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ABSTRACT

A new predicate calculus deduction system based on production
rules is proposed. The system combines several developments in
Artificial Intelligence and Automatic Theorem Proving research including
the use of domain-specific inference rules and separate mechanisms for
forward and backward reasoning. It has a clean separation between the
data base, the production rules, and the control system. Coals and
subgoals are maintained in an AND/OR tree structure. We introduce here
a structure that is the dual of the AND/OR tree to represent assertions.
The production rules modify these structures until they "connect" in a
fashion that proves the goal theorem. Unlike some previous systems that
used production rules, ours is not limited to rules in Horn Clause form.
Unlike previous PLANNER-like systems, ours can handle the full range of
predicate  calculus expressions including those  with quantified

variables, disjunctions and negations.
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I Background

Logical deduction is a basic activity in many artificial
intelligence (AI) systems. Specific applications in which deduction
plays a major role include question-answering, program verification,
mathematical theorem proving , and reasoning about both mundane and

esoteric domains.

Of the several different approaches to deduction pursued by Al
research, we might mention two extremes. In one (see for example,
Hewitt, 1971), deduction procedures are based on more or less intuitive,
ad hoc, and informal considerations. Such an approach derives its main
advantage, namely efficiency, from the specialized, domain-dependent
heuristics that can be tightly encoded in the system. The approach
sometimes suffers, however, from excessive rigidity that frustrates the
evolutionary development of systems. Most examples of designs based on
this approach also exhibit deficient logical competence. (See Moore,
1975, for a discussion of these deficiencies and some remedial

suggestions.)

At the other extreme, deduction is based on some formal logical
system such as the predicate calculus. (See for example, Chang and Lee,
1973.) This approach confers the power of a well-developed logical
formalism and is compatible with the evolutionary development of
systems. When  deductions are based on uniform (i.e., domain-
independent) inference rules, however, the resulting systems are often

too inefficient to be useful.

In this paper we shall propose a deduction system that enjoys most
“of the logical power of the formal systems without embracing their
inefficient uniformity. It uses specialized, domain-dependent inference
rules that are encoded as produetions. As with most production systems,



it can easily be modified and extended by adding new production rules or
by modifying old ones. The system is based on a synthesis of several
ideas from various authors in artificial intelligence and automatic
theorem proving. (The most immediate intellectual debts are to Bledsoe,
1977; Fikes and Hendrix, 1977; Hewitt, 1971; Kowalski, 1974a,b; Moore,
1975; and Sickel, 1976. Related work has been done by Nevins, 1975;
Reiter, 1976; and Wilkins, 1974.)

Before describing the system in detail, we shall briefly mention
some of the factors affecting its design. First we would like, in
particular, to avoid the inefficiencies of resolution-based theorem
proving systems. As has been observed by several authors, the "clause
form" used by resolution theorem provers contributes to inefficiencies
in two major ways: common sub-expressions in goals or axioms are
"multiplied-out" into several different clauses each provoking its own
separate but possibly redundant proof attempts; and conversion to clause
form destroys possibly valuable heuristic information carried by the

form of implicational statements among the axioms.

Second, we prefer a system in which the basic deduction steps have
"common-sense" intuitive appeal. The process of resolution is, for
some, difficult to relate to more familiar reasoning processes. This
feature is especially important in those systems whose reasoning must be
easily understood by users. Ease of understanding is also advantageous
during system design and debugging. The processes of "natural

deduction” more closely realize this goal than does resolution.

We want to be able to incorporate domain-specific knowledge into
the system. This knowledge might consist of special inference rules and
how touse them. In this regard, it is sometimes especially important,
for efficiency, whether a deduction step proceeds forward (from the
assertions toward the goal) or backward (from the goal toward the
assertions). The domain expert, who participates in the design of the
system, can often indicate the most efficient direction for each

inference.



We are sufficiently impressed with the advantages of production
systems (Davis and King, 1977) that we would like to model our design on
that paradigm. Previous production system designs for deduction
systems, however, had somewhat limited logical power. (An example is
the restriction to Horn clauses in Kowalski, 1974b.) We want our system
to be able to employ the full expressive power of the first-order
predicate calculus, including the ability to reason with disjunctive
assertions, negations, and quantification of variables. Certainly our
system should be sound (i.e., it should not prove invalid expressions).
With regard to completeness (i.e., being able to prove any theorem), we
are less doctrinaire. We insist only that it behave reasonably
according to criteria specific to the domain of application. Any
incompletenesses that cannot be tolerated must be repairable by

evolutionary changes to the system.

We also note that the production system paradigm permits a
convenient separation ‘between the “logical knowledge” embodied in the
assertions and in the production rules and the use of this knowledge by
a control system. Changes can be made to each component separately,
depending on whether the logic or its control is to be changed. In
particular we envision a more domain-specific control system than the

simple, uniform interpreter used by most resolution systems.

We want the methods used by our system to be easily extendible to
representations that are "richer" than the usual implementations of
predicate calculus data bases. We have in mind, specifically, semantic
networks (Fi kes and Hendrix, 1977) and “structured-object?’
representations (Bobrow and Winograd, 1977) with various built-in
features for indexing, taxonomic reasoning, and sorting of arguments

according to type.

Lastly, we attach great importance to the ‘“esthetic appeal" of the
-system. It should have a clean design, and it should itself be a clear
statement of a useful synthesis of some of the best ideas in automatic
theorem proving. We will gladly trade some efficiency for enhanced

clarity.



