
THE COMPLEXITY OF PATTERN MATCHING FOR A RANDOM STRING

by

Andrew C. Yao

STAN-CS-77-629

OCTOBER 1977

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

The Complexity of Pattern Matching for a Random String

Andrew Chi-Chih Yao

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

We study the average-case complexity of finding all occurrences of a

given pattern & in an input text string. Over an alphabet of g symbols,

let c(®n) be the minimum average number of characters that need to be

examined in a-random text string of length n . We prove that, for large

m , almost all patterns & of length m satisfy

c(a,n) = © log 22 40) if m<n<2m andg\ lnm = = ’

[| log_ m |
c(a,n) = N= — n if n>2m . This in particular confirms
a conjecture raised in a recent paper by Kauth, Morris, and Pratt [L].

Keywords: algorithm, average-case complexity, complexity, decision tree,

pattern matching, random string, string, weighted g-ary tree.

This research was supported in part by National Science Foundation grant
MCS T2-03752 A03.

1

Introduction.

A basic string pattern matching problem is to find all occurrences

given string (called pattern) as a contiguous block in an input

string (called text string). Thus, for the pattern 00100 , there are

three occurrences of it to be located in the text string

1000100100000100011. Several efficient algorithms have been

devised to solve this problem [1,3,4]).For example, Knuth, Morris, and

Pratt [4] constructed an algorithm that has a worse-case running time

of O(mtn) , where m and n are the lengths of the pattern and the

text string, respectively.

The optimality question of algorithms for the above problem was

investigated in Knuth, Morris, and Pratt [4] and in Rivest [6]. In their

model, an algorithm 1s a decision tree that examines the text string one

character at a time, and the cost 1s measured in terms of the number of

characters examined. (For a similar model in a related problem, see

Aho, Hirshberg, and Ullman [2].) Rivest [6] proved that, for any pattern,

an algorithm has to inspect n-mtl characters for some text string. This

means that, when n >> m , almost the entire text string has to be

examined in the worst case. A different situation exists for the average-

case complexity. Let c(®n) be the minimum average number of characters

that need to be examined 1n a random text string of length n , 1n order

to locate all occurrences of @ . Knuth described an algorithm [%, Section 8]

to show that, for any given pattern a , ec(Q,n) <0(nf log, m]/m) for an
alphabet of size gq . Thus, for large m , only a small fraction of the

characters in the text string need to be looked at, Such "sublinear" algorithms

are particularly attractive in situations when a text string 1s input only once,

but will be updated and searched for patterns many times. Knuth conjectured

that the algorithm 1s optimal in the following sense: there exist patterns

2

0 of arbitrarily large length m such thai an) >0(nllog, ml/m) for |
all sufficiently large n. This conjecture is interesting since, as

shown in[4], there are patterns such as 0 for which only 0(n/m)

characters need to be tested on the average.

In this paper, we study the average-case complexity of pattern

matching in the model of [4]. We'prove that, for large m , almost all

patterns @ of length m satisfy c(®,n) = o [(10e, (575 + 2))
[log m |

if m <n < 2n, and c(on) = of 1%] 2) if n >2m.
Moreover, all lower bounds actually apply to the best-case performance

of any algorithms, not just their average case. These results in

particular confirm the above-mentioned conjecture when n > 2m . Note

also a point of interest. In Knuth's algorithm, the text string is

examined 1n a predetermined sequence of positions independent of the

pattern (except its length m); whereas for m < n < 2m, we can show

that any algorithm with a fixed sequence of probing positions have to

examine Ql log (n-m+2) 1) characters, even in the best case, for some
patterns. Thus, "non-adaptive" pattern matching algorithms cannot be

optimal when n is close to m, e.g. when n-me (ln m)(lnln m).

Definitions and precise statements of the main results are given in

Section 2. In Section 3, we familiarize ourselves with some useful

concepts by analyzing the algorithm in [4] for m < n < 2m . In the course

of analysis, we shall also develop insight into the design of a faster

algorithm. An improved algorithm is then described and analyzed in

Section I to establish the upper bounds. In Section 5, we define the

complexity notion of a "certificate". Our lower bounds then follow

from stronger results that we can prove about the length of a minimum

certificate. Certain properties of a type of optimal digital search trees

(cf. Knuth [5]) are needed in the paper; their derivations are given in the

appendices.

3

u

2. Definitions and Main Results.

An alphabet is a finite, nonempty set of symbols. Throughout our

discussions, we will assume a unique underlying alphabet ¥ of |

size q . A string { of length £ 1s a concatenation of J symbols

from , 1.e., (= 2) a, Coe a, where [> 0 and each a; €Z . We use

[i] to denote a. , the i-th symbol of { , and l¢|| to denote i ,

the length of { . The collection of all strings of length { 1s denoted

by 5 . Given two strings dey and Bey with m < n , @ is said

to be a subs-king of B if a = B[i] p[i+1l] . . . B[itm-1] for some i ,

1 <1 <n-ml , Alternatively, we say a occurs in B , or B contains

an occurrence of A, etc.; the index i 1s called the (leftmost) position

of the occurrence. The substring B[i] pl[i+l] . . . B[j] of Beg ,

where 1 <i < j<n, will be denoted by B[i:j] .

A pattern is a distinguished string of positive length. Given a

pattern & of length m and an integer n > m , we shall be interested

in locating all occurrences of @ 1n any input string (e To (¢ is called

the text string). Let us refer to this as the pattern-matching problem with

respect to ¢ and n . From now on, the notations &¢ , { and m , n will

be used exclusively for the pattern, the text string, and their respective

length in a pattern-matching problem. Since the problem 1s trivial when

¢ = Jzl=1, we shall assume q > 2 .

As our computation model, we consider algorithms that proceed by

asking a series of questions cliq] = 7? cli,] =% , . . . , where the choice

of each position 3 may depend on answers to al!, previous probes at

cli 1 clisl, sees iin] . When the algorithm halts, it must have enough

information to determine A(Q, {) , the set of all leftmost positions of O's

4

occurrences in { . Formally, A(®¢) = {i | ¢[i:i+m-1] = a} . We

shall assume that no question 1s repeated twice in a series

oli] =? , gli,] =? , . . ., so that an algorithm may be represented

by a decision tree with g-ary branchings at each query. (For basic

definitions regarding g-ary trees, see Knuth [5].) An example of such

a decision tree is shown in Figure 1, with ¢ = {a,b,c} , @ = bb and

n=3. The queries are enclosed in circles, and an answer A(Q,() is

attached to each leaf of the ternary tree.

a c
b

a C

b

a / \ c a b Cc a b Cc

p {23 fp {1} {L2} {1} p {2} 9

Figure 1. A pattern-matching algorithm for

r= {abc},a =bb and n=3.

