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In this paper we present an alternate definition of convergence and a new fixedpoint access
method of generating sequences of functions for a given recursive definition. The initial

function of the sequence can be an arbitrary function, and the sequence will always converge to

a fixedpoint that is “close” to the initial function. This defines a monotonic mapping from the

set of partial functions onto the set of all fixedpoints of the given recursive definition.
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Introduction

A recursive definition of the form F(x)= 7[FXx) (where F is a function variable and 7 is a

functional) can be considered as an implicit functional equation. In general, such a functional

equation may have many possible solutions (fixedpoints), all of which satisfy the relations

dictated by the recursive definition. Of all these fixedpoints, only one, the least fixedpoint, has

been studied thoroughly; however, recursive definitions have other interesting solutions (e.g.,

the optimal fixedpoint discussed in Manna and Shamir [1976]). By considering the properties of
the entire set of fixedpoints, a unified theory for the various fixedpoint approaches can be

developed.

One of the most fundamental results in the theory of recursive definitions is Kleene’s Theorem

which states that (under suitable conditions) the least fixedpoint is the least upper bound (lub)

of the sequence Q,7[0),73[Q),..., where the initial function @ is the totally undefined function.
This theorem gives a constructive method by which the least fixedpoint can be “accessed” from

the initial function §.

The purpose of this paper is to generalize Kleene’s Theorem so that arbitrary fixedpoints of a

recursive definition can be accessed. This 1s done by altering Kleene’s access method in three

ways: by allowing an arbitrary initial function, by generating the corresponding sequence of

functions in a different manner, and by introducing a modified notion of convergence.

Part I contains all the preliminary definitions and results. Our, slightly nonstandard, model of

recursive definitions is presented in Section 1. In Section 2 we prove some properties of

functionals in this model, and mn Section 3 we study the elementary closure properties of three

important sets of functions: fixedpoints, prefixedpoints, and postfixedpoints.

Our generalization of Kleene’s Theorem 1s discussed in Part II. In Section 4, we consider the

behavior of Kleenc’s “direct” access method for initial functions other than § . In particular,
we show that this generalized sequence of functions may fail to converge, but whenever it

converges the limit 1s a fixedpoint which 1s “close” to the initial function.

More general types of access methods are defined in Section 5. In essence, each such method

defines a sequence of transformations which should be applied to the initial function. These

transformations are defined in terms of the three basic operations: functional application, gib,

and lub. Among the access methods, we pay special attention to the “descending” access method.

The sequences of functions generated by this method always converge, but their limit need not

: be a fixedpoint.

Finally, in Section 6, we show that under the composition of the “descending” and “direct”

3
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access methods, any initial function converges to a “close” fixedpoint. We then prove that no

single access method can enjoy this property, and thus the composition of methods is essential.
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Part I: Recursive Definitions and Their

Fixedpoints

1. The Model

1.1 The Basic Domains

The purpose of this subsection is to introduce the basic terminology about partially ordered sets

used throughout this paper.

Definition: A binary relation = over a nonempty set S 1s a partial ordering of S if

e 1s a reflexive, transitive and antisymmetric relation. The pair (S,&)

1s called a partially ordered set (poset).

Definition: Let (S,£) be a poset. For a subset A of S, an element x € S is called:

(a) least if x€ A and for all ye A, xe y;

(b) greatest if xe A and for all ye A , yEx;

(c) minimal 1f x € A and there 1s no y€ A, y# ¥ for which y& x;

(d) maximal 1f x € A and there is no y€ A, y=x for which xey ;

(e) lower bound if for all ye A , xy;

(f) upper bound if for all ye A, yex;

(g) greatest lower bound (glib) if x is a lower bound of A , and for any

other lower bound 9 of A , ye¥;

(h) least upper bound ({ub) if x is an upper bound of A , and for any other

upper bound yofA , x9.

Definition: A semilattice is a poset (8,8) in which any two elements in S have a

glb. A complete semilattice is a poset (S,€) in which any nonempty
subset of S has a gib.

Such structures are usually called “lower semilattice” and “complete lower semilattice”. The
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notions of “upper semilattice” and “complete upper semilattice” are similarly defined with the

glb replaced by lub in the definition. However, we omit the word “lower” since in this paper we

work exclusively with lower semilattices and no confusion 1s caused.

Definition: A subset A of S in a semilattice (S,5) is said to be consistent if it has

an lub. An element x € S 1s said to be consistent with an element y € S

if the set {x,y} is consistent.

Semilattices may contain both consistent and inconsistent sets. The binary relation of being

“consistent with” 1s clearly reflexive and symmetric, but not necessarily transitive. Note that if

the semilattice 1s complete, the existence of some upper bound implies the existence of a lub.

