since a necessary condition for
Y to be an invariant is that it hold upon entrance to the loop, the antecedent of the rule
requires the invariant ¥ before the loop. If some 8 , rather than ¥ , is known at that
point, then for the heuristic to be applied, 8 must imply 7.

Inference Rules for Program Annotation 17

Returning to our integer-division example, the top-down heuristic suggests that of the
candidates

{? g€ N, gqscld,cld<q+l, r=cqd?} at E ,

those which hold upon entering the loop — when ¢g=0 and r=¢— are also candidates at
L They are

0.
{?qe N, gscld, r=cqd?} atl,.

The third candidate at E,, ¢/d <¢+I , does not necessarily hold for g= 0.

Each candidate must be checked for invariance: it must hold for the loop-initialization
path and must be maintained true around the loop. Of the three candidates et L , the
first, ¢ € N, and last, r =¢~¢*d , have already been shown to be global invariants. To
prove that the second, ¢s¢/d,is a loop invariant at L,,ws first try to show that it is

true when the loop is entered, i.e., that
0 <cld .

The truth of this condition follows from the input specifications. Then we try to show that
if g <cld is true at L, , and assuming that the loop Is not exited, then it holds when

control returns to L, i.c,

gscld A rz2d > g¢q+lscdd.

This condition, however, does not hold. Nevertheless, we can show that ¢ < ¢/d is an
invariant by using other invariants: We have seen why r2 0 and 7 = ¢-¢d are loop
invariants at L,. Since substituting ¢-¢+d for r in r2 0 yields ¢-¢*d 2 0 , it follows that
g s ¢/d is also an invariant at L,. Thus, while an attempt to directly verify the candidate
q s ¢/d failed, once we have established thatr2 0 and r =¢-¢q*d are invariants, we can
also show that ¢ <c¢/d is an invariant.

Indeed, In general there may be Insufficient Information to prove that a candldate is
invariant when it is first suggested, and only when other invariants are subsequently
discovered does it become possible to verify the candidate. Therefore, every candidate
should be retained until all invariants and candidates have been generated. Unproved
candidates are also used by the heuristics to generate additional candidates. For
example, the top-down heuristic uses the as yet unproved candidate 7 at L” to generate

the candidate loop-invariant Y atl’.

Inf erence Rules for Program Annotation i 18

Note that & candidate invariant must sometimes be replaced by a stronger candidate
in order to prove invariance. This is analogous to other forms of proof by induction, where
it is often necessary to strengthen the desired theorem for a proof to carry through. The
reason is that by strengthening the theorem to be proved, we are at the same time
strengthening the hypothesis that is used in the inductive step. We could not, for
example, directly prove that the relation (r2d) V (r=c-¢-d) is a loop invariant (that is
the necessary condition for r=c¢-¢*d to holdafter the loop), since this candidate is not
preserved by the loop, i.c,

[r2d V r=c¢cqd] A r2d > [rdz2dV rd = c(¢+])d]

does not hold. On the other hand, we can prove that the stronger relation r=c-¢g-d is an
invariant, since we have a stronger hypothesis on the left-hand side of the implication;
that is,

r=cqdArzd > rd=c(q+l)d

does hold, Clearly, once weestablishin ¥ 5¢-¢°d is an invariant, it follows that
(r2d) V (r = ¢-¢-d) also is.

Various specific methods of strengthening candidates have been discussed in the
literature (Wegbreit [1974], Katz and Manna [1976], Moriconi [1974] and others); they
are closely related to methods of "top-down" structured programming. Related techniques
are used by Greif and Waldinger [1974] and Suzuki and Ishihata [1977]. Also the
candidates that Misra [1976] and Morris and Wegbreit [1977] derive, using the
subgoal-induction method of verification, fall into this class.

In each of the following two sections, we shall demonstrate how a nontrivial program
can be annotated using the rules in the Appendix. These examples are deliberately taken
from previously published papers on program annotation in order to demonstrate the power
of our approach.

