A FAST MERGING ALGOR ITHM

by

Mark R. Brown and Robert E. Tarjan

STAN-CS-77-625
AUGUST 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

PTIT cne

A Fast Merging Algorithm

¥

Mark R. Brown Robert E. Tarjan

Department of Computer Science Computer Science Department

Yale University Stanford University

New Haven, Connecticut 06520 Stanford, California 94305
Abstract.

We give an algorithm which merges sorted lists represented as
balanced binary trees. If the lists have lengths m and n (m < n)
then the merging procedure runs in 0(m log %) steps, which is the

same order as the lower bound on all comparison-based algorithms for

this problem.

Keywords and phrases: AVL tree, balanced tree, 2-3 tree, linear list,

merging.

*

—/ This research was supported in part by National Science Foundation
grant MCS-75-22870 and by the Office of Naval Research contract
NOOO1L-76-C-0688.

Reproduction in whole or in part is permitted for any purpose of
the United States government.

0. Introduction.

Suppose we are given two linear lists A and B , each of whose
elements contains a key from a linearly-ordered set, such that each list
is arranged in ascending order according to key value. The problem
is to merge A and B , i.e., to combine the two lists into a single
linear list whose elements are in sorted order.

This problem can be studied on different levels. One approach is
to ask how many comparisons between keys in the two lists are sufficient
to determine the ordering in the combined list. This is an attractive
problem because it is relatively easy to prove lower bounds on the number
of comparisons as a function of the list sizes, using an "information-
theoretic" argument. If the lists A and B have m and n elements,
respectively, then there are (mzn.) possible placements of the
elements of B in the combined list; it follows that ,—lg(m;n)-l
comparisons are necessary to distinguish these possible orderings.

If we take m < n then I_lg(m;n)-l = G(m log r%) .ﬂ The best
merging procedure presently known within this framework is the

"binary merging" algorithm of Hwang and Lin [4,5], which requires fewer
than [lg(rﬂfl)-]+ min(m,n) comparisons to combine sets of size m
and n .

A different approach is to study the actual running time of merging
algorithms on real computers or on more abstract models such as
pointer machines [9]. If we assume that comparisons are the

only way of gaining information about key values then the G(m log n)
m

*
—/ That is, thelefthand side has order exactly m log % ; see [7] for

a precise definition of the 6 and (notations.

lower bound still applies to the running time of merging algorithms,
but it is not clear how to achieve this bound using the Hwang - Lin
procedure. The problem lies in implementing this algorithm

to run in time proportional to the number of comparisons it uses.

In this paper we give a merging procedure which runs in O(m log %)
time on a real computer or a pointer machine. The algorithm uses balanced
binary (AVL) trees [5] to represent the linear lists; 2-3 trees [1] could
also be used.

In Section 1 we present the binary merging procedure of Hwang and
Lin, and note why it seems difficult to give an efficient implementation
of this algorithm. We develop a merging procedure for balanced trees
in Section 2, and in Section 3 we prove that the procedure runs in
()(m log %’) time. Section 4 gives the results of experiments comparing
our algorithm with three straightforward merging methods. A high-level
language implementation of the fast merging algorithm is contained in the

Appendix.

1. Binary Merging.

We begin with an informal description of the Hwang-Lin binary
merging algorithm. TLet A and B be lists containing distinct elements,

of respective lengths m and n with m < n , such that

a| < a2~\ e < a and

bl < b2 <. .. < bn

The merging method is most easily described recursively. When m = 0
(i.e., the shorter list is empty) there is no merging to be done and
the procedure terminates. Otherwise we attempt to insert ay the
smallest element in the shorter list A , into its proper position in
the longer list B . To do this, let t = ng&#mjj and compare
cb ., (2F

aq
1 Et

Figure 1.

is the largest power of two not exceeding n/m). See

[Figure 1]

If &, <b % » then ay belongs somewhere to the left of b £

2 2
in Figure 1. By using binary search the proper location of a; among

blﬁbe""’b % L can be found with exactly t more comparisons. The
2
result of this search is a position k such that bk 1 <t< bk ;

- this information allows us to reduce the problem to the situation
illustrated in Figure 2(a). To complete the merge it is sufficient

to-perform binary merging on the lists A' and B'
[Figure 2]

If, on the other hand, a, > Db » then a, belongs somewhere to

1 2t 1
the right of b % in Figure 1, and the problem immediately reduces to
2

the situation illustrated in Figure 2(b). We can finish the merge by

applying the binary merging procedure to the lists A' and B' . Note
that A' may be longer than B', so that in the recursive calls to the
binary merging procedure the roles of A and B may become reversed;
this may also happen in the first reduction above.

This algorithm uses comparisons very efficiently, as evidenced by
the small gap between the upper bound of ,-lg(m:-ln)_l + min(m,n)
comparisons required for binary merging [4] and the lower bound of
'—lg(m;n)-l comparisons for any merging method based on comparisons,
But representing the lists A and B as arrays, which is the obvious
way of making the individual comparisons take constant time, forces
insertions to _be expensive: they involve moving items over to make
room for the inserted items. Hwang and Lin [4] were concerned with an
application in which A and B are read from tapes and the merged
result is written onto a tape; in this situation the merge requires
linear time (since the entire result must be written), and binary
merging can only improve on the traditional tape merging algorithm by
a constant factor. We would like to be able to merge list structures
A and B and produce a result list of the same type in O(m log %)

total operations.

©. Balanced Tree Merging.

