
APPLICATIONS OF A PLANAR SEPARATOR THEOREM

by

| Richard J. Lipton and Robert E. Tarjan

STAN-CS-77-628

OCTOBER 1977

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

N

Applications ofa Planar Separator Theorem

x ¥¥

Richard J. Lipton 2 Robert Endre Tarjan —/
Computer Science Department Computer Science Department
Yale University Stanford University
New Haven, Connecticut 06520 z Stanford, California 94305

August, 1977

Abstract.

Any n-vertex planar graph has the property that 1t can be divided

into components of roughly equal size by removing only o(+n) vertices,

This separator theorem, 1n combination with a divide-and-conquer

strategy, leads to many new complexity results for planar graph

problems. This paper describes some of these results.

Keywords: algorithm, Boolean circuit complexity,

divide-and-conquer, geometric complexity, graph embedding,

lower bounds, maximum independent set, non-serial dynamic

- programming, pebbling, planar graphs, separator,

space-time tradeoffs.

Ba

Y This research partially supported by the U.S. Army Research Office,
Grant No. DAAG 29-76-G-0338.

*%

x*/ This research partially supported by National Science Foundation grant
MCS-75-22870 and by the Office of Naval Research contract NOOOlL-76-C-0688.

Reproduction in whole or in part 1s permitted for any purpose of the
United States Government.

1

=

1. Introduction.

One efficient approach to solving computational problems 1s

"divide—-and-conquer" [1]. In this method, the.original problem is

divided into two or more smaller problems. The subproblems are solved

by applying the method recursively, and the solutions to the subproblems

are combined to give the solution to the original problem. Divide-and-

conquer 1s especially efficient when the subproblems are substantially

smaller than the original problem.

In [14] the following theorem is proved.

Theorem 1. Let G be any n-vertex planar graph with non-negative

vertex costs summing to no more than one. Then the vertices of G can

be partitioned into three sets A, B, C , such that no edge joins a

vertex 1n A with a vertex in B , neither A nor B has total vertex

cost exceeding 2/3 , and C contains no more than 224 vertices.

Furthermore A, B, C can be found in O(n) time.

In the special case of equal-cost vertices, this theorem becomes

Corollary 1. Let G be any n-vertex planar graph. The vertices of G

can be partitioned into three sets A» B, C, such that no edge joins a

vertex in A with a vertex in B , neither A nor B contains more

than 2n/3 vertices, and C contains no more than 2y/24/n vertices.

Theorem 1 and its corollary open the way for efficient application

of divide-and-conquer to a variety of problems on planar graphs. In this

paper we explore a number of such applications. Each section of the

paper describes a different use of divide-and-conquer. The results range

from an efficient approximation algorithm for finding maximum independent

sets in planar graphs to lower bounds on the complexity of planar

Boolean circuits. The last section mentions two additional applications

whose description is too lengthy to be included in this paper.

5

Sn

2. Approximation Algorithms for NP-Complete Problems.

Divide-and-conquer in combination with Theorem 1 can be used to

rapidly find good approximate solutions to certain NP-complete problems on

planar graphs. As an example we consider the maximum independent set

problem, which asks for a maximum number of pairwise non-adjacent

vertices 1n a planar graph.

Theorem 2. Let G be an n-vertex planar graph with non-negative vertex

costs summing to no more than one and let 0 < e€e <1 . Then there is some

set C of o(vn/e) vertices whose removal leaves G with no connected

component of cost exceeding e¢ . Furthermore the set C can be found

in O(n log n) time.

Proof. Apply the following algorithm to G .

Initialization: LetC = 0 .

General Step: Find some connected componentK in G minus C with

cost exceeding € . Apply Corollary 1 to K , producing a partition

Ay B, Cy of its vertices. Let C = CUCy . If one of Aq and By

(say Ay) has cost exceeding two-thirds the cost of K, apply

Theorem 1 to the subgraph of G 1nduced by the vertex set Aq ,

producing a partition A,, B,, C; of A; . Let C = CUC,

Repeat the general step until G minus C has no component with

cost exceeding «¢ .

The effect of one execution of the general step 1s to divide the

component K into smaller components, each with no more than two-thirds

the cost of K and each with no more than two-thirds as many vertices

ly

L

as K. Consider all components which arise during the course of the

algorithm. Assign a level to each component as follows. If the

component exists when the algorithm halts, the component has level zero.

Otherwise the level of the component1s one greater than the maximum

level of the components formed when it 1s split by the general step.

With this definition, any two components on the same level are

vertex—-disjoint.

Each level one component has cost greater than e¢ , since it 1s

eventually split by the general step. It follows that, for 1 > 1,

each level 1 component has cost at least (3/2) tLond contains

at least (3/2) vertices. Since the total cost of G 1s at most one,

the total number of components of level i is at most (2/3): c

The total running time of the algorithm is o(Z {|X| | K 1s a component

split by the general step)) . Since a component of level i contains

at least (3/2)* vertices, the maximum level k must satisfy
k

(3/2) <n, or k < Log 5 n . Since components in each level are
vertex-disjoint, the total running time of the algorithm is

O(n Logs /5 n) = O(n log n) .
] The total size of the set C produced by the algorithm is bounded by

o(2 {Wn |X| | K 1s a component split by the general step))

log, /, 0 1-1 i-1
L085 0 1] L (2/3) /e L (2/3) /e

< 0 > max > Vn, | 2 n. <n and n. >0

oo 1-1 ©
| 2 n a i

i=1 (2/3) i=0

p,

Ee|

The following algorithm uses Theorem 2 to find an approximately

maximum independent set I in a planar graph G = (V,E) .

