APPLICATIONS OF A PLANAR SEPARATOR THEOREM

by

Richard J. Lipton and Robert E. Tarjan

STAN-CS-77-628
OCTOBER 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

Yot

Applications of a Planar Separator Theorem

* *%
Richard J. Lipton-/ Robert Endre Tarjan-—/
Computer Science Department Computer Science Department
Yale University Stanford University
New Haven, Connecticut 06520 ¥ Stanford, California 94305
August, 1977
Abstract.

Any n-vertex planar graph has the property that it can be divided
into components of roughly equal size by removing only O(JH) vertices,
This separator theorem, in combination with a divide-and-conquer

strategy, leads to many new complexity results for planar graph

problems. This paper describes some of these results.

Keywords: algorithm, Boolean circuit complexity,
divide-and-conquer, geometric complexity, graph embedding,
lower bounds, maximum independent set, non-serial dynamic
programming, pebbling, planar graphs, separator,

space-time tradeoffs.

-
‘—/ This research partially supported by the U.S. Army Research Office,
Grant No. DAAG 29-76-G-0338.

This research partially supported by National Science Foundation grant
MCS-75-22870 and by the Office of Naval Research contract NO0O1L-76-C-0688.

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

*%

1. Introduction.

One efficient approach to solving computational problems is
"divide-and-conquer" [1]. 1In this method, the.original problem is
divided into two or more smaller problems. The subproblems are solved
by applying the method recursively, and the solutions to the subproblems
are combined to give the solution to the original problem. Divide-and-
conquer 1s especially efficient when the subproblems are substantially
smaller than the original problem.

In [14] the following theorem is proved.

Theorem 1. Let G be any n-vertex planar graph with non-negative
vertex costs summing to no more than one. Then the vertices of G can
be partitioned into three sets A, B, C , such that no edge joins a

vertex in A with a vertex in B , neither A nor B has total vertex
cost exceeding 2/5 , and C contains no more than EJENG; vertices.

Furthermore A, B, C can be found in O(n) time.
In the special case of equal-cost vertices, this theorem becomes

Corollary 1. Let G be any n-vertex planar graph. The vertices of G
can be partitioned into three sets A» B, C, such that no edge joins a
vertex in A with a vertex in B , neither A nor B contains more

than.2n/5'vertices, and C contains no more than 24543 vertices.

Theorem 1 and its corollary open the way for efficient application
of divide-and-conquer to a variety of problems on planar graphs. In this
paper we explore a number of such applications. Each section of the

paper describes a different use of divide-and-conquer. The results range

from an efficient approximation algorithm for finding maximum independent
sets in planar graphs to lower bounds on the complexity of planar
Boolean circuits. The last section mentions two additional applications

whose description is too lengthy to be included in this paper.

2. Approximation Algorithms for NP-Complete Problems.

Divide-and-conquer in combination with Theorem 1 can be used to
rapidly find good approximate solutions to certain NP-complete problems on

planar graphs. As an example we consider the maximum independent set

problem, which asks for a maximum number of pairwise non-adjacent

vertices in a planar graph.

Theorem 2. Let G be an n-vertex planar graph with non-negative vertex
costs summing to no more than one and let 0 < e <1 . Then there is some
set C of O(\/n/_e) vertices whose removal leaves G with no connected
component of cost exceeding ¢ . Furthermore the set C can be found

in O(n log n) time.

Proof. Apply the following algorithm to G

Initialization: Let C = ¢
General Step: Find some connected component K in G minus C with
cost exceeding € . Apply Corollary 1 to K , producing a partition

Al , Bl , Cl of its vertices. Let C = CUC:L . If one of A1 and Bl
(say Al) has cost exceeding two-thirds the cost of K, apply
Theorem 1 to the subgraph of G induced by the vertex set Al ,

producing a partition AE’ BE’ 02 of Al . Let C = CUc2

Repeat the general step until G minus C has no component with

cost exceeding € .

The effect of one execution of the general step is to divide the
component K into smaller components, each with no more than two-thirds

the cost of K and each with no more than two-thirds as many vertices

as K. Consider all components which arise during the course of the
algorithm. Assign a level to each component as follows. If the
component exists when the algorithm halts, the component has level zero.
Otherwise the level of the component is one greater than the maximum
level of the components formed when it is split by the general step.
With this definition, any two components on the same level are
vertex-disjoint.

Each level one component has cost greater than ¢ , since it is
eventually split by the general step. It follows that, for i > 1,
each level i component has cost at least (3/2) i—lemd contains
at least (3/21? vertices. Since the total cost of G is at most one,
the total number of components of level i is at most (2/5)i'l/ € .

The total running time of the algorithm is O(Z){|K|| K is a component
split by the general step)) . Since a component of level i contains
at least (5/2)i vertices, the maximum level k must satisfy
(3/2)k <n, or k < logB/g n . Since components in each level are
vertex-disjoint, the total running time of the algorithm is

O(n log3/2 n) = 0(n log n)

The total size of the set C produced by the algorithm is bounded by
o(Z { |K| l K is a component split by the general step))

L 10g /5 1] L(E/B)i-l/ejr L(2/3)27Y e

< 0 > mex > n.l > n.<n and n. >0
i=1 j=1 J j=1 J = Jd =
© i-1 © .
< 0 Z (2/36) nei_l = 0 ’H/E Z (2/3)1/2
i=1 (2/3) i=0

i
2
=)
m
O

The following algorithm uses Theorem 2 to find an approximately

maximum independent set I in a planar graph G = (V,E)

Step 1. Apply Theorem 2 to G with € = (log log n)/n and each vertex
having cost 1/n to find a sét of vertices C containing
O(n/VGI%?EIE;T;) vertices whose removal leaves no
connected component with more than log log n vertices.