IT  Overview of the System

The classical model of theorem proving in the predicate calculus
involves three major components. First, there is a set of axioms or
assertions that express information about the domain of application.
For geometry, for example, these would be the fundamental postulates
plus whatever other theorems we want to start with. (It is neither
necessary nor desirable to limit the assertions to some primitive or
minimal set.) Second, there are domain-independent, uniform rules of
inference (such as resolution, modus ponens) that can be used to derive
new assertion3 from existing ones. Finally, there is a conjectured
theorem, or goal, to be proved. A proof consists of a sequence of

inference rule applications ending with one that produces the goal.

Al research has produced an important deviation from this approach.
. The assertions are divided into two distinct sets: facts and rules.
Facts are specific statements about the particular problem at hand. For
example, “Triangle ABC is a right triangle” would be expressed as a
fact. Rules are general statements, usually involving implications or
quantified variables. For example, "The base angles of an isoceles
triangle are equal” would be expressed as a rule. Rules are used in
combination with facts to produce derived facts. One could think of

them as specialized, domain-dependent inference rules.

This distinction can be further explained by a simple example. In
the classical approach, from the two assertions A and A=>B we could
derive the assertion B by modus ponens. In the AI approach, from the
fact A we could derive the fact B by using the special rule A=>B. The
distinction between facts and rules is an important part of our

deduction system.



The rules will be used as production rules. They will be invoked
by a pattern matching process. Some will be used only in a forward
direction for converting facts to derived facts; others will be used
only in a backward direction for converting goals to subgoals. The
developing sets of facts and goals will be represented by separate tree
structures. Goals will be represented in an AND/OR goal tree, and facts
will be represented in a newly proposed structure that we shall call a
fact tree. Rules are employed until the fact tree joins the goal tree
in an appropriate manner. The entire process will be under the
supervision of a control strategy that decides which applicable rule
should be employed at any stage. We shall not propose any specific
control strategies in this paper but shall merely point out that the
designer has the freedom to use any domain-specific information

whatsoever in the control system.

Several designs of this general sort have been proposed (see, for
example, Kowalski , 1974b), but most of them have had restrictions on the
kinds of logical expressions that could be accommodated. Although
AND/OR goal trees have been used before, the notion of a fact tree, dual
to the goal tree, allows some interesting correspondences, such as that
between "reasoning by cases” and dealing with conjunctive goals, for

example.

We shall first explain the system using the propositional calculus

and then indicate how we deal with quantification.



ITI Goal Trees and Fact Trees

A, Conversion of Facts and Goals to Standard Form

In this section we shall introduce the tree structures used to
represent collections of facts and goals. Facts and goals can be any
expressions of the predicate calculus (propositional calculus for this
section). We do convert them, though, into a standard form.
Implications are changed to disjunctions by using the equivalence
between (A=>B) and (-A &B). Negations are "moved in,, by using the
equivalences between -(A &B) and (-A v "B) and between -(A v B) and (-A
& °B). Repeated negations are eliminated by using the equivalence
between -“A and A. Once a goal or fact expression has been converted to
this standard form, it will consist of a conjunctive/disjunctive com-
bination of literals. For example, the expression "H=>[G&~(F & ~B)]
would be converted to H v [G&("F v B)].

Ordinarily the domain expert, who is providing us with facts and
rules, would not give us any facts containing implications. These would
be given as rules. Also, goal statements would not ordinarily contain
implications. (The “hypotheses” of a theorem to be proved would
ordinarily be represented as facts, the conclusion as a goal.) We may
have disjunctive facts, however. The distinction between -A v B as a
fact and A=>B as a rule is simply this: as a_fact, the domain expert is
simply saying that either -A or B is true and he doesn’t know which. As
a rule, the domain expert is saying that A is useful for proving B. The

system makes quite different use of the two forms.

Also note that our conversion of facts and goals to standard form
is not the same as conversion to clause form in resolution. In general,
clause form involves more expressions. Our standard form is very close

to the form of the original expressions.



B.  AND/OR Goal Jrees

For a goal of the form (Al & .. . & An) we must prove all of the
goals Al and . .. and An. For a goal of the form (Al v . . . v An), it
suffices to prove one of the goals Al or . . . or An. Structures called

AND/OR goal trees (Nilsson, 1971) are used in many Al systems to
represent collections of subgoals and their relation to the main goal.

Any goal expression that has been converted to our standard form
can be represented by an AND/OR goal tree having single literals at its
tips. For example, the expression H v [G&(°F v B)] would be
represented by the AND/OR tree shown in Figure 1.

H V [G&(~F V B)]

SA-6171-I

Figure 1. An AND/OR Tree

In AND/OR goal trees, nodes (such as node G in Figure 1) whose
incoming branches are connected together by an arc are called AND nodes.
If their incoming edges are not so connected, the nodes are called OR

nodes.



C. OR/AND Fact Irees

It is convenient to represent the facts to be used in a deduction
by a structure that is the dual of the AND/OR goal tree. We shall call
this dual structure an QR/AND fact tree. The notational conventions for
the fact tree are the reverse of those for the goal tree. We shall

represent conjunctive facts by a structure consisting of AND-nodes,
thus:

(A & B)

Disjunctive facts will be represented by a structure consisting of
OR-nodes, thus:

(A v B)

Note that for fact trees the arc connecting the branches is used with
disjunctions rather than with conjunctions. Also, fact trees are drawn

“upside down” compared with goal trees.

Any fact expression that has been converted to our standard form
can be represented by an OR/AND fact tree having single literals at its

tips. For example, the expression A &[B v (C&E)J& D would be
represented by the OR/AND tree shown in Figure 2.