Bala I »21 biaary trees [2,5] are good data structures for representing
Linear lists when both s=zarches and Insertions must be performed.
A binary tree is called balanced if the height of the left subtree
of every node never differs by no more than +1 from the height >f its
right subtree. (The height of a tree is the length of the longest path
from th2 roobioanexizrnal node.) When representing a list by a
balanced binary tree, the i-th element of a list becomes the i-th node
visited during a symmetric order travar ..l of the balanced tree; 1f the
list is sorted, as in Figure 3, then its zeys appear ia increasing order
during such a traversal. When a sorted list of length n is aaintained
in t©his way, we can locate the proper position in the list for a new
elauent i-n O(log n) st2ps, using ordinary binary tree search. To
insert this element into the list may ~zquire O0(log n) additional
steps for rebalancing the tree. We shall assume resder familiarity
with Algorithm 6.2.3A, the balanced tree scarch aid 115 =rt 1 on alzori thm
of [5].

[Figure 3]

An obvious method of merging two sorted lists reprezeated as
balanced trees is to insert the elements of the smaller list into the
larger list one by one. The result of merging the two lists of Figure 3
using this scheme is shown in Figure 4. If the smaller list contains
m elements and the larger has n elements then this algorithm performs
n iassrtions of 0(log n) steps each, for a total cost of 9(m log n)

But we are seeking a method which runs in O(}n log %v) time.

[Figure 4]

To see why there is some hope of improving this simple merging
procedure we refer again to Figure 4, which shows the search paths traced
out during the insertions. An interesting property of these paths is
that they share many nodes near the top of the tree. The root is visited
on all of the searches, and its two offspring are each visited on roughly
half of the searches; we must descend at least 1lg m levels into the tree
before all of the search paths become disjoint. It appears that our
simple merging strategy spends 1lg m steps on each insertion, or
O(m lg m) steps total, examining nodes in the top 1lg m levels of
the tree. Since there are only 0O(m) nodes contained in these levels,
eliminating duplicate visits should make our algorithm run in
O(m logn-mlogm+m = O(m log %) time.

We can eliminate extra visits since the items being inserted are
themselves already sorted; by simply inserting these items in order we
can ensure that once an item has been inserted, no smaller item will be
inserted later. Figure 5, which shows the situation after a node x has
been inserted, indicates how this can help. If node y > x is now
inserted, then y must lie somewhere to the right of x in the tree.

To determine where vy belongs it is sufficient to climb back up the
search path, comparing y to nodes on the path which are greater than

x until a node is found which is greater than y ; then y can be
inserted into the right subtree of the previous node examined during

the climb. (For this purpose it is convenient to think of the root as
having a parent with key +e .) In Figure 5, if y > y but y < 8

then y should be inserted into the right subtree of node y ; if y <y
then y becomes the right offspring of x

[Figure 5]

An algorithm based on this idea is easy to state informally. As in
our description of binary merging, let A and B be sorted lists of
length m and n , with m < n , and assume that these lists are
represented as balanced trees. In the first step of our algorithm we
insert a; the smallest element of A , into the tree B . At the
start of a general step, elements ﬁ%, (] E@@@&j have been inserted
into B, and we have a record of the search path to a (Figure 6(a)).
This path acts as a "finger" into the tree B during the algorithm,
moving from left to right through B as elements from A are inserted;
the finger is useful because only nodes to the right of it can be visited
during later insertions.

[Figure 6]

The general step has two parts. First the finger is retracted
toward the root, just far enough so that the position of element &1
lies within the sub-tree rooted at the end of the finger (Figure 6(b)).
Then a4 is inserted into this subtree, and the finger is extended to
follow the path of this insertion (Figure 6(c)). After m-1 executions
of this general step the merge is complete.

- This scheme is complicated by the fact that rebalancing may be
necessary during insertions into a balanced. tree. When rebalancing
takes place, it mgy remove a node from the finger path traced

out by the search. It is possible to update the recorded path to be
consistent with this rearrangement, but it seems easier just to "forget"
about the part of the path which is corrupted, i.e., to retract the
finger path back to the point of rebalancing. The algorithm then takes

the form shown in Figure 7. At the start of a general step we now have

recorded only Fart of the search path to the last element inserted. e
general step proceeds as before, but after the insertion a part of the
search path may be discarded. There is no need to treat the first
insertion specially in this algorithm; we simply initialize the finger
path to be the root of B (which is certainly on the path to the first
insertion), and execute the general step m times.

[Figure 7]

In an implementation of this scheme it is useful to maintain a
record of those nodes on the finger path at which the path turns left
(i.e., nodes on the path whose left offspring is also on the path).

It is easy to-see that these are precisely the nodes on the path
(excluding the last node) which are larger than the most recently
inserted item; according to Figure 5, only those nodes must be examined
while climbing upward in the tree in the first part of the general step.
Bad cases may occur if we don't record these nodes and must examine
small nodes on the finger path, as illustrated in Figure 8. If a node
y > x is inserted in the situation shown, the entire path up to the
root must be climbed to see if y > a . If it turns out that y < o,
then y becomes the right offspring of x and the same situation can
be repeated.

[Figure 8]

Using these ideas we can express the balanced tree merging algorithm
in an Algol-like notation. (The control constructs used in this notation
are adapted from Knuth [6].) We keep pointers to nodes on the finger
path in a stack path, and pointers to the "large" path nodes (in the

sense of the previous paragraph) in a successor stack. The nodes of

the balanced tree are taken to have fields Key , 1lLink , rLink , and B

(balance factor), as in Algorithm6.2.3A[5]. The balance factor may

take on the values leftTaller, balanced, and rightTaller, which have

obvious interpretations; the rebalancing step depends on the relation

leftTaller = -rightTaller which is assumed to hold,

begin (Fast balanced tree merge)
PSR

initialize path to contain the root of the larger tree, and
height to be the height of the larger tree

initialize successor to be empty
loqE 385 each node in the smaller tree:

X « next node from the smaller tree, in symmetric order, initialized

so that 1Link[x] = rLink{x] = Nil and B{x] = 0
—_—a —_— ~a - -

- (climb up]
looE until successor is empty‘or EEX[§]<< Key[top of successor]:
loog until top of path = top of successor:
L T -_—

from h
remove top pat

regeat

remove top from successor

L S S o - o
repeat

N NS

p « top of path

10

(search down and insert}

loQE
i.;L; Key[x] < Keylp] 223{14
if 1lLink[p] = Nil then goto leftNil
- - - RS DRI AN T

else gush onto successor

p « 1llink[p] endif
= AamARAY

else
AR
if rLink[p] = Nil then goto rightNil

else p « rLink[p] endif
R _— - [Sndns arond

endif

PP

push p onto path

R = AP~ T

regeat

then leftNil » lLink[p] « x
RS -
rightNil = rLink[p] « x

endloop

(adjust balance factors)

Loop
P
pop path into s
A~ — —
until g[g]# balanced or path is empty:
B[s] ~ (,E},f Key[x] < Key[e] then leftTaller
else rightTaller)

if successor ic not empty and top of path = top of successor

[o a7
then remove top from successor endi
LY LV VR N) —_—— A~
repeat
LS LS]

a « (if Key[x] < Key[s] then leftTaller else rightTaller)
- R - IR A ———

11

[rebalance the subtree rooted at s; this part of the program is
essentially a translation of steps 7-10 of Algorithm 6.2.3A[5]}
E]§[§] = balanced m {entire tree has increased in height)
Bls] < a; height"— height+1

else if B[s] = -a then {subtree has become more balanced]
O N - = bl a0 £ 2]
B[s] « balanced
else (rotation is necessary to restore balance)
L adaan 2]

r « (if Key[x] < Key[s] then 1lLink[s] else rLink{s])

if Blr] =a then (single rotation)
if a = rightTaller then rlink(s] « 1Link[r]; lLink[r] « s

glse 1link[s] ~ rLink[r]; rLink[r] « s endif
B[s] < B[r] ~ balanced
_S °—_I‘

else {double rotation)

if a = rightTaller then

~e —_— A
p < 1Link[r]; lLink[r] < rLink{p]; rlink[p] ~ r
rLink[s] « lLinkIL]; 1Link[p] « s

else

g~~~

p « rLink{r]; rLink[r] «

1link[p]; 1Link[p] « ¢

1Link[s] « rLink[p]; rLink[p] « s

endif
RFARYS Y
B{s] « (if B[p] = +a then -a else balanced)
- - - - - A - AN, —

Blr] ~ (,l.i Blp] = -a then +a elsc balanced)
B[p] « balanced
s « D

endif

endif

ke e e o S

push ¢ onto path

rekeat
{The root of the result tree is on the bottom of path, and itc height is hedight]

Lond {Fact balanced tree merge}

12

3. Running Time.

In order to analyze the running time of the balanced tree merging
algorithm, it 1is necessary to look at the details of the rebalancing
procedure (steps 6 -10 of Algorithm 6.2.3A[5]). For the purpose of
this discussion we shall adopt a concise notation for balance factors:
the balance factor of any node is either 0 (left and right subtrees
of equal height), + (right subtree of height one greater than left
subtree), or - (right subtree of height one less than left subtree).
A node with balance factor 0 is called balanced, and the other nodes

are unbalanced.

When a node x is inserted in place of an external node in a
balanced tree, this may cause ancestors of x in the tree to increase in
height. To rebalance the tree we examine successiveancestors of x ,
moving up toward the root. During this climb we change the balance
factor of each balanced node to + or - as appropriate until an
unbalanced node, say =z , is found. (If we reach the root without
finding an unbalanced node then the entire tree has increased in height
and the insertion is complete.) Insertion of x causes node z to
become either balanced or doubly heavy on one side. If =z becomes
balanced we simply change its balance factor to 0 ; otherwise we
locally modify the subtree rooted at z to restore balance while
leaving its height the same as it was before node x was inserted. The
" two local transformations shown in Figure 9 will rebalance the subtree
in all cases. Since the subtree rooted at 'z does not change in height,
no nodes above z need be examined during the insertion.

[Figure 9]
Call a node "handled" if it is manipulated by the balanced tree

merging algorithm. We shall obtain an O(m log(n/m)) bound on the

13

running time of the algorithm by showing that

(i) the time required by the algorithm is proportional to the number
of handled nodes (where a node is counted only once even if it 1is
handled many times), and

(ii) the total number of handled nodes is O(m log(n/m)) .
We proceed by means of a sequence of lemmas.
Lemma 1. The time required by the binary tree merging algorithm is

bounded by a constant times m plus a constant times the number of

additions to and deletions from the path and successor stacks.

Proof. An inspection of the program shows that the algorithm requires
a bounded amount of time per insertion plus a bounded amount of time

per addition to or deletion from a stack. '1

Lemma 2. The total number of additions to a stack is bounded by

the total number of deletions plus the number of handled nodes.

Proof. The number of stack additions exceeds the number of deletions
by the number ot elements in the stack when the algorithm terminates.
But each node in the stack has been handled, so the result follows.
(The maximum stack depth is actually 0(log(n+m)) , which is generally

much smaller than the number of handled nodes.) O

Nodes are deleted from stacks at two points in the program: while
adjusting balance factors during rebalancing, and while climbing up the

path during insertions. We now analyze each case in turn.

Lemma 3. The number of deletions from stacks during rebalancing cannot

exceed a constant times the number of handled nodes.

