THE COMPLEXITY OF PATTERN MATCHING FOR A RANDOM STRING

by

Andrew C. Yao

STAN-CS-77-629
OCTOBER 1977

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

The Complexity of Pattern Matching for a Random String

Andrew Chi-Chih Yao

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

We study the average-case complexity of finding all occurrences of a
given pattern & in an input text string. Over an alphabet of g symbols,
let c(@,n) be the minimum average number of characters that need to be
examined in a-random text string of length n . We prove that, for large

m , almost all patterns & of length m satisfy

c(ayn) = Q(I'-logq(lrzl?n + 2)—') if m<n<2m, and
[[Log_ n’]
c(yn) = 9| ——=——n if n>2m . This in particular confirms
m

a conjecture raised in a recent paper by Knuth, Morris, and Pratt [L4],

Keywords: algorithm, average-case complexity, complexity, decision tree,

pattern matching, random string, string, weighted g-ary tree.

This research was supported in part by National Science Foundation grant
MCS T72-03752 A03.

Introduction.

A basic string pattern matching problem is to find all occurrences

given string (called pattern) as a contiguous block in an input
string (called text string). Thus, for the pattern 00100 , there are
three occurrences of it to be located in the text string
1000100100000100011. Several efficient algorithms have been
devised to solve this problem [1,3,4]. For example, Knuth, Morris, and
Pratt [4] constructed an algorithm that has a worse-case running time
of O(mtn) , where m and n are the lengths of the pattern and the
text string, respectively.

The optimality question of algorithms for the above problem was
investigated in Knuth, Morris, and Pratt [4] and in Rivest [6]. In their
model, an algorithm is a decision tree that examines the text string one
character at a time, and the cost is measured in terms of the number of
characters examined. (For a similar model in a related problem, see
Aho, Hirshberg, and Ullman [2].) Rivest [6] proved that, for any pattern,
an algorithm has to inspect n-mtl characters for some text string. This
means that, when n >> m , almost the entire text string has to be
examined in the worst case. A different situation exists for the average-
case complexity. Let ¢(®n) be the minimum average number of characters
that need to be examined in a random text string of length n , in order
to locate all occurrences of @ . Knuth described an algorithm [%, Section 8]
to show that, for any given pattern a@ , c(an) < O(nl'logq m]/m) for an
alphabet of size 4q . Thus, for large m , only a small fraction of the
characters in the text string need to be looked at, Such "sublinear" algorithms
are particularly attractive in situations when a text string is input only once,
but will be updated and searched for patterns many times. Knuth conjectured

that the algorithm is optimal in the following sense: there exist patterns

2

0 of arbitrarily large length m such thau ‘Obn)IZQ(nrlogq ml/m) tor
all sufficiently large n. This conjecture is interesting since, as
shown in [4], there are patterns such as 0" for which only 0(n/m)
characters need to be tested on the average.

In this paper, we study the average-case complexity of pattern

matching in the model of [4]. We'prove that, for large m , almost all

n-m
patterns @ of length m satisfy c(a,n) = 9(rlqu(ln o 2)1)

I—log m-l
if m < n < 2n, and c(n) = © +n if n>2m.

Moreover, all lower bounds actually apply to the best-case performance
of any algorithms, not just their average case. These results in
particular confirm the above-mentioned conjecture when n > 2m . Note
also a point of interest. In Knuth's algorithm, the text string is
examined in a predetermined sequence of positions independent of the
pattern (except its length m); whereas for m < n < @2m, we can show
that any algorithm with a fixed sequence of probing positions have to
examine Q(rlogq(n-m+2)1) characters, even in the best case, for some
patterns. Thus, "non-adaptive" pattern matching algorithms cannot be
optimal when n is close to m, e.g. when n-mws (In m)(1lnln m).

Definitions and precise statements of the main results are given in
Section 2. In Section 3, we familiarize ourselves with some useful
concepts by analyzing the algorithm in [4] for m < n < 2m . In the course
of analysis, we shall also develop insight into the design of a faster
algorithm. An improved algorithm is then described and analyzed in
Section 4 to establish the upper bounds. In Section 5, we define the
complexity notion of a "certificate". Our lower bounds then follow
from stronger results that we can prove about the length of a minimum
certificate. Certain properties of a type of optimal digital search trees
(cf. Knuth [5]) are needed in the paper; their derivations are given in the

appendices.

2. Definitions and Main Results.

An alphabet is a finite, nonempty set of symbols. Throughout our
discussions, we will assume a unique underlying alphabet ¢ of

size ¢ . A string { of length [is a concatenation of { symbols

from ¢ , i.e., g=a1a2 e alZ where £ > 0 and each aiez . We use
¢li] to denote a. , the i-th symbol of ¢ , and ll¢ll to denote ¢ ,
the length of { . The collection of all strings of length f{ is denoted
by ZB . Given two strings Otezm and Bezn with m < n , ¢ is said
to be a subs—king of B if a = Bg[i] g[i+1l] . . . B[itm-1] for some i ,
1 <i<n-ml . Alternatively, we say a occurs in B , or B contains
an occurrence of @, etc.; the index i is called the (leftmost) position
of the occurrence. The substring B[i] gli+1l] . . . B[Jj] of Bezn ,
where 1 <i < j<n, will be denoted by p[i:j] .

A pattern is a distinguished string of positive length. Given a
pattern @ of length m and an integer n > m , we shall be interested

in locating all occurrences of Q@ in any input string (e Zn (¢ is called

the text string). Let us refer to this as the pattern-matching problem with

respect to ¢ and n . From now on, the notations a , { and m , n will
be used exclusively for the pattern, the text string, and their respective
length in a pattern-matching problem. Since the problem is trivial when
¢=]zl =1, we shall assume g > 2

As our computation model, we consider algorithms that proceed by
asking a series of questions g[il] = 7, g[12] =?, . . . , where the choice
of each position ir may depend on answers to al!, previous probes at
G[i;]’g[iz]’ vees g[ir_l] . When the algorithm halts, it must have enough

information to determine A(®, {) , the set of all leftmost positions of a's

occurrences in { . Formally, A(®,¢) = {i | ¢[i:itm-1] = o} . We
shall assume that no question is repeated twice in a series

;[il] =2, g[iz] =2, . . ., so that an algorithm may be represented
by a decision tree with g-ary bra.ncilings at each query. (For basic
definitions regarding g-ary trees, see Knuth [5].) An example of such
a decision tree is shown in Figure 1, with g = {a,b,c} , @ = bb and
n =3 . The queries are enclosed in circles, and an answer A(Q,() is

attached to each leaf of the ternary tree.