Any subset of a consistent set 1s also consistent in this case, but pairwise consistency of elements

does not imply the consistency of the set as a whole.

Definition: A sequence xg, X,¥%p,... Of elements in a poset S 1s an ascending

(descending) chain if x;=x; 1 (x; 1S%;) for all i. The sequence is a

chain 1f 1t 1s either an ascending or a descending chain.

Definition: Aflat semilattice 1s a semilattice in which all chains contain at most
two distinct elements.

It 1s clear that any flat semilattice 1s complete; it contains a bottom element @ (which satisfies we

d for all d), and all the other elements are unrelated. The importance of this structure in the

theory of computation stems from the fact that they represent the two-state discrete type of

knowledge which often occurs during a computation: A variable either contains a well-

characterized value or has an undefined value (if used without proper initialization); an

operation (such as a division of two numbers) may either yield a definite result or terminate as

“illegal”; a procedure call may either return a proper result or loop forever. In all these cases,

one possible extreme is a totally defined entity, while absolutely nothing 1s known about the

other (besides its very ‘“undefinedness”).

All the basic domains considered in this paper are flat semilattices, denoted by D. Two domains

of special importance are the Boolean domain B =({w, true, false}, €) and the domain of natural

numbers N =({w,0, 1,2, ...},5)
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1.2 Higher Type Objects

In this section we inductively define the objects of all finite types over the basic domain D;.

The two basic notions used, that of a convergent sequence and that of a continuity, are defined

in a nonstandard way. The classical definition of these notions 1s heavily oriented towards the

needs of the least fixedpoint approach; we need more balanced definitions in order to construct

a general fixedpoint theory of recursive definitions. In particular, we no longer concentrate on

ascending chains and their (ub, but consider also descending chains and their glib, as well as

more general forms of convergence.

Definition: A mapping ¢ : A -» B between posets is monotonic if $(x)  ¢(y) in B

whenever x y 1n A.

Definition: The set of (finite) types is defined inductively as follows:

(1) Any basic domain Dj is a type; the objects of this type are the elements

(ii) Ife, .... op are types, sos #;X... X 0p; the objects of this type are

the vectors (x,,.... x3) where each x; is an object of type o;.

(iii) If @;,@, are types, so is [¢,- 05}; the objects of this type are the

monotonic mappings from objects of type ¢ to objects of type 7.

There 1s a natural way to extend the € relation to the set of objects of any finite type, using the

following inductive definition:

Definition:

() Ifx=(x,....x,) and y=(y;,.. 9) are objects of type Fx... Xx Op,

then ¥ € § iff for all 1 isk, x; Ey; as objects of type 7.

(ii) If x and 9 are objects of type [¢,- 5], then x € 9 iff for any fixed

object z of type @,,x(z)E y(z) as objects of type 7».

It 1s easy to see that the set of objects of any finite type 1s a complete semilattice under this
relation.
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The notions of a convergent sequence and limit are usually identified with those of an

ascending chain and {ub, respectively. Our definition of these notions is more inclusive:

Definition: A sequence of objects tq} of some finite type @ is said to converge to

the object x, of type @, written as x, = lim{xg}, if:

(i) is some basic domain Dj, and all the elements in {5} are equal to x
from some index j, onwards.

(i) @iso x... xo, and for any 1sisk, Xo Elim{xf] (where xf is the
i-th component of Xj).

(iii) ¢ is [e205] and for any fixed object z of type &, x,(z) & lim {ef2)}
(these are objects of type 4, for which the notion of convergence is

already defined).

Parts (ii) and (iii) in this definition are standard, and once we define our notion of convergence

in the basic domains, it is carried over to all finite types. It 1s easy to see that any ascending or

descending chain of any type 1s a convergent sequence (with lub or gib, respectively, as limits).

The following example shows that the converse is not true:

Example 1: Let {f;} be a sequence of objects of type [N-=NJ, defined by:

i ifxzi

ACE [ 0ifx<i
wifx=w

No two elements in the sequence {f;} are related by &, but the sequence converges to the object

zero of type [N+ NJ]

Ww if x =w
ro(x) =zerolx) 0 otherwise

This follows immediately from the fact that for any argument ¥ of type N, the sequence {f;{x)}

of elements of type N is convergent, i.e, its elements are O for all sufficiently high i. O

Using the notion of a convergent sequence, we can define our notion of continuity:
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Definition:

(i) An object (x;,....%p) of type ¢ x ...x @p is continuous if all the

objects ¥; are continuous.