Step 2. In each connected component of G minus C , find a maximum
independent set by checking every subset of vertices for
independence. Form I as a union of maximum independent sets,

one from each component.

Let I* be a maximum independent set of G . The restriction of
I* to one of the connected components formed when C is removed
from G can be no larger than the restriction of I to the same
component. Thus |I¥| - |I| = O(n/VEEgﬁEETE) . Since G is planar,
G is four-colorable, and |I*| > n/4 . Thus (|I*|-|I|)/ [1¥| =
O(l/Vlng log n), and the relative error in the size of I tends to
zero with increasing n

Step 1 of the algorithm requires O(n log n) time by Theorem 2.
Step 2 requires O(ni 2ni) time on a connected component of n, vertices.

The total time required by Step 2 is thus

n n. n
0 max{ 2 ny 2 3'| z
i=

= n and 0 < n, < log log n =
i=1

at
1

4

n log log n ,
O(W (log log n)2 g) = O(n log n) . Hence the entire

algorithm requires O(n log n) time.

3. Nonserial Dynamic Programming.

Many NP-complete problems, such as the maximum independent set
problem, the graph coloring problem, and others, can be formulated as

nonserial dynamic programming problems [2,20]. Such a problem is

of the following form: minimize the objective function f(Xl,..-:Xn) ’
where f is given as a sum of terms fkb) , each of which is a function
of only a subset of the variables. We shall assume that all variables

Xi take on values from the same finite set S , and that the values

of the terms fk(-) are given by tables. Associated with such an

objective function £ is an interaction graph G = (V,E) , containing

one vertex vy for each variable Xy in £ , and an edge joining Xy
and X for any two variables x; and Xj which appear in a common
term fk(-).

By trying all possible values of the variables, a nonserial
,0(n)

dynamic programming problem can be solved in time. We shall

show that if the interaction graph of the problem is planar, the

20(«/}7)

problem can be solved in time. This means that substantial
savings are possible when solving typical NP-complete problems restricted
to planar graphs. Note that if the interaction graph of f is planar,

no term fk(-) of f can contain more than four variables, since the

complete graph on five vertices is not planar.

In order to describe the algorithm, we need one additional concept.

m
The restriction of an objective function fI: %?fk to a set of
variables Xy 4o ¥ is the objective function
1 J
£ =2 {f, |fk depends upon one or more of x.ll,---’xij}.

m
Given an objective function f(Xl:. . -:Xn)= 2T and a
k=1 &

subset S of the variables Xyy e X which are constrained to have
specific values, the following algorithm solves the problem:

maximize f subject to the constraints on the variables in S

In the presentation, we do not distinguish between the variables

Xyp Xy and the corresponding vertices in the interaction graph.

Step 1. If n< 9, solve the problem by exhaustively trying all
possible assignments to the unconstrained variables.
Otherwise, go to Step 2.

Btep . Apply Corollary 1 to the interaction graph G of £ . Let
A, B, C be the resulting vertex partition. Let f. be

1
the restriction of £ to AyYC and let f_ be the

2
restriction of f to BYC . For each possible assignment
of values to the variables in C-S , perform the following
steps:
(a) Maximize fl with the given values for the variables
in CUS by applying the method recursively;
(b) Maximize f2 with the given values for the variables
in CUS by applying the method recursively;
(c) Combine the solutions to (a) and (b) to obtain a maximum
value of f with the given values for the variables
in Cys .
Choose the assignment of values to variables in C-S which

maximizes f and return the appropriate value of f as

the solution.

The correctness of this algorithm is obvious. If n >9 , the

,0(n)

algorithm solves at most subproblems in Step 2, since C

is of O(\/;) size. Each subproblem contains at most

en/3 + o2An < 29n/30 variables. Thus if t(n) is the running
2204 eny30)

time of the algorithm, we have t(n) < O(n log n)+

if n>9, t(n) = O0(l) if n <9 . An inductive proof shows

o(wn)

that t(n) < 2

L, Pebbling.

The following one-person game arises in register allocation
problems [21], the conversion of recursion to iteration [16], and
the study of time-space tradeoffs [4 ,10,18]. Let ¢ = (V,E) be
a directed acyclic graph with maximum in-degree k . If (v,w) is
an edge of G , v 1s a predecessor of w and w is a
successor of v . The game involves placing pebbles on the vertices
of G according to certain rules. A given step of the game consists
of either placing a pebble on an empty vertex of G (called pebbling
the vertex) or removing a pebble from a previously pebbled vertex.

A vertex may be pebbled only if all its predecessors have pebbles.
The object of the game is to successively pebble each vertex of G
(in any order) subject to the constraint that at most a given number
of pebbles are ever on the graph simultaneously.