For given @ and n , let T(@,n) be the set of all decision trees

for the pattern-matching problem. For any TeT(q,n) , let hy (¢) be the

number of queries asked by T for the input text string Ce 5 . In

Figure 1, we have for example ho (¢) = 3 1f { = abc . The average (or

expected) number of queries asked of a random text string by T is

Fh, = = 3% nh |
q n
>

Since the number of text strings that reach the same leaf as (does is

nk, (¢)
q , an alternative form of (1) is

da. (v)

hy = 2 TT (2)leaf v T
q

where dr (V) is the distance (path length) from the root to node v .

The average-case complexity c(@,n) of the pattern-matching problem

with respect to@ and n , then, is the minimum expected number of

queries asked by any algorithm. That is,

c(a,n) = min hg, (3)
T ¢ T(qyn)

In [4] it was shown that, for any pattern Oe go ’

n/m < ¢(an) < constant ® HOO (m1)] /m . (4)
q

It was also conjectured in [4] that, for infinitely many m , there exists

des such that c(a,n) > anf log (m1l)7/m for some constant a when
n 1s sufficiently large. The main results of the present paper are the

following theorems. The first theorem strengthens the upper bound given by

formula (4) in the range m <n < 2m . The second theorem proves the

conjecture mentioned above in a somewhat stronger form. In fact, Theorem 2

as stated below follows from a result (Theorem 4) proved in Section 5, which

implies that the lower bound in Theorem 2 actually holds even for the

6

-

"best-case" complexity. (See Section 5.1 for precise formulations.)

Definition. For n >m> 0 , let

£ (m,n) = [log ((n-m)/1n(n+1) + 2)1 , and

£, (m,n) = I [Log (m1) / om .
Define

£, (m, n) if m<n<o2om,
f(myn) =

f,, (m,n) if n>2m .

Theorem 1. There exists a constant ay such that, for any q > 2 ,

deg » and n >m > 0 , we have c(a,n) < a, (m,n) .

Theorem 2. There exists a constant a, such that, for any gq > 2 and

m > 0 , there exists a set of strings L C a satisfying

(1) iz)> (1-2)", end
mn

(ii) for each aeL , e(a,n) > a, f(m,n) for all n >m .

In the definition of £, (m,n) above, the constants +1 and +2 , as

well as the ceiling function [] are just to insure that f(my,n) is

. well-defined and bounded away from zero. Indeed, as we have defined it,

f(myn) > 1 for all n > m . Notice also that, when n = 2m , we have

£, (m,n) A £, (m,n) Ae [log (m*+1)7. Figure 2 shows the qualitative
behavior of f(m,n) as a function of n when m is fixed.

Remark All the constants implied in the "0", "a", and "®" notations, as

well as other constants used in the paper (e.g. al, 8, above), are absolute

constants (independent of gq, n, m, etc.).

I

f, (m,n)

m 2m n

Figure 2. The behavior of f{(m,n) for a fixed m .

8

B

De Analysis of a Simple Algorithm.

In [4, Section 8], a simple algorithm for pattern-matching was

described and shown to have an average running time of 0{ nf log (m+1)] /m) .
This establishes the desired up-per bound of Theorem 1 for n > 2m . In

fact, since £, (myn) : 0(£f; (myn)) for (I+e)m < n < 2m where ¢ is any
positive constant, Theorem 1 1s true as long as n-m 1s at least a

positive fraction of m . Therefore, in our discussions of upper bounds

in Sections 3 and 4, we shall only be concerned with the case when n-m

1s less than some fraction of m , say n-m < m/2 .

In Section 3.1, we first show that the above-mentioned algorithm

of [4] (which-we shall refer to as the Basic Algorithm from now on) has

a tight bound of Of [log(n-m+2)7) for the present range n-m <m/2 .

Note that this performance 1s still weaker than the o(f, (m,n)) bound
we wish to establish. In Section 3.2 we then introduce an alternative,

and perhaps less obvious way for looking at the behavior of the Basic

Algorithm. This new analysis will shed light on how a better algorithm

may be devised. In Section } we then present, an improved algorithm and

show that it achieves the time bound O(f, (myn)) :

3.1 The Basic Algorithm and Its Analysis.

We begin with a description of the Basic Algorithm from [4], slightly

modified to fit our purpose.

The Basic Algorithm. Let des be the pattern. For any input text

string (€ ol , the algorithm examines { character by character, in

the order ¢[m],¢[m-11,...,¢[1], [m1], ¢[m+2],...,¢[n] . The algorithm

halts as soon as enough information is known to determine A(x,() , the

set of all (leftmost) positions of @'s occurrences in { .

9

-

We will show that for the case n-m < m/2 , the Basic Algorithm

only looks at o([log (n-m+2) 1) characters on the average. This
analysis is a refinement of the approach used in [4] to prove the

general O(nf log (m+1)] /m) bound for the same algorithm. The idea
is that, for a random text string, it 1s unlikely that any occurrence

of @ will happen, and the Basic Algorithm can rule out that possibility

after examining Of [log (n-m+2) 1) characters on the average.

Definition. Let d=n-m. For any Ces’ , write (¢ = py C' By where

184 || = Boll = d . The substring {' of { will be called the prime

substring of { , denoted always by {' . Let n' be the length of (' .

Note that n'= n-2d = m-d > m/2 as d < m/2 .