Inference Rules for Program Annotation 19

ITI. EXAMPLE: Real-Division Program

Consider the following program P, purporting to approximate the quotient ¢/d of two
real numbers ¢ and 4, where 0 £c <d . Upon termination, the variable ¢ should be no
greater than the exact quotient, and the difference between ¢ and the quotient must be
less than a given positive tolerance e . in other words, the input specification is

0sc<d A O«<e
and the output specification is
qg Scld A cld < g+e .

The program is

P,:begin comment real division

B, :{0sc<d,0<¢}

g m0iqqimOyrimlyrrim

loop Lp (...}
until rse
if qqerr s c then g:=g+ry g g 1= gqerr i
7 im7)2; 77 im 17)2
repeat

E: {? q scld,cld<g+e?)

end

and our goal is to find loop invariants at L, in order to verify the output candidates at
E In our presentation of the annotation of this program, we first apply the assignment

rules and then the control rules combined with a heuristic rule.

1. Assignment Rules

As a first step we attempt to derive simple Invariants by ignoring the control structure
of the program, and considering only the assignment statements. This will yield global
invariants that hold throughout execution.

Inference Rules for Program Annotation 20

We first look for range invariant8 by considering ali assignments to ® aoh variable. For
example, since the assignments to r are

ri=] ri=r/2

we can apply the multiplication rule 2>

x:= @a, | xa inP

{xeaa™} in P

Taking r for x , 1 for a, and 1/2 for a, , we derive the global invariant

{reuy2"y inP,. (1)

1

in other words, r = //2" for some natural number n . From this it is possible to derive
lower and upper bounds on r,ie, O<rs 1l

Similarly, applying the multiplication rule to the assignments’ to rr
rri=d rr =12,
ylelds
{rredi2¥} in P, . (2)

Since we are given that d> 0, it follows that 0 <rr<d.

The assignments to ¢ are
g:=0 g = g+r .

Since we know (1) rel/2VY, these assignments may be interpreted as the
nondeterministic assignments

q:€0 q € q+12V .
Using the set-addition rule <6>

x € S, | x+8, in P

{xeS3Z8,) inP

Inference Rules for Program Annotation 21

we conclude
{qeZly2¥} in P, . (3)

This invariant states that ¢ Is a finite sum of elements of the form 1/2" , where n is
some natural number. Since for any two such elements, one Is a multiple of the other, it

follows that the sum is of the form m/2" , where m ,ne N .

From (2) rr € d/2V and the assignments

qq:=0 qq = qq+rr

we get by the same ser-addition rule

{g9geaZly2¥} n P, . (4)

The above four invariants give the range of each of the four program variables. Now
we take up relations between pairs of variables by considering their respective
assignments. Consider, first, the variables r and rr . Their assignments are

(r,rr):=(1,d) (r,rr) = (/2 ,11]2).

Each time one is halved, so Is the other; therefore, the proportion between the Initial
values of r and rr is maintained throughout loop execution. Thisis an instance of the
multiplication-relation rule €12>

(x,9):= (a,,b) | (xul y-ubn) in P

{ th‘b0a|=a0bl‘yal } inP ,

yielding r/@! = I'srr! which simplifies to

{ rr=dr} in P, . (6)

The assignments to ¢ and ¢¢ are
(g.,q9 =00, 0 (g . q9) := (g7 . gq+r7) .

Using (5) rr=d-r to substitute for rr In the assignment ¢gq:=¢¢+rr , we have

Inference Rules for Program Annotation 22

(¢.99):=(0,0) (¢, qq) := (g+r , gg+der)

which is an instance of the addition-relation rule€ 31>

(x,9):= (a,,b) | (x+au , y+bou) in P
{ as(y-b) = be(x~a) } in P

Thus we have the global invariant 1+(¢gg-0)=d+(¢-0), i.e.,

{gg=dq} in P . (6)

In all, we have established the following global invariants:

{rel2¥ rred2¥, qeZi2™ ,
gq€dI2N rr =der qqg=dq)} inP .