Step 1. Apply Theorem 2 to G with €¢ = (log log n)/n and each vertex

having cost 1/n to find a set of vertices C containing

| 0(n/v1log log n) vertices whose removal leaves no

connected component with more than log log n vertices.

Step 2. In each connected component of G minus C , find a maximum

independent set by checking every subset of vertices for

independence. Form I as a union of maximum independent sets,

one from each component.

Let I* be a maximum independent set of G . The restriction of

I* to one of the connected components formed when C 1s removed

from G can be no larger than the restriction of I to the same

component. Thus |I¥*| - |I| = 0(n/+1og log n) . Since G is planar,

G is four-colorable, and |I*| > n/4 . Thus (|I*|-|1|)/ |T*¥| =

0(1 /N1og log n), and the relative error in the size of I tends to

zero with increasing n .

y Step 1 of the algorithm requires O(n log n) time by Theorem 2.

Step 2 requires O(n, , 1) time on a connected component of n. vertices.
The total time required by Step 2 1s thus

n 7. n

0{ max Zn, 2 | Zn, =nand 0 <n. < log log n =(i i=1 + ')
o(ops (log log n)2'%8 log *) = O(n log n) . Hence the entireg log n

algorithm requires O(n log n) time.

6

3. Nonserial Dynamic Programming.

Many NP-complete problems, such as the maximum independent set

problem, the graph coloring problem, and others, can be formulated as

nonserial dynamic programming problems [2,20]. Such a problem is

of the following form: minimize the objective function fx, ux) ’

where ff 1s given as a sum of terms £, (+) , each of which 1s a function

of only a subset of the variables. We shall assume that all variables

Xs take on values from the same finite set S , and that the values

of the terms £0) are given by tables. Associated with such an

objective function f 1s an interaction graph G = (V,E) , containing

one vertex Vv. for each variable X, in £ , and an edge joining X.

and x. for any two variables Xs and Xs which appear in a common

term £,.(+) :
: By trying all possible values of the variables, a nonserial

dynamic programming problem can be solved in 20) time. We shall

show that if the interaction graph of the problem is planar, the

problem can be solved in , 0m) time. This means that substantial
savings are possible when solving typical NP-complete problems restricted

to planar graphs. Note that 1f the interaction graph of f is planar,

no term £,.() of f can contain more than four variables, since the

complete graph on five vertices 1s not planar.

In order to describe the algorithm, we need one additional concept.

m

The restriction of an objective function f= fy toa set of

variables Xo1 oeoky 1s the objective function
1 J

f' = 2 {f, | £, depends upon one or more of EAE A

I

TE

m

Given an objective function f(x; : + 0%) 5 Zt anda
subset S of the variables Xyp ees Xp which are constrained to have

specific values, the following algorithm solves the problem:

maximize f subject to the constraints on the variables in S .

In the presentation, we do not distinguish between the variables

Xs 0X and the corresponding vertices in the interaction graph.

Step 1. If n <9, solve the problem by exhaustively trying all

possible assignments to the unconstrained variables.

Otherwise, go to Step 2.

Btep . Apply Corollary 1 to the interaction graph G of £ . Let

A, B, C be the resulting vertex partition. Let ry be

the restriction of f£ to AyYyC and let £, be the

restriction of f to ByYyC . For each possible assignment

of values to the variables in C-S , perform the following

steps:

(a) Maximize £; with the given values for the variables

in CUS by applying the method recursively;

(b) Maximize £5 with the given values for the variables

in CUS by applying the method recursively;

(c) Combine the solutions to (a) and (b) to obtain a maximum

value of f with the given values for the variables

in Cys.

Choose the assignment of values to variables in C-S which

maximizes f and return the appropriate value of f as

the solution.

i

The correctness of this algorithm 1s obvious. If n >9 , the

o(\n | |algorithm solves at most 2 () subproblems 1n Step 2, since C

is of o(v/n) size. Each subproblem contains at most

2n/3 + ne < 29n/30 variables. Thus 1f t(n) 1s the running
o(\n)time of the algorithm, we have t(n) < O(n log n)+?2 (. £(29n/30)

if n>9, t(n) = 0(1l) if n <9 . An inductive proof shows

nthat t(n) < ,0(4n)

9

ee

L, Pebbling.

The following one-person game arises 1n register allocation

problems [21], the conversion of recursion to iteration [16], and

the study of time-space tradeoffs [4 ,10,18].Let G¢ = (V,E) be

a directed acyclic graph with maximum in-degree k . If (v,w) is

an edge of G , v 1s a predecessor of w and w 1s a

successor of v. The game involves placing pebbles on the vertices

of G according to certain rules. A given step of the game consists

of either placing a pebble on an empty vertex of G (called pebbling

the vertex) or removing a pebble from a previously pebbled vertex.

A vertex may be pebbled only if all its predecessors have pebbles.

The object of the game 1s to successively pebble each vertex of G

(in any order) subject to the constraint that at most a given number

of pebbles are ever on the graph simultaneously.