1L

Proof. All nodes handled during a rebalancing step except at most three
have their balance factor changed from 0 to either + or - . Thus
each path stack deletion except three per rebalancing "uses up" a balanced
node, and each rebalancing creates at most three balanced nodes. Since
the initial pool of balanced nodes which are handled cannot exceed the
total number of handled nodes, the total number of path stack deletions
during rebalancing is no more than the number of handled nodes plus six
times the number of rebalancings. The number of successor stack deletions
during rebalancing cannot exceed the number of path stack deletions during

rebalancing. The lemma follows. [J

Lemma k. The number of deletions from stacks during insertions cannot

exceed a constant times the number of handled nodes.

Proof. Each node y deleted from the successor stack during insertion
has a key smaller than the key of the node x currently being inserted;
thus y can never again be added to (or deleted from) the successor
stack. Hence each handled node can bedeleted from the successor stack
during insertion at most once.

Each node y deleted from the path stack during insertion is
either (i) deleted from the successor stack during the same insertion
or (ii) has the property that y occurs in a subtree with root z
. such that Key(y) < Key(z) < Key(x) , where x is the node currently
being inserted. (Here z 1s the node on top of successor when y is
removed from path.)

The number of nodes vy satisfying (i) cannot exceed the number of
nodes deleted from the successor stack, and hence the number of handled

nodes. Consider a node y satisfying (ii) after it has been deleted

15

from the path stack. Rebalancing may now take place above z , at z ,
or in the right subtree of =z , but inspection of Figure 9 shows that in
any case property (ii) 1is preserved for y . A node y which satisfies
(i1) and is not on the path stack can never again be added to (or
deleted from) the path stack, since the key of the left child of z will
never be compared against the key of a node being inserted. Thus the
number of path stack deletions satisfying (ii) is at most one per handled
node.

In summary, at most three stack deletions per handled node can occur

during insertions. (J

Theorem 1. The total time required by the balanced tree merging

algorithm is bounded by a constant times the number of handled nodes.
_ Proof. Immediate from Lemmas 1-4. [

The bound on the number of handled nodes is proved in two steps.
First we show that when the algorithm terminates, most of the handled
nodes constitute a subtree of the balanced tree resulting from the merge,
and this subtree has at most m terminal nodes (nodes having no internal
node of the subtree as an offspring). Then we bound the number of nodes

that any such a subtree of a balanced tree may have.

Lemma 5. After k insertion-rebalancing steps, the set of handled
nodes consists of no more than k nodes plus a subtree of the entire
balanced tree containing no more than k terminal nodes, and containing

all ancestors of the most recently inserted vertex.

16

Proof. We prove the lemma by induction on k . The lemma is certainly
true for k= 0. Suppose the lemma is true for k-1 . Let Tk 1 be
the subset of handled nodes which forms a subtree with k-1 or fewer
terminal nodes containing all ancestors of the node inserted at the
k-1 -st step. Let Hk-l be the remaining k-1 or fewer handled nodes.
Each node handled during the k-th insertion is an ancestor of either the
node X 1 inserted at the k-1 -st step or of the node X inserted .
at the k-th step. Let T, be formed from Tk 1 by adding all ancestors
of X - Then TI'{ forms a sub-tree with k or fewer terminal nodes.
The k-th rebalancing step does not handle any new nodes but may
alter the shape of the overall tree and thus may rearrange the vertices
in Tl'z . However, an inspection of Figure 9 reveals that, after
rebalancing, the nodes in Tf{ still form a subtree having the same
number of terminal nodes as before, except for possibly one additional
"special" terminal node. This special node is a child of a node with
two offspring, so removing it from Tl'c does not create a new terminal
node. In Figure 9, node z becomes special if TI'{ does not enter
either of the sub-trees & or B . If z becomes special after
rebalancing, let T = Tp-{z} and H_ = H_ ;U {z} ; otherwise let

- 1 -— 1
Tk = T! and Hk = Hk-l . Then Tk and Hk satisfy the lemma for k

Lemma 6. Let T be any balanced tree of k nodes. Let T' be any

© subtree of T with at most [terminal nodes. Then T' contains

0(2 log(k/t)) nodes.

Proof. By Theorem 6.2.3A of [5], a balanced tree of height
h = 1.44ok 1g(k/2 + 2)-0.328 must contain at least k/f nodes. If
T has height less than ht2 , then T' can be partitioned into {

paths, each of length less than h+2 , and the lemma is true.

17

On the other hand, suppose the height of T is no less than ht2 .
We shall conceptually subdivide T into smaller trees as follows:
let the set R consist of the root of T , plus all other nodes in T
which have height h+t2 or greater. It is.not hard to see that R forms
a subtree of T , as shown in Figure 10, and that the remaining nodes
of T are partitioned into a set of disjoint subtrees{si} .

[Figure 10]

A balanced binary tree has the property that if v is any node,
the heights of the two children of v differ by at most one. Thus the
difference in height between v and either of its two children is at
most two. It follows, that each subtree Si has height h or htl ,
since if the height was less than h then the parent (which lies in R)
would have height less than h+2 . By the choice of h this guarantees
that each §; contains at least k/f nodes, so there are at most ¢
subtrees S.1 . Each of these subtrees is attached to an external node
of the "root" subtree R , so there are at most (-1 nodes in R

With T subdivided in this way it is easy to bound the number of
nodes in T' . The nodes of T' which do not lie in R can be
partitioned into [paths, each lying completely within a subtree Si .
Since each such path has length not exceeding htl , the total number

of nodes in T' cannot exceed £-1+ a(1.4404 1g(k/1 + 2)+.672) =

o2 log(k/¢)) . O

Theorem 2. The total number of nodes handled by the balanced tree

merging algorithm is O(m log(n/m)) .