A &[BV(C&E)& D

SA-6171-7

Figure 2. An OR/AND Tree

The reason that we use opposite conventions to denote disjunctions
and conjunctions in fact and in goal trees has to do with the nature of
their duality. We shall see later that these opposite conventions will

simplify some definitions.

(For both goals and facts we will represent repeated instances of
the same literal by different nodes. This practice allows us to use

trees instead of graphs. )



D. Connecting Fact and Goal Trees: Proof Termination

The problem of making a deduction is to "connect" the goal tree to
the fact tree. This will be done mainly by using rules to extend the
trees. W will also admit a process that ailows a type of tree pruning.
But before moving on to discuss these subjects, let us first define

precisely what is meant by "connecting” a goal tree to a fact tree.

The connections between fact and goal trees are at nodes labeled by
the same literal. In the original trees, such nodes must be tip nodes.
After the trees are extended by rule applications, the connections might
occur at any node labeled by a single literal. We shall call nodes
labeled by a single literal literal nodeg. After all such connections
are made, we still have the problem of determining whether or not the
expression at the root of the goal tree logically follows from the
expression at the root of the fact tree. Our proof procedure will
terminate when this determination can be made (or when we can conclude
that it can never be made). The termination condition is a simple
generalization of the condition for determining whether the root node of
an AND/OR tree is "solved" (Nilsson, 1971, p.89.) The termination
condition is based on a simple symmetric relationship, called CANCEIL,
between a fact node and a goal node. In the definition of CANCEL we use
the phrase _arced nodes to refer both to AND nodes in goal trees and to
OR nodes in fact trees. If CANCEL holds for two nodes n and m, we shall
say that n and m CANCEL each other. CANCEL is defined recursively as

follows :

Two nodes n and m CANCEL each other [that is, CANCEL(n,m) holds]

if one of (n,m) is a fact node and the other a goal node, and
0) if n and m are labeled by the same literal,

or 1) if n has arced successors, {sy}, such that CANCEL(s;, m)
holds for all of them,

or 2) if n has unarced successors, {si], such that CANCEL(sj, m)

holds for at least one of them.



Our definition of CANCEL supports a simple termination checking
process that starts at nodes labeled by the same literal and propagates
the CANCEL relation toward the roots. The proof procedure terminates
successfully whenever we can show that the root of the fact tree and the
root of the goal tree CANCEL each other.

Note, in particular, that our proof procedure treats conjunctive
goal nodes correctly. Each conjunct must be proved before the parent is
proved. Disjunctive fact nodes are treated in a dual manner. In order
to use a disjunct in a proof, we must be able to prove the same result
using each of the other disjuncts in turn. This process is sometimes

called ‘“reasoning by cases.,,

The reader might like to establish termination for the goal-fact

tree pairs of Figure 3.

E. Iransferring Between_Fact and Goal Trees: Checking for
Contradjctory Facts and Jautological Goals

Being cancelled by the fact tree is only one of the ways that a
goal can be satisfied. We can also show that a goal is true by reducing
it to a tautology. Recognizing some tautologies in goals can be
accomplished by a simple extension of the termination process just
described. We shall introduce our discussion of this extension by
describing how nodes could be transferred between the goal and fact

trees.

Suppose from a given set, F, of facts, we must prove a disjunctive
expression of the form CI v G2, where Cl and G2 can be any expressions.

In logical notation we can represent this problem by the expression:

Fi-Glv @

(The expression ,,A {- B,, means "B logically follows from A".) Now
we can invoke what we shall call here the law of transfer to convert

this problem into either of the following ones:



(AVBl& C

GOAL TREE

1
|
1
!
|
|
|
|
|
|

FACT TREE

1

(AvBl& C

GOAL TREE

FACT TREE

SA-617 1-3

Figure 3. Example Goal-Fact Tree Pairs
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(F&~G1)!- G2
or

(F & ~G2) |- G1

That is, one of the goal disjuncts can be negated and transferred to the
fact tree, where it is conjunctively associated with the other facts.
For example, the tautological goal A v -A can be represented as a goal A
and a fact A. The termination check now reveals that the two root nodes

CANCEL, so we have a proof.

In a dual fashion, we could recognize contradictory facts by

transferring one of the conjuncts of a fact conjunction over to the goal

tree. To do so, we negate the fact tree to be transferred and
disjunctively append it to the goal tree. In either case, when a tree
is negated prior to transfer we need only negate the literal nodes; the
reversed conventions about arced and unarced nodes automatically provide

the correct interpretations when the tree is transferred.

But we really do not have to perform these transfer operations
explicitly in order to deal with tautological goals and contradictory
facts. Instead, we can allow oppositely signed 1literals of the same
tree to CANCEL each other and then use the rest of the definition of
CANCEL to propagate CANCELled nodes toward the roots. In this manner,
the definition of CANCEL is extended to apply to nodes in the same tree.
In applying the definition, we need to label the root of the goal tree
and the root of the fact tree with the same identifier. Termination can

now occur if the root of one tree CANCELSs either itself or the root of

the other.

Note that proof strategies based on proof by contradiction
(refutation) involve transferring the entire negated goal tree to a
conjunctive branch of the fact tree. Also in some theorem proving
systems (e.g., Fikes and Hendrix, 1977), disjunctive goals are split

into alternative subproblems in which the negation of the sibling goals
can be locally added to the fact base for each subproblem. This

13



v TR RATNEEES

strategy corresponds to a local transfer process. For our purposes,
with our extended definition of CANCEL, it doesn't really matter whether
we leave the fact and goal trees as originally given or whether we

perform explicit transfer operations.