{1} L2y {13 p {21 f

Figure 1. A pattern-matching algorithm for

£ = {aybye} , @ =bb and n=3.

For given @ and n , let T(®n) be the set of all decision trees

for the pattern-matching problem. For any TeT(o,n) , let hT(g) be the

number of queries asked by T for the input text string (e zn . In
Figure 1, we have for example hT(g) = 3 if ¢ = abc . The average (or

expected) number of queries asked of a random text string by T is

z ny(o . (1)

Since the number of text strings that reach the same leaf as { does is

n-t (¢)
q , an alternative form of (1) is

) 4y (v)

= 2z WG]
hT leaf v da v @)

where dT(v) is the distance (path length) from the root to node v

The average-case complexity c(@,n) of the pattern-matching problem

with respect to @ and n , then, is the minimum expected number of

queries asked by any algorithm. That is,

(a,n) = i h,, .
c(oyn Ter?r(g’n) T (3)

In [4] it was shown that, for any pattern Qe Zm ,

n/m < c¢(@n) < constant @ .D.Dzl)o (m1)] /m . (%)

It was also conjectured in [4] that, for infinitely many m , there exists
ocezm such that c(a,n) > anl'logq(m-l-l)'l/m for some constant a when

n 1is sufficiently large. The main results of the present paper are the
following theorems. The first theorem strengthens the upper bound given by
formula (4) in the range m < n < 2m . The second theorem proves the
conjecture mentioned above in a somewhat stronger form. In fact, Theorem 2
as stated below follows from a result (Theorem 4) proved in Section 5, which

implies that the lower bound in Theorem 2 actually holds even for the

"best-case"™ complexity. (See Section 5.1 for precise formulations.)

Definition. For n >m > 0 , let

fl(m,n) = !"logq((n-m)/ln(m+l)+ 2)1 , and

f2(m,n) = n \"logq(nrl-l)"l / em
Define
£, (m, n) if m<n<om,
fe(m,n) if n>2m .
Theorem 1. There exists a constant &y such that, for any q > 2,

aezm > and n>m>0 , we have c(on) < alf(m,n)

Theorem 2. There exists a constant a, such that, for any g > 2 and

m >0, there exists a set of strings L C):m satisfying

(1)] > (l ——19—)qm , and

m

(ii) for each aeL , c(a,n) > aef(m,n) for all n >m

In the definition of fi(m,n) above, the constants +1 and +2 , as
well as the ceiling function [] are just to insure that f(m,n) is
well-defined and bounded away from zero. 1Indeed, as we have defined it,
f(myn) > 1 for all n > m . Notice also that, when n ~ 2m , we have
fl(m,n) ~ fg(m,n) ~ |'lc»g(l (m+1)7. Figure 2 shows the qualitative
behavior of f(m,n) as a function of n when m is fixed.

Remark All the constants implied in the "O", "q", and "®" notations, as
well as other constants used in the paper (e.g. al, a2 above), are absolute

constants (independent of g, n, m, etc.).

4

l(m) n)

fg(m,n)

Figure 2.

The behavior of f(m,n)

2m

for a fixed m .

Bﬁr

3. Analysis of a Simple Algorithm.

In [b4, Section 8], a simple algorithm for pattern-matching was
described and shown to have an average running time of O(nFloqumlJ1 /m).
This establishes the desired up-per bound of Theorem 1 for n > 2m . In
fact, since t:?(m,n) = O(fl(m,n)) for (1+e¢)m <_n < 2m where ¢ is any
positive constant, Theorem 1 is true as long as n-m is at least a
positive fraction of m . Therefore, in our discussions of upper bounds
in Sections 3 and 4, we shall only be concerned with the case when n-m
is less than some fraction of m , say n-m < m/2

In Section 3.1, we first show that the above-mentioned algorithm

of [4] (which-we shall refer to as the Basic Algorithm from now on) has

a tight bound of O([log(n-m+2)7) for the present range n-m < m/2
Note that this performance is still weaker than the o(fl(m,n)) bound
we wish to establish. 1In Section 3.2 we then introduce an alternative,
and perhaps less obvious way for looking at the behavior of the Basic
Algorithm. This new analysis will shed light on how a better algorithm
may be devised. In Section 4% we then present, an improved algorithm and

show that it achieves the time bound.O(fl@yn)).

3.1 The Basic Algorithm and Its Analysis.

We begin with a description of the Basic Algorithm from [4], slightly

modified to fit our purpose.

. . m
The Basic Algorithm. Let Qey Dbe the pattern. For any input text

string (€ Zn , the algorithm examines { character by character, in
the order ¢[m],g[m-1],...,¢[1],¢[m+1], ¢[m+2],...,C[n] . The algorithm
halts as soon as enough information is known to determine A(@,() , the

set of all (leftmost) positions of 's occurrences in { .

We will show that for the case n-m < m/2 , the Basic Algorithm
only looks at o(rlogq(n-m+2) 7) characters on the average. This
analysis is a refinement of the approach used in [4] to prove the
general O(n['logq(m+l)'| /m) bound for 1l:he same algorithm. The idea
is that, for a random text string, it is unlikely that any occurrence
of @ will happen, and the Basic Algorithm can rule out that possibility

after examining o Flogq(n-m+2) 1) characters on the average.

Definition. Let d=n-m. For any gezn , write ¢ = Blg' 52 where
811l = IBoll = @ . The substring (' of { will be called the prime

substring of { , denoted always by (' . Let n' be the length of (' .

Note that n'= n-2d = m-d > m/2 as d < m/2

It is easy to see that any occurrence of & in { must cover the

prime substring (' (see Figqure 2(a)). Thus, for A(ot,g) to be nonempty,
¢' must be a substring of a . In fact, if we write (' = a; 8y ese By
then for A(a,¢) to be nonempty, any segment ('[i:j] = 25 8,9 0e By
of {' must be a substring of a[i,j+d] (see Figure 2(b)). Based on

this observation, let us divide {' into consecutive segments of length r ,
'such that ('=86 (, Co_q+-- € where |||l = r for 1< k <t and

IB]| < r . Then, in order for { to contain any occurrence of Q@ , each

g for 1 < k <_t must occur in a certain substring @ of @ with

“ak“ = Hgknﬂi = r+d . The probability that this condition is met by all

the . 's of a random text string { is < [(d+l)/qr]t . Now, what

the Basic Algorithm does is to examine the substrings Gy ge,...,gt in
sequence, hence the probability P that it will ever look beyond Cx

is < [(d+;|_)/qr]k for 1 < k <t . It follows that the average number

of characters h examined by the Basic Algorithm is

10

¥ d 6! e Qg
¢ / /S S S S L,
2l | l
2 |
(a)
¢ [i: jl
4 7/ S/
a : ;
e 44 :]
al i |
- =
(b)
Figure 2. The prime substring {' of { relative to .
h < r(L+P +Py+.ea+Py)+ meP (5)

2.k k
We now choose r = 2|'logq (@&+2) 1 , so that B < [(a+1)/(a+2)°]" < [1/(a+2)]" .