It is easy to see that any occurrence of & in { must cover the

prime substring (' (see Figure 2(a)). Thus, for Ao, ¢) to be nonempty,

{' must be a substring of a . In fact, 1f we write ('= 8p 85 eee 8p

then for A(a,f) to be nonempty, any segment {'[i:j] = 8 8,9 coe By
of {' must be a substring of a[i,j+d] (see Figure 2(b)). Based on

this observation, let us divide {' into consecutive segments of length r ,

‘such that C' = 08 Cy §_q «+ Cy where 1C,! =r for 1 < k <t and

IB|| < r . Then, in order for { to contain any occurrence of @ , each

(, for 1 < k <_t must occur in a certain substring a of &@ with

lee | = IC, [+a = r+d , The probability that this condition is met by all
the Cy 'S of a random text string { 1s < [(a+1)/q"1° . Now, what
the Basic Algorithm does 1s to examine the substrings Cy» Cpr ees bt in

sequence, hence the probability P, that it will ever look beyond {

is < [(a+1)/q5 1" for 1 < k <t . [It follows that the average number
of characters h examined by the Basic Algorithm 1s

10

-

pee]— 61 ee LW

co Vrs d

ol0]

(a)

1: gl

a

2IE
—td

al |

- 4 =

(b)

Figure 2. The prime substring {' of { relative to &.

h < r(l+P +P +.o +P J) + me? (5)

21k k

We now choose r = 2 log, (+2) 1 , so that P< [(a+1)/(a+2)7]" < [1/(a+2)]
Then,

11

- - 1

h < 2r + me(d+2) La'/z}

-n/ (log (a+2))
< 2r + m.0\ 2 q

= 2r + O(1)

= Of [log (d+2)7]). (6)

We now show that this bound is tight to within a constant factor,

i.e., there exist patterns a for which Qf [log (d+2)1) characters
on the average are examined by the Basic Algorithm. Again let

r = 2[Log, (i+2)7 . We can assume that d > hq” and r > 4 . Consider
a pattern Oe 5 which contains as a suffix the concatenation of all

possible strings of length {r/k] . That is, @ = N¢ , where
r/h

P= PO, qeeePys US qt /H and {P15Pps ees] contains every
possible string of length | r/bk| . Note that such a exists since,

with | r/k] < [log (a+2)1/2, the total length of ¢ is
r/lloll = Le/% goat?

[log (d+2)1
g 1/2< 5 (a(a+2))Y/

[log, (a+2)7 41/4

< 2 d (a+p)L/2
/2

< d (7)

for d > 4g” > 16 . For such an @ , the Basic Algorithm cannot halt

after examining the first block of Lr/k| characters

¢lml, g[m-1],...,¢[m-|r/4 +1] . The reason is the following: if j is

the index such that 95 = ([m-| r/4 +1 :m] , then it is still possible

12

_

for { to contain an occurrence of a exactly where (lm-| r/b +1: m]

matches with ?; (see Figure 3). Note that the fact |p| < d is used
here. We have thus shown that for such a pattern a , the algorithm

must look at more than | r/l| characters.

d.

TTT

| .

‘ 4
' |]

oFIN9 7

lel < a

Figure 3. { may contain @ between the dotted lines.

We have demonstrated that, for any pattern des , and a random

text string Ces » the Basic Algorithm examines an average of

0 [log (n-m+2) 1 characters assuming n-m < m/2 . Furthermore, there
m

] exists a € ¥ such that qf [log (n-m+2) 1 characters are examined even
in the best case for the Basic Algorithm. Thus, to achieve the better

time bound of 0(fy (m,n)) , the algorithm has to be improved even beyond

its best-case performance.

3.2 A Closer Look at the Basic Algorithm.

In this subsection we give an alternative proof that the Basic

Algorithm examines at most O([log (a+2)7) characters on the average.
This analysis may seem less straightforward than the previous one. However,

15

B

it will provide new insight into the pattern-matching process, and help

motivate the improved algorithm to be presented in the next section.

Let us refer to the decision tree corresponding to the Basic Algorithm.

We will be interested in those nodes where & character of the prime

substring {' is examined, i.e., those nodes at distance t < n' from

the root. Initially, before any query is asked, an occurrence of a may

begin at any of the positions 1,2,...,d+*1 in { . After the first

character ¢[m] = a is examined, the feasible positions for a's occurrences

in C is reduced from D = {1,2,...,d+1} to DNR(mya) where we use R(i, a)

for the set {j| a[i-j+1] = a} . In general, for a node v at distance

t <n' from the rooty if {[m] = 8 9 ([m-1] = 81s + oo. ([m-t+1] = ay 1
t-1

is the sequence of probes that led to v , then DN n R(m-k, 8.)
k=0

defines the set of positions in { where an occurrence of @ 1s still

feasible when computation reaches this point. We shall call

t-1

DN Nn R(m-k, a) the feasible set at v , and denote it by F(v) .
k=0

(For t = 0, F(root) = D.) The size of F(v) is called the weight

of wv, denoted by w(v) . We first show that the weight of an internal

node v is equal to the total weights of v's sons, provided that the

character examined by v 1s located inside the prime substring (' .

Definition. For an internal node v with query gli] = ? 5, let son, (Vv)

where ael denote the succeeding node corresponding to the outcome

¢lil = a .

Lemma| . If v examines a character inside {' , then

F(v) = U (F(son, (v)) and F(son_(v)) nF(son, (v)) = 0 for a # b .
acy

14

Proof. Let [i] = ? be the query raised at v . It is easy to see

that the family of subsets R(i,a) = (j | @(i-j+1) = a] , for aeg ,

forms a partition of the set {1,2,...,i} . It follows that, for any

subset B of {1,2,...,1i} , {(BNR(i,a) | ae £} forms a partition

of B . Since i > dtl by assumption, we have F(v) C {1,2 ¢0syd+l} -

{1,25..55i} . Therefore the subsets F(v) NR(i,a) = F(son_(v)) , for

acy , form a partition of F(v) . O

Lemma 3.2. If v examines a character inside {' , then

wv) = Z w(son_ (v)) .
acy

Proof. This follows immediately from Lemma 3.1. Od

Note that Lemmas 3 .1 and 3.2 may not be true if v probes outside

of {' , since we may have F(son, (v)) NF(son, (v)) # [I

Now, the probability that { will be examined outside of (' by

the Basic Algorithm is quite small. In fact, 1t happens only if {' is
!

a substring of @ , which has probability less than (a+1)/q :

Therefore, the cost of the Basic Algorithm 1s

= d(v div d(v

Fe Dam ct Daw LB, am ©
: leaf v q leaf vq leaf vq

d(v) <n’ d(v) >n!

n'

where the second term s, 1s bounded by m(d+l)/q" = O(1l) . To study

the first term 84 in (8), we shall use the weight function w . Remember

that, when we follow a path in the decision tree from the root, as soon as

Wv) = 0 the computation terminates. This fact, together with Lemma 3.2,

15

will allow us to bound the quantity 2 d(v)/(q) by
leaf v

d(v) <n’

Log (w(root)) + constant .