2. Control and Heuristic Rules

So far we have derived global invariants from the assignment statements, Ignoring the
control structure of the program. We turn now to local invariants extracted from the
program structure.

By applying the assignment axiom <18>

X i=a

{x=a)
to the four assignments at the beginning of the program, we get the local invariant

{(q,q.7r m=(,0,1,d)}

just prior to the loop. The loop axiom <20),

Inference Rules for Program Annotation 23

loop P’
until ¢
)
Pl’

repeat

yields r>e at the head of the loop body. Thus far, we have the annotated program
segment

{(q,q99,7r,mM=0,0,1 4d)}

loop Lg (...}
until rse

{r>e}

if gerrsc t hen ¢:=q4r; qq := qq+rr fi
ri= r/2; rri=rr(2

repeat .

The conditional statement of the loop,
if ggerr s o then ¢ = gery 49 = qqerr fi
may be considered as having an empty else branch, i.e.,
if gg+rr S ¢ then g i=g4r; g = qg+rr else fi .
So we apply the forward test rule <26,
{a}
if tthen L':3P’

else L' sy P”
fi

{ a, t} at L’
{ a ,-t} at L",

obtaining, thereby,

Inference Rules for Program Annotation 24

if gg+rrs ¢ then { r>e, qqrr s c }; qi= q473 qq = qq+7r
else {r>e, c <qq+rr}
fi .

Using the forward assignment rule <21,

{ a(u,y)}

X i=u
L:

{alx,9)} at L

where x does not appear in a(/, y) , the assignments of the then branch transform the
invariant gg+rr < c into ¢¢< ¢ and leave r >¢ unchanged. We obtain

if qq+4rr s c then q = g+r5qq = qg+rri{ r>¢ g¢sc }
else {r>e,c < qqerr}
fi .

We may now apply the forward branch rule <27>

if t then P ;{a}
else P"; {8}
fi

L:

{aVB) atl.

This rule disjoins the two possible outcomes of the conditional, and we obtain the invariant
{(r>eAggsc) V (r>eAc<qqrr)}.

The invariant simplifies to just
{r>e} ,

since r>e¢ appears in both disjuncts while ¢gs¢V c < ¢gg+rr is a tautology (if the first
disjunct-is false, then ¢¢>c , and since rr is positive, ¢g+rr >¢ is implied).

However, the disjunction heuristic

Inference Rules for Program Annotation 26

if t then P’ ;{a}
else P"i{8)
fi

L:

{? «a, 87} at L

suggests that each of the two Invariants, g¢sc and c < ¢¢+rr, may itself be an Invariant.
So we have

{r>e} and {?¢gg<c, c < ggerr 7}
following the conditional and preceding the assignments
Y= r/2; rr= 112,

By further application of the forward assignment rule to the one invariant and the two
candidates, we get
{ 2r>e} and {?qq=sc, c <qq+2err 7}

at the end of the loop. So far we have the annotated loop:

((qy qqy f’ r’)=(0,0,l’ d))

loop L:{...)
until rse
if ggerr s C then ¢ 1= g4ryqqimggerr £
roim 7[2; v o= o1r[2
{2r>e¢){?¢qgsc,c<qgge2r?)

repeat .

Finally, by applying the forward loop-body rule <29>,

Inference Rules for Program Annotation 26

{a)}
loop L:
P

{8}

repeat
{aVB8} a L ,

to the invariant at the end of the loop body, we derive the loop invariant
((qg.qqg, v, mM=(0,0,/,d) V 2r>e¢) atl,.

In order to simplify the presentation slightly, we shall use instead the weaker
{r=1V2r>e} at L . (7)

By a similar application of the forward loop-body rule to the two candidates at the end of the
loop body, we get the candidates

{(?(q,q,7,mM)=0,0,1,d)Vggsc?} atl,
and
{?(q.q9.7,11)=(0, 0,1 8) V c<qq+2rr?} at L, .

Both candidates may be simplified, since their first disjunct is subsumed by their second,

leaving
{? ¢¢gsc, ¢ <qqe2rr ?} at L, .