The reader will note that computing CANCEL relations within the
same tree corresponds to a type of resolution process. General

resolution of facts (or goals) is not sosimply accomplished, however.

The transfer operation is one way of transforming a given problem
into a set of equivalent ones. Another type of transformation is used
in some systems (such as that of Fikes and Hendrix, 1977) for dealing
with'disjunctive facts. Suppose our problem is to prove the expression
G from the expression F &(F1v F2), where G, F, F1, and F2 can be any
expressions. We can convert this problem into either of the following

pairs of problems:

F 1-"F1
and
F& F2 1-G
or
F |- "F2
and
F & F1 -G

That is, we first prove one disjunct false and then use the other to
prove G. But the subproblem F {-~F1 corresponds to a transfer
operation that really does not need to be performed by our system with
its extended definition of CANCEL. The other subproblem, F & F2 i~ G
evolves naturally in our system as a result of the recursive definition
of CANCEL. There is a dual explanation that can be given for dealing

with conjunctive goals.

Now that we are well equipped to recognize when our proof process
can be terminated, we can begin discussing how rules are used to extend

the fact and goal trees. We first discuss the form of the rules.



v Rules

A.  Rule Forms

We allow two basic types of rules. One, called an OPERATOR, is
used to extend the fact tree. OPERATORSs permit the system toreason in
a forward direction.  The other type, called a REDUCER, is used to
extend the goal tree. REDUCERSs permit the system to reason in a
'‘backward direction. OPERATORsand REDUCERSs are roughly analogous to the
antecedent and consequent theorems, respectively, used in the PLANNER
language (Hewitt, 1971). As in PLANNER, OPERATORS and REDUCERs are
invoked by a pattern matching process. Each has a distinguished
literal, <called the pattern, that is used to match a corresponding

literal in the fact or goal tree.

The basic form of an OPERATOR is
A=>EXP

where EXP is any predicate calculus expression, and where an underline
beneath a literal indicates that this literal is the pattern. Thus
OPERATORSs are always implications whose antecedent consists of a single
literal that is the pattern. If this pattern matches a literal in the
fact tree, then the fact tree can be extended at this node by sprouting

a descendant OR/AND tree representation of EXP.

The basic form of a REDUCER is
EXP =>A

where EXP can be any predicate calculus expression. Again, the pattern
is underlined. REDUCERs are always implications whose consequent
consists of a single literal that is the pattern. If this pattern

15



matches a literal in the goal tree, then the goal tree can be extended
at this node by sprouting a descendant AND/OR tree representation of
EXP.

It is only for reasons of simplicity that we constrain our rules to
have single-literal patterns. Useful variants of our system can be
devised in which tree structures more complex than a literal node are
used as patterns. Of course the matching process for these more complex
structures would be correspondingly more tedious. Also, later we shall
discuss a technique for achieving the effect of more complex OPERATOR
antecedents by allowing OPERATOR consequent8 to contain rules.

It has been argued by Moore (1975) that the contrapositive of a
REDUCER should be expressed as an OPERATOR and vice versa. Thus if A =>
EXP is useful as an OPERATOR, its contrapositive form, namely ~(EXP)=>
~A, would also be useful as a REDUCER. Our system will automatically
add these contrapositive forms for every rule entered into the system.

(Note that after negating an expression, we must move the negation in.)

The existence of the contrapositive forms of rules means that it
-does not make any difference to our system whether goals and facts are
kept on their own side of the line or transferred. If a goal invokes a
given REDUCER, then the fact resulting from transferring that goal would
invoke the corresponding OPERATOR. Thus, it is really unimportant
whether we maintain goals and facts as given or whether we negate all of
the goals, for example, add them to the fact base, and look for a
refutation. We shall adopt the convention of maintaining goals and
facts as given, mainly to ease the process of explaining the behavior of

the system to the user.



B.  Use of Rules

The basic cycle of operation of our deduction system can be
informally described by the following steps:
(1) Initialize the goal and fact trees to the given
expressions.
(2) If the termination check succeeds, exit.

(3) Use the domain-specific control strategy to select
one of the literal nodes and an OPERATOR or REDUCER whose
pattern matches this literal node.

(4) Apply the selected rule, extend the goal or fact

tree, and go to (2).

Rule application is thus a pattern-directed process having effects
on data bases (fact and goal trees). The system design can thus
reasonably be described as a “production system" in the sense in which
that term is generally used in Al research. In the next section we
shall show how the system might work on some propositional calculus

examples.

17



V' Propositional Calculus Examples

As a first example of how the system works, suppose we want to
prove {Hv [G &(BvV "F)]} from the expression {A&[B v (C&E)]&D}.
We are given the REDUCERS

RI: ¢ &E=>"F
and
R2: D=>g¢

From these, we construct the corresponding OPERATORS

01: F =>"C v " E
and
02: =G => "D

The fact and goal expressions are already in standard form. We show

-their tree representations in Figure 4.

In Figure 4, we use capital letters next to the tip nodes for
literala, and we wuse numerals tolabel the nodes themselves for later
reference. We connect matching nodes by dashed lines. From Figure 4
we see that nodes 9 and 5 CANCEL. Using the definition of CANCEL, we
note that nodes 12 and 5 CANCEL. It will be helpful to keep a list of
the CANCELled pairs. This list is also shown in Figure 4.