Definition. Let T be a finite g—-ary tree. Assume each node v

(internal or leaf) of T is assigned a non-negative integer w(v) such

that

q

(i) wv) = 25 w(son, (v)) for any internal node v ,
i=1

(ii) if w(v) = 0 then r is a leaf.

We call such a T a weighted g-ary tree. The initial weight of T

is defined to be w(root) , and the terminal weight of T is

E(T) = 25 a(v)/ (2M) , where d(v) is as usual the distance from
leaf v

root to node v .

Definition. Let TW) = l.u.b.{£(T)|T is any weighted g-ary tree with

initial weight W} . (Let 7,(0) = 0.)

Theorem A. T (W) = |log_ W] Fl +—A = , forW > 1._— q q Llog W] g-1 =
: q

4

[Proved in Appendix A.]

Corollary. To) < L log, WJ +3, for Ww > 1.

(For a related result about optimal digital search trees with n leaves,

see Knuth [5], Sec. 6.3, exercise 37.)

Clearly now, since w(root) = d+l for the decision tree of the

Basic Algorithm, we have

16

H

Ss _ Z a < 71. (@+1) < log (dtl) + 3 | (9)leaf v q d q

d(v) <n’

Therefore, h = Ss, S, < | Log (d+1) | + 0(1l) = 0(T log (a+2)1) , the
same result as we showed in Section 3.1.

3.3 Discussions.

What have we gained by the more involved analysis in Section 3.2?

Firstly, we notice that the 0(T log (a+2)1) behavior 1s not restricted
to the Basic Algorithm. Lemmas 3.1 and 3.2 are true not only for the

decision tree corresponding to the Basic Algorithm, but also for an arbitrary

decision tree, as long as the character examined at v lies inside (' .

Therefore, the same analysis that led to (8) and (9) for h applies to

any algorithm which first examines the substring (' of { , and halts as

soon as Aq, ¢) = § can be decided. Hence, the following family of

algorithms all have an 0(Log (a+2) 1) , upper bound.

GeneralizedBasic Algorithm.

G « {dt+l,d+2,...,m} .

While G # § do

begin pick any ieG and examine ([il;

if it is determined that A(®,{) = § then stop;

G« G-(1);

end;

Examine ([i] for ie {1,2,...,d}y {m+l,m+2,...,n} in any order.

Secondly, the successful use of F(v) as a measure of progress for

the computation hints on the design of a better algorithm, explicitly

exploiting the present F(v) to decide where to probe next. An improved

algorithm based on this idea will be given in the next section.

17

We conclude this section by discussing the following generalization

of the Basic Algorithm. Let A, be the set of all permutations on

(1,2,..05n) . Let @ be any pattern of length m and AEA, . We
consider the following algorithm.

Algorithm - (j,Q) . For any input text string Cex , examine the

characters in the order (¢[a(1)]}, cla(2)], «oc gla(n)] . Halt as soon

as all occurrences of @ in { can be determined.

The Basic Algorithm is essentially the use of Algorithm- (),a) , with

a particular permutation) for all & . We have seen that there exists

a for which the Basic Algorithm examines on the average Q(T 20g (n-mr2) 1)
characters. Is 1t possible to improve over the Basic Algorithm simply by

choosing a different) ? The following theorem answers this question in

the negative.

Theorem 3. Let 0 <m <n< 2m . For any NEN, 4 there exists an Qe sh

such that Algorithm- (),) examines an expected Qf [Log (n-m+2)7)
characters for a random text string in 5 .

The proof of this result follows naturally from a counting technique to

be developed in Section 5. We shall, therefore, delay the proof to

Section 5.4. There we shall actually show a stronger result: for large d ,

most des have the desired property required by Theorem 3.

18

R

4, An Improved Algorithm.

We will construct an algorithm whose performance 1is 0(£, (m,n)) for

d = nm <m/2 . Without loss of generality, we assume m > 16 , The

crucial observation 1s the following. Suppose we are performing a

Generalized Basic Algorithm. After a number of characters have been

examined, assume we find outselves reaching a node vv with w(v) ~ (log, m)/2 .
Suppose that at this time the set G still has |G|> m/b| We claim that

it 1s possible to finish the computation, examining only 0Q(1) additional

characters on the average, with a different strategy. Notice that in

contrast, the analysis in Section 3.2 (Theorem A) only guarantees a

0(Log, w(r))-= O(log, log, m) bound if we don't change strategy. Let
us now prove the claim.

Let v be a node as described above, with |F(v)| = w(v) < (log, m)/2
and the present |G| > m/k . Consider all the positions ie G that we

may choose to examine at this node v . By Lemma 3.1, any ieG would

induce an (ordered) partition {¥(v)NR(i,a)| ae} of F(v) into q

parts. Denote this partition by n(i) . Note that there are only

V) < Ja possible partitions of F(v) all together. TILet us divide G

into G7(V) equivalence classes by the induced partitions; that is,

I and j in G are equivalent if and only if =(i) = n(j) . Since

|G] > m/k » few elements are 1n an equivalent class consisting of a single

element. Indeed, if we arrange the equivalence classes as

EE Lo By Eos io) , so that |E|> 2 if and only if
1 <k<s, then we have 2 E| > rm- /m , which is positive

k=1

assuming m> 16 . Now, the key to a faster algorithm is contained in

the following lemma.

19

Lemma 4.1. Let 1 and J be two distinct elements in Be , Where

1<k<s. 1f (lil # ¢l[J] , then ¢ does not contain any occurrence

of a .

Proof. Assume [i] #£ ¢[j] , and { does contain @ as a substring.

Let a = {[i] , b = ¢[d] , and suppose [1] is a feasible starting

position for pattern @ . Since i and j are in G , both g[i] and

([j] lie within the prime substring ¢' . Therefore, a[i-f+1] = a

and a[j~#+1] = b . But this implies that in partition =n(i) we have

{ € F(v) NR(i,a) , while in partition n(j) we have I e€ F(v)NR(j,b) .

This contradicts the assumption that =n(i) and n(j) are the same

ordered partition of F (9) .

As the string { is initially random, the probability that

¢[i] = ¢l3] for i # j is only 1/9 . Thus, it is advantageous to

examine ([i] and ¢[j] for 1i,] E, , which have probability 1-1/q

to be different, and would thereby terminate the computation with answer |

A(@, C) . § . This suggests the following procedure:

Procedure Cleanup (GF);

comment : G is the set of remaining unprobed positions in {d+1,d+2,...,m} ,

and F 1s the current feasible set.