These two candidates can indeed be proved to be invariants: The first candidate, ¢g<c,
derived from the initialization and then paths, is unaffected by the else path which

leaves the value of ¢¢ unchanged. Similarly, the other candidate, ¢ <qg+2+rr , derived
from the initialization and else paths, is maintained true by the then path. So we have

the loop invariants

{ g9sc, c <qg+2err} at L, . (8)

Since there are no assignments between the loop and the end of the program, all the

Inference Rules for Program Annotation

27

loop invariants may be pushed forward unchanged, and hold upon termination, With the

loop exit test r <e , the output invariants include

{ rr=dr gg=dq, (=IV2rse),
ggsc, c<qqe2err, 7 se} at E .
Note that we did not make any use of the candidates
{(?qscld, o/d <q+e?} at E

suggested by the output specification, au no new invariants would be derived.

(9)

Though these invariants do imply ¢< ¢/ d as specified, they do not imply ¢/ d <g+e. In
fact our program as given is incorrect. For a discussion of how these invariants may be

used to guide the debugging of the program, see Dershowitz and Manna [1977].

3, Loop Counter8

By introducing an imaginary loop counter » — initialized to 0 upon entering the loop
and incremented by I with each iteration — we may derive relationships between the

program variables and the number of iterations.

The extended program (annotated with some of the invariants we have already found)

P: begin commentres division
B,:{0sc<d,0<e}
¢g:=035qq:=057r:=1; rr:=d
n =0

loop L: {rr=der,qq=dq,(r=l V 2e15¢),qqs¢, c < qq+2err}

until rse

if gg+rrsc then qi=q4riqqi=qqerr £
7im1/2; 77 1mrr|2

n =+l

repeat

E: {rr=der, gg=deq, (r=IV 2er>¢) , qqs ¢, c <qq+2err, 75¢e)}

end .

Inference Rules for Program Annotation 28

Obviously,
{neN} inP . (10)
For the variables r and n , we have the assignments
(r,n):=(,0) (r,n):=(rl2, n+Jj)

and we can apply the linear-relation rule <14>

(x,9:= (a,,b)|(arx+a,, y+b) inP
{ [x(a-1)+a, el = [a(a -1+ Prea)) in P .

With this rule we get the global invariant
{[reC2-D+07+i2)° = [1+U2-1)+0FI2)" } i n P,
which simplifies to yield
{r=12"}in P . (11)
A;;plying the same rule to
(rr ,n):=(d, 0) (rr, n):=(rr/2, n+l)
we deduce

{ rr=d/2"} in P, . (12)

With these loop-counter invariants, the total number of loop iterations as a function of
the input values may be determined. Using (1 1), we can substitute /2" for r in the
output invariant (Q), 7se¢ A(r=JV 2+or>e¢) , and get

1I2"s e A (lI2"=]V 2[2" > ¢) .

Taking the logarithm (e is positive), we have the lower bound
-log.e<n

and upper bound
n=0Vn <-loge+l

on the number of loop iterations n . Note that by finding an upper bound on the number of

Inference Rules for Program Annotation 29

iterations, we have actually proved that the loop terminates.

Combining both bounds gives (assuming » = 0)
-Zong <n < -log2e+1 ,

or, since n is an integer (10), it is equal to the one integer lying between its lower and
upper bound

n = r‘“’gz‘] = —UOg,CJ .
Thus we have the output invariant
{n =0V n=-lge]} at E, . (13)

Since n is the number of times the loop was executed before termination, we have
derived the desired expression for the time complexity of the loop. -

Inference Rules for Program Annotation 30

IV. EXAMPLE: Selection-Sort Program

The previous example contained only one loop and dealt with simple variables. As a
more challenging example, we annotate an array-manipulation program containing nested
loops. The program is intended to sort the array A[0:n] of n+J elements A[0], A[I],

.. A[n] in ascending sequence. The output specification can therefore be expressed

as
(V)0 <! <n)A[l] < A[I+1]) A perm(A[0:n], A [0:n])

where perm(A[0:n], A[0:n]) indicates that A4[0:n] is a permutation of the array
A[0:n],and A, , is the value of the array A when the program is first entered. The

program is:

begin comment Selection sort
B:{neN}
i:=0
loop L: {...}
until i2n

P,:begin
jom i+ om o= A[i)s k=i
loop Le{ ...}
until j>n
if A[f]<m then m :=A[j]; k:=j fi
J = j+l
repeat
A[R]) = A[i); A[i] = m; i = i+J
end
repeat
E,: {? (VO sl <n)A[l]s A[l+1]) , perm(A[0:n] , A[0:n]) 7}

end .