Then,

h < 2r + me(a+2)” Lo'/xr)

or + m.o(znm/ (urlogq(d+25|))

<

2r + 0O(1)

o(log (a+2)7). (6)

We now show that this bound is tight to within a constant factor,
i.e., there exist patterns @ for which Q(['logq(d+2)'l) characters
on the average are examined by the Basic Algorithm. Again let

2 .
r = 2|'logq (6+2)71 . We can assume that d > 4~ and r > 4 . Consider
a pattern Qe zm which contains as a suffix the concatenation of all
possible strings of length Lr/’-u . That is, @ = M , where
r/h4 .

P = q)u(pu-l‘”(pl’ u= qL / J and {cpl,(pg,...,cpu} contains every
possible string of length |_r/1+_| . Note that such a exists since,

with Lr/k] < |'logq(d+2)'l/2, the total length of ¢ is

LI‘/l*.I'qu/h-I

lloll =
< rlogqg(d+2) L (a2
< rlogez((mﬂ d;:h (a+2)Y/2
< a (7)

for d > hqc > 16 . For such an @ , the Basic Algorithm cannot halt
after examining the first block of Lr/h_] characters
¢lml, ¢[m-11,...,¢[m-| r/% |+1] . The reason is the following: if j is

the index such that 95 = ¢lm-{ r/4+1 :m] , then it is still possible

for { to contain an occurrence of a exactly where g[m-Lr/hJ+l:m]
matches with ?5 (see Figure 3). Note that the fact ||cpH < d is used
here. We have thus shown that for such a pattern @ , the algorithm

must look at more than | r/l| characters.

d
r)

¢ | '
| .

) CpJ !

: 1

[]

Otl_ Oul--- [o5] - for

_J

-~ o~
lel| < a
Figure 3. { may contain @ between the dotted lines.

We have demonstrated that, for any pattern Otezm , and a random
text string gezn » the Basic Algorithm examines an average of
of I'logq(n-m+2) 1 characters assuming n-m < m/2 . Furthermore, there
exists a ¢ Zm such that Q(['logq(n—m’rQﬂ characters are examined even
in the best case for the Basic Algorithm. Thus, to achieve the better
time bound of O(fl(m,n)) , the algorithm has to be improved even beyond

its best-case performance.

3.2 A Closer Look at the Basic Algorithm.

In this subsection we give an alternative proof that the Basic
Algorithm examines at most O0(I'losa (@+2)7) characters on the average.

This analysis may seem less straightforward than the previous one. However,

13

it will provide new insight into the pattern-matching process, and help
motivate the improved algorithm to be presented in the next section.

Let us refer to the decision tree corresponding to the Basic Algorithm.
We will be interested in those nodes where & character of the prime
substring ¥' 1is examined, i.e., those nodes at distance t < n' from
the root. Initially, before any query is asked, an occurrence of a may
begin at any of the positions 1,2,...,4+1 in { . After the first
character g[m] = a is examined, the feasible positions for Q's occurrences
in € is reduced from D = {1,2,...,d+1} to DNR(ma) where we use R(i,a)

for the set {J | af[i-j+1] = a} . In general, for a node v at distance

t < n' from the rooty if ([m] = ay s ([m-1] = 815 - . . . (Im-t+1] = a4

t-1
is the sequence of probes that led to v , then Dﬂ(n R(m-k, 8k))
k=0

defines the set of positions in { where an occurrence of @ is still

feasible when computation reaches this point. We shall call

t-1
Dn(N R(m-k, a.k)) the feasible set at v , and denote it by F(v) .
k=0
(For t = 0, F(root) = D.) The size of F(v) is called the weight
of v, denoted by w(v) . We first show that the weight of an internal

ndde v is equal to the total weights of v's sons, provided that the

character examined by v 1is located inside the prime substring (' .

Definition. For an internal node v with query {[i]l = ? , let sona(v)

where ael denote the succeeding node corresponding to the outcome
¢lil = a .

Lemma 1 . If v examines a character inside {' , then

F(v) = U (F(son, (v)) and F(sona(v))ﬂF(sonb(v)) =0 for a # b .

acy

14

Proof. Let ([i] = ? be the query raised at v . It is easy to see
that the family of subsets R(i,a) = (j | a(i-j+1) = a] , for aeg ,
forms a partition of the set {l,2,...,i] . It follows that, for any
subset B of {1,2,...,i} , {BNR(i,a)|ac £} forms a partition

of B . Since i > @l by assumption, we have F(v) C {1,2,...,d+1} c
{1,2,...,1} . Therefore the subsets F(v) NR(i,a) = F(sona(v)) , for

aey , form a partition of F(v) . O

Lemma 3.2. If v examines a character inside {' , then
Wv) = T w(son (v)) .

aey =~
Proof. This follows immediately from Lemma 3. 1. d

Note that Lemmas 3 .1 and 3.2 may not be true if v probes outside
of ', since we may have F(sona(v)) ﬂF(SOIlb(V)) # 0.

Now, the probability that { will be examined outside of ¢' by
the Basic Algorithm is quite small. In fact, it happens only if (' is
a substring of @ , which has probability less than (d+l)/qn' .

Therefore, the cost of the Basic Algorithm is

- da a
b= 2 _j(_zfd‘:r - T Gtz AT
leaf v q leaf v q leaf v q
d(v) <n' a(v)>n'

1

. n
where the second term s, 1s bounded by m(d+l)/q = 0(l) . To study
the first term sy in (8), we shall use the weight function w . Remember

that, when we follow a path in the decision tree from the root, as soon as

w(v) = 0 the computation terminates. This fact, together with Lemma 3.2,

15

d
will allow us to bound the quantity > d(v)/(q (v)) by
leaf v
d(v)<n'

1ogq(w(root))+ constant

Definition. Let T be a finite g-ary tree. Assume each node v

(internal or leaf) of T is assigned a non-negative integer w(v) such

that

q
(1) wiv) = 2 W(soni(v)) for any internal node v ,
i=1
(ii) if w(v) = 0 then r is a leaf.