: 1. Examine characters ([i] for ieky one by one, then for ile E, one

by one , +... then for iekg one by one. Halt as soon as 1t 1s found that

cli] # ¢l3] with i,jeE, for some k .
] i

2. Examine ([i] for eo U 5) U2 Um, on)k=1 }

in any order.

20

_

Analysis of Cleanup. Take t elements 15 1s Cy i of an equivalence
. . t-1

class E, , the probability that ¢[i,]=¢[i,]=.** = cli] is 1/q :

Thus the probability P that in step 1, the t+l -st element of Eri
will be examined 1s

| t-1 if t > 1
P =A where s(t) =

j=1
q

k Kk

Since 2 |B; | -k > 2 E51] / 2 , and s(t) Xt-1)/2 , we
j=1 j=1

have

P< —0o Lf
— k

(> yl + e-1)/2]._1 JJ =
q

Therefore, the probability that I characters will be read in step 1 is no

-2)/2

more than 1g")/ | . The cost of step 2 is bounded by n < 2m , and
it 1s executed with probability < 1/q (u-1)/21 r where

S

u = 2 |E, | . Hence the total expected cost of Cleanup 1s bounded by
k=1

u
1 2m

EE TEVA | }
1-2)/2 -1)/22 SER ET The)

< 01) + 2m
- L(+ - Vm - 1)2\ Lk

9

= o(l) . (10)

This proves our claim. We can now state our new pattern-matching algorithm.

21

a

Algorithm PM.

1. G « {d+1,d+2,...,m} ;

F- {1,2,...,d+1} ;

2. while (|F| > (Log, m)/2)A (|G] > m/b) do
begin pick any ie G, examine a = ¢[i];

if all occurrences of @ can be determined then stop;

G « G-{i};

F « FNR(i,a);

end;

3, if G <m/h then examine in any order the remaining characters of ¢

as needed, and halt.

4, if F < (logg m)/2 then call Cleanup(G,F) to finish the computation.

To analyze the cost of Algorithm PM, let P, , Px » Py be the respective

probability that steps 2, 3, 4 will be executed, and let h, hy , hy De
the average number of characters examined in steps 2, 3, 4, respectively,

once they are executed. Then

hpy = Poh tris + Ih (11)

From the analysis of Cleanup, we know that h, = O(1l) . The probability

that step 5 is reached is bounded by the probability that the following

happens (see Figure 4):

€

wo) <j<a) | A a(i+ 1) = ci) | (12)k=1

where {i055 00051] is the set of positions in substring {' that

were examined in step 2, and t > n' - I > I . Therefore

Ps < (a+1)/q" < (a+1)/(™™) , and shy = O(1l) . We shall now show that

hy, . O(f;(m,n)) . (13)

22

This till prove he, = O(f; (mn) , and hence Theorem 1.

1ypdpr early
Pte
US ‘ Vo

Ct | ¥ ¥g Cc %¥ Xp ¥g g * ¥ |

Q | ¥ Hk KK ¥ ¥ go XX XD ¥g og ¥* XX |

Figure 4. Matching(' with .

Proof of (13). Let u be a positive integer. A weighted g-ary tree

with initial weight W and cut value u 1s the same as in the definition

of a weighted g-ary tree with initial weight W , except that condition (11)

1s replaced by

(ii)! if w(v) <u, then v is a leaf.

Thus for u = 1, 1t reduces to the original definition.

Definition. Let 7, (Wu) > l.u.b. {6(T)|T 1s any weighted g-ary tree with
initial weight W and cut value u}.

- Theorem B. 7 (Wu) = T (LW/ul)

[Proved in Appendix B.]

Now, suppose we draw a decision tree for Algorithm PM beginning from

the top, but only going as far down as step 2 of the algorithm is done.

25

_

If we designate these exit points from step 2 as "leaves", then clearly

what we have 1s a weighted g-ary tree with initial weight W = d+l1 and

cut value u = (log, m)/27, since condition (ii)' is satisfied.
Therefore, the cost of step 2 satisfies

h, < 7 (d+1 log m)/27

If d+l < (log, m)/21, then h,= 0. Otherwise, from Theorems A, B,

d+1

h, < toe, (mae B72:) i 0(1)
d+1

= 10g, ($5 =) + log, In g + o(1)

= log ((a+r1)/1n m)+ O(1) .

Thus,in both cases,

h, = 0(f;(m,n)) .

This completes the proof of Theorem 1.

2h

B

5. Lower Bounds to the Complexity of Pattern-Matching.

We shall prove Theorem 2 by showing the existence of a set of "hard"

patterns for which not only there 1s not any algorithm with good average

behavior, but in fact there is not any algorithm with good best-case

behavior. In Section 5.1, we define the concept of a "certificate", and

carry out some preliminary reductions for the proof of Theorem 2.

Section 5.2 proves a central lemma, and in Section 353 we complete the

arguments for the lower bound. In Section 5.4 we prove Theorem 3 using

a similar argument.

5.1 Preliminary Discussions.

For any £ , 1< 4 <n, let 8(1) be the set of strings in

(TU (x " with exactly n-f *'s. For each @c¢ 8, (4) , let I(p) be
the set of those strings 1n o that agree with ¢ except in positions

where ¢ has * 's., For example, let § = {0,1} and ¢ = *00*l¢ Ss (3) ,

then I{(p) = (00001, 00011, 10001, 10011} .

Let deg be a pattern. A string Qe 8, (1) 1s a certificate (of

length £) for a , if all elements in I(p) contain @ in exactly the

- same set of positions. That is, A(a, Cy) = A(q, Cy) for any(,, Cyc Ip)

Definition. Let g(Q,n) be the minimum length of a certificate for « ,

1.6.,

g(a,n) = min{/ qd Qe 5, (1) such that cp is a certificate for a} .

| Let T be a decision tree that locates all occurrences of a in

text strings from si . It 1s easy to see that any path in T from the

root to a leaf must have length at least g(a,n) . In fact, let

25

gli; =a, clil=2a,, (li]l=a, be the sequence of characters |

examined along the path, then oe 5, (2) 1s a certificate for Q where

oli] = ay for 1 <k <1, and eld] = * otherwise. Thus, no algorithm |
can halt before examining g(o,n) characters even in the best case.

Lemma 5.1. c(@,n) > g(an) for all &, n .

We shall prove the following strengthened version of Theorem 2.