It is easy to pebble any vertex of an n-vertex graph in n steps
using n pebbles. We are interested in pebbling methods which use
fewer than n pebbles but possibly many more than n steps. It is
known that any vertex of an n-vertex graph can be pebbled with
0(n/log n) pebbles [10] (where the constant depends upon the maximum
in-degree), and that in general no better bound is possible [18]. We
shall show that if the graph is planar, only O(VE) pebbles are
necessary, generalizing a result of [18]. An example of Cook [4]

shows that no better bound is possible for planar graphs.

Theorem 3. Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using O(JE + k log2 n) pebbles.

10

Proof. Let a = oy2 and B = 2/3 . Let G be the graph to be
pebbled. Use the following recursive pebbling procedure. If n < Dy
where n, = (Ot/(l-B))2 , pebble all vertices of G without deleting
pebbles. If n >n, find a vertex partition A, B, C satisfying
Corollary 1. Pebble the vertices of G in topological order.f/
To pebble a vertex v , delete all pebbles except those on C . For
each predecessor u of v, let G(u) be the subgraph of G induced
by the set of vertices with pebble-free paths to u . Apply the method
recursively to each G(u) to pebble all predecessors of v , leaving
a pebble on each such predecessor. Then pebble v .

If p(n) is the maximum number of pebbles required by this method

on any n-vertex graph, then
p(n) = n if n<n, ,

p(n) < avn 4 k + p(en/3 + avn) if n>n
An inductive proof shows that p(n) is O(\/H“"k log2 n) . Cl

It is also possible to obtain a substantial reduction in pebbles
while preserving a polynomial bound on the number of pebbling steps,

as the following theorem shows.

Theorem 4. Any n-vertex planar acyclic directed graph with maximum

- in-degree k can be pebbled using O(r12/3 +k) pebbles in O(kns/s) time.

*
Y That is, in an order such that if v is a predecessor of w ,
V is pebbled before w

11

Froof. Let -C be a set of O(nE/B) vertices whose removal leaves
2/3

G with no weakly connected component.f/ containing more than n
vertices. Such a set C exists by Theorem 2. The following pebbling
procedure places pebbles permanently on the vertices of C . Pebble
the vertices of G in topological order. To pebble a vertex v ,
pebble each predecessor u of v and then pebble v . To pebble a
predecessor u , delete all pebbles from G except those on vertices
in C or on predecessors of v . Find the weakly connected component
in G minus C containing u . Pebble all vertices in this component,
in topological order.

The total number of pebbles required by this strategy is O(ng/E)
to pebble vertices in C plus n2/5 to pebble each weakly connected
component plus k to pebble predecessors of the vertex v to be

.pébbled. The total number of pebbling steps is at most

o(enn??y = 0?3y . O

A weakly connected component of a directed graph is a connected
component of the undirected graph formed by ignoring edge directions.

12

5. Lower Bounds on Boolean Circuit Size.

A Boolean circuit is an acyclic directed graph such that each

vertex has in-degree zero or two, the predecessors of each vertex are
ordered, and corresponding to each yertex v of in-degree two is a
binary Boolean operation bv . With each vertex of the circuit we
associate a Boolean function which the vertex computes, defined as
follows. With each of the k vertices vy of in-degree zero (inputs)
we assoclate a variable Xy and an identity function fv.(xi) = X;
With each vertex w of in-degree two having predecessor; u, vV we
associate the function fW . bw(fu,fv) . The circuit computes the
set of functions associated with its vertices of out-degree zero
(outputs) .
We are interested in obtaining lower bounds on the size (number

of vertices) of Boolean circuits which compute certain common and
important functions. Using Theorem 1 we can obtain such lower bounds
under the assumption that the circuits are planar. Any circuit can be
converted into a planar circuit by the following steps. First, embed
the circuit in the plane, allowing edges to cross if necessary. Next,
replace each pair of crossing edges by the crossover circuit illustrated
in Figure 1. It follows that any lower bound on the size of planar
circuits is also a lower bound on the total number of vertices and

edge crossings in any planar representation of a non-planar circuit,
In a technology for which the total number of vertices and edge
crossings is a reasonable measure of cost, our lower bounds imply that

it may be expensive to realize certain commonly used functions in

hardware.

13

A superconcentrator is an acyclic directed graph with m inputs

and m outputs such that any set of k inputs and any set of k

outputs are joined by k vertex-disjoint paths, for all k in the

range 1 <k <m.

Theorem 5. Any m-input, m-output planar superconcentrator contains

at least m2/72 vertices.

Proof. Let G be an m-input, m-output planar superconcentrator.
Assign to each input and output of G a cost of 1/(2m) , and to every
other vertex a cost of zero. Let A, B, C be a vertex partition
satisfying Theorem 1 on G (ignoring edge directions). Suppose C
contains p inputs and outputs. Without loss of generality, suppose
that A is no more costly than B , and that A contains no more
outputs than inputs. A contains between 2m/3 - p and m - p/2
inputs and outputs. Hence A contains at least m/3 - p/2 inputs
and at most m/2 - p/4b outputs. B contains at least m-p- (m/2 - p/4) =
m/2 - 3p/4 outputs. Let k = min{{m/3 - p/27, (m/2 -3p/471} . Since
G is a superconcentrator, any set of k inputs in A and any set of
k outputs in B are joined by k vertex-disjoint paths. Each such
path must contain a vertex in C which is neither an input nor an
output. Thus 2\/5\/; - p > minfm/3 - p/2,m/2 - 3p/k} >m/3 - p,

and n Zm2/72 . O

The property of being a superconcentrator is a little too strong
to be useful in deriving lower bounds on the complexity of interesting
functions. However, there are weaker properties which still require