We call such a T a weighted g-ary tree. The initial weight of T

is defined to be w(root) , and the terminal weight of T is

t(T) = 2 d(v)/(qq(v)) , where d(v) is as usual the distance from
leaf v

root to node v .

Definition. Let Tq(W) = L.u.b.{t(T)|T is any weighted g-ary tree with

initial weight W} . (Let Tq(0)= 0.)

L W l

T‘heorem A. 'rq(w) = Llogq Wl +1+ Llé’g W)L for W > 1.
4

[Proved in Appendix A.]

Corollary. 'cq(w) < Llogq wJg +3 , for w >1.

(For a related result about optimal digital search trees with n leaves,
see Knuth [5], Sec. 6.3, exercise 37.)
Clearly now, since w(root) = d+l for the decision tree of the

Basic Algorithm, we have

16

d(v
> < 1 (d+1l) < | log (a+1) | + .
1 W2, A S (1) < log (a+1)] + 3 (9)

a(v) <n'
Therefore, h = s;* 8, < Llogq(d+l)_| + 0(1) = O(rlogq(d+2)‘l) , the

same result as we showed in Section 3.1.

3.3 Discussions.

What have we gained by the more involved analysis in Section 3.2?
Firstly, we notice that the O(Flogq(d+2)'\) behavior is not restricted
to the Basic Algorithm. Lemmas 3.1 and 3.2 are true not only for the
decision tree corresponding to the Basic Algorithm, but also for an arbitrary
decision tree, as long as the character examined at v lies inside (' .
Therefore, the same analysis that led to (8) and (9) for h applies to
any algorithm which first examines the substring (' of { , and halts as
soon as A(Q, {) = ¢ can be decided. Hence, the following family of

algorithms all have an O(Flogq(d+2)'|) , upper bound.

Generalized Basic Algorithm.

G « {d+1,d+2,...,m} .

While G # § do
begin pick any ieG and examine ([i];
if it is determined that A(®,() = § then stop;
G+« G-(i);

end;

Examine {[i] for ie {1,2,...,d}y {m1,m+2,...,n} in any order.

Secondly, the successful use of F(v) as a measure of progress for
the computation hints on the design of a better algorithm, explicitly
exploiting the present F(v) to decide where to probe next. An improved

algorithm based on this idea will be given in the next section.

17

We conclude this section by discussing the following generalization
of the Basic Algorithm. Let An be the set of all permutations on
(1,2,...,n) . Let @ be any pattern of length m and NEA, . We

consider the following algorithm.

Algorithm - (,Q) . For any input text string ge;zn , examine the

characters in the order ¢[a(1)1, ¢la(2)], ..» ¢la(n)] . Halt as soon

as all occurrences of @ in { can be determined.

The Basic Algorithm is essentially the use of Algorithm- (),@) , with
a particular permutation) for all @ . We have seen that there exists
a for which the Basic Algorithm examines on the average Q(rlogqhkmﬁE)T)
characters. Is it possible to improve over the Basic Algorithm simply by
choosing a different) ? The following theorem answers this question in

the negative.

Theorem 3. Let 0 <m <n<2m . For any AeAn , there exists an Qe zm
such that Algorithm- (),@) examines an expected Q(rlogqﬁbﬂHE)W)

characters for a random text string in zn .

The proof of this result follows naturally from a counting technique to
be developed in Section 5. We shall, therefore, delay the proof to
Section 5.4. There we shall actually show a stronger result: for large d ,

most cxezP have the desired property required by Theorem 3.

18

4, An Improved Algorithm.

We will construct an algorithm whose performance is O(fl(m,n)) for
d=nm< m/2 . Without loss of generality, we assume m > 16 , The
crucial observation is the following. Suppose we are performing a
Generalized Basic Algorithm. After a number of characters have been
examined, assume we find outselves reaching a node v with w(v) = (1ogq m)/2
Suppose that at this time the set G still has |G| > m/4 | We claim that
it is possible to finish the computation, examining only 0O(l) additional
characters on the average, with a different strategy. ©Notice that in
contrast, the analysis in Section 3.2 (Theorem A) only guarantees a
O(logq w(r))-= O(logq logq m) bound if we don't change strategy. Let

us now prove the claim.

Let v be a node as described above, with |F(v)| = w(v) < (logqm)/e
and the present IGI >m/hk Consider all the positions ie G that we
may choose to examine at this node v . By Lemma 3.1, any ieG would

induce an (ordered) partition {¥F(v)NR(i,a)| aex} of F(v) into g
parts. Denote this partition by n(i) . Note that there are only

qw(v) < J/m possible partitions of F(v) all together. Let us divide G
into qw(v) equivalence classes by the induced partitions; that is,

i and j 1in G are equivalent if and only if #n(i) = n(j) . Since

|G| Zm/LL » few elements are in an equivalent class consisting of a single

element. Indeed, if we arrange the equivalence classes as

BisBp ..o B Bgypp oo B gy, SO that [B| > 2 if and only if
s 1
1<k<s, then we have 2 lEkI > [m-/m , which is positive
k=1
assuming m > 16 . Now, the key to a faster algorithm is contained in

the following lemma.

19

Lemma 4.1. Let 1 and j be two distinct elements in E, , where
1<k<s. 1f (il # ¢lj] , then ¢ does not contain any occurrence

of a

Proof. Assume ([i] # ¢[j] , and { does contain @ as a substring.
Let a =¢[il , b = ¢[j] , and suppose ([t] is a feasible starting
position for pattern @ . Since i and j are in G , both g[i] and
¢[j] 1ie within the prime substring ' . Therefore, a[i-f+1l] = a
and a[j~#+1] = b . But this implies that in partition =n(i) we have
L e F(v) NR(i,a) , while in partition n(j) we have I e F(v)NR(j,b) .
This contradicts the assumption that =n(i) and n(j) are the same

-~

ordered partition of F(v) . O

As the string { is initially random, the probability that
¢li]l = ¢[3] for i # j is only 1/g . Thus, it is advantageous to
examine ([i] and ¢[j] for 1i,J € Ek , which have probability 1-1/q
to be different, and would thereby terminate the computation with answer

A(@, C) . # . This suggests the following procedure:

Procedure Cleanup (G,F);

comment: G is the set of remaining unprobed positions in {d+1,d+2,...,m} ,
and F is the current feasible set.
1. Examine characters g[i] for ieEl one by one, then for ie E2 one
by one , ..., then for ieEs one by one. Halt as soon as it is found that

¢lil # ¢l3] with i,jeE, for some k

8
2. Examine ([i] for ie(G- U Ek)U{l,2,...,d}u{nﬂ-l,m+2,...,n}
k=1

in any order.