Theorem 4. There exists a constant a, such that, for any q > 2

and m > 0 , there exists a set of strings L C 5 satisfying

1

(1) IL > (1-3 gq , and
m

(11) for each ¢eL , g(an) > a,f (m,n) for all n > m .

Before proceeding, we would like to make one more reduction.

n

Lemma 5.2. Let n > 2m , then g(on) > En g(a,2m)

Proof. For any string (ey , we write 1t as

where Ics] = 2m for 1< j < |n/2m| ., Similarly, we write

P =P; Pp. mo ? n/om)" for any Qe 5,(1) . If @ is a certificate
for a in 5 , then each Ps must be a certificate for a, in 52m
(Note that the reverse may not be true.) Thus g(an) > |n/2mjg(a,2m) . OU

This lemma allows us to reduce condition (II) of Theorem 4 to the :

following:

26

(II)' for each ael , g(an) > aT, (myn) for m < n < 2m .

This is so because g(a,2m) > af, (m,2m) implies g(a,n) >

Ln/2mjg(®2m) > |n/emj-a,[log (w/(In(mrl) +2)7 > aif (mn) for
some as > 0 . -

The next two subsections are devoted to a proof of Theorem L.

5.2 The Counting Lemma.

A certificate ¢ for & is called a negative certificate if it

disproves the containment of @ as a substring, i.e., if A(o,¢) = ¢

for all ce I(p) . We first observe the fact that any certificate

shorter than the pattern itself must, be a negative certificate.

Fact. Let Qe or be a pattern. If ¢@c¢ 5, (1) 1s a certificate for a
and £ <m, then ¢ is a negative certificate for a .

Proof. Since ¢ does not check as many as m non—-* characters, it

1s impossible for ¢ to certify the occurrence of a at any position

in { € I(p) . Therefore, it must be that A(o,g) = 0, OI

The next lemma is essential to the proof of Theorem 4, It says that

not many patterns 1n sh can share a common certificate which 1s short.

Definition. For any Qe 5,2) , where 1 <2 <n, let PR, (®) be the

set of all patterns in g for which ¢ 1s a certificate. That 1s,

PR, (®) = {a oes" and ¢ is a certificate for ao} .

The Counting Lemma, let 1 <f4<m<n, and Qe 8, (1) . Then
d

2

le, (@) | < 1 - = LP q" where d = n-m .
q

27

Proof. Let 1 <1,< i, <o Fx < i, <n be the positions where ¢ has

a non-* character. For 0 < j < d , define

B. = {vo | bv efl2,. . on} and jb = i, for some 1 <t < #1}.

(See Figure 5) clearly |B; | <¢ for 1< JZ d . Also, for any
a € P,P) s Since © 1s a negative certificate by Fact, there must exist

an ieB, for each j such that afi] £ @[j+i] . Now we show that we

can find J c {0,1,...,d}, |J| = ra/¢4] ’ such that B. NB. = 0
1 2

i, i, iz 1,
I 7 /

EZ ZEA ZZ

/ s ‘
HZZEZEZE

j —4
4 ro 1

B.
J

Figure J. Definition of B, for the Counting Lemma.

We find J by a "greedy" procedure. Let Jq = 0 . Inductively,

Jq is obtained by finding the smallest j such that B, is disjoint
from B= B. UB. U..e UB. . We claim that this procedure allows

J1 12 Js-1

us to find at least ra/ £4 such sets . In fact, we shall show that

Jg S 1° (s-1) . The key observation is that B contains at most £(s-1)

elements. We claim that at least one of the sets in ¥F = {By By ouB og 3
a (s-1)

1s disjoint from B . If not, for each r , 0 <r< 1° (s-1) , let

28

u

(b,1,) be a conflict where beB NB and rtb = i, for some

1 <t< 2. The total number of such pairs is no more than

|B|-2 < ¢° (s-1) . But we have £2 (s-1)+1 sets in the family % ,

a contradiction. }

m

To prove the lemma, consider a random string from ¥ . For each

J € J, the probability that there exists some ie Bj with [i] # o[j+il]
|B; | | CL

is 1 - 1/q Since all the sets By for je J are disjoint, the

probability that this holds for all j is

bl
Mli-— < 13°
jed Bl) (a)

q

4
NE
q

Since each ep, (¢) must satisfy this condition, the lemma follows. [J

5.3 Proof of Theorem 4.

In this subsection we complete the proof of Theorem 4. Roughly, the

idea is to use the Counting Lemma to bound the number of patterns in st

that have any "short" certificate.

Definition. Let x be a positive number such that (i) x >256 and

12
(ii) v > (lg yy)” for all y > x .

4 1 -mLemma 5.3. Let m+xq 1n =| = n-mLemma J.3 q (ml) <n<2m, ¢ [5208 (22)] ana
_1l m

p= U p@(@) . Then|p| < =p .
® eS (1) m

n

Note. The assumption in the lemma ensures m >5, thus Inm > 1 .

29

Proof. Clearly I <m. By the Counting Lemma, we have for each gq¢ 5, (2)

ie

1 © m
lp, (@)] < (2%) "q

Therefore,

a

1 m

Pl < Is,-(1-7) .d
q

ey

,°
= (Yt mn

q

a, (,_ 1
L 0° q m

< (nq) -e . q : (1k)

Since n < 2m , and In(l- gh < -q"t r (14) leads to

L

lq

= gq .expfl - — 3 - ¢-1n(2m q) N (15)
. tq

d

Fact. 7 > 2g+1n(2m q) . (16)
£1 q

[Proved in Appendix C.]

Formula (15) then implies,

mn @ l m
| < 4a exp (44nm) = ~~ q -

m

This proves the lemma. OO

50

|

We now finish the proof of Theorem 4, As discussed in Section 5.1,
20

we can assume that n< 2m . We can assume that m > xq In (ml) .
n-m

Otherwise, f(myn) = [106 (50m + 2) | — 0(1) , and we can choose
I = st to satisfy the conditions in Theorem L.

20

For each n , m+xqg In(m+1) <n < 2m , let

(n) _| 1 n-m] 1oS = $0 | PR, (@) , Where I =| 3 log, Too > 10 (17)Pe oplhy

By Lemma 5.2, we have

n l m 1 nm

EE a (18)
n m

- m

We define L as follows.

m (n)
L = 5 UPR , where the union 1s taken over

n

20 1m+xqg In(ml) <n < 2m . (19)

Now we need only check that IL has the properties specified in Theoremk,

m n)] om 1 m

(1) EEE IE Fondo 5 (0 5) .n m m

(II)' We shall prove, for each OeL , g(a,n) > a, f (m,n) for all

m<n<enm, and an absolute constant 8 .