It 1s easy to pebble any vertex of an n-vertex graph in n steps

using n pebbles. We are interested in pebbling methods which use

fewer than n pebbles but possibly many more than n steps. It is

known that any vertex of an n-vertex graphcan be pebbled with

° 0(n/log n) pebbles [10] (where the constant depends upon the maximum

in-degree), and that in general no better bound is possible [18]. We

shall show that if the graph 1s planar, only 0(\n) pebbles are

necessary, generalizing a result of [18].An example of Cook [L]

shows that no better bound 1s possible for planar graphs.

Theorem 3. Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using 0(Nn+ k log, n) pebbles.

10

N

Proof. Let a = ono and B = 2/3 . Let G be the graph to be

pebbled. Use the following recursive pebbling procedure. If n < Dy
2

where ng, = (a/(1-B))” , pebble all vertices of G without deleting

pebbles. If n > ng, find a vertex partition A, B, C satisfying
¥-

Corollary 1. Pebble the vertices of G in topological order. ~/

To pebble a vertex vv , delete all pebbles except those on C . For

each predecessor u of wv, let G(u) be the subgraph of G induced

by the set of vertices with pebble-free paths to u . Apply the method

recursively to each G(u) to pebble all predecessors of v , leaving

a pebble on each such predecessor. Then pebble v .

If p(n) 1s the maximum number of pebbles required by this method

on any n-vertex graph, then

p(n) = n if nny

p(n) < ann + k + p(2n/3 te avn) if n>n

An inductive proof shows that p(n) is o(\n +k Log, n) . Cl

It is also possible to obtain a substantial reduction in pebbles

while preserving a polynomial bound on the number of pebbling steps,

- as the following theorem shows.

Theorem 4. Any n-vertex planar acyclic directed graph with maximum

CL | 2/3 | 5/3,in-degree k can be pebbled using O0O(n/~ +k) pebbles in 0(kn”/~) time.

*]]] []5 That 1s, 1n an order such that if v 1s a predecessor of w ,
V 1s pebbled before w .

11

=

troof. Let -C be a set of 0 (n?/3) vertices whose removal leaves

G with no weakly connected component ~/ containing more than 02/3

vertices. Such a set C exists by Theorem 2. The following pebbling

procedure places pebbles permanently on the vertices of C . Pebble

the vertices of G in topological order. To pebble a vertex v ,

pebble each predecessor u of v and then pebble v . To pebble a

predecessor u , delete all pebbles from G except those on vertices

inC or on predecessors ofv . Find the weakly connected component

in G minus C containingu . Pebble all vertices in this component,

in topological order.

The total number of pebbles required by this strategy is 0(n?/?)

to pebble vertices 1n C plus 12/3 to pebble each weakly connected

component plus k to pebble predecessors of the vertex v to be

pebbled. The total number of pebbling steps 1s at most

o(ken-n?/?) = 0(kn”/ 2) oO

a \ weakly connected component of a directed graph 1s a connected
component of the undirected graph formed by ignoring edge directions.

12

Hu

5. Lower Bounds on Boolean Circuit Size.

A Boolean circuit 1s an acyclic directed graph such that each

vertex has 1n-degree zero or two, the predecessors of each vertex are

ordered, and corresponding to each vertex v of 1n-degree two 1s a

binary Boolean operation bv. With each vertex of the circuit we

associate a Boolean function which the vertex computes, defined as

follows. With each of the k vertices \f of 1n-degree zero (inputs)

we assoclate a variable Xo and an identity function £, (x) =X; .

With each vertex w of in-degree two having redecessors u, Vv we

associate the function f_, b (ff) . The circuit computes the

set of functions associated with its vertices of out-degree zero

(outputs).

We are interested in obtaining lower bounds on the size (number

of vertices) of Boolean circuits which compute certain common and

important functions. Using Theorem 1 we can obtain such lower bounds

under the assumption that the circuits are planar. Any circuit can be

converted into a planar circuit by the following steps. First, embed

the circuit in the plane, allowing edges to cross 1f necessary. Next,

) replace each pair of crossing edges by the crossover circuit illustrated

in Figure 1. It follows that any lower bound on the size of planar

circults 1s also a lower bound on the total number of vertices and

edge crossings 1n any planar representation of a non-planar circuit,

In a technology for which the total number of vertices and edge

Crossings 1s a reasonable measure of cost, our lower bounds imply that

1t may be expensive to realize certain commonly used functions in

hardware.

13

-

A superconcentrator 1s an acyclic directed graph with m inputs

and m outputs such that any set of k inputs and any set of k

outputs are joined by k vertex-disjoint paths, for all k in the

range 1 <k <m.

Theorem 5. Any m-input, m-output planar superconcentrator contains

at least me 72 vertices.

Proof. Let G be an m-input, m-output planar superconcentrator.