Q(me) vertices. Let G = (V,E) Dbe an acyclic directed graph with m

1k

numbered inputs LT 0 @{?O and m numbered outputs Wy W .. @

G is said to have the shifting property if, for any k in the range

1<k<m, any £ in the range 0 < { < m-k , and any subset of k

sources {VI ,...,\a.k} such that ii,ie, . .wi <m-2, there are k

vertex-disjoint paths joining the set of inputs {v_l >0 maVy } with
1 k

the set of outputs {vil+l""’vik+£}

Theorem 6. Let G be a planar acyclic directed graph with the

shifting property. Then G contains at least Lm/2_12/162 vertices.

Proof. Suppose that G contains n vertices. Assign a cost of 1/m
to each of the first |m/2] inputs and to each of the last |m/2
outputs of G , and a cost of zero to every other vertex of G . Call
the first |m/2) inputs and the last |_m/2J outputs of G costly.
Let A, B, C be a vertex partition satisfying Theorem 1 on G
(ignoring edge directions).

Without loss of generality, suppose that A is no more costly
than B, and that A contains no more costly outputs than costly
inputs. Let A' Dbe the set of costly inputs in A, B' the set of
costly outputs in B , p the number of costly inputs and outputs
in C, and g the number of costly inputs and outputs in A . Then
2m/2)/3 -p < g < \m/2] -p/2. Hence |a* | > qa/2 > |m/2/3 -p/2.

Al so

15

larfe|Br] > Jar|-(Lw/2) - 2 - (a- |a'])
>q/2: (Lw/2] - p - q/2)
> (Lw/2)/3 - p/2)(Lm/2] - 5 - |m/2]/3 + p/2)
= (Lw/2)/3 - p/2) (2 m/2]/3 - p/2)

> 2|_m/2_|2/q - pim/2]/2,

For v;€A', w.eB', and / in the range 1< 1< Lm/2] |

J
call Ve, W { a match if j-i = £ . For every VieA' and
Wj € B! there is exactly one value of f which produces a match;

hence the total number of matches for all possible Vi We o ! is
|ar]-|B'] >_2Lm/2_]2/q - pLm/2]/2 . Since there are only |[m/2 |
- values of a, some value of I produces at least 2Lm/2_|/q - P/2

matches. Thus, for k = 2|m/2|/q - p/2 , there is some value of {

and some set of k inputs A" = {VI. ,vi ’.e D@vi }gA' such that
k
B" = {wil+l’wiz+£’ ...,wik”} CB'. Since G has the shifting

property, there must be k vertex-disjoint paths between A" and B" .
But each such path must contain a vertex of C which is neither an
input nor an output. Hence 2'\/-2-‘\/;1- -p>2m/2)/q - p/2 , and

n > Lm/2_12/162 . 0O

A shifting circuit is a Boolean circuit with m primary inputs

X15Xpy ee0sXy » 2€r0 Or more auxiliary inputs, and m outputs Z9sZpreeerZp s
such that, for any k in the range O <k <m , there is some assignment
of the constants 0 , 1 to the auxiliary inputs so that output Zs bk

computes the identity function x; , for 0 < i < m-k . The Boolean

16

convolution of two Boolean vectors (Xl,x2,“.3xm) and (yl,yg, L. .,ym)

is the vector (22,23,,,. ’Z2m) given by Zy = i+jz—k X¥j -

Corollary 2. Any planar shifting circuit has at least Lm/2_|2/162

vertices.

Proof. Any shifting circuit has the shifting property.

See [23,2L4]. O

Corollary 3. Any planar circuit for computing Boolean convolution has

at least |_m/2_|2/l62 vertices.

Proof. A circuit for computing Boolean convolution is a shifting
circuit if we regard Xq5 @u@m as the primary inputs and ZoreeesZpig

as the outputs, O

Corollary L. Any planar circuit for computing the product of two m

bit binary integers has at least Lm/2J2/l62 vertices.

Proof. A circuit for multiplying two m-bit binary integers is a

shifting circuit. O

The last result of this section is an Q(mu) lower bound on the
size of any planar circuit for multiplying two mxm Boolean matrices.

We shall assume that the inputs are X.. ; Viq for 1 <i,j < m and

the outputs are Z.yy for 1 < i,j <m . The circuit computes

2 =XY, where Zz =(2z..,), X=(x..), and Y = (y..) . We use

ij ij ij

the following property of circuits for multiplying Boolean matrices,

17

called the matrix concentration property [23,24], For any k in the

range 1 < k < n2 , any set {X1~"i1-‘l <r< k} of k inputs from X ,

and any permutation O of the integers one through n , there exist

k vertex-disjoint paths from T{Xirj |1 <r <k} to (zirc(jr) |1 <r<k}.
Similarly, for any k in the range 1 < k < ne , any set

irjr |1 < r < k) of k inputs from Y , and any permutation ¢

of one through n , there exist k vertex-disjoint paths from

{v
P N k} .
{ylrar|l§r5k} to {Zc(lr)3r|l§r5]

Theorem 7. Any planar circuit G for multiplying two mxm Boolean

L) L .
matrices contains at least cm vertices, for some positive constant c .