Proof. The total number of nodes in the tree resulting from the merge

is mtn . Thus by Lemmas 5 and 6 the total number of handled nodes is no

18

more than m+ O(m log((m+n)/m)) = O(m log(n/m)) . O

Theorem 3. The balanced tree merging algorithm requires O(m log(n/m))

time to merge lists of sizes m and n with m < n

Proof. Immediate from Theorems 1 and 2. O

One may wonder why the proof of Theorem 3 is so camplicated, while
the informal motivation given for this bound in Section 2 was so simple.
Perhaps the reason is that each insertion changes the structure of the

tree; thus it seems necessary to analyze the stack operations directly.

19

b, Implementation.

It is possible for an algorithm to be very fast asymptotically, but
to be terribly slow when applied to problems of a practical size for
present-day computers. Therefore it is worthwhile for us to compare
our balanced tree merging algorithm with other merging procedures to
determine when the new method is actually "fast". 1In the discussion
below we shall refer to our balanced tree merging algorithm as Algorithm F.

One straightforward merging procedure for linear lists represented
as balanced trees has already been described in Section 2: that of
inserting the elements of the smaller tree one by one into the larger
tree. We shall call this method Algorithm I. Since this procedure
requires ©(m log n) time, we expect it to be most useful when m is
very small compared to n

Another simple merging procedure for balanced trees is to scan
entirely through both trees in increasing order and perform a standard
two-way merge of the lists. This method, which we call Algorithm T,
divides nicely into three stages of coroutines. The first stage routines
dismantle the input trees and send their nodes in increasing order to
the next stage. (Identical routines are also needed to dismantle the
smaller tree in Algorithms F and I.) The second stage compares the
smallest elements remaining in the two lists, and sends the smaller of
the two elements to the third stage. The final routine accepts nodes in
increasing order and creates a balanced tree from them. Given that the
total number of nodes is known in advance, a simple way to construct this
tree in linear time is to divide the nodes as evenly as possible between
the left and right sub-trees of the root, building these subtrees

recursively by the same method if they are nonempty, A more elaborate

20

construction which works even if the number of nodes is not known in
advance is given in [5, Exercise 6.2,3-21]. Algorithm T requires
O(m+n) time, so it may be a good method when m is almost as large
as n

A final method which should be part of our comparison is Algorithm I,
standard two-way merging of singly-linked linear lists. The running
time of this procedure is ©(mtn) , like Algorithm T, but we expect
Algorithm L to be more efficient because the first and third stages of
Algorithm T become much simpler when singly-linked lists are used instead
of balanced trees.

For the purposes of comparison, each of these algorithms was
implemented in the assembly language of a hypothetical multiregister
computer [6]. Each instruction executed is assumed to cost one unit
of time, plus another unit if it references memory for data. By inspecting
the programs, we can write expressions for their running time as a function
of how often certain statements are executed. The average values of
these execution frequencies are then determined either mathematically
(in the case of Algorithms T and L) or experimentally (in the case of
some factors in Algorithms F and I). The experimental averages are
determined by executing high-level language versions of the algorithms
- under a system which automatically records how often each statement is
executed [8, Appendix F].

The results of this evaluation are summarized in Figure 11, which
gives formulas for the average running time of each of the four algorithms.
Figure 12 compares the three balanced tree merging algorithms by showing

the values of the list sizes m and n for which each of the three

21

algorithms is faster than the other two. It turns out that Algorithm F

beats Algorithm I when m > h.Ohn'253 , and Algorithm F is faster than

Algorithm T when m < .355n . Furthermore, Algorithm F is never more

about 33% slower than Algorithm I, or 5h% slower than Algorithm T. Thus

Algorithm F seems to be a practical merging procedure for balanced trees.
[Figures 11 and 12]

In some situations the flexibility of balanced trees may not be
needed, and the simpler singly-linked list representation might seem
preferable. Our comparison shows that from the standpoint of merging,
balanced trees are worthwhile whenever the lists being merged differ
in size by a factor of 16.5 or more. So in order to derive a benefit
from the simpler representation we must keep the merges fairly well
balanced.

It now seems appropriate to make some general remarks about Algorithm F
and its implementation. Our first observation is that the general
scheme of the algorithm and its running time proof apply directly to
2-3 trees (or general B-trees). For example, the argument of Lemma 3
concerning the number of balanced nodes handled during rebalancing
translates into an argument about the number of full nodes (nodes
containing two keys) handled during splitting in the 2-3 tree case.

The algorithm might be easier to state in an abstract way in terms

of 2-3 trees, rather than balanced trees, but as soon as a representation
for 2-83 trees is specified the algorithm becomes just as complex. One
possible advantage if 2-3 trees is that when they are represented as

binary search trees [5 , p. 469] they use only one bit per node as a

balance factor.

22

The merging algorithm could be implemented to operate on triply-linked
balanced trees [2], which contain a pointer in each node to its parent.
In this case the path stack would be unnecessary, since the upward
links provide the information. If the tree were also threaded in an
appropriate way then the successor stack could be eliminated.

The program given in Section 2 uses only conventional stack operations

on the path and successor stacks; hence it is clear that this program can

run on a pointer machine within our time bound. On a conventional
computer we would implement the stacks as arrays, with an integer stack
pointer. Then rather than keeping pointers to nodes as entries in the
successor stack, we can keep pointers to the path stack entries for these
nodes. This allows us to delete all path entries up to the top node of
successor by simply assigning the top element of successor to the path
stack pointer, which makes the climbing-up phase of each insertion
considerably faster and hence reduces the coefficient of m lg(n/m)

in the running time. The implementation given in the Appendix uses
this stack technique, and also retracts the stacks during rebalancing
only if rebalancing invalidates some of the path; the latter change in
the algorithm has little effect on its running time since rebalancing
seldom occurs high in the tree.