None of the OPERATORSs is applicable, but both of the REDUCERS are.
Suppose we apply R2 first adding node 15 to the goal tree. After this
cycle, the situation is as depicted in Figure 5. We have updated the
list of CANCELled pairs. At this stage we have essentially reasoned

only about one case of the disjunct B v (C&E).

Now we apply the only remaining applicable rule, R1. The resulting
trees are shown in Figure 6. The list of CANCELled pairs includes (1,

1), so we terminate successfully.

18



HV I[G & (B V ~F)]

GOAL TREE

CANCELLED PAIRS

(9,5)
(12,5)

FACT TREE

A &[BV (C&E)]& D

SA-6171-4

Figure 4. Example Fact and Goal Trees
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GOAL TREE

| ~F 10
i
CANCELLED PAIRS \\ |
|
(9,5) \ !
(12.5) \ {
(15,3) | i
(11,3) ' !
’ \ :
(11,1 .
|
FACT TREE
SA-6171-5

Figure 5. An Intermediate Stage of a Proof
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GOAL TREE

CANCELLED PAIRS

(9,5) (16,6)
(12,5) (17,6)
(15,3} (10,6)
(11,3) (12,6}
(11,1) (12,4)
(16,7) (12,1)
(17,8) (14,1)

(1,1

FACT TREE

Figure 6.

SA-6171-6

The Final Stage of aProof
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For our second example, we will illustrate how CANCELling nodes in
the same tree can be used to obtain a proof. Suppose our goal is to
prove B v C and we are given,the following OPERATORS:

01: “C=>D
and
02: D=>B

We will assume we have no facts. The problem would be straightforward
if we were to split B v C into two disjunctive subgoals such that while
working on subgoal B we could assume (locally) the fact ~C.  This fact
would combine with OPERATOR 01 to produce fact D, which in turn would

combine with 02 to produce B.

Our system does not make these local assumptions, but the use of
contrapositive rules and CANCELling nodes within a tree accomplishes the
same thing. The contrapositives of our OPERATORs are the REDUCERS

R1: "D => ¢

R2: "B => "D

Now R1can be used on subgoal C to produce subgoal ~D. REDUCER R2
can be used on this subgoal to produce subgoal “B. This subgoal CANCELSs
the earlier subgoal B, with the ultimate result that the root CANCELSs
itself. (The reader may want to verify this with the help of a

diagram.1

A case of special interest occurs when a rule application produces
a literal node that CANCELs one of its own literal node ancestors. This
corresponds to a special case of ancestor resolution. Propagation of
the CANCEL relation may then ultimately result in a node CANCELling
itself. For purposes of CANCEL propagation, any node that CANCELSs
itself can be regarded as being CANCELled by the root node of the
opposite tree. (Self-CANCELIling goal nodes correspond to tautologies,
and self-CANCELIling fact nodes correspond to contradictions.)
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Another interesting case occurs when a pair of sibling nodes CANCEL
each other. If the siblings are unarced, then obviously their parent
CANCELs itself, and we have the previous case. If the siblings are
arced, the parent node cannot possibly appear in a proof, so it is
eliminated from the tree. If this parent node 1is itself arced, its
parent is eliminated, and so on. If a root node is ever eliminated, the

entire proof attempt fails.

There are some problems (even in propositional calculus) that our
system cannot solve. Our tolerant attitude towards this sort of
incompetence is explained as follows. We are relying on the domain
expert to provide us guidance about which rules are useful and in which
direction they should be used. Hopefully, his expertise enhances the
efficiency of the system. But dependence on the expert carries a price:
gaps in his expertise decrease the competence of the system. There are

some simple examples that illustrate this point.

Suppose the goal is B v C and the OPERATORs are A=>B and ~“A=> C.
Unfortunately these rules work in the wrong direction; if they were
REDUCERs instead, the goal would be easy to prove. (The contrapositive
REDUCERSs of the given OPERATORSs are of no help.) One way around this
difficulty is to use the implicit fact A v “A as if it were explicitly
in the fact tree. The given OPERATORS could then be used to obtain a
proof. Obviously this strategy of assuming all tautologies to be
explicit facts would defeat our attempts at efficient operation, because
it would allow every OPERATOR to be used in every problem. Another
possible approach to this problem would be to analyze the OPERATORS to
look for pairs having oppositely signed patterns. The disjunction of
their consequents could then be added to the fact tree. (A dual
approach could be used with REDUCERSs,) But this catches only first-
level difficulties. The main point is that to increase efficiency we
are using the rules only in a given direction, and we are not allowing
the rules to interact among themselves; therefore the domain expert must
pose the problem in such a way that the system can still find a solution

even with these restrictions.



- 1A

Another troublemaker involves the goal A => C (that is, A v C) and
the facts A => B (that is, A v B) and B = C (that is, "B v C) .
Suppose there are no OPERATORsand no REDUCERs. Since facts cannot
interact among themselves, we cannot produce a proof. Again the domain
expert has failed us in not structuring the problem correctly.

Our attitude toward these problems is to avoid the easy but
inefficient approach of allowing intrafact and intrarule inferences.
That is precisely what our system is trying to escape. Instead, we will
exploit the inherent modularity of the system to correct inadequacies in

the rule and fact base as they are discovered.
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VI  Extension to Quantification

A. Overview

The system we have described for propositional calculus can be
easily modified to deal with quantified variables in expressions. The
modif icat ions involve : (1) replacing certain variables by Skolem
functions, (2) using unification during CANCEL operations, and (3)
‘associating a substitution with each CANCEL relation. In this section,

we shall discuss these modifications and present some examples.