Proof. This proof is somewhat involved, and we make no attempt to
‘maximize the constant factor, Suppose G contains n vertices, and
that m is even. Assign a cost of 1/(1¥m2) to each input Xy g and
each input y.;;, a cost of l/(2m2) to each output z.,,, and a cost
of zero to every other vertex. There is a partition A, B, C of the
vertices of G such that neither A nor B has total cost exceeding
1/2 , no edge joins a vertex in A with a vertex in B , and C
contains no more than E\ENE/ (1 - '\/-2-/-3-) = Cl’\/; vertices. This

is a corollary of Theorem 1; see [1k]., Without loss of generality,
suppose that B contains no fewer outputs than A , and that A
contains no fewer inputs X3 than inputs Yoy - Then B contains
at least (m2 - cl’\/;)/2 outputs, which contribute at least

/4 - cl«/;l-/(hme) to the cost of B . Thus inputs contribute at most

1/ - cl'\/—r;/(ltmz) to the cost of B, and B contains at most

18

m2 + Cl-“j-l‘-l inputs. A contains at least 2m3- (m2— + cl".fﬁ) -01\/.1‘..1 =
m2 -QClN/E inputs, of which at least m2/2 - cl-\fﬁ are inputs x.l.J .
One of the following cases must hold.

Case 1. A contains at least 3m2/5 inputs x5+ Let p be the
number of columns of X which contain at least hm/? elements of A .
Then pm+ (m-p)(4m/7) >__3m2/5 , and p > m/15 . Let g be the number
of colums of Z which contain at least Lm/9 elements of B . Then
qn+ (m-q)(4m/q) > m2/2 - Cl“/z/z’ , and g > m/10 - 901\[};/(10m) .

Let k = min{m/lS,m/lO-9cl*fH/(lOm)} . Choose any k columns
of x, each of which contains at least hm/? elements of A , Match
each such column of X with a column of Z which contains at least
km/9 elements of B , For each pair’of matched columns Xy v Z*j s
select a set of um/7T+ Um/9-m = m/63 rows ¢ such that X, is
in A and Zﬂj is in B. Such a selection gives a set of km/63
elements in XNA and a set of km/6'5 elements in ZNB which must
be joined by km/63 vertex-disjoint paths, since G has the matrix
concentration property. Each such path must contain a vertex of C .
Thus km/63 < clv\/;l. , which means either me/(15-63) < cl\/?l (i.e.,
(me/(15-63cl))2 <n) or m/63(m/10 - 9e,nn/(10m)) < c;4n
(e, @7/(969))% <n).

Case 2. A contains fewer than 5m2/5 inputs Xij Then A contains
2 \]— .
at least 2m /5 - 2cl n inputs y'i,] . Let S be the set of m/2

columns of Z which contain the most elements in B

19

Subcase 2a. S contains at least 5m2/lO elements in B . Let p

be the number of columns of X which contain at least Um/9 elements

of A . Then pm+ 4(m-p)m/9 > m2/2 - cl'\/; , and p > m/10 - 901\/3/(5m) .
Let g be the number of columns of Z which contain at least 1tm/?
elements of B . Then am+ W(m/2 - q)m/7 > 3m2/10 , and g > m/30 .

A proof similar to that in Case 1 shows that n > th for some positive

constant ¢ .

Subcase 2b. S contains fewer than 3m2/lO elements in B . Then the

m/2 colums Of Z not in S contain at least m"p/S' - cl'\/;‘/é elements

in B . Let g be the number of columns of Z not in S which contain

at least m/10 ele;ients in B . Then gm+ (m/2 - q)(m/10) > m2/5 - cl\/;/Z ,
and g > m/6 - 501'\/-!?/(9m) SIT 0> g > m/6 - 50.,4'_/;/(9m) » then
~(3m2/(10cl))2 > n . Hence assume g > 0 . Then all columns in §

must contain at least m/10 elements in B , and 2m/3 - 501’\/3/(9111)

columns of Z must contain at least m/10 elements in B

Let p be the number of columns of Y which contain at least m/25
elements of A . Then pm+ (m-p)(m/25) > 2m'9/5 - 2cl'\/;1- , and '
p >3m/8 - 25¢)4n/(12m) .

For any input yij €A and integer ¢ in the range -n+tl < £ < n-1 ,
call y.iJ, £ a match if Z':'L+[,,]"€B . By the previous computations,
there are at least 2m/3 - 501‘\/;/(9m) + 3m/8 - 25cl'\/;/(12m) -m =
m/25 - 95cl’\/;-/(56m) = m/25 - cl\/;/m columns j such that Vs

contains m/25 elements of A and contains m/10 elements

%4
J

of B . FEach such column produces mz/250 matches; thus the total

number of matches is at least m3/6250 - mcl«/;l./250 . Since there are

only 2m-1 values of ¢ , some value of ! produces at least

20

k = m?/lE,SOO - cewﬁ;/SOO matches. Since G has the matrix
concentration property, this set of matches corresponds to a set

of k elements in YNA and a set of k elements in ZNB which
must be joined by %k vertex-disjoint paths. Each such path must

contain a vertex in C . Thus k < clJ; , which means

- /(12,5oo(<:l + <:2/5oo))2 <n,

4 . .
In all cases n > cm for some positive constant ¢ . Choosing
the minimum c¢ over all cases gives the theorem for even m . The

theorem for odd m follows immediately. [J

The bounds in Theorems 5 - 7 and Corollaries 2 -4 are tight to

within a constant factor. We leave the proof of this fact as an

exercise.