1. Assignment Rules

We first try to determine the range of the program variables. The variables in the

Inference Rules for Program Annotation 31

program P are i, j, k,m ,and A ; the inner loop (the program segment P,) sets the
variables j , kand m , and leaves i and A unchanged.

The assignments to i are
i -0 i:= i+l

which by the addition rule < 1>

X:= @ | x+¢, inP

{xea+a*N | inP

give the global invariant
{ieN } inP,. (1)

2

Since the program P, contains the labels L,, L, and E, , this relation holds at ail three

points.

The assignments to j are
jo=i+l Jmgel .

Since we know i € N, we may substitute N for i to obtain the nondeterministic
assignments

J € N+l j € g+l |
and by the Jer-addition rule <6> we get j € N+I+21 , which simplifies to
{jeN, Isj} inP,. (2)

(Recall that these global invariants only hold after j :=i+! is executed for the first time,)
Since within P, the value of { is unchanged, it may be regarded as @ constant. We can

therefore apply the addition rule to the assignments to f, ji=i+/ and j:= j+I , obtaining
{j€ i+l+N } in P,

and consequently

{i<j} in P, . (3)

Inference Rules for Program Annotation 32

The assignments to k are
k =i k:-j.
Using (1) and (2) to substitute N for i and j , we have
k: €N k: N
and from the simple set-union rule <4>

x:€S |8 inP
{xes, US,} inP

it follows that
{keN } inP, . (4)

in P, , as we have seen, i is oonstant and j € i+/+N , 80 we substitute {+I+N for § in

the assignments to & to obtain
k:€i k :€i+i+N .

By the same set-union rule, we have that k belongs to the union of i and i+I+N .
Therefore k€ i+N , and

{isk} inP . (6)

Finally, for m we have the assignments
m = A[i] m = A[f].
Using (1) ie N and (2) je N to substitute N for i and f, we get
m € A[N] m :€ A[N] .
Thus, by the set-union rule, we obtain

{ m eANI} in P, (6)

In the following subsections, we shall apply the control rules and heuristics first to the
inner loop and then to the outer loop.

Inference Rules for Program Annotation 33
2, Control Rules-Inner Loop

At any point in a program, the disjunction of what is known from the paths leading to
that point is an invariant. So we can obtain loop invariants at label L, , by considering the

three paths leading to L, : the initialization path from L,to L, , the loop-body path from
L,to L, via the then branch of the conditional, and the loop-body path via the else
branch of the conditional.

From the initialization path, we have upon entering the inner loop
i<n AN j=itl A m=A4[i] A k=i. (7)

The conjunct i < n derives from the negation of the outer-loop exit test (using the loop
axiom €20Y); the other three conjuncts are obtained from the three assignments along the
initialization path (by the assignment axiom €<18>).

At the head of the inner-loop body, we have the invariant
jsn A i=i, A A=A, A f=f. A k=k A m=m, |
s) 3 3

where x, , for some variable x and label L , denotes the value of X when control was

last at L . The first conjunct Is the negation of the exit test and the other conjuncts,
which are generated at L, using the value axiom <335,

{ x=x,} at L,

have been pushed passed the exit test unchanged (this is an application of the forward
loop-exit rule <31> to the inner loop). After executing the assignments in the then
branch of the conditional, we know

jsn A m=A[f] A k=j A i=i A A=A Aj:jLa'
3

3

The second and third conjuncts derive from the assignments (by <18>); all the other
conjuncts have been propagated forward (by the forward test rule 26> and forward
assignment rule €21)).