B. Skolemization

Fact expressions receive the same 1initial preparation as for the
propositional calculus case; implications are eliminated, and negations

are moved in. We use the equivalences between

-(EXISTS X)F(x) and (FORALL x)[~F(x)]
and between

~(FORALLx)F(x) and (Ex1sTS x)["F(x)]

to move negations in through quantifiers. Next we replace all instances
of existentially quantified variables by Skolem functions of those
universally quantified variables in whose scopes they reside. Next we
drop all quantifiers and henceforward adopt the convention (for facts)
that all variables are universally quantified. When a fact expression
is in this form, it can be represented as an OR/AND fact tree. The

literal8 at the tip nodes may contain variables, of course.

Goal expressions also receive the same initial treatment.

Skolemization, however, is different. In goal expressions, we replace
all instances of universally quantified variables by Skolem functions of
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those existentially quantified variables in whose scopes they reside.
(Recall that goals can be regarded as negated facts and that negated
existential quantifiers are equivalent to universal ones. Thus, it
shouldn, t be surprising that Skolemization of goal expressions uses
conventions dual to those of Skolemization of facts. If we are able to
prove some expression F(a) where a is a constant different from those
used in the facts and rules--that is, it is a Skolem constant--then we
can deduce (FORALL x)F(x) by universal generalization. Skolemization
of universally quantified variables in goals can thus be regarded as

using the rule of universal generalization in reverse.)

_After elimination of the universally quantified variables, we can
drop all of the quantifiers and adopt the convention that all variables
(in goals) are existentially quantified. When a goal expression has

been thus prepared, it can be represented as an AND/OR tree.

Skolemization of variables in rules is just slightly more
complicated. (We allow rules of the same general form as in the
propositional calculus case, however, they can have arbitrary
-quantification.) Quantifier scopes in rules can be of three types: the
scope can be the entire implication or limited to either the antecedent
or the consequent. We Skolemize any existential whose scope is either
the entire implication or its consequent. We Skolemize any universal

whose scope is limited to the antecedent of the implication.

After Skolemization, we can drop the quantifiers, and the variables
will “behave correctly.,, That i1s, when an OPERATOR is used, those
variables occurring in the new fact nodes will have assumed universal
quantification, and similarly for REDUCERS.
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C. Use of Rules

When a rule is used to extend the fact or goal tree, its pattern
must be unifiable with the literal at the node from which it extends.
It will be convenient to represent this matching process by an explicit
edge of the tree and associate the most general unifier (mgu) with this
edge. Thus, when the OPERATOR A(x,a)=>B(z,x) is used to extend the

fact node A(b,y), we produce the following structure:

B(z, x)

A(x, a)
|
II {b/x, a/y}

b a (b, y)

We represent "match edges,, in trees .by dashed lines and label them by
the mgu obtained in unification. (Note that we do not apply to the rule
consequent the substitution obtained by unifying with the antecedent.
The equivalent of this operation will be incorporated into our new
definition of CANCEL.) When a match edge is added to the tree, the node

associated with the rule pattern is always an "unarced" node.

The variables that occur in the fact and goal trees should be kept
standardized apart. This means that any variables that are common
across goal disjunct8 or fact conjunct8 can be given different names.
For example, the goal expression A(x)v B(x) can be changed to A(x) v

B(y). The fact expression C(x)&D(x) can be changed to C(x)& D(y).
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D.  Extending the Definition of CANCEL

We must extend the definition of CANCEL so that it takes into
account the substitutions obtained during matching. For example, in
propagating CANCEL relations involving arced nodes to the parent of the
arced nodes, we must make sure that the substitutions for variables at
these nodes are "consistent." The necessary elaboration involves
associating a substitution with each CANCEL relation and modifying the

definition of CANCEL to check for substitution consistency.

In the definition, we use the concept of a _unifying composition
Tuck unifying composition of two substitutions, u,and Uy, is a

most general substitution, u, satisfying
(Lupu = (Lwuy= L u = (Luy)u = (Lu)u,
for an arbitrary literal L. (The expression Lu denotes the result, of
applying substitution u to literal L.) If no such u exists, then the UcC
is undefined. The uc of aset of substitutions {u1, e, un} is the uc
of any member,uv of the set with the uc of the rest of the set {u2,
..upl. The substitutions in a set are inconsistent if the set has no
UC.

The fellowing are examples of unifying compositions (Sickel,1976):

U1 U2 u

{a/x} {b/x} undefined

{x/y} {y/z} {x/y, x/z}
{f(z)/x} {f(a)/x} {f(a)/x, alz)
Ix/y, x/z} {a/z} {a’x, aly, a/z}

{s} I} {s}

The new definition of CANCEL is that nodes n and m CANCEL

(1.1) If n and m are literal nodes of different trees and if the
corresponding literals are unifiable. In this case, we associate the

mgu with CANCEL(n,m),
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or (1.2) If n and m are literal nodes of the same tree and if one
of the corresponding literals unifies with the negation of the other.

In this case, we associate the mgu with CANCEL(n, m),

or (2) If n has arced successors, {sy}, such that CANCEL(sj, m)
holds for all of them, and the unifying composition (ue) of the set of

substitutions associated with the individual CANCELS exists. In this

case, we associate the uc with CANCEL(n, m),

or (3) If n has unarced successors, {s;},such that CANCEL holds
for at least one of them and the uc of the edge substitution and the
substitution associated with the individual CANCEL exists. In this

case, we associate the uc with CANCEL(n, m).