21

6. Embedding of Data Structures.

Let Gl = (Vl,El) and G, = (VE,E_Q) be undirected graphs. An
embedding of Gy in G, is a one.-to-one map f: V1 - V, . The worst-case
proximity of the embedding is max{d2(¢(v),¢(w)) | {vsw}eE;} , where
de(x,y) denotes the distance between x and .y in G2 . The average

proximity of the embedding is -\E—]:'L‘- b {d2(¢(v),¢(w)) [{v,w}eEl} .

These notions arise in the following context. Suppose we wish to

represent some kind of data structure by another kind of data structure,

in such a way that if two records are logically adjacent in the first

data structure, their representations are close together in the second.

We can model the data structures by undirected graphs, with vertices
denoting records and edges denoting logical adjacencies. The representation
problem is then a graph embedding problem in which we wish to minimize

worst-case or average proximity. See [5,13,19] for research in this area.

Theorem 8. Any planar graph with maximum degree k can be embedded in

a binary tree so that the average proximity is a constant depending only

upon k
Proof. Let G be an n-vertex planar graph. Embed G in a binary
tree T by using the following recursive procedure. If G has one

vertex v , let T be the tree of one vertex, the image of v
Otherwise, apply Corollary 1 to find a partition A, B, C of the
vertices of G . Let v be any vertex in C (if C is empty, let v
be any vertex). Embed the subgraph of G induced by AUC-{V} in a
binary tree Tl by applying the method recursively. Embed the subgraph

of G induced by B in a binary tree T2 by applying the method

22

recursively. Let T consist of a root (the image of v) with two
children, the root of Tl and the root of T2 . Note that the tree
T constructed in this way has exactly n vertices.

Let h(n) be the maximum depth of a tree T of n vertices
produced by this algorithm. Then

h(n) < 9 if n<9 ,

h(n) < h(2n/3 + 24/24n - 1) < h(29n/30) if n > 9
It follows that h(n) is 0(log n)

Let G = (V,E) be an n-vertex graph to which the algorithm is
applied, let Gl be the subgraph of G induced by AUC , and let
G, be the subgraph induced by B . If s(G) = 2 {d,(#(v),p(w)) | (v;w) e E},
then s(G) = 0 if n =1, and s(G) < s(G)+ s(G,)+k [C|n(n) if
n>1 . This follows from the fact that any edge of G not in Gl or G2
must be incident to a vertex of C

If s(n) is the maximum value of s(G) for any n-vertex graph G ,

then

)]

—_

—
Il

0 ;

< max (s (i)+ s(n-i)+ckin log n[n/3 - 2V24n < i < 2n/3 + 24240 }

1)
5
AN

if n >1, for some positive constant c
An inductive proof shows that s(n) is 0O(kn)
If G is a connected n-vertex graph embedded by the algorithm, then
G contains at least n-1 edges, and the average proximity is O(k) .
If G is not connected, embedding each connected component separately
and combining the resulting trees arbitrarily achieves an O(k) average

proximity. O

23

It is natural to ask whether any graph of bounded degree can be
embedded in a binary tree with 0(1) average proximity. (Graphs of
unbounded degree cannot be so embedded; the star of Figure 2 requires
Q(log n) proximity.) Such is not the case, and in fact the property
of being embeddable in a binary tree with 0(1) average proximity is
closely related to the property of having a good separator.

To make this statement more precise, let S be a class of graphs.

The class S has an f(n) -separator theorem if there exist constants

a<1l, B >0 such that the vertices of any n-vertex graph in S can
be partitioned into three sets A, B, C such that |A‘, |B| < an ,
|c| < Bf(n) , and no vertex in A is adjacent to any vertex in B.

Let S be any class of graphs of bounded degree closed under the
subgraph relation (i.e., if G2€ S and Gl 1is a subgraph of G2)
then G e 8). Suppose S satisfies an ng(n)/(log n)2 separator
theorem for some non-decreasing function g(n) . Using the idea in
the proof of Theorem 8, it is not hard to show that any graph in §
can be embedded in a binary tree with O(g(n)) average proximity.
Conversely, suppose any graph in a class § can be embedded in a binary
tree with O(g(n)) average proximity. Then S satisfies an ng(n)/log n
separator theorem. 1In particular, if § satisfies no o(n) -separator
theorem, then embedding the graphs of § in binary trees requires
Q(log n) average proximity. Erd8s, Graham, and Szemerédi [7] have
shown the existence of a class of graphs of bounded degree having no

o(n) -separator theorem.

2k

T The Post Office Problem.