Assign to each input and output of G a cost of 1/ (2m) , and to every

other vertex a cost of zero. Let A, B, C be a vertex partition

satisfying Theorem 1 on G (ignoring edge directions). Suppose C

contains p inputs and outputs. Without loss of generality, suppose

that A 1s no more costly than B , and that A contains no more

. outputs than inputs. A contains between 2m/3 - p and m ~ p/2

inputs and outputs. Hence A contains at least m/3 - p/2 inputs

and at most m/2 - p/b outputs. B contains at least m-p- (m/2 - p/L) =

m/2 - 3p/4 outputs. Let k = min{[m/3 - p/27, [m/2 -3p/LT} . Since

G 1s a superconcentrator, any set of k inputs 1n A and any set of

k outputs in B are joined by k vertex-disjoint paths. Each such

path must contain a vertex in C which 1s neither an input nor an

output. Thus 242m - p > minfm/3 - p/2,m/2 - 3p/k} >m/3 - p,

and n > n° /72 Od

The property of being a superconcentrator is a little too strong

to be useful 1n deriving lower bounds on the complexity of interesting

functions. However, there are weaker properties which still require

Om”) vertices. Let G = (V,E) be an acyclic directed graph with m

1h

numbered inputs VAT 0 OQ and m numbered outputs Wy Wy. @ a
G 1s sald to have the shifting property 1f, for any k in the range

1 <k<m, any £ in the range 0 < { < m-k , and any subset of k

sources vg eres such that i;,i,, ..,1 <m-£, there are k
vertex-disjoint paths joining the set of inputs by oe may J with
the set of outputs {vs pp ees i)

1 k

Theorem 6. Let G be a planar acyclic directed graph with the

shifting property. Then G contains at least | m/2 |°/162 vertices.

Proof. Suppose that G contains n vertices. Assign a cost of 1/m

to each of the first | m/2| inputs and to each of the last |m/2

outputs of G , and a cost of zero to every other vertex of G . Call

the first |m/2j inputs and the last |m/2j outputs of G costly.

Let A, B, C be a vertex partition satisfying Theorem 1 on G

(Lgnoring edge directions).

Without loss of generality, suppose that A 1s no more costly

than B, and that A contains no more costly outputs than costly

) inputs. Let A' be the set of costly inputs in A, B' the set of

costly outputs in B , p the number of costly inputs and outputs

in C, and g the number of costly inputs and outputs in A . Then

2m/2)/3 -p <q < m2] -p/2. Hence |A' | > ¢/2 > |m/2]/3 -p/2,

Al so

15

1

|at]-|B'| > a" |-(Lm/2] - » - (a= |A']))

> a/2: (m/z) - p - q/2)

> (Lm/2)/3 - p/2)(Im/2] - ¢ - m/2]/3 + p/2)

= (Lw/21/3 - p/2)(2 m/2]/3 - p/2)

> 2iw/2°/a - pLw/2]/2.

For v; eA’, WieB , and f in the range 1< 1! < |m/2]

call Vege We f a match if j-i =1 . For every Vv, eA and

Ws € B' there 1s exactly one value of f which produces a match;

hence the total number of matches for all possible Vio . , I 1S
|A"|- |B" | > 21 m/21%/q - plm/2]/2 . Since there are only Lm/2 |

“values of a, some value of [produces at least 2|m/2|/q - p/>

matches. Thus, for k = 2|m/2|/q - p/2 , there is some value of I

and some set of k inputs A" = RAFI BAER c A' such that
B" = Ms +p ¥i rp Way) Cc B' . Since G has the shifting
property, there must be k vertex-disjoint paths between A" and B" .

But each such path must contain a vertex of C which 1s neither an

input nor an output. Hence 2nf24/n -p > 2m/2)/q - p/2 , and

n > | m/2)°/162 . 0

A shifting circuit 1s a Boolean circuit with m primary inputs

Xy5X5y eeesX, > ZErO OL MOre auxiliary inputs, and m outputs 213 Zp ees Zp

such that, for any k in the range O < k <m , there is some assignment

of the constants 0 , 1 to the auxiliary inputs so that output Zs 1k

computes the 1dentity function Xs for 0 € 1 < m-k . The Boolean

16

=

convolution of two Boolean vectors (X5X5s 0 aX) and (v1: oo 7)

1s the vector (25255.. @ » Zoypy) given by Zoe = 2 X75 .
itj=k

Corollary 2. Any planar shifting circuit has at least 1/2 | 2/160
vertices.

Proof. Any shifting circuit has the shifting property.

See [23,24]. OO

Corollary 3. Any planar circuit for computing Boolean convolution has

at least Lm/2 [2/162 vertices.

Proof. A circuit for computing Boolean convolution is a shifting

circuit if we regard Xq5 0 AL as the primary inputs and Zor eeesZ iq

as the outputs, O

Corollary L. Any planar circuit for computing the product of two m
2

bit binary integers has at least |m/2| /162 vertices.

Proof. A circuit for multiplying two m-bit binary integers 1s a

; shifting circuit. O

The last result of this section 1s an am) lower bound on the

size of any planar circuit for multiplying two mxm Boolean matrices.

We shall assume that the inputs are, X.. Yi; for 1< i,j <m and

the outputs are Ey y for 1 <i,J <m . The circult computes

7 = XY , where Z = (2; 5) , X = (x 5) , and Y = (¥5 35) . We use
the following property of circuits for multiplying Boolean matrices,

17

=

called the matrix concentration property [23,24], For any k in the

range 1 < k < n° , any set {x a r < k} of k inputs from X ,ne

and any permutation O of the integers one through n , there exist

k vertex-disjoint paths from ~{x; |1 <r <k} to (zy (3) |1 <r <k}.
rdy 5 r ‘“r

Similarly, for any k in the range 1 < k <n , any set

{vs i |1 <r <k) of k inputs from Y , and any permutation ©
rr

of one through =n , there exist k vertex-disjoint paths from

13 <r <kt to Z fe Ns 1 <r <kl.

rr

Theorem 7. Any planar circuit G for multiplying two mxm Boolean

matrices contains at least cm vertices, for some positive constant c¢ .