20

Analysis of Cleanup. Take t elements i .wi, of an equivalence

l, 12) . _t
A t-1
class E, , the probability that g[i,]=¢[i] =.** = ¢li] is 1/q

Thus the probability P that in step 1, the tt+l -st element of Brrl

will be examined 1is

t-1 if t>1

P = T ! where s(t) =
Z ‘Ejl -k)+ g('t) 0 if t=0.
=1
k k _
Since . |B;|-k > 2 |E.l/2 , and s(t) At-1)/2 , we
j=1 Y j=1 9 -

have

P< l *
= X
[(> |E.|+t-l>/;’
MANEE J

Therefore, the probability that I characters will be read in step 1 is no

1/qr(l-2)/21 The cost of step 2 is bounded by n < 2m , and

[(u-1)/21, where

more than

it is executed with probability < 1/q

s
u= 2 |Ek| . Hence the total expected cost of Cleanup is bounded by
k=1
J 1 2m
> - + - _
(21 o (2-2)/21 qr(u 1)/21
2m
< 0o(1) + -
- m
%(E -/m- l)-l
9
= o(1) . (10)

This proves our claim. We can now state our new pattern-matching algorithm.

21

Algorithm PM.
1. G « {&+1,d+2,...,m} ;
F- {1,2...,4+1} ;
2. while (|F| > (logq m)/2) A (|G| > m/k) do
begin pick any ie G, examine a = ¢[i];
if all occurrences of @ can be determined then stop;
G « G-{i};
F « FNR(i,a);
end;
3. if G <m/h then examine in any order the remaining characters of ¢

as needed, and halt.

4, if F < _(logg m)/2 then call Cleanup(G,F) to finish the computation.

To analyze the cost of Algorithm PM, let P, p3 » P be the respective
probability that steps 2, 3, 4 will be executed, and let h2 , h3 , hh be
the average number of characters examined in steps 2, 3, L, respectively,

once they are executed. Then

From the analysis of Cleanup, we know that h = 0(1) . The probability
that step 3 is reached is bounded by the probability that the following

happens (see Figure 4):

t
(HJ')[(O <3<a) A (k/\la(:l+ 1) = g'ak))] (12)

where {11,12,...,it] is the set of positions in substring {' that

were examined in step 2, and t > n' - % > % . Therefore
t m/L
P < (i+1)/q” < (a+1)/(q’ ") , and 1>5h5 = O(1) . We shall now show that

hy . O(f;(mm)) . (15)

22

This till prove EPM = O(fl(m,n)) , and hence Theorem 1.

1isdi seeesd
iy~ 7T
o
rd N

Ll | I

c | ¥ ¥g c ¥ %Xp %g g * *‘

—_ —

Q |******ac**b*aa****|

Figure 4. Matching (' with .

Proof of (13). Let u be a positive integer. A weighted g-ary tree

with initial weight W and cut value U 1s the same as in the definition

of a weighted g-ary tree with initial weight W , except that condition (ii)
is replaced by
(ii)" if w(v) < u, then v is a leaf.

Thus for u = 1, it reduces to the original definition.

Definition. Let Tq(W,u) = l.u.b.{t(T»T is any weighted g-ary tree with

initial weight W and cut value u}.
- Theorem B. Tq(W,u) = Tq(LW/uJ))

[Proved in Appendix B.]

Now, suppose we draw a decision tree for Algorithm PM beginning from

the top, but only going as far down as step 2 of the algorithm is done.

23

If we designate these exit points from step 2 as "leaves", then clearly
what we have is a weighted g-ary tree with initial weight W = d&+1 and

cut value u = r(logq m)/27, since condition (ii)' is satisfied.

Therefore, the cost of step 2 satisfies

h, < 'rq(d+l, r (1ogq m)/27)

If d&+1 < r(logqm)/E—l, then h,= 0. Otherwise, from Theorems A, B,

d+l
P < 1°8q(w) + O

d+1
].ogq(ln - + logq In g + o(1)

logq((d+l)/ln m)+ O(1) .

_Thus, in both cases,

h, = O(fl(m,n)) .

This completes the proof of Theorem 1.

2k

5. Lower Bounds to the Complexity of Pattern-Matching.

We shall prove Theorem 2 by showing the existence of a set of "hard"
patterns for which not only there is not any algorithm with good average
behavior, but in fact there is not any algorithm with good best-case
behavior. In Section 5.1, we define the concept of a "certificate", and
carry out some preliminary reductions for the proof of Theorem 2.

Section 5.2 proves a central lemma, and in Section 5.3 we complete the
arguments for the lower bound. 1In Section 5.4 we prove Theorem 3 using

a similar argument.

5.1 Preliminary Discussions.

For any £ , 1< f£<n, let Sn(ll) be the set of strings in
(zU {*})n with exactly n-¢ *'s. For each Q¢ Sn(l) , let I(p) be
the set of those strings in Zn that agree with ¢ except in positions
where ¢ has * 's. For example, let g = {0,1} and @ = ¥00¥le¢ Ss (3) ,
then I(p) = (00001, 00011, 10001, 10011} .

Let Otezm be a pattern. A string o@e Sn(/l) is a certificate (of

length ¢) for @ , if all elements in I(p) contain « in exactly the

same set of positions. That is, A(®) = A% ¢,) for any(,, Q2€I(Cp)

Definition. Let g{o,n) be the minimum length of a certificate for « ,

i.e.,

g(a,n) = min{s |3 9e Sn(ll) such that cp is a certificate for aj .

Let T be a decision tree that locates all occurrences of a in
text strings from zn . It is easy to see that any path in T from the

root to a leaf must have length at least g(o,n) . In fact, let

25

g[il] = 8, g[iE] =855 Q[ll] = a, be the sequence of characters

examined along the path, then oqe Sn(l) is a certificate for Q where
cp[ik] =a for1<k<1?’, and ®[j] = ¥ otherwise. Thus, no algorithm

can halt before examining g(®,n) characters even in the best case.
Lemma 5.1. c(®,n) > g(@n) for all &, n .
We shall prove the following strengthened version of Theorem 2.