In [11], Knuth mentions the following problem: given n points
(post offices) in the plane; determine, for any new point (house),
which post office it is nearest. _Any preprocessing of the post offices
is allowed before the houses are processed. Shamos [22] gives an
0(log n) -time, O(ng) -space algorithm and an 0((log n)2) -time,
O(n log n) -space algorithm. See also [6l. Using Theorem 2 we can
give a solution which requires 0(log n) time and O(n) space, both
minimm if only binary decisions are allowed,

A polygon is a connected, open planar region bounded by a finite
set of line-segments. (For convenience, we allow the point at infinity
to be an endpoint of a line segment; thus a line is a line segment.)

A polygon partition of the plane is a partition of the plane into

polygons and bounding line segments. A triangulation of the plane is

a polygon partition, all of whose polygons are bounded by three line

segments. A triangulation of a polygon partition is a refinement of

the partition into a triangulation, Two polygons in a polygon partition
are adjacent if their boundaries share a line segment. A set of polygons
is connected if any two polygons in the set are joined by a sequence of
adjacent polygons.

We shall solve the following triangle problem: given an n-triangle

triangulation and a point, determine which triangle or line segment of
the triangulation contains the point. The post office problem can be
reformulated as a triangle problem; the set of points closest to each
post office forms a polygon [22]. We shall make use of the following

lemma, which we do not prove.

25

Lemma 1. Any n-polygon partition has a refinement whose total number
of triangles is bounded by n plus the number of line segments bounding
non-triangles plus a constant (a line segment bounding two non-triangles

counts twice in this bound).

We shall build up a sequence of more and more complicated (but

more and more efficient) algorithms, the last of which is the desired one.

+
Theorem 9. Given an O(log n) -time, O(nl €) -space algorithm for the

triangle problem with € > 0 , one can construct an O(log n) -time,
-+
L 2(—:/3)

o(-space algorithm.
Proof. Let T be a triangulation and v be a vertex for which the

. 2
triangle problem is to be solved. By Theorem 2 there is a set of o(n /5)

triangles Co whose removal from T leaves no connected set of more than
O(n2/3) triangles.

Merge pairs of adjacent triangles which are not in Co to form a
polygon partition PO . PO contains at most O(n2/3) line segments,
since each such line segment must be a bounding segment of a triangle
in T . Find a triangulation T, of B, with OOF/B) triangles,
which exists by Lemma 1. Using the given algorithm, determine which
triangle or line segment of TO contains v

If v is in some triangle of CO , the problem is solved. Otherwise,
v is known to be in some connected set Ci of triangles in T minus Cg,
Merge pairs of adjacent triangles which are not in Ci to form a polygon
partition Pi . Since I& contains at most O(n2/3) line segments,
there is a triangulation Ti of Pi with OQF/3) 'triangles. Using'"
the given algorithm, determine which triangle or line segment of Ti

contains v . This solves the problem.

26

The sets Ci , polygon partitions PI , and triangulations Ti
are all precomputed. Thus the time required by the algorithm is
0(log n2/3) to discover which triangle of TO contains Vv, plus
0(log n2/3) to discover which triam"gle of T. contains v . The
total time is thus O(log n) . The total space is

2 o(in %) < ow™/?) g

+
Corollary 5. For any € > 0 there is an 0(log n) -time, O(nl)

-space algorithm for the triangle problem.

Proof. Immediate from Theorem 9, using the O(log n) -time,

O(ne) -space algorithm of [22] as a starting point. O

Theorem 10. There is an 0(log n) -time, O(n) -space solution to the

triangle problem.

Proof. Let T be a triangulation and v a vertex for which the triangle
problem is to be solved. If T contains no more than Ny triangles,
where Ny is a sufficiently large constant, determine which triangle
contains v by testing v against each line segment bounding a triangle
of T . Otherwise, let C be a set of O(nB/S) triangles whose removal
-from T leaves no connected set of more than O(nh/s) triangles. Group
the connected sets of triangles in T minus CO into sets Ci , each
containing within a constant factor of n’-‘/5 triangles.

Merge pairs of adjacent triangles which are not in Co to form

a polygon partition PO . PO contains at most O(na/s) line segments.

27

Find a triangulation TO of Po with 069/5) triangles. Using an
0(log n) -time, O(n7/6) -space algorithm, determine which triangle
of TO contains v .

If v is some triangle of C, , the problem is solved. Otherwise

0
v 1is known to be in some set Ci . Merge pairs of adjacent triangles
which are not in Ci to form a polygon partition Pi' Each line
segment bounding a non-triangular polygon of Pi must bound a triangle
of Co - Thus there is a triangulation Ti of Pi containing
‘Ci| + 0(n5/5) triangles. Apply the algorithm recursively to discover
which triangle of Ti contains v . This solves the problem.

The sets Ci , polygon partitions Pi , and triangulations Ti
are all precomputed. If t(n) is the worst-case time required by the

algorithm on an n-triangle triangulation, then

t(n) = 0(1) if qfnlo,
t(n) = t(O(nu/S))+ 0(log n) otherwise.

An inductive proof shows that t(n) 1is 0(log n) if n, is chosen
sufficiently large.
If s(n) 1s the worst-case storage space required by the algorithm

on an n-triangle triangulation, then

s(t) = 0(1) if n<n, ,

S s(n) < O(n7/10)+ma.x{2 s(ni+o(n5/5)) \Zni <n and

cp L/5 <o, < cgnh/s}

for some positive constants cl and s -

An inductive proof shows that s(n) is O(n) . O

The preprocessing time required by the algorithm of Theorem 10
is O(n log n) . See [22]. We do not advocate this algorithm as a
practical one, but its existence suggests that there may be a practical

algorithm with an O(log n) time bound and an O(n) space bound.