Proof. This proof 1s somewhat involved, and we make no attempt to

‘maximize the constant factor, Suppose G contains n vertices, and

that m is even. Assign a cost of 1/(dm”) to each input x; and
2

each input Vip @ cost of 1/ (2m) to each output Zoggs and a cost
of zero to every other vertex. There is a partition A, B, C of the

vertices of G such that neither A nor B has total cost exceeding

1/2, no edge joins a vertex in A with a vertex in B , and C

contains no more than Jon / (1 - 42/3) = c, Wn vertices. This

is a corollary of Theorem 1; see [14], Without loss of generality,

suppose that B contains no fewer outputs than A , and that A

contains no fewer inputs X43 than inputs Yoerg - Then B contains
at least (n° - c14n)/2 outputs, which contribute at least

1/4 - ein / (bad) to the cost of B . Thus inputs contribute at most
Jn)y 21/h - C4 n/(m) to the cost of B , and B contains at most

18

n° + c,n inputs, A contains at least ou (ni t ce, fn) -c, Wn =
ne -2¢ Vn inputs, of which at least nC 2 - c, Vn are inputs Ropes
One of the following cases must hold.

Case 1. A contains at least 30/5 inputs X35 . Let p be the
number of columns of X which contain at least Um/7 elements of A .

Then pm+ (m-p)(4m/7) > 3n°/5 , and p > m/15 . Let g be the number

of colums of 2 which contain at least Lm/9 elements of B . Then

gn+ (m-q)(km/q) > mn" /2 - cian /2 , and gq > m/10 - 9c, Wn / (10m) :
Let k = min{m/15 , m/10 - 9c. W/n / (10m) } . Choose any k columns

of x, each of which contains at least um/7 elements of A , Match

each such column of X with a column of Z which contains at least

in /9 elements of B , For each pair of matched columns Xs 7 Zs 5 ,

select a set of Mm/7+ Lm/9-m = m/63 rows f such that x, is

in A and 2) is in B. Such a selection gives a set of km/63
elements in XNA and a set of km/63 elements in ZNB which must

be joined by km/63 vertex-disjoint paths, since G has the matrix

concentration property. Each such path must contain a vertex of C .

; Thus km/63 < ce, \n , which means either n° / (15.63) < c, Vn (i.e.,
(n°/(15-63¢,))° <n) or m/63(n/10 - 9c wn /(1om)) < cn

(ie, (m7/(9-69¢))% <n).

Case 2. A contains fewer than 3° /5 inputs 254 ~~ Then A contains
at least on’ /5 - 2c, Vn inputs Yi, . Let S be the set of m/2
columns of Z which contain the most elements in B .

19

Subcase 2a. S contains at least 3m” /10 elements in B . Let p

be the number of columns of X which contain at least 4m/9 elements

of A . Then pm+ 4(m-p)m/9 > me /2 —~ IY , and p > m/10 - 9c, An / (5m) :
Let g be the number of columns of Z which contain at least Lm/T

elements of B . Then gmn+ 4(m/2 - q)m/7 > 3m" /10 , and gq > m/30 .

A proof similar to that in Case 1 shows that n > cnt for some positive
constant c .

Subcase 2b. S contains fewer than 3m” /10 elements in B . Then the

m/2 columns Of Z not in S contain at least mn /5 — c,n /2 elements
in B . Let g be the number of columns of Z not 1n S which contain

at least m/10 elements in B . Then gm+ (m/2 - q)(m/10) > n° /5 - cin /2

and gq > m/6 - 5¢, vn / (9m) If 0 > g > m/6 - 5¢,4/n / (9m) » then
(3n°/(10¢,))° > n . Hence assume g > 0 . Then all columns in §
must contain at least m/10 elements in B , and 2m/3 - 5c, vn / (9m)
columns of Z must contain at least m/l10 elements in B .

Let p be the number of columns of Y which contain at least m/25

elements of A . Then pm+ (m-p)(m/25) > on’ [5 —~ 2c, Vn , and ’
p >3m/8 - 25¢;vn/ (12m).

For any input Yj 3 eA and integer ! in the range -ntl < {f < n-1 ,

call Vegqr { a match if Zt, 5B . By the previous computations,

there are at least 2m/3 - 5¢,4n / (9m) + 3m/8 - 25¢,/n / (12m) -m =

m/25 — 95¢,Wn / (36m) = m/25 — c, Nn /m columns j such that Yi;
contains m/25 elements of A and Lx 4 contains m/10 elements
of B . Each such column produces m°/250 matches; thus the total

number of matches is at least m0 /6250 - me, wn /250 . Since there are
only 2m-1 values of # , some value of ! produces at least

20

| un

k = m”/12,500 - c, n /500 matches. Since G has the matrix

concentration property, this set of matches corresponds to a set

of k elements in YNA and a set of k elements in ZNB which

must be joined by k vertex-disjoint paths. Each such path must

contain a vertex in C . Thus k < c,Nn , which means
4 2

m / (12,500(cq + c,/500)) <n,

In all cases n > — for some positive constant c¢ . Choosing

the minimum c¢ over all cases gives the theorem for even m . The

theorem for odd m follows immediately. UJ

The bounds in Theorems 5 = 7 and Corollaries 2 -4 are tight to

within a constant factor. We leave the proof of this fact as an

exercise.