(ii) An object x of type [¢;- d,]is continuous if for any convergent

sequence {z} of objects of type ¢;, the sequence {x(z;)} of objects of

type @, 1s convergent and x(lim{z}) = lim {x(zy)} :

Since the notion of a convergent sequence 1s more inclusive than that of a chain, our notion of

continuous objects (Le., of limit-preserving mappings) is potentially more restrictive than the

standard notion of chain-continuity. The following example shows that in fact an object can

preserve the lub and gib of ascending and descending chains, and still be noncontinuous in our

system:

Example 2: Let f be an object of type [N > NJ). We say that / is closed if the sequence {x;}
defined by

xo= 0 and x; = fix) (ie, ¥; = £40) )

consists of a finite number of distinct elements, none of which 1s w. It 1s clear that a necessary

and sufficient condition for a function f to be closed is the existence of numbers 0 si< § such

that £0) = 9X0) # w, in which case the sequence {x;} is periodic from some point onwards.

Let the object © of type [[N » NJ - B] be defined as follows:

olf] = true if f contains a finite sequence of pointers
~ lw otherwise

The object © preserves the ub and gb of ascending and descending chains, since the finite

number of values flx;) which constitute a sequence of pointers are either constructed or

destroyed at some finite point in any chain {f;}, and thus 8{lim {fi}1& O(f},] for some k.

However, © is not continuous in our model. Consider, for example, the following sequence of

objects {f;}:

x+ 1 ifx<i
Efe EA if x 2
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The sequence converges to the object

ffx) =x +1.

It is easy to see that Of] is w , while for any i, O[f;] is true. Thus @[lim{f;}) 2 lim{©[f;]} and
© is not continuous. O

From now on, we shall be interested mainly in the lower three types of objects: values (objects

of type D;), functions (objects of type [D;x ... x Dp -=Del, and (single-argument) functionals

(objects of type [[D} x... xD} »D4]-[D% x... x D}- D2]. Since we shall not deal
with systems of recursive definitions, we do not have to consider multi-argument functionals

(for which the fixedpoint theory obtained is somewhat different).

1.3 Term Functionals end Recursive Definitions

Among all the functionals 7, we shall be interested mainly in term functionals, which are

syntactically expressed as compositions of constants, monotonic base functions g;, a function

variable F, and individual variables x;. Associated with each symbol (including the variables)

1s a type, and the composition of these types must be legal.

Example 3: A term of the form

if g{x;, x;) then x, else glx, , x3)

can be legal only if the types of xi, ¥,, and x5 are the boolean semilattice B, and the type of g is

[B x B =» BJ. This can be shown by the following argument:

Since g{x;,x;) appears in the if part, the range of this term must be B. Since the two subterms

x, and g(x,,x3) must have identical ranges, the type of ¥, is necessarily B. Therefore the type

of g is of the form [B x ? » BI. In order to make the term g(x, x) legal, x; must be of type

B, implying that "?" is also B. We can thus conclude (from the term g{x,x3)) that x5 is also of

type B. 0

| A term functional is denoted by T[FXxy,....xp), where x}, .... %; are all the individual variables

occurring in it, in some order. It can be interpreted as a functional in the following way:

10
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Given a function f and an argument vector @={dy,.... d) (of the appropriate types), the value

of T[f)a) is the object obtained by evaluating the variable-free term in which F 1s interpreted

asf and x; is interpreted as d;. The function 7[f] to which f is mapped under 7 is the function

abstraction AX T[f)(¥). The fact that # maps monotonic functions to monotonic functions is
immediate from the fact that all the base functions in 7 are monotonic, and the set of

monotonic functions 1s closed under composition.

Definition: A recursive definition 1s an equation of the form
F(x) = 7[F)(X),

where 7 1s a term functional.

In order to make this equation meaningful, * must map functions of the appropriate type

[D; x... xDj=Dyl to functions of the same type.

11
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2 Properties of Term Functionals

The fact that term function& are monotonic mappings which preserve the {ub of ascending

chains 1s one of the oldest and most basic results in the recursive definitions theory. In a

simple form it appears in Kleene [1952], while a detailed proof of this result for a model of

functionals which is quite similar to ours appears in Cadiou [1972]. In this section we prove

the stronger result of continuity in our model, and discuss the behavior of term functionals

under the glb and {ub operations over arbitrary sets of functions (rather than over chains).

2.1 The Continuity of Term Functionals

Under the classical definition of continuity, any mapping which preserves the {ub of ascending

chains is necessarily monotonic. However, a mapping © can preserve the limits of convergent
sequences without preserving a (ub of chains, or without being monotonic at all. This happens,

for example, when © maps an ascending chain {x;} into a descending chain {€(x;)} provided
that

B(lim{x;}) = O(lub{x;}) = glb{B(x;)} = lim{B(x;)}.

The property of continuity 1s thus totally independent from the property of monotonicity in our
model.