Theorem 4. There exists a constant a, such that, for any g > 2

and m > 0, there exists a set of strings L C }',‘,m satisfying

1
(I) L 2 l“*" —'§ qm) a.n.d.
m
(11) for each ael , g(an) > aef(m,n) for all n >m .

Before proceeding, we would like to make one more reduction.
n
Lemma 5.2. Let n > 2m , then g(a,n) > [—2&1' g(a,2m) .

. n . .
Proof. For any string ey , we write 1t as

g = gl gg s gLn/Qm_I B
where |cs| = 2m for 1< j < |n/2m] . Similarly, we write
P =9, P .m0 cPLn/EmJn for any Q¢ Sn([) . If ¢ is a certificate
2m

for a in gn , then each qaj must be a certificate for Otj in X

(Note that the reverse may not be true.) Thus g(@,n) > | n/omjg(a,2m) .

This lemma allows us to reduce condition (II) of Theorem % to the

following:

26

(II)' for each a@elL , g(an) > agfl(m,n) for m < n < 2m

This is so because g(a,2m) > agfl(m,zm) implies g(an) >
Ln/emjg(@2m) > |n/emj-a,[log (w/(ln(m+l) +2)7 > alf,(mn) for
some a,é >0 . -

The next two subsections are devoted to a proof of Theorem L.

5.2 The Counting Lemma.

A certificate ¢ for a is called a negative certificate if it

disproves the containment of & as a substring, i.e., if A(a,g) = ¢
for all ge I(p) . We first observe the fact that any certificate

shorter than the pattern itself must, be a negative certificate.

Fact. Let Qe zm be a pattern. 1If o¢e¢ sn(/z) is a certificate for a

and £ <m, then ¢ is a negative certificate for a

Proof. Since ¢ does not check as many as m non-* characters, it
is impossible for @ to certify the occurrence of a at any position

in ¢ € I(p) . Therefore, it must be that A(a,g) =0, 0O

The next lemma is essential to the proof of Theorem k. It says that

. m Lo . .
not many patterns in g can share a common certificate which is short.

Definition. For any ¢e § (2) , where 1 <2< n, let Pm(cp) be the

m . . e .
set of all patterns in % for which ¢ is a certificate. That 1is,

Pm(CP) = {a |Oce}:m and ¢ is a certificate for a} .

The Counting Lemma, Let 1 <£<m<n, and Qe Sn(;z) . Then

a
1 12 m
|Pm(CP)| < 1-= . q where d = n-m .
q

27

Proof. Let 1< il < i2 < *x < i! <n be the positions where ¢ has

a non-* character. For 0 < j < d , define

B, = {b]vefl2 .. n}and j+# = i, for some 1 <t <1} .

(SeeFigure 5) clearly ‘Bj‘ <t for 1<JZ d . Also, for any

a € pm(cp) s since ¢ is a negative certificate by Fact, there must exist

an 1eB, for each j such that afi] £ ¢[j+i] . Now we show that we

can find J < {0,1,...,4}, |J| = rd/ﬁ] s such that B. ng. = i
1 2

for Jp # Jp in J

i, i, 13 i,
7 g g
* ¥ * ¥
/, V/Jr/ * * g * * /’ * Y P
9% - ‘
A 7, 2K
j —t
—J ot t t
\ J
B
B.
J
Figure 3. Definition of Bj for the Counting Lemma.

We find J by a "greedy" procedure. Let jl = 0 . Inductively,
js is obtained by finding the smallest j such that Bj is disjoint

from B = B. UB. U«.ee UB We claim that this procedure allows

1 s
us to find at least l_d/!?'l such sets . In fact, we shall show that

js < 12(8-1) . The key observation is that B contains at most £(s-1)

elements. We claim that at least one of the sets in & = {BO,Bl, couB g 3
a (s-1)

is disjoint from B . If not, for each r, 0 <r< le(s-l) , let

28

(b’it) be a conflict where beB NB and r+b = it for some
1<t< 1t . The total number of such pairs is no more than
|B|-2 < !2(8-1) . But we have le(s-l)+l sets in the family %,
a contradiction.
To prove the lemma, consider a random string from %_:n . For each
j e J, the probability that there exists some ie Bj with a[i] # o[j+i]
15,1

is 1 - 1/q J' | since all the sets B:] for j e J are disjoint, the

probability that this holds for all j is

A S 1_lp\tP\
jed Bl) (a)
q

lr}d"e]
5(1-?) .

Since each aepm(cp) must satisfy this condition, the lemma follows. O

5.3 Proof of Theorem 4.

In this subsection we complete the proof of Theorem 4. Roughly, the

idea is to use the Counting Lemma to bound the number of patterns in zm

that have any "short" certificate.

Definition. Let x be a positive number such that (i) x >256 and

(ii) v > (1lg y)12 for all y > x

4 -
Lemma 5.3. Let m+xq In(m+l) <n<2m, = ,—% logq(n—n:n)-l , and

1 m
P= U P @) . Then|p| < —p .
) m
Note. The assumption in the lemma ensures m >5, thus Inm > 1

29

Proof. Clearly I <m. By the Counting Lemma, we have for each ge Sn(JZ) /

d

Z2
o, @) < (1%) :

Therefore,

|e|

i A
-~ _
~ 5 =
— ;:

L. =
A~ /’::\
=]
[]
e 2

m

q .

Since n < 2m , and In(1- q-l) < -q-t + (1%) leads to

y a
P} < (om q) exp(- T;)'qm

L q

m a
o on((5
. L q

Fact. 4 27+ 1n(2m q)
- lqu -

[Proved in Appendix C.]

Formula (15) then implies,

Pl < 4 ® exp(44nm)

This proves the lemma. O

£.1n(2m q))) .

- L m
_lq
m

30

(1k)

(15)

(16)

We now finish the proof of Theorem L4, As discussed in Section 5.1,

20
we can assume that n < 2m . We can assume that m > xq In(m+l) .

n-m
: - l | = 1 d h
Otherwise, f(m,n) = logq(_(__ml) + 2) O() , and we can choose

L = 5 to satisfy the conditions in Theorem L.