21

6. Embedding of Data Structures.

Let Gl = (V3 E,) and G, = (Vy E,) be undirected graphs. An

embedding of Gy in G, 1s a one.-to-one map 0: V1 = Vs . The worst-case

proximity of the embedding is max {d,, ((v), p(w) {viw}e E,} , where
ad, (%,¥) denotes the distance between x and .y in G, . The average

proximity of the embedding is TT 2 {d, (B(v),P(w)) {v,w}eE } .
These notions arise in the following context. Suppose we wish to

represent some kind of data structure by another kind of data structure,

in such a way that if two records are logically adjacent in the first

data structure, their representations are close together in the second.

We can model the data structures by undirected graphs, with vertices

denoting records and edges denoting logical adjacencies. The representation

. problem is then a graph embedding problem in which we wish to minimize

worst-case or average proximity. See [5,13,19] for research in this area.

Theorem 8. Any planar graph with maximum degree k can be embedded in

a binary tree so that the average proximity 1s a constant depending only

upon k .

Proof. Let G be an n-vertex planar graph. Embed G in a binary

tree T by using the following recursive procedure. If G has one

vertex v , let T be the tree of one vertex, the image of v .

Otherwise, apply Corollary 1 to find a partition A, B, C of the

vertices of G . Let v be any vertex in C (if C 1s empty, let v

be any vertex). Embed the subgraph of G induced by AycC-{v} in a

binary tree I by applying the method recursively. Embed the subgraph

of G induced by B in a binary tree I by applying the method

22

a

recursively. Let T consist of a root (the image of v) with two

children, the root of Ty and the root of T, . Note that the tree

T constructed in this way has exactly n vertices.

Let h(n) be the maximum depth of a tree T of n vertices

produced by this algorithm. Then

h(n) < 9 if n<9 ,

h(n) < h(2n/3 + [24m - 1) < h(@9/30) if n > 9 .

It follows that h(n) is O(log n) .

Let G = (V,E) be an n-vertex graph to which the algorithm 1s

applied, let Gl be the subgraphof G induced by AUC , and let

G, be the subgraph induced by B . If s(G) = 2 {d, (B(v),p(w)) | (v,w) € E},

then s(G) = 0 if n = 1, and s(G) < s(G))+ s(&) +k |[C]h(n) if

n >1. This follows from the fact that any edge of G not 1n Gl or G,

must be incident to a vertex of C .

If s(n) is the maximum value of s(G) for any n-vertex graph G ,

then

s(l) = 0;

s(n) < max (s(i)+ s(n-i) + ckvn log n|n/3 - on2n < i< 2n/3 + 2240]
. if n>1, for some positive constant c .

An inductive proof shows that s(n) is 0O(kn) .

If G 1s a connected n-vertex graph embedded by the algorithm, then

G contains at least n-1 edges, and the average proximity is O(k) |.

If G 1s not connected, embedding each connected component separately

and combining the resulting trees arbitrarily achieves an O(k) average

proximity. O

25

ol

.

It 1s natural to ask whether any graph of bounded degree can be

embedded in a binary tree with 0(l) average proximity. (Graphs of

unbounded degree cannot be so embedded; the star of Figure 2 requires

O(log n) proximity.) Such is not the case, and in fact the property

of being embeddable in a binary tree with 0(1) average proximity is

closely related to the property of having a good separator.

To make this statement more precise, let S§ be a class of graphs.

The class S has an f(n) -separator theorem if there exist constants

a<1l, B >0 such that the vertices of any n-vertex graph in S$ can

be partitioned into three sets A, B, C such that |A|,|B] < an,

|C| < Bf(n), and no vertex in A is adjacent to any vertex in B.

Let S be any class of graphs of bounded degree closed under the

subgraph relation (i.e., 1f G, € S and G1 1s a subgraph of G, ’

then Gj eS). Suppose S satisfies an ng(n)/(log n)° separator
theorem for some non-decreasing function g(n) . Using the idea 1in

the proof of Theorem 8, it is not hard to show that any graph in §

can be embedded 1n a binary tree with O(g(n)) average proximity.

Conversely, suppose any graph in a class S can be embedded ina binary

tree with O(g(n)) average proximity. Then § satisfies an ng(n)/log n

separator theorem. In particular, if S satisfies no o(n) -separator

theorem, then embedding the graphs of § in binary trees requires

(log n) average proximity. FErd8s, Graham, and Szemeredi [7] have

shown the existence of a class of graphs of bounded degree having no

o(n) -separator theorem.

at

i

Te The Post Office Problem.