A further improvement in the algorithm comes from considering the
relationship between our method and the Hwang - Lin binary merging
procedure presented in Section 2. A principal distinction between the
two is that binary merging always probes near to where the item being
inserted is expected to fall; with balanced trees we climb up the search

path during insertions and examine nodes which are very unlikely to be

23

larger than the item being inserted. Using an array stack implementation
we can avoid many useless comparisons by jumping directly to a node on
the path where the next comparison will be less biased. The proof of
Lemma 6 indicates that a possible strategy is to jump to a node of
height h where h is chosen to guarantee that a subtree of this
height contains at least n/m nodes. Since computing this height during
the search is expensive, it seems preferable to jump to a fixed depth
in the tree, such as logp m , instead; this operation is extremely
fast using an array stack implementation. Jumping back to a depth
near lg m improves the average case, since random balanced trees
are so well balancedy but it makes the worst case greater than
O(m log(n/m)) .

Another possible scheme for fast merging is to use the linear list
representation developed in [3]. This structure allows a finger into
the list to be maintained such that all accesses in the neighborhood
of the finger are guaranteed to be efficient. The algorithms of [3]
can be extended to show that for the purposes of merging, the finger
can also be moved efficiently with each access, giving an O(m log(n/m))
merging algorithm. This list representation is very complicated, however,

so the associated merging procedure is not "fast" in a practical sense.

24

Appendix. A Sail Implementation.

The following is a Sail inplenentation of the fast balanced tree nerging
algorithm . A conplete description of the Sail programming language is given in
[8], but the reader who is famliar with AlgolW or Pascal should have little
difficulty understanding the Sail constructs used below. The following points
are worth noting:
1) A string constant preceding a statenent is treated as a comment.
2) 'The statenent 'DONE "blockName"' causes an exit from the loop on the block
naned "blockName".
3) RECORD POINTER paraneters are passed by value.
4) The logical operations A (and) and v (or) are executed conditionally when
evaluating an IF predicate, as in LISP but unlike Algo168. For example,
the construct 'a A B’ means 'IF « THEN g ELSE FALSE’.

RECORD- CLASS Node (RECORD- POI NTER(Node) 1Link!, rLink!; INTEGERB!; INTEGER Key!);
COMMENT
Format of tree nodes: pointers 1Link and rLink to the left and right subtrees,
an integer key, and abalance factor which is the height of the right subtree
minus the height of the left subtree, i.c., .
B[p] = -1 & node p is unbalanced to the left (left subtree is taller),
B[p]l = 8 &8 node p is balanced,
B[p] = +1& node p is unbalanced to the right.
W use the names leftTaller, balanced, and rightTaller respectively for these
values. The only relation bet ween them which is significant to the program is
that leftTaller = -rightTaller.;

RECORD- CLASS ListHeader (RECORD POINIER(Node) Root!; INTEGER Height!, Sizel);
COMVENT

Format of 1list header: pointer to the root of the balanced tree, plus an
integer giving the height of tree, and an integer giving the nunber of nodes in
the tree.;

COMMENT Abbreviations for Node and ListHeader ficlds;
DEFINE 1Link = {Node:1Link!};
DEFINE rLink = {Node:rLink!);

DEFINE B = {Node: B! };
DEFINE Key = {Node: Key!};
DEFINE Root = {ListHeader: Root!};

DEFINE Height = {ListHeader:Height!};
DEFINE Size = {ListHeader: Size!};

COMMENT Mnifest constants;
DEFINE balanced = {8};
DEFINE 1leftTaller ={-1};
DEFINE rightTaller = {+1};
DEFINE maxDepth = (24);

25

PROCEDURE FastMerge(RECORD_POINTER(ListHeader) src, dst);

BEGIN "FastMerge"

COMVENT

The FastMerge procedure performs merging of sorted lists represented as balanced
binary trees. The two lists are passed to FastMerge by passing the two pointers
src and dst to their respective list header nodes: the src list is enpty on
return from FastMerge, and the dst list contains the result of nerging the two
lists.

The nerging algorithm is best viewed as containing two relatively independent
processes, the dismantling process and the insertion process. (In fact, the
most natural program structure for the FastMerge procedure would use coroutines
for these processes.) The dismantling process operates on the smanller of the

two lists, which contains m nodes. It performs a symmetric-order traversal of
the binary tree representing this list, lopping off the nodes in order of
increasing key size, and supplies these nodes to the insertion process upon
demand. The dismantling process runs in O(m steps.

The insertion process inserts these nodes successively into their proper
position in the larger list, which contains n nodes. The details of the
insertion algorithm are complicated, but the idea is sinple. The first
insertion is performed wusing the normml tree search and insertion algorithm
The subsequent insertions are not independent from one another, since the
insertions are done in increasing order. So the algorithm perforns these
insertions by first searching upward from the site of the previous insertion for
the root of a subtre® which can be guaranteed to contain the node being
inserted. Then the insertion is conpleted by the usual procedure. The
insertion process runs in O(m log(n/m) steps, so the running time of the entire
nerging algorithm is also O(m log(n/m).;

.RECORD_POINTER(Node) ARRAY dStk[1:maxDepth]; INTEGER dPtr;

COMVENT
The dStk array is used as a stack, containing nodes not yet output during the
dismantling process, and the integer dPtr is its stack pointer. Thi s

structure is used by the procedures InitDismantle and GetNext below.;

PROCEDURE InitDismantle(RECORD_POINTER(ListHeader) Head);
BEGIN "InitDismantle"

COMVENT
This procedure initializes a ‘'streaml which produces the nodes of the list
headed by Head. The nodes come from the stream in increasing order of Key
value, one node per call to GetNext. The list is destroyed in this process,
so InitDismantle sets all fields of Head to & null state.;
*IF Size[Head] = 8§ THEN dPtr « §
ELSE dStk[dPtr «1] « Root[Head];