We now prove the basic result:

Theorem 1: Let 7 be a term functional and {f;} a convergent sequence, Then

{7lf;]} is a convergent sequence and

Proof: The proof is by induction on the structure of 7, using the fact that term functionals

contain finitely many basic constructs. Note that the monotonicity of these constructs is not
used at all.

If 7 1s a variable x; or constant c, the proof 1s trivial.

If 7 is of the form g(7,,.... 7T,), we may apply the induction hypothesis that all the subterms 7;

are continuous. Let ¥ be fixed. Then for any 1 <k <n, there 1s an index jj such that

12
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| TeLX®) = 7llim{f)XR) for allj2 fy

| Let jo be max(j;,.... jp). Then for all j 2 jy
|
|

r® = grfE, Tlf)
= g(r, Uim{f}(®), .., 7, lim{f})®)

| = Tllim{f})%).

| Finally, if 7 is of the form F(7,,.... Tp), we define jo in exactly the same way as before. We

denote the vector (7, [im{f;})%),..., 7,Uim{f}X%))by 7 and thus by the definition of 1,

Lim {f;} XR) = Lim {f;}X5) .

Since {f;} 1s a convergent sequence, there is some Jo such that

| £13) = UimifG) for all jz fj.

Let 73" be max(jo, fp). Then we have, for all j 2 fi":

TUKE) = fT LR, -. Talf)E)
| | = JT lim {£11(%), wor Tp LliM{f;3)(%))
| = fi) = Lim{f;D@ = rlim{f}%).

Q.E.D.

Some of the consequences of Theorem 1 are:

Corollary: Let * be a term functional. Then:

(f) If{f;} is an ascending chain, then {7{f;}} is an ascending chain and

lub{r(f;)} = rllub{f;}]

: (4) If {f;} is a descending chain, then {*[f;}} is a descending chain and
glb{rifil} = vlgiv{f;}])

13
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Proof:

(1) Any ascending chain {f;} is a convergent sequence, and lub{f;}= lim{f;}. Since term

functionals are monotonic, {r[f;]} is also an ascending chain and lub{7[f;]}= lim{T[f;]}. By

Theorem 1,

lub{r(f;}} = lim{r[f;]} = vliim{f;}] = TLub{f}]

(ii) The proof 1s similar.

Q.E.D.

| 2.2 Behavior Under the glib and !ub Operations

Lemma 1: For any monotonic functional 7:

(i) If{f.}is anonempty set of functions, then

Tlglb{f.}) € glb{rlf.)}.

(ii) If {f«}1s a consistent set of functions, ehen so is {7[f,J},and

lub{r(fJ} = Tllub{f})

Proof:

(i) SinceT is monotonic and gb{f}s fo. for all a 7lglb{f,}1& *[f.] for all «. Thus

Tlglb{fu}] is a lower bound of the set {7{f,/J}, and therefore T{glb{f,JI gib{r[f.J}.

(ii) Since {f,} is consistent, its lub exists. By the same procedure as above, T[lub{f,}] can be

shown to be an upper bound of {*{f,J}.In our model this implies the existence of lub{r[fJ},

and we have lub{t[fJ} = rllub{f.}]. Q.E.D.

According to corollary (ii) of Theorem 1, the inequality T{glb{f.}l€ glb{T[f,]} becomes an

equality if 71s a term functional and {f,} 1s a descending chain. This result can be

| strengthened by showing that for a wide subclass of term functionals in our model, the words “a
descending chain” can be replaced by “a consistent set”. Mappings which preserve the glib of

14
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consistent sets of arguments are defined and studied in Berry [1876] in connection with the

bottom-up computations of least fixedpoints.

The dual property of preserving the {ub of arbitrary consistent sets of functions holds only for a

very restricted subclass of term functionals (mainly those in which the term 7[{F)x) can be

simplified, for any given xo, to a term with a single occurrence of F). The problem in more

realistic cases is demonstrated by the following example:

Example 4: Let 7 be the following functional over the natural numbers:

7[FXx): F(x+1).F(x +2)

(where 0.w=w.(0 =w). Define the functions

0 if x 1s even 0 1ifxi1s odd

file) = lu otherwise fo) = la otherwise

Thenf {and f» are consistent, but

lub{r[f,37[fo)} = ub{QQ} = Q 2 zero = T[zer0) & TLIUb{f, f2}] .

El

15
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3. Properties of Fixedpoints, Prefixedpoints

and Postfixedpoints

A recursive definition F(x) = 7[f)(x) can be considered as an implicit functional equation in F.

With each such recursive definition, we associate three important sets of functions: fixedpoints,

prefixedpoints, and postfixedpoints.

3.1 Closure Properties

Definition:

(