29

8. Other Applications.

As illustrated in this paper, Theorem 1 and its corollaries have
many interesting applications, and the paper does not exhaust them.
We have obtained two additional results"which require fuller discussion
than is possible here. One is the application of Theorem 1 to Gaussian
elimination. George [8] has proposed an O(n log n) -space, O(n5/2) -time
method of carrying out Gaussian elimination on a system of equations whose
sparsity structure corresponds to a *J; x‘J; square grid. We can
generalize his method so that it applies to any system of equations
whose sparsity structure corresponds to a planar or almost-planar graph.
Such systems arise in the solution of two-dimensional finite-element
problems [15]. We shall discuss this application in a subsequent paper;
we hope that it will prove of practical, as well as theoretical, value.
Another application involves the power of non-determinism in one-tape
Turing machines. We can prove that any non-deterministic t(n) -time-
bounded one-tape Turing machine can be simulated by a t(n)yzﬂiernating
one-tape Turing machine with a constant number of alternations, where
y < 1 is a suitable constant and t(n) satisfies certain reasonable
restrictions. Alternation generalizes the concept of non-determinism
and is discussed in [3,12]. Our result strengthens Paterson's space-

efficient simulation of one-tape Turing machines [17].

30

(2]
(3]
[4]

(5]

[10]
[11]
[12]

S [13]

[1L]

[15]

References

A, V. Aho, J. E. Hopcroft, and J. D, Ullman, The Design and Analysis

of Efficient Computer Algorithms, Addison-Wesley, Reading, Mass., 197k,

U. Bertele and F. Brioschi, Nonserial Dynamic Programming, Academic

Press, New York, 1972,
A. K. Chandra and L. J.Stockmeyer, "Alternation," Proc. Seventeenth

Annual Symp. on Foundations of Computer Science (1976),98-108,

S. A. Cook, "An observation on time-storage tradeoff," Proc. Fifth
Annual ACM Symp. on Theory of Computing (197%), 29-33.
R. A. DeMillo, S. C. Eisenstat, and R, J. Lipton, *'Preserving

average proximity in arrays," School of Information and Computer
Science, Georgia Institute of Technology (1976).

D. Dobkin and R. J. Lipton, "Multidimensional searching problems,"
sIAM J. Comput. 5 (1976), 181-186.

P. Erst:'R. L. Graham, and E. Szemerédi, "On sparse graphs with

dense long paths," STAN-CS-75-504, Computer Science Dept., Stanford
University (1975).

J. A. George, "Nested dissection of a regular finite element mesh,"
SIAM J. Numer, Anal. 10 (1973), 345-363.

L. Goldschlager, "The monotone and planar circuit value problems are
log space complete for P," ACM SIGACT News 9, 2 (1977), 25-29.

J. Hopcroft, W. Paul, and L. Valiant, "On time versus space,"

Journal ACM 24 (1977), 332-337.
D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.

D. Kozen, "On parallelism in Turing machines," Proc. Seventeenth
Ammuel Symp. on Foundations of Computer Science (1976), 89-97.

R. J. Lipton, S. C. Eisenstat, and R. A. DeMillo, "Space and time

hierarchies for control structures and data structures," Journal
ACM 23 (1976), 720-T32.
R. J. Lipton and R. E. Tarjan, "A separator theorem for planar

graphs," to appear.
H. C. Martin and G. F. Carey, Introduction to Finite Element Analysis,

McGraw-Hill, New York, 1973.

31

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[2L]

M. S. Paterson and C. E. Hewitt, "Comparative schematology,"

Record of Project MAC Conf. on Concurrent Systems and Parallel

Computation (1970),119-128,

M. S. Paterson, "Tape bounds for time-bounded Turing machines,"
Journal Computer and System Sciences 6 (1972),116-12k,

W. J. Paul, R. E. Tarjan, and J. R. Celoni, "Space bounds for a
game on graphs," Math. Systems Theory 10 (1977), 239-251.

A. L. Rosenberg, "Managing storage for extendible arrays,"
SIAM J. Comput. % (1975), 287-306.

A. Rosenthal, "Nonserial dynamic programming is optimal," Proc.
Ninth Annual ACM Symp. on Theory of Computing (1977), 98-105.

R. Sethi, "Complete register allocation problems," SIAM J. Comput.
L (1975), 226-248,

M, J. Shamos, "Geometric complexity," Proc. Seventh Annual ACM
Symp. on Theory of Computing (1975), 224-233,

L. G. Valiant, "On non-linear lower bounds in computational

complexity," Proc. Seventh Annual ACM Symp. on Theory of Computing
(1975), 45-53 .
L. G. Valiant, "Graph-theoretic arguments in low-level complexity,"

Computer Science Dept., University of Edinburgh (1977).

32

Figure 1.

Elimination of a crossover by use of three

"exclusive or" gates. Reference [9] contains

a crossover circuit which uses only "and" and
llnot n .

33

Figure 2. A star.

3L