20
For each n , m+xqg In(ml) < n < 2m, let

(n) _[1 n-m '|
P = sU(z) Pn(®) , where I =| 3 log (3=)|>10. (17)
P €2\
By Lemma 5.2, we have
(n) 1l m 1 m
P < e < T oe (18)
n m
~ m
We define L as follows.
L =35 -uU P(n) , where the union is taken over
n
20 1
m+xq "~ In(ml) < n < 2m . (19)

Now we need only check that L has the properties specified in Theorem L,
(n) - l m _1 n
2 g -m*- 70 g = t-5) a -
m m

m
(1)] = ¢ -fuep
n
(II)' We shall prove, for each de L , 8&(%n) > a f(mn) for all
2

m<n<2m, and an absolute constant a -

There are two cases:

(@) 1f m+xa?® 1n(ml) <n <em, then afp® by definition of L

Thus,

1 n-m 1 n-m _oat.
g(a,n) > I—§ logCl m)-l > agl—logq(m+ 2)_| = a2 f(m,n)

for some absolute constant aé .

31

(b) If m<n<mt quo In(m+1l) , then

n-m
Fogq(m+ 2)—| = 0(1) , and

g(a,n) > oz'g‘.f(m,n) for some absolute constant a’e' .

f (m,n)

Thns, in both cases, we have verified property (2)'.
Therefore, the set L defined by (19) satisfies the conditions (I)

and (II)' set in Theorem 4, This completes the proof of Theorem k.

Remark. In the conditiont}; > qm(l - %) of Theorem k4, the choice of the
m

factor 1 - _2__9_ is somewhat arbitrary. In fact, we can replace it by
m

any factor 1 - —15 where b is any fixed positive number. Then, in
m

the proof, we need to divide cases according to whether n 1is greater

bt
2 (b*1) In(m+tl) . The resulting constant a, in

than or less than m+ xqg o

the theorem will be different.

5.4 Proor of Theorem 3.

We can assume that d = n—-m > ma.x{q_h,x} , where x is defined as in
Section 5.3. Otherwise the bound Q(I’logq(d+2)"|) = Q(1) , and any
pattern Q¢ zn will meet the conditions in Theorem 3,

By assumption, m < n < 2m , and e, . Let = r(logq(n-nrf-2))/21 .
Recall that Sn(l) is the set of strings of length n over zu{*}

with 2 non- * characters. Let H cC sn(z) be defined by
H=1{p|o eSn(ll); e[a(i)] e £ for 1 < i <4, and @[j] = * for all other j) , (19)

Clearly, there are exactly q! elements in H , i.e., |H| = q}Z .

32

Now, let P' Dbe the set of patterns Qe Zm such that Algorithm-(j),Q)
halts for some text string in less than or equal to ! steps. For any

dep' , clearly there must be a ¢e¢H such that O:epm(cp) , Thus,

e U el . (20)
pecH

By the Counting Lemma, we have
el
2
-4\ 1 m
P, < @-a) " -a .

Therefore,
d d
2 2

Pl < jg-@-ahHt . P =d aen L8 (21)

' m L ,
Since every a in ¥ -pP' meets the conditions set in Theorem 3, we

d
{ -1 12
need only show that q . (1- g) <1 . Now,
d
2

2 -2\ 2
q-(1-q°)

< qlz ' mu(aﬂ%e%) : (22)
£ q

4
By using the definition of f and the condition d > g , we obtain after

some algebraic manipulations

d

2 1/4
da-ah o< (d+2)3/h-exp -J-'H—QL) . (23)

2(1g(a+2))®

" The right hand side of (23) can be shown to be less than 1 when d > x ,

This proves Theorem 3.

Remark. The right hand side of (23) is O(exp(-dl/s)) for large d .

We have in fact shown that, for any fixed \ €A , Agorithm-(),@) has to
examine Q(rlogq(d+2)'l) characters in the best case for all but a

O(exp(-dl/s)) fraction of the patterns aey” .

33

An open question: Is the following statement true?
Let 0 <m<n<?2m . For any(lezg , there exists a)¢ An such
that Algorithm-(),&) examines O(fl(m,n)) characters on the average for

a random text string of length n .

3L

References

[1] A. V. #ho and M. J. Corasick, "Fast Pattern Matching: An Aid to

Bibliographic Search," Communications acu 18 (1975), 333-340.

(2] A. V. #ho, D. S. Hirschberg, and J. D. Ullman, "Bounds on the
Complexity of the Longest Common Subsequence Problem,"
23 (1976), 1-12.

[3] R. S. Boyer and J. S. Moore, "A Fast String Searching Algorithm,"
Stanford Research Institute Technical Report 3 (March 1976),

(4] D. E. Knuth, J. H. M rris, and V. R. Pratt, "Fast Pattern Matching

in Strings," SIAM J. on Computing 6 (1977), 323-350.

[5] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley (1973).

[6] R. L. Fives-t, "On the Worst-Case Behavior of String-Searching

Algorithms," Information Processing Letters, to appear.

35

Appendix A: Proof of Theorem A.

In this appendix, we shall prove the following theorem used in

Section 3.2 in the paper. For definitions and notations, see Section 3.2.

Theorem A. Let g >2 be an integer. Then

W 1
Llog W] o-1 '
1 q

Tq(W) = [_logq Wl +1 + for w > 1 , (A1)

We first derive same properties of the function f defined below.

Definition. Let g > 2 be an integer, we define a function f by

- (Ae)
f(w) = lo Wy +1 S E— L
(W) = Liog, W] +Llogq W g-1, for w>1

a
Let g(W) = f(wl) -£(W) , for all integers W > 0
1 1

L riog (w+1)1-1
q @

Property 1. g (W) for W > 0

Property 2. g(W) > g(w') if OSKW<LW .
Property 2 follows from property 1, which can be verified directly,

Property 3. The function f satisfies the following recurrence relation:

£(0) = 0 (83)
£(W) = 1+% i:ﬁl f([_w{l_l) for W>1 . (AL)

Proof of Property 3. Equation (A3) is true by definition. To prove

(Ak), let

36

(A5)

W = tgq+ s, with 0<s<gq .
Then
a t+1 If g-stl<i<gq .

Thus, we need only prove

f(tq+s) = 1+ %I((q-s).f(t) +osef(t+1)) , i.e.,

fltq+ s) = 1+ £(t) + % g(t) . (46)

From the explicit forms of f and g are given in (A2) and Property 1,

it is not difficult to verify (A6). This implies Property 3. U

-~

Remark. We shall interpret (A4) as follows. Let us write

W= W tHyt @ 5007 such that]wi-wJ.L§1 for all i, j . Then

1 &
(W) = .'.L‘l'(—1 Z W, .