After the (empty) else branch of the conditional, we have

Inference Rules for Program Annotation 34

jsn A m<A[j] A i=i, A A=4 Aj=jL3 A k=k, A m=m, .
3 3

3 3

The second conjunct is the negation the conditional test (by the conditional axiom < 19>).
Since we must have traversed either the then or else branch, we know that after the
conditional

(jsn A m=A4[] A k=j A i=iL!A A=AL, A j=4,)
3
V (jsn A msA[f] A ille A ASAL!
Aj=j, Aksk Am =m,)

(this is the Sforward branch rule <27>). Thus, at the end of the loop body, after incrementing
j by I, we have (by <21>)
(j-Isn Am=A4[1] A k=j-1A i=ii A A=4, A j-l=j)
3

3 3

V (jl sn Am sA[j—I]Ai=iL3 AA = A (8)

3

A j-I=jL3 A k.=kL3 A m=m,) .

Furthermore, if a relation & holds upon entering a loop, and we know that the loop
body either does not change the values of the variables in &, or reachieves a for the
new values of the variables, then a is a loop invariant. This is the protected-invariant rule
<34>

{ ax) }

loop L:
P
{a(x) Vxex }
repeat

{a(x)} at L

By substituting k& for j-1 in the first disjunct of (8), we may derive k<n and m = A[k].
Thus, at the end of the Iloop body we know (ksn Am =A[R] V

(A = A,3 Ak=k, Am=m,) . This invariant is of the form a (x) Vx=x, ,taking a (x) to
3 3

beksnAm=A[k] and % to be the variables A ,% and m . The first disjunct
indicates that the then path achieves a(x) ; the second disjunct states that the else
path leaves A , k% and m unchanged, From invariant (7) preceding the loop, we can
derive that initially ks n and m = A[k]. So we have

Inference Rules for Program Annotation 35

{ ksn, m =sA[R]} at L, . (9)
Similarly, by (8) we have iﬂlL, for both loop-body paths, and by (7) we have i< n upon
entering the loop. Taking a(f) to be i<n,we get

{i<n} atlL,. (10)

Disjoining invariant (7) of the initialization path and (8) from the loop-body path, we
get the following inner-loop invariant (by the forward loop-body rule <29)):

{Cie<n A j=itl A m=AU] A k=i)
V(jiklsnAm = Aj-IJ Ak = j1)
V(jJ sn A m <Aj-1]) } at L,. (11)

(The conjuncts refering to the previous value of a variable at L, have been removed.)

Now we extract the “common denominator” of the disjuncts in (11) arising from the
different paths. The relation j-Jsn appears in the second two disjuncts and is implied
by the two conjunctsi<n and j=i+l of the first disjunct, so we get the invariant

{jlsn} at L,. (12)

s

in the first disjunct of (11) we have j =i+l A m = A[i], in the second we have
m = A[j-1] , while in the third we have m s 4[j~1] , thus for ail paths

{m sA[j-1]} at L, . (13)
3. Generalization Heuristic =Inner Loop

The following generalization heuristic 37> is particularly valuable for loops involving
arrays:

Inference Rules for Program Annotation 36

{x=a)

loop L: { a(x ,9) }
P
{ x=x,+41}
repeat

{?(vi)aslsx)all , 9) 7} at L.

This heuristic is similar to the forall rule <35>, but only suggests a candidate, since the
variable y may change value in P . in our case, reconsider the inner-loop invariant (13)

«(j,m) : m s A[j-1] at L, . initially j is i+] , and at the end of the loop body j =jL!+I,

S0, as an invariant candidate, we try
{2 (VDG+1 <1< §)Ym< A[l-1) ?} atl, |

which we shall abbreviate as m < A[isj-1]. Checking the candidate for the then and
else paths, determines that it is in fact an invariant, and we have for the inner loop

{m <A[lif-11) at L . (14)

So far we have derived the followlng inner-loop invariant8
{ ksn, msA[R),i<n,j-lrn, msdliy-l])a tL,.