Root[Head] « NULL- RECORD, Size[Head] « Height[Head] « 0

END "InitDismantlie";

RECORD _POI NTER(Node) PROCEDURE GetNext;
BEAN "GetNext"
COMVENT
A call to this procedure returns the next node in the list given to
InitDismantle, with 1Link = rLink = NULL- RECORD and B = 8. If no nodes remain
in the list, the value NULL-RECORD is returned.;
RECORD- POI NTER(Node) Nxt, Nxtl;
IF dPtr = 8 THEN RETURN(NULL_RECORD);
Nxt « dStk[dPtr]; dPtr « dPtr-1;
WHILE TLink[Nxt] # NULL RECORD DO BEGIN
Nxtl « 1Link[Nxt]; 1Link[Nxt] « NULL- RECORD;
dPtr « dPtr+1; dStk[dPtr] « Nxt;
Nxt « Nxtl
END;

26

IF rLink[Nxt] # NULL- RECORD THEN BEGI N
dPtr « dPtr+l; dStk[dPtr] « rLink[Nxt];
rLink[Nxt] + NULL- RECORD

END;

B[Nxt] +« balanced;

RETURN(Nxt)

END "GetNext";

RECORD- POIL NTER(Node) ARRAY pathStk [1:maxDepth]; INTEGER pathPtr;
INTEGER ARRAY succStk [1:maxDepth]; INTEGER succPtr;

"Invariant ' PathProp’' :

The pathStk contains an initial segnent of the path from the root of TgLst
(as modified by the insertions so far from SmLst) to the position which some
node Z (specified when this invariant is applied below) from SmLst has, or
will have after an insertion, in lgLst.

The suceStk contains the indices of all pathStk entries whose 1Links are
also in pathStk, i.e. all nodes on the path (excluding the last) which are

greater than the last node inserted.”

PROCEDURE InitInsertion(RECORD_POINTER(ListHeader) Head);
BEGIN "InitInsertion®

COMVENT
This procedure initializes the insertion process on the 1ist headed by Head,

and sets all of the fields of Head to a null state.;
pathPtr « 1;_ pathStk[pathPtr] « Root[Head];
succPtr « §;
Root[Head] « NULL- RECORD; Size[Head] . Height[Head] « 8
END "InitInsertion";

RECORD- POL NTER(Li st Header) smlLst, 1gLst;

RECORD- POLNTER(Node) p, q, P, s, t, X;
INTEGER m n, ht, insCount, sPtr, a, k;

27

"Initializations."

IF Size[dst] 2 Size[src] THEN BEGIN 1gLst ¢ dst; smLst ¢ src END

ELSE BEGIN smLst « dst; lglst « src END;
m « Size[smlLst]; n « Size[lgLst]; ht e« Height[liglst];
InitDismantle(smLst); InitInsertion(lgLst);

"The insertion process."

FOR insCount « 1 STEP 1 UNTIL m DO BEG N "InsertLoop"
x « GetNext;
k « Key[x];

"Now x is the next node from SmLSt to be inserted into lglLst, with TLink[x]=
rLink[x]=NULL_RECORD, B[x])=balanced, and k=Key[x]. PathProp holds with z =
the previous node inserted into 1gLst; on the first insertion PathProp does
not hold, but succStk is enpty so UpLoop below is never executed. The
purpose of UplLoop is to mmke PathProp hold with z = x, by retracting the
path as little as possible toward the root."

VWHILE succPtr # 8 DO BEGN "UplLoop"
IF k < Key[pathStk[succStk[succPtr]]] THEN DONE "Upl.oop";
pathPtr « succStk[succPtr]; succPtr « succPtr-1

END "UpLoop";

p « pathStk[pathPtr];

"Now x and k are as before, and p is on top of pathStk. Also, PathProp
holds with z = x. The purpose of SearchLoop is to maintain this property
while extending the path to a leaf of lgLst, and then to add x to 1gLst and

to the path."

VWHILE TRUE DO BEGIN "SearchlLoop"
IF k < Key[p] THEN BEGIN "Move left”
succPtr « succPtr+l; succStk[succPtr] « pathPtr;
? « TLink[p];
Fq = NULL-RECORD THEN BEGIN 1Link[p] ¢« x; DONE "SearchLoop® END
END
ELSE BEG N "Move right"
g « rbink[p];
IFq = NULL-RECORD THEN BEGIN rLink[p] « x; DONE "SearchLoop" END
END;
P <q;
pathPtr « pathPtr+l; pathStk[pathPtr] « p
END "SearchlLoop";
pathPtr « pathPtr+l; pathStk[pathPtr] « x;

"Now PathProp holds with z = x, and in fact x is on top of pathStk. The
purpose of Adjustloop is to adjust all of the balance factors on the path
between x and s, which is defined to be the first unbalanced node on the
path-above x (the root if there are no unbalanced nodes on the path..)

AdjustLoop does not alter the path."”

sPtr « pathPtr-1;

WHI LE TRUE DO BEGIN "AdjustlLoop"
s + pathStk[sPtr];
IF B[s] # balanced v sPtr=l THEN DONE "AdjustlLoop";
B[s] « (IF k < Key[s] THEN leftTaller ELSE rightTaller);
sPtr « sPtr-1

END "AdjustLoop";

a « (IF k < Key[s] THEN leftTaller ELSE rightTaller);

28

"The purpose of the following is to nmintain balance in the Subtree rooted
at s. In two cases this is trivial, and the path is not affected. In the
third case rebalancing nust take place, which invalidates a portion of the
path; this portion is discarded, and the root of the rebalanced subtree
becones the final node on the path. In any case, PathProp will still hold

with 2z = x."