The consistency requirement on the individual substitutions in part
2 of our definition for CANCEL ensures proper propagation of CANCEL
through arced nodes. The consistency requirement in part 3 of our
definition ensures that the proper instances of matched rules are used
to extend the trees. (In using part 3 of the CANCEL definition, we

assume that the empty substitution is associated with nonmatch edges.)

E. Ap Example

Several Important mechanisms are implicit in our definition of
CANCEL. These can best be understood by detailed examination of an
example. The example is illustrated in graphical form in Figure 7.
The fact expression is shown at the bottom of the figure in OR/AND tree
form; the variable"s" is assumed to have universal quantification. The
goal expression is shown at the top in AND/OR tree form; the variable
"x" is assumed to have existential quantification. The rules are simply
shown as unconnected pieces of graph near the tip nodes where they
ultimately will be used. All nodes in the graph are given a number.
(In this example, it happens that the rules will be used at most once,
so we prenumber their "nodes" for convenience. ) Rule patterns are
indicated by the usual convention. Lower-case letters near the
beginning of the alphabet (for example, a, b, ¢, . . .) denote constants,
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and lower-case letters near the end of the alphabet (for example, . . .
X, y, z) denote variables. All variables have been standardized apart.
We have not shown the contrapositive forms of the given rules since they

won' t be used in this example.

At the outset we notice that there are several applicable rules.
Since we have not yet advocated any particular control strategy, we

shall trace through this example in an order that best illustrates the

points we wish to make.

First, let us match node 30 with the REDUCER node 26. The mgu is
{y/x}. (When a variable is substituted for another variable, we adopt
the convention of substituting the variable about to be added to the
tree for the one already in the tree.) The goal tree that results after
this match is shown in Figure 8. No CANCEL relations are established
yet, but we do associate {y/x} with the match edge between nodes 26 and
30. Let's next match goal nodes against REDUCER nodes 27, 28, and 29.

The goal tree will now be as shown in Figure 9.

A(x) & B(x)
1

Alx) 30 B(x) 31
: {V/xf

Aly) 26

Cly) 21 Diy) 22

SA-6171-8

Figure 8. The Goal Tree After Applying a REDUCER
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\ ;c/x
fon T~ a/?
\

A(b) 27 Bfa) Y 28 Bfc) 29

Cly) 22 Glz) 23 Ha) ()24 J{c) 25

SA-6171-9

Figure 9. The Goal Tree After Applying Four REDUCERS

We could continue to apply REDUCERs or OPERATORS until some nodes
could be CANCELled, but at this stage it 1is possible to predict that
certain later attempts at CANCELling will fail. Notice in Figure 9 that
any attempt to propagate a CANCEL relation up through node 27 to node 30
will involve the substitution { b/x). But this substitution is
inconsistent with all of the substitutions shown below node 31. If we
have exhausted all possible matches to node 31, then we know that the
substitution {b/x) at node 30 can never occur in a proof because only a
or ¢ can be substituted for x. Such an occurrence would correspond to a
violation of _horizontal consistency (Sickel,1976). Thus, there can be
no unifying composition of a CANCEL relation propagated up through node
27 with a substitution for any CANCEL relation in which node 31
participates. At this stage, we can prune node 27 (and, with it, node
23) from the goal tree and save ourselves the effort of attempts to

prove G(z).
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Quite analogous considerations would allow us to prune node 11
(and, with it, node 18) from the fact tree after we have matched against
the OPERATOR nodes 10, 11, 12, and 13. After all of this, the fact tree

is as shown in Figure 10.

Now, we can do some CANCELling between the literal nodes of the

fact and goal trees. The following CANCELled pairs can be established:

(17, 24) { }
(19, 24) { }
and
(20, 25) (c/t)
By using the CANCEL definition we can for example, determine next
the following CANCELled pairs:

(29, 20){c/t}

(31, 20) {e/x, c/t}

(31, 13) {c/x, c/t}
(31, 6) {e/x, c/t, d/s)

The associated substitutions are merely unifying compositions between
edge substitutions and previous CANCEL substitutions. If a uc did not
exist for a proposed CANCEL relation, then we could not establish this

relation. Such an occurrence corresponds to a violation of vertical
consistency (Sickel, 1976).

We can also obtain another CANCEL relation between nodes (31, 6) by
a different route and thus with a different substitution, namely {d/s,
a/x). We represent both of these substitutions by repeated instances of

CANCEL(31,6).

The other CANCEL relation of interest that can be established at
this stage is between the node pair (5, 31) with associated substitution
{d/s, a/x). To summarize , the CANCEL relations of interest (i.e. , those

between nodes closest to the roots of the trees) are now:

(6, 31) {e/x, c/t, d/s]
(6, 31) {d/s, a/x}
(5, 31) {d/s, a/x}
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Figure 10. The Fact Tree After Applying Four OPERATORS
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We note that the last two CANCEL relations can be combined to yield
CANCEL(Y4, 31) with associated substitution {d/s, a/x). This in turn
yields CANCEL(1, 31), {d/s, a/x).