In [11], Knuth mentions the following problem: given n points

(post offices) in the plane; determine, for any new point (house),

which post office it 1s nearest. _Any preprocessing of the post offices

is allowed before the houses are processed. Shamos [22] gives an

O(log n) -time, 0(n°) —-space algorithm and an 0O((log n)°) —t ime,

O(n log n) -space algorithm. See also [6]. Using Theorem 2 we can

give a solution which requires 0(log n) time and O(n) space, both

minimm1f only binary decisions are allowed,

A polygon 1s a connected, open planar region bounded by a finite

set of line-segments. (For convenience, we allow the point at infinity

to be an endpoint of a line segment; thus a line is a line segment.)

A polygon partition of the plane 1s a partition of the plane into

polygons and bounding line segments. A triangulation of the plane 1s

a polygon partition, all of whose polygons are bounded by three line

segments. A triangulation of a polygon partition is a refinement of

the partition into a triangulation, Two polygons in a polygon partition

are adjacent if their boundaries share a line segment. A set of polygons

. is connected if any two polygons in the set are joined by a sequence of

adjacent polygons.

We shall solve the following triangle problem: given an n-triangle

triangulation and a point, determine which triangle or line segment of

the triangulation contains the point. The post office problem can be

reformulated as a triangle problem; the set of points closest to each

post office forms a polygon [22]. We shall make use of the following

lemma, which we do not prove.

25

EE

Lemma 1. Any n-polygon partition has a refinement whose total number

of triangles 1s bounded by n plus the number of line segments bounding

non-triangles plus a constant (a line segment bounding two non-triangles

counts twice in this bound). -

We shall build up a sequence of more and more complicated (but

more and more efficient) algorithms, the last of which is the desired one.

Theorem 9. Given an 0(log n) -time, ome) -space algorithm for the

triangle problem with € > 0 , one can construct an 0(log n) -time,

o(ni2e/3) -space algorithm. _—

Proof. Let T be a triangulation and v be a vertex for which the
triangle problem is to be solved. By Theorem 2 there 1s a set of on?)

. triangles Co whose removal from T leaves no connected set of more than

02/3) triangles.

Merge pairs of adjacent triangles which are not in Co to form a

polygon partition Fy . Fy contains at most 0 (2/3) line segments,
since each such line segment must be a bounding segment of a triangle

in T . Find a triangulation I of Ps with om2/3) triangles,
which exists by Lemma 1. Using the given algorithm, determine which

triangle or line segment of I, contains v .

If v is in some triangle of C; , the problem is solved. Otherwise,

v 1s known to be in some connected set Cs of triangles in T minus Co .

Merge pairs of adjacent triangles which are not in Cs to form a polygon

partition Pi. Since Ps contains at most 0 (m2?) line segments,
there 1s a triangulation I, of P. with 0(n2/?) "triangles. Using'"
the given algorithm, determine which triangle or line segment of Ts

contains v. This solves the problem.

26

Ho

The sets Cs , polygon partitions P; , and triangulations I,

are all precomputed. Thus the time required by the algorithm is

O(log n?/3| to discover which triangle of Tj, contains V , plus
O(log n2/3) to discover which triangle of T. contains v . The
total time is thus O(log n) . The total space is

x 1+2¢

2 ofl; |) < on 5). a

+e
Corollary 5. For any € > 0 there is an O(log n) -time, O(n™ ~)

-space algorithm for the triangle problem.

Proof. Immediate from Theorem 9, using the O(log n) -time,

0(n°) -space algorithm of [22] as a starting point. OO

Theorem 10. There is an O(log n) -time, O(n) -space solution to the

triangle problem.

Proof. Let T be a triangulation and v a vertex for which the triangle

problem is to be solved. If T contains no more than ny triangles,

where ny 1s a sufficiently large constant, determine which triangle

contains Vv by testing Vv against each line segment bounding a triangle

of T . Otherwise, let C be a set of 02!) triangles whose removal
L~-from T leaves no connected set of more than O(n /5) triangles. Group

the connected sets of triangles in T minus Co into sets Cy , each
Lcontaining within a constant factor of n /3 triangles.

Merge pairs of adjacent triangles which are not in Co to form

a polygon partition Po . Fy contains at most 02!) line segments.

27

H

Find a triangulation Ts of Py with o>) triangles. Using an
O(log n) -time, o(n'/®) -space algorithm, determine which triangle

of Tq contains v .

If v is some triangle of C, , the problem is solved. Otherwise

v 1s known to be 1n some set Cs . Merge pairs of adjacent triangles

which are not in Cs to form a polygon partition Ps . Each line

| segment bounding a non-triangular polygon of P. must bound a triangle

of Co . Thus there 1s a triangulation Ts of Ps containing

ICs | + o(/?) triangles. Apply the algorithm recursively to discover
which triangle of Ty contains v . This solves the problem.

The sets Cs , polygon partitions P. , and triangulations Ts

are all precomputed. If t(n) 1s the worst-case time required by the

algorithm on an n-triangle triangulation, then

t(n) = O(1) if n<ngq,

t(n) = tomy) + O(log n) otherwise.

An inductive proof shows that t(n) is O(log n) if n, is chosen

sufficiently large.

If s(n) 1s the worst-case storage space required by the algorithm

on an n-triangle triangulation, then

s(t) = 0(1) 1f n<n, ;

s(n) < 0 (n7/10) + max{¥ s(n, + 0(n”/?)) | Zn; <n and

cp L/5 <n, < en?)

for some positive constants cl and Cy .