There are two cases:

20 (n) Cs
(a) If m+xq” In(mrl) <n <2m, then agp by definition of L .

Thus,

— ————— + pom Jg(a,n) > E 10g 2) | > oy | 108, (Ey 2) | a (myn)
for some absolute constant 8, .

31

\ 20(bY) If m<n<m+xq 1n(ml) , then

f£(m,n) = 0 Dont = 0(1 dmn) = [log (mmr) = 0(1l) , an

g(a,n) > age f (mn) for some absolute constant a, :

Thws, 1n both cases, we have verified property (2)°'.

Therefore, the set L defined by (19) satisfies the conditions (I)

and (II)' set in Theorem 4, This completes the proof of Theorem kL.

Remark. In the condition Xk; > S(2 - x) of Theorem U4, the choice of them

factor 1 - . 1s somewhat arbitrary. In fact, we can replace 1t by
m

any factor 1 - ~ where b is any fixed positive number. Then, in
m

the proof, we need to divide cases according to whether n 1s greater

2 (b+l)
than or less than m+ xg In(m+l) . The resulting constant a, in

the theorem will be different.

5.4 Proor of Theorem 3.

We can assume that d = n—-m > max{q’ ,x] , where x 1s defined as in

Section 5.3. Otherwise the bound Qf [log (d+2)1) = Q(1) , and any
pattern Qc st will meet the conditions in Theorem 3,

By assumption, m <n < 2m , and Len, . Let f= (log, (n-m+2))/27 .
Recall that 5, (4) is the set of strings of length n oversgy {*}

with f non- * characters. Let H C 5, (2) be defined by

H = {mn | © eS (2); p[ra(i)] e © for 1 < i <4, and oj] = *¥ for all other Jj) , (19)

Clearly, there are exactly q elements in H , 1i.e., 1] = % .

32

BN

Now, let P' be the set of patterns Ce so such that Algorithm-(j,q)

halts for some text string in less than or equal to ! steps. For any

ep! , clearly there must be a oeH such that aep, (9) , Thus,

Pc Ure oo (20)
eH

By the Counting Lemma, we have

da

2
-f\ 2 m

Pe] £ @-a™)" a

Therefore,

d d

2 2
. -0\ 1! m 1 ' { m

Pl] < |H|-(Q-a7) . 4d =q9 . (1l-g-") .q (21)

Since every a 1n 5p! meets the conditions set in Theorem 3, we
d

/ -1 a
need only show that q .(1- gq *) <1 . Now,

d

) -{ IK L d _

qg.(1-q 7) <q (re) (22)
By using the definition of f and the condition d > gq , we obtain after

some algebraic manipulations

. d

2 1/4
2 0," 2 L (d+2)qa +(l-a7) < (a+2)/". exp - r (23)

2(1g(a+2))

. The right hand side of (23) can be shown to be less than 1 when d > x ,

This proves Theorem J.

1/5Remark. The right hand side of (23) is O(exp(-d™/”)) for large d .

We have in fact shown that, for any fixed \ eh, , Algorithm-(},2) has to

examine Q([Log (d+2) 1) characters in the best case for all but a
0(exp(-at/?)) fraction of the patterns aes .

bl

An open question: Is the following statement true?

Let 0 < m < n < 2m . For any des , there exists a)c¢ A, such

that Algorithm-(),a) examines 0(fy (myn)) characters on the average for

a random text string of length n . |

3.

-

References

[1] A. V. ho and M. J. Corasick, "Fast Pattern Matching: An Aid to

Bibliographic Search," Communications acm 18 (1975), 333-340.

[2] A. V. sho, D. S. Hirschberg, and J. D. Ullman, "Bounds on the

Complexity of the Longest Common Subsequence Problem,"

23 (1976), 1-12,

[3] R. S. Boyer and J. S. Moore, "A Fast String Searching Algorithm,"

Stanford Research Institute Technical Report 3 (March 1976).

[4] D. E. Knuth, J. H. M rris, and V. R. Pratt, "Fast Pattern Matching

in Strings," SIAM J. on Computing 6 (1977), 323-350,

[5] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley (1973).

[6] R. L. Fives—-t, "On the Worst-Case Behavior of String-Searching

Algorithms," Information Processing Letters, to appear.

55

Appendix A: Proof of Theorem A.

In this appendix, we shall prove the following theorem used in

Section 3.2 in the paper. For definitions and notations, see Section 3.2.

Theorem A. Let g >2 be an integer. Then

W 1
TW) = log W| +1 +—p—r—r—7"— > Al

 (W) = log, W] [Togvw] a1 for w > 1 , (Al)
q

We first derive same properties of the function f defined below.

Definition. Let g > 2 be an integer, we define a function f by

£(0) = 0

- (22)

f(w) = | lo Wi +1 wd
(W) = LLog, Wj + log wy gl, for w>1.

a q

Let g(W) = f(w1l) -f(W) , for all integers W > 0 .

1 1

Property 1. g(W) = pv— for Ww > 0 .
q [log (W+1)1-1

q
q

Property 2. g(W) > g(w') if OSKW<SW .

Property 2 follows from property 1, which can be verified directly,

Property 3. The function f satisfies the following recurrence relation:

£0) = 0 (43)

1 a Wri-1

fw) = 1+= 2 f = for W>1 . (Ak)1 1:22 4 ~

Proof of Property 3. Equation (A3) is true by definition. To prove

(AL), let

36

W = tg+ s , with 0<s<gq. (45)

Then

q t+1 if g-st1<i <q .

Thus, we need only prove

Fltq+s) = 1 + = ((g-8)-£(t) + sef(t+1)) , i.e.,

fltq+ s) = 1 + £(t) + < g(t) (46)

From the explicit forms of f and g are given in (A2) and Property 1,

it is not difficult to verify (A6). This implies Property 3. U

Remark. We shall interpret (Ab) as follows. Let us write

W = Wy + Wy |) Pe such that LARA <1 for all i, J . Then

1 4
FW) = 1+= 2 WwW, .