We turn now to consider the outer loop.

4. Control Rules = Quter Loop

Using the forward loop-exit rule 31>, the invariants at L, may be propagated past

the exit test j >n , obtaining
{ ksn, mn-A[k),i<n, j-I sn, m sA[iy-1], j>n}
just prior to the assignments

A[R] = A[i); Ali] = m ;i =i+l .

Inference Rules for Program Annotation 37

Propagating these invariants past the assignments, we get the following invariants at the
end of the outer-loop body:

{ksn, isn, m s Aly-1] mesA[i-l], j-I=n}. (16)

The invariant ksn is propagated unchanged. The invariant i< N becomes {-I<n after
executing [:=i+l (by the forward assignment rule <21>), whichis equivalent to i s n
(since both i and n are integers). The invariant m s A[i:j-1] still holds after assigning
to A[k] , since it also held for A[i]; after the assignment to A[i], it becomes
m s A[i+1:j-1] (by the forward array-assignment rule <28>); after incrementing i, it
becomes m < A[i:j-1] . The assignment A[i] := m generates the invariant m = A[i] (by
the assignment axiom <18>), which becomes m = A[i-1] after incrementing ¢ . Finally, the
invariants j-/<n and j>n simplify to j-f =n (since (2) je N).

Clearly upon entering the outer loop (by <18>)
i=0 .
Thus, by the forward loop-body rule <293, we have the outer-loop invariant

{i=0 V (ksnAi<nAmsAliy-1JA m=A[i-1JA j-l=n)) atlL

2

with the following two corollaries:
{1=0VA[-I]<Alim]) at L, (16)

(the second disjunct follows from m < A[iy-1], m = A[i-I] and j-1=n), and

{isn) atl, (17)

(since i =0 is subsumed by i snforne N). lf we use the forward loop-exit rule<3 1>
to push i sn past the exit test i2 » and out of the loop, we get the output invariant
isnAiznaték, or

(18)

5. Heuristics = Outer Loop

We use the generalization heuristic 37> to generalize (16) for the counter i , where
a(i , A) isi= 0 V A[i-1]s A[in] . Since i is initially 0 , this yields the candidate

T Te—

Inference Rules for Program Annotation 38

(2 (VDO sisi)l =0V A[l-1]sAllm]7?)} at L,.
This is equivalent to
{7 (VD)0 s ! < i)(A[l] s A[i+I:n]) 7} at L,

and states, in effect, that the array elements A/O:i-I] are sorted and that they are ail
smaller than the array elements A[i:n]. It can be shown that it does indeed remain
invariant, so we have the outer-loop invariant

((VO < ! <i)A[l] € All+1m])) at L, . (19)

This may be pushed out of the loop to £, , and with (18),i.c, i=n at E, , implies the first
conjunct of the output specification,

(V)0 < 1 <n)(A[L]) < A[I+1]) .

The top-down heuristic <38> suggests that the output specification
perm(A[0:n], A[0:n]) , which is obviously true initially, is itself a candidate at L,. Since

it can be shown that the only two assignments to A have the effect of exchanging the
values of A[k] and A[i] , we have the invariant

(perm(A[0:n] , AfOm]) }a 1 L, . (20)

The program, annotated with some of the more important loop and output assertlons,

Inference Rules for Program Annotation 39

P,:begin comment selection sort
B:{ne N }
i:=0
toop Lp{ i eN,isn, (VINOsl<iXA[l]s A[lin]),
perm(A[0mn], A[0m]) }

untiliz »n
P,: begin
Jomirly m o= Afi]s k =i
loop L , :{i,j,keN, i<n, i<jsn+l, isksn,
m=A[R], ms A[iy-1]}
until jf>n
if A[fl<m then m = A[j]; k:=jfi
j o jtl
repeat
A[k] = A[i]; A[{] = mj i = {4l
end
repeat
Ex{i=n, (VN0 <! <i)Al!] s A[l+1:n]) , perm(A[0:n] , A [0:n]))

end .