An inductive proof shows that s(n) is O(n) . O :

28

H

The preprocessing time required by the algorithm of Theorem 10

is O(n log n) . See [22]. We do not advocate this algorithm as a

practical one, but 1ts existence suggests that there may be a practical

algorithm with an O(log n) time bound and an O(n) space bound.

29

EE

8. Other Applications.

As 1llustrated in this paper, Theorem 1 and its corollaries have

many interesting applications, and the paper does not exhaust them.

We have obtained two additional results which require fuller discussion

than 1s possible here. One is the application of Theorem 1 to Gaussian

elimination. George [8] has proposed an O(n log n) -space, ox?) —time

method of carrying out Gaussian elimination on a system of equations whose

| sparsity structure corresponds to a Jn x Wn square grid. We can
generalize his method so that it applies to any system of equations

whose sparsity structure corresponds to a planar or almost-planar graph.

Such systems arise 1n the solution of two-dimensional finite-element

problems [15]. We shall discuss this application in a subsequent paper;

we hope that 1t will prove of practical, as well as theoretical, value.

Another application involves the power of non-determinism 1n one-tape

Turing machines. We can prove that any non-deterministic t(n) -time-

bounded one-tape Turing machine can be simulated by a t(n)’ alternating

one-tape Turing machine with a constant number of alternations, where

y < 1 is a suitable constant and t(n) satisfies certain reasonable

restrictions. Alternation generalizes the concept of non-determinism

and is discussedin [3,12]. Our result strengthens Paterson's space-

efficient simulation of one-tape Turing machines [17].

30

_

References

[1] A, V. sho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Efficient Computer Algorithms, Addison-Wesley, Reading, Mass., 197k,

[2] U. Bertele and F, Brioschi, Nonserial Dynamic Programming, Academic

Press, New York, 1972, -

[3] A. K. Chandra and L. J.Stockmeyer, "Alternation," Proc. Seventeenth

Annual Symp. on Foundations of Computer Science (1976),98-108,

[4] S. A. Cook, "An observation on time-storage tradeoff," Proc. Fifth

Annual ACM Symp. on Theory of Computing (1973), 29-33.

[5] R. A. DeMillo, S. C. Eisenstat, and R, J. Lipton, *'Preserving

average proximity in arrays," School of Information and Computer

Science, Georgia Institute of Technology (1976).

[6] D. Dobkin and R. J. Lipton, "Multidimensional searching problems,"

sIAM J. Comput. 5 (1976), 181-186.
[7] P. Erdds, R. L. Graham, and E. Szemerédi, "On sparse graphs with

dense long paths," STAN-CS-75-504, Computer Science Dept., Stanford

University (1975).

[8] J. A. George, "Nested dissection of a regular finite element mesh,"

SIAM J. Numer. Anal. 10 (1973), 345-363.

[9] L. Goldschlager, "The monotone and planar circuit value problems are

log space complete for P," ACM SIGACT News 9, 2 (1977), 25-29.

[10] J. Hopcroft, W. Paul, and L. Valiant, "On time versus space,"

Journal ACM 2k (1977), 332-337.

[11] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and

- Searching, Addison-Wesley, Reading, Mass., 1973.

[12] D. Kozen, "On parallelism in Turing machines," Proc. Seventeenth

Armual Symp. on Foundations of Computer Science (1976), 89-97.

[13] R. J. Lipton, S.C. Eisenstat, and R. A. DeMillo, "Space and time

hierarchies for control structures and data structures," Journal

ACM 23 (1976), 720-732.

[14] R. J. Lipton and R. E. Tarjan, "A separator theorem for planar

graphs," to appear.

[15] H. C. Martin and G. F. Carey, Introduction to Finite Element Analysis,

: McGraw-Hill, New York, 1973.

31

[16] M. S. Paterson and C. E. Hewitt, "Comparative schematology,"

Record of Project MAC Conf. on Concurrent Systems and Parallel

Computation (1970),119-128.

[17] M. S. Paterson, "Tape bounds for time-bounded Turing machines,"

Journal Computer and System Sciences 6 (1972),116-12k,.

[18] WwW. J. Paul, R. E. Tarjan, and J. R. Celoni, "Space bounds for a

game on graphs," Math. Systems Theory 10 (1977), 239-251.

[19] A. L. Rosenberg, "Managing storage for extendible arrays,"

SIAM J. Comput. U4 (1975), 287-306.

| [20] A. Rosenthal, "Nonserial dynamic programming is optimal," Proc.

Ninth Annual ACM Symp. on Theory of Computing (1977), 98-105.

[21] R. Sethi, "Complete register allocation problems," SIAM J. Comput.

L (1975), 226-248,

[22] M. J. Shamos, "Geometric complexity," Proc. Seventh Annual ACM

Symp. on Theory of Computing (1975), 224-233,

[23] IL. G. Valiant, "On non-linear lower bounds in computational

complexity," Proc, Seventh Annual ACM Symp. on Theory of Computing |

(19715), 45-53 ,

[24] L. G. Valiant, "Graph-theoretic arguments in low-level complexity,"

Computer Science Dept., University of Edinburgh (1977).

32

_

Figure 1. Elimination of a crossover by use of three

"exclusive or" gates. Reference [9] contains

a crossover circuit which uses only "and" and

"not" .

55

Figure 2. A star.

3h