IFB[s] = balanced THEN BEGIN
B[s] « a; ht « ht+l
END
ELSE IFB[s] = -a THEN BEGIN
B[s] « balanced
END
ELSE BEGIN "Rebalance"
r « pathStk[sPtr+1J;
IFB[r] = a THEN BEGIN "SingleRotation"
p +r;
IF a = rightTaller THEN BEGIN rLink[s] « 1Link[r]; 1Link[r] + s END
ELSE BEGIN 1Link[s] « rLink[r J; rLink[r J « s END;
Bf{s] « B[r] « balanced;
END "SingleRotation"
ELSE BEGIN "DoubleRotation"
IF a = rightTaller THEN BEG N
p « 1Link[r]; 1Link[r] « rLink[p]; rLink[p] « r;
rLink[s] + 1Link[p]; TLink[p] « s

END
ELSE BEGIN,
p « rLink[r]; rLink[r] « 1Link[p]; TLink[p] ¢ r;
TLink[s] + rLink[p]; rLink[p] + s
END;
B[s] « (IF B[p] = +a THEN -a ELSE balanced);
B{r] « (IF B[p] = -a THEN +a ELSE balanced);
B[p] # balanced:
END "DoubleRotation";
IF sPtr > 1 THEN BEGI N
t « pathStk[sPtr-1];
IF s = rLink[t] THEN rLink[t] «p
ELSE 1Link[t]« p

END;
"The tree is rebalanced; delete the invalidated section from pathStk and

succStk."
pathPtr « sPtr; pathStk[pathPtrJe p;
WHILE succPtr>8 a succStk[succPtrJ2pathPtr DO
succPtr « succPtr-1;
END "Rebal ance";
"Now PathProp holds with z = x."
END "InsertLoop" ;
‘Root[dst] « pathStk[1J; Height[dst]+ ht;Size[dst]« m + n

END "FastMerge";

29

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.,

1974.
[2] cClark A. Crane, "Linear lists and priority queues as balanced binary

trees," Ph.D. thesis, Computer Science Dept., Stanford University,
STAN-CS-72-259, (February 1972), 131 pp.

[3] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and
Janet R. Roberts, 'A new representation for linear lists,'

Proceedings of the Ninth Annual ACM Symposium on Theory of

Computing, Boulder, Colorado, (1977),49-60.

[4] Frank K. Hwang and Shen Lin, "A simple algorithm for merging two
disjoint linearly ordered sets," SIAM J. Comput. 1, 1 (March 1972),
31-39.

[5] Donald E. Knuth, The Art of Computer Programming, Vol. 3, Sorting

and Searching, Addison-Wesley, Reading, Mass., 1978.

[6] Donald E. Knuth, "Structured programming withﬁg statements,"
Computing Surveys 6,4 (December 1974),261-301.

[7] Donald E. Knuth, "Big omicron and big omega and big theta,"
SIGACT News 8,2 (April 1976), 18-24.

(8] John F. Reiser, ed., "SAIL," Stanford Computer Science Department
Report STAN-CS-76-575, (August 1976), 173 pp.

[9] Robert E. Tarjan, "Reference machines require non-linear time to

maintain disjoint sets," Proceedings of the Ninth Annual ACM

Symposium on Theory of Computing, Boulder, Colorado, (1977), 19-29.

%0

8‘1 8.2 o e am
R)
: RN
b, b | v b
12 |- -
| 2t | ot
Figure 1. First comparison during a binary merge.

31

a2 L N a
merged result "

by [o b1 ™
Bl
b b b
k Qt 2t+l
(a)
Al

a
"
merged result 1 2 o

b b b

1 2 2t
B|
b
2t+l
(b)

Figure 2. Outcomes after first part of a binary merge.
(a) a,. <b
t .
1 2
() a >b
1 21:

32

Figure 3. Sorted lists represented as balanced binary trees.

33

[1

Figure L4, An example of merging by independent insertions

. (square nodes have been inserted).

3L

|

Figure 5. Inserting an item larger than x

(Subtrees are
labeled with the range of key values which may be

inserted.)

35

.

2 I 0
8]_ ‘e k lak""l"“l m'
| L-d

\ i . 1.
1
1 [ak :[;k+ll S ram-:

T | | I |

|]] .I
' 1
aq ...Fk_ 81 ...ra’ms

Figure 6. Insertion using the finger path.

36

! - r r4n
al) ak a-k+l . ® - am al L] ak. |ak+l’ o;o‘ am.
' L e =
()
Y
l:l
 § J l | | 1
r 4 ria
% P ot 1 P Bl % [Pern]cc t P

Figure 7. Retracting the path for rebalancing.

37

[x,)

Figure 8, A bad insertion.

38

«—5—
5]
(2
N
o

T
H
5 —

(—-—-—D".ﬁ

(a)

/\Z
+ +
y
Ml .
ni|“ T
1 5 |h
n-1|P " T
l 11
(b)
Figure 9. Rebalancing after an insertion.
(a) Case 1. Sub-tree y contains inserted node x .

(b) Case 2. Either x = w and 8 and y are empty,

or subtree Yy contains x .

59

Figure 10. Subdivision of a balanced tree.

Lo

average running time to merge lists

of sizes m and h , with m<n

Algorithm F 15.0 m 1lg(n/m) + 118.5m + L3.,5
Algorithm I 11.2m 1g n + 88.3m + 21
Algorithm T %5.9(mtn) + bm + 59.2
Algorithm L 10(m+n) + 4m + 32

Figure 11. Comparison of methods.

41

16
14
12
10 J
le(n) Al ithm T >
gori >
8. /
Algorithm F
6
| //
Algorithm I
2
U)
2 L 6 8 10 12 14 16
1g(n)
Figure 12. Zones of best performance for balanced tree merging
algorithms.

Lo