In a straightforward manner, we can next match against the OPERATOR

nodes 7 and 8 and perform matches between literal nodes to obtain:

CANCEL(2, 21) {a/y}
CANCEL(3, 22) {a/y}

These relations produce the sequence:

CANCEL(1, 21) {a/y}
CANCEL(1, 22) {a/y}
CANCEL(1, 26) {a/y}

Proceeding through the match edge between nodes 26 and 30, we

obtain:
CANCEL(1, 30) {a/x}

Combining this relation with CANCEL(1, 31), {d/s, a/x), we obtain
finally:

CANCEL(1, 1) {d/s, a/x}

Thus the goal is proved from the given facts. The relevant
instance of Fact |- Goal, useful for many information retrieval
applications, can be simply obtained by applying the substitution
associated with CANCEL(1, 1) to both the fact and goal expressions.
This operation yields:

E(a) & F(a) & [K(d) v L(d)]i- [A(a) &B(a)]
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VII Some Additional Extensions

A. Embedding New Rules in Operators

One way of relaxing the single-literal restriction on rule patterns
is to allow rules to be embedded in the consequents of OPERATORSs. Since
(A& B) => C is equivalent to A=>(B=> C), we can get the effect of
the conjunctive pattern by adding the new OPERATOR B =>C when A appears
in the fact tree. One cannot simply add the new rule to the global rule
base, however. Suppose we have the OPERATOR A =>(B=>C) and the fact
AvD. When B=>Cis added as a new OPERATOR, we must be careful not
to use it on the disjunct D. The rule B=> C can only be used "inthe

context" of A.

A simple generalization of our rule-based system supports the
correct use of OPERATORsembedded in the consequents of OPERATORs.
-(Embedding REDUCERs in OPERATORSs appears to be much more complex. Thus,
we will not use REDUCER contrapositive forms of embedded OPERATORS.)
The generalization involves associating each OPERATOR with a node of the
fact tree. The initial set of conjunctive OPERATORs is associated with
the root of the fact tree. An OPERATOR added at node n is associated
with node n. The OPERATORSs associated with node n can be used on facts

associated with node n or its descendants.

This technique even generalizes nicely to permit "disjunctive"
OPERATORs. Suppose we have an OPERATOR of the form A=>[(B=>C)v (DR
=> E)]. Before such a rule disjunction is associated with the fact tree
at literal node A, we split node A into the disjunction A v A arnd
represent the disjunction by two OR node descendants of A. Adifferent
rule disjunct 1is then associated with each of the OR ncdes. If the
initial OPERATORSs are in some complex logical relationship to each
other, we represent this relationship by the appropriate OR/AND tree and
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label each of the tip nodes of this tree by the initial fact expression.
This fact expression is then put in OR/AND tree form at each of the
tips.

If the embedded OPERATORS contain quantified variables, these can
be Skolemized at the time the OPERATORS are associated with nodes in the

fact tree. Care must be taken to ensure that the appropriate instance
of an embedded OPERATOR is added.

B.  High Complexity Proofs

Our system, as we have described it so far, isnot able to find
proofs for which any of the goal or fact expressions need to be
rewritten with different variables and used a multiple number of times.
(We can, of course, use the same pode any number of times, but such
usage does not rewrite any variables in the expression at the node.
Also, we can use rules any number of times, each with different
variables.) In analogy with a definition of proof complexity given by
Sickel (1976), we shall say that the _complexity level of a proof is
precisely the number of times a fact or goal expression must be
rewritten for multiple use. So far then, our system can produce only

proofs of complexity level zero.

As examples of problems requiring complexity-level-one proofs, we
have :
1) Goal: A(x)

Fact: A(a) v A(b)
and its dual,
2) Goal: B(a) &B(b)
Fact: B(x)
Straightforward attempts at proofs for these problems by our system are
frustrated by horizontal consistency violations. However, if in problem

1, for example, we replace the goal by the equivalent one A(x)v A(y),

then a proof is easy to obtain.
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Following Sickel, we might adopt the strategy of trying first to
obtain a complexit y-level-zero proof. If that attempt fails,wecan
look for higher complexity proofs in stages. The search for a
complexity-level-one proof would involve selecting each of the goal and
fact variables (in turn) and rewriting as a disjunction (for goals) or
asa conjunction (for facts) the highest node in the goal or fact tree
that contains that variable. Substitution consistency violations

provide obvious clues about which variables should be rewritten.

To rewrite a goal node A(x), for example, we produce the following

tree structure:

A(x)

Aly) o A(z)

To rewrite a goal node A(x) & B(x), for example, we produce the

following tree structure:

A(x) & B(x)

A(y) & B(y) A(z) & B(z)

Aly) B(y) A(z) B(2z)
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VIII Conclusions

We have presented a design for a general system that uses
production rules and a data base of fact and goal trees to per form
deductions. The system can be regarded as a synthesis of many current
and some new ideas in automatic deduction. The major innovations
presented in this paper are the OR/AND fact tree and the CANCEL
operation. These ideas bring a simplifying symmetry to several of the

standard techniques for reasoning about facts and goals.

Logical completeness of the general system has not been adesign
goal. Instead, we assign responsibility for acceptable performance of
any specific system to the domain expert, who provides the rules, andto
the designer of the specific system, who can repair any unacceptable

deficiencies in performance by adding or modifying rules or facts.

An important topic that we have not yet addressed concerns the
control strategy for the system. Specialized control strategies for
different domains of application (for example, deductive retrieval,
theorem proving, common sense reasoning) will probably be necessary in
order to achieve high performance. The control system must ensure that
the appropriate rule is used sufficiently often to prevent the usual
combinatorial explosion. Separation of facts, OPERATORs, and REDUCERs

should, we believe, help contain this explosion.

It is also hoped that the proposed system will serve as the

beginning of a theoretical foundation for the various applications of
"rule-based systems" now being developed by AI research. Many of these

systems are fundamentally deduction systems even though some of them
allow uncertain or probabilistic facts and rules. Extending the present

system so that it could also deal with uncertain knowledge would be a
valuable future project.
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