We are now ready to prove Theorem A. Let T be any weighted g-ary

tree, and T, be the sub-tree rooted at soni(root) , 1<i<aq. Then

the terminal weight of T satisfies

Rl L

t(T) = 1+

.

q
t(T,) .
i=1 .

This leads to the following equations:

Tq(O) =0
(47)

q q
1 .
Tq(W) = 1+ 3 max {i?l Tq(Wi)Ilnteger Wi—> 0 ’i E]_wi = W}

for w>1

57

Clearly (A7) determines 'rq(W) uniquely, Therefore, in order to prove
(Al), we need only prove that f(W) satisfies (A7). Because of

Property 3, it suffices to prove

) 1 Wri-1
W, >0, ?Wi=w} = iElf(l- 1 J) . (a8)

That is, the sum X f (Wi) achieves a maximum value when all the Wi
i

ma.x{ % f(Wi)
i=1

differ from each other by at most 1 . This can be demonstrated as
follows. If, for some i and j , W:.L ij+2 , we make the changes

W, - W.,-1 and W.J-— Wj+l . The value of 2 f(Wi) is increased by
i

an amount f(Wj+l) + E_(Wi-l) -f(Wi) - £(Wj) = g(Wj) -g(Wi-l) , which is
non-negative because of Property 1. It can be shown that the value of

Z lWi-le is decreased by at least 2 by such a transformation.
i,

Therefore, by a finite number of such transformations, all the Wi
will be within 1 to each other. The value of X2 f (Wi) is at least
as great as the initial value before the transformations, This proves

(A8), and hence Theorem A.

38

B
i
3

Appendix B: Proof of Theorem B.

[See Section 4 for notations.]

Theorem B. Let g > 2 and u > I. .. Then

Tq(w, u) = Tq([_W/u_[), for all w>1 . (1) ,

By definition, a g-ary tree with initial weight W < u and cutoff u

can only consist of a single leaf. Therefore,
Tq(W,u) =0 for O<W<u . (B2)

The following facts can be established by deriving a recurrence relation on

'rq(w, u) similar to (A7), and performing some simple reductions.

Tq(W,u) = E?-i- for u < W< 2u . (B3)

aq
1 .
W,u) =1 + = m T(W.u(l<W.<Wfor1< <
Tq(:) q ax{igl q‘i) >N S 1S9

and § W, = W} for W > u . (B4)
i=1

We shall now use (BY4) in an inductive proof of formula (BL).

Consider g , u as fixed, and the induction is on variable W .
By (B2) and (B3), the formula (Bl) is true for 0 < W < 2u . Now,
-gssume W > 2u , and we have proved (BL) for all smaller values of W .
We shall prove that it is also true for W .

By (B4), we have

q g
T(Wu) =1 +-max{ > T (W,u)|0 <W,<Wforl<i<agand Wi =4
4 4 i=1 7 - - i=1

39

By inductive hypothesis, Tq(wi’ u) = Tq(LWi/u.l) for 1<i<q.

Therefore,
1 > OLKW, <W, 2 W = (85)
'rq(W;’U.) =1 + 3 max Z Tq,(LWi/u_l) | =i e S :
i=1 1
We complete the proof in two steps:
(1) T w) < T (LWag), (86)

Proof. It is not difficult to verify that Tq is a non-decreasing

function of its argument. Noting that 2 LW;/uj <LW/uj. Then
i

q
1
= -7 ./a < W./u < 7T W/u
ER-RUR R ST R —rq(§ LW,/ _\) < Tg(LWag)
where we have used (Ak)in the first step. This proves (B6) because of
(85). O
(i1) T Ww) > Tt (LWay) (37)
Proof. Let W= tu+v , where 0 < v < u . Define
(.
+:;-l for 1<i < g1,
) W, = < (88)
i
-l utv for i=gqg
— ! -
\.
Then
LW, /ul = l_t‘fl'lJ for 1<i<q . (89)

From (B5), we have

L0

I~

q
Tq(W,u) > 1 + i?l Tq(LWi/u_])

-1l i:ﬁl o 2D | (B10)

In Appendix A, we have shown that the right-hand side of B(10) is equal
to Tq(t) . (See (A4); remember that Tq(W) = f£(W) .) Therefore,

(B10) leads to

'rq(w,u) > Tq(t) = Tq(LW/u_I) . O

We have now proved that T (W,u) = T (| WuJ]) . This completes the

inductive step in the proof of Theorem B.

L1

Appendix C. Proof of Formula (16).

We shall prove formula (16) used in Section 5.3. For easy reference,

we repeat all the notations and assumptions.

. 1 n-m’ .
Notations. d=nm, I= r§ logq m)-l . The number x is a

positive number such that (1) x>256 , and (ii) for all y >x,

12
y >(lgy) .

Assumptions. qQ>2, and m>d > Xq_u In(m+l) >0 .

We wish to prove:

___le > 2¢.1n(2mq) . (c1)
5 T

Proof. We shall prove

+ > 2 (c2)
q - ln(2mq)
Now £ < 1+ 3 logq oo , hence
1/2
£ d
L
Also m>d>gq . Thus, m > 2q because ¢q>2
In(2mq) < ln(m2) = 2 1ln m . (ck)
From (C3) and (C4), we have
d 4 1 d 1/2
1 2 1z = Zd\Inm - (03)
q" . 1n(2mq) (d/In m)™”/“ .2 1nm .
Therefore, (C2) will be proved, if we can show

10 a V/° > 2P |, i
s\ o m > , i.e.,

ko

d 26
Tnm 2 1644
: : .__d_... > h h lO _d‘...
Notice that, by assumption, inm =>4 + hence gq oo
Therefore
1 d
L < 1+-2-logq nm L 1ogq In m .

Because of (C7), we can prove (C6) if the following is true.
6
d 2 da
mn > 164 (lqu(ln_m)) .

We shall now prove (C8) to complete the proof of (Cl).

B ti 4 > X b
y assumg won, Ty 2 *e .
(1) Since x> 256 , we have

b1 2
(f—m)l/z > (xd VP > 164

(ii) Since 77 2

T.ni?n_ > (lg(ﬁ))le , which implies that

(o)7 2 (aoe(s55)) -

It follows from (C9) and (Cl0) that

d 2 d
mw > 164 (10 ())

This proves (C8), and hence (Cl).

3

> x , the following inequality is true. We have

(co)

(c7)

(c8)

(c9)

(c10)