To determine the time complexity of this program, we add three counters: one for the outer
loop, one for the inner loop, and a third to sum the total humber of inner-loop executions.
Using the annotation rules, one can easlly show that the outer loop is iterated n times,
that the inner loop is executed n-i times for each outer-loop iteration, and that the total
number of inner-loop executions is ne(n+1)/2 .

Inference Rules for Program Annotation 40

ACKNOWLEDGEMENT

We thank David Harel, Shmuei Katz, Jim King, Larry Paulson, Wolf Poiak and Richard
Waldinger for their critical readings of the manuscript.

REFERENCES

Caplain, M. [Apr. 19758], Finding invariant assertions for proving programs, Proc. inti. Conf.
on Reliable Software, Los Angeles, CA, pp. 166-l 71.

Dershowitz, N.and Z. Manna [Nov. 19771, The evolution of programs: Automatic program
modification, |EEE Software Engineering, vol. SE-3, no. 6.

Elspas, B. [July 19874], The semiautomatic generation of inductive assertions for proving
program correctness, interim report, SRI international, Menlo Park, CA.

German, S.M. [May 1974], A program verifier that generates inductive assertions,
Undergraduate thesis, Memo TR 19-74, Harvard Univ., Cambridge, MA.

German, S.M,, and B. Wegbreit [Mar, 197561, A synthesizer of inductive assertions, |EEE
Software Engineering, vol. SE-l, no. 1, pp. 68-76.

Gibb, A. [July 196 1), Algorithm 61: Procedures for range arithmeticc CACM, vol. 4, no. 7, pp.
319-320.

Greif, . and R.J. Waldinger [Apr. 1974]), A more mechanical heuristic approach to program
verification, Proc. inti. Symp. on Programming, Paris, France, pp. 83-90.

Harrison, W.H, [May 1977], Compiler analysis of the value ranges for variables, |EEE
Software Engineering, vol. SE-3, no. 3, pp. 243-260.

Hoare, C.A.R. [Oct. 1968], An axiomatic basis of computer programming, CACM, vol. 12, no,
10, pp. 676-680, 683.

Katz, S.M. [Sept. 1976], Invariants and the logical analysis of programs, Ph.D. thesis,
Weizmann institute of Science, Rehovot, Israel.

Katz, S.M. and z. Manna [Allg. 1973], A heuristic approach to program verification, Adv,
Papers Third inti. Conf. on Artificial intelligence, Stanford, CA, pp. 600-512.

Katz, S.M. and ZManna [Apr,1978], Logical analysis of programs, CACM, vol. 19, no, 4,
pp. 188-206.

Misra, J. [July 1978], Relations uniformly conserved by aloop, Coiloques iRIA on Proving
and improving Programs, Arc-et-Senans, France, pp. 71-80.

Moriconi, M.S. [Oct. 19743, Towards the interactive synthesis of assertions, Memo ATP-20,
Automatic Theorem Proving Project, Univ. of Texas, Austin, TX.

Inference Rules for Program Annotation 41

Morris, J.H. and B. Wegbreit [Apr. 1977], Subgoal induction, CACM, vol. 20, no. 4, pp.
209-222.

Scherlis, W. [May 1974], On the weak interpretation method for extracting program
properties, Undergraduate thesis, Harvard Univ., Cambridge, MA.

Sintzoff, M. [Jan. 1972], Calculating properties of programs by valuations on specific models,
Proc. Conf. on Proving Assertions About Programs, Las Cruces, NM, SIGPLAN Notices,
vol. 7, no. 1, pp. 203-207.

Suzuki N. and K. Ishihata [Jan, 1977], Implementation 0f an arraybound checker, Proc.
Fourth Symp. on Principles of Programming Languages, Los Angeles, CA, pp. 132-1 48.

Tamir, M. [Aug. 1976], AD! - Automatic derivation of invariants, Master’s thesis,
Welzmann Institute of Science, Rehovot, Israel,

Teitelman, W, [1974),INTERLISP referehc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>