9 1-1

We are now ready to prove Theorem A. Let T be any weighted g-ary

tree, and T; be the sub-tree rooted at son, (root) , 1<i< q. Then

the terminal weight of T satisfies

- q

t(T) = 1 += 2 t(T,) .
1 i=1

This leads to the following equations:

T 0) = 04(©)
(47)

(Ww) L Xt) 2T (W) = 1+ =max T (W.) integerW. > 0 , W,= W
d 9 i=1 ¢ 4 * i=1 7

for Ww > 1 .

57

-

Clearly (A7) determines vo (0) uniquely, Therefore, in order to prove
(Al), we need only prove that f(W) satisfies (A7). Because of

Property 3, it suffices to prove

a i. ‘ Wri-1

max{ 2 f(W,)|W,>0, ZW, =W) = 2 o([#2]) . (a8)i=1 | * i i=l

That is, the sum 2 f (W;) achieves a maximum value when all the Wi
i

differ from each other by at most 1 . This can be demonstrated as

follows. If, for some 1 and J , Ww, > Wt2 , we make the changes

W, = W.-1 and W. - Wl . The value of 2 £(W,) is increased byi

an amount £(Wy+1) + f£(W, -1) - £(W;) - f(WJ) = gw) - g(W, -1) , Which is
non-negative because of Property 1. It can be shown that the value of

2 Wy -W, | 1s decreased by at least 2 by such a transformation.
i, J

Therefore, by a finite number of such transformations, all the Wi

will be within 1 to each other. The value of 2 f (W,) is at least

as great as the initial value before the transformations, This proves

(A8), and hence Theorem A.

38

Appendix B: Proof of Theorem B.

[See Section 4 for notations.]

Theorem B. Let g > 2 and u > I. .. Then

AL u) = T (LW/u]) » for all Ww > 1 . (B1) |

By definition, a g—-ary tree with initial weight W < u and cutoff u

can only consist of a single leaf. Therefore,

7, (Hu) = 0 for O<W<u . (B2)

The following facts can be established by deriving a recurrence relation on

T, (W u) similar to (A7), and performing some simple reductions.

T (Wu) = — for u < W< 2u . B3

1 q
7 (Wyu) = 1 + = max 2, T(Wou) d<W, <Wforl<ic<aqg,
q q i=1 q’ 4 - 1 —

q

and 2 W, =W forW > u . (BY)
i=1

We shall now use (BY) in an inductive proof of formula (Bl).

i Consider q , u as fixed, and the induction 1s on variable W .

By (B2) and (B3), the formula (BL) is true for 0 <W< 2u . Now,

assume W > 2u , and we have proved (Bl) for all smaller values of W .

We shall prove that it 1s also true for W .

By (BY), we have

1 4 q |
T (W,u)= 1 + = max 2 tT (W,u)|0<W, <W for 1<i<gqgand 2 Wi =4d) ,
q q . qi —- i - = .i=1 1=1

39

a

By inductive hypothesis, To (Ws u) = T (LW ul) for 1<i<q.
Therefore,

1 d |
Tt(Wu)=1+ max { 2 Tt (LW./u)])|O0<W,<W, 2W=". (85)
q q i=1 ql 1 . 1 i }

We complete the proof in two steps:

| (1) (Wu) < 7(LW/uy) (B6)

Proof. It is not difficult to verify that 74 1s a non-decreasing

function of its argument. Noting that 2 LW /u <|W/uj. Then
i

Ly ful) Diya) < tlw)+ = ~T (LW. /u < * Ju T (1 W/u |1g Dorg(ln/a)) < oT Lf) s SALW)
where we have used (Al) in the first step. This proves (B6) because of

(85). CO

(ii) rw) > 1(LWa]) (B7)

Proof. Let W= tu+v , where 0 < v < u . Define

[a2] for Lic al)
} W, = (B8)

i

| FE [usw for i= q .
Then

t+i-1 .
= | =—=— f 1<i<aq. (B9)LW. /u] | a | or <i<agq

From (B5), we have

LO

(FREI 5T (Wu) > + = T W./u

o (0) a LZ, o(LW;/ul)

q t+i-1

Caen do ([E)) .Ti=1 %

In Appendix A, we have shown that the right-hand side of B(10) is equal

to T(t) . (See (AL); remember that 7, (W) = £(W) .) Therefore,
(B10) leads to

T (Wyu) > T(t) = = W/u -J(u)> 7,(¢) g(LW/uy)

We have now proved that t (Wu) = © (| Wu) . This completes the

inductive stepin the proof of Theorem B.

hl

_

Appendix C. Proof of Formula (16).

We shall prove formula (16) used in Section 5.3. For easy reference,

we repeat all the notations and assumptions.

| d = = [1 lo aan) | Th mberNotations. = n-m, I = 5 4 Tn m . e number x 1s a

positive number such that (1) x > 256 , and (ii) for all y > x,
12

y >(lgy)

Assumptions. q>2, and m>ad > xq! In(m+l) > 0 .

We wish to prove:

d

7 2 2f « In(2mq) . (C1)
fq -

Proof. We shall prove

Ml > 20° | (c2)
q" + 1n(2mq)

1 d

Now I < 1+ 5 108 (125) , hence
1/2{ d

qQ = o m) . (C3)
ly

Also m>d>qg . Thus, m > 2g because gq2>2 .

In(2mq) < 1n(m°) = 2 ln m . (ck)

From (C3) and (C4), we have

a a - Ae)" (5)f = 1/2 T 2q\ In m ’q . 1n(2mq) a(d/In m)/“-2 1nm AY

Therefore, (C2) will be proved, if we can show

(9 2 > 2p, |
Sq\ Tn m > , l.e.,

ite

d 2 6
2 Co= > 16q 4 . (co)

_4d L lo dq >
Notice that, by assumption, nm > gq , hence €q nm / 2 .

Therefore

I < 1+ = log — 1, log 4 (C7)= 2 q A nm q lnm .

Because of (C7), we can prove (C6) if the following is true.

4s 1610s (<2) (cB)Inm = 4 g\ in m :

We shall now prove (C8) to complete the proof of (Cl).

B ol a > X h
y assuny ion, 57 2%2

(i) Since x > 256 , we have

d 1/2 L 1/2 2

(5) > (xd Y2 > 168 (9)

(11) Since a > x , the following inequality is true. We have
d d 12

Tm > (e(s5)) , which implies that
1/2d d 6

—_— —_— . C10(5) > (108,(5w)) ()
It follows from (C9) and (ClO) that

d 2 d

my 2 168mg))
This proves (C8), and hence (Cl).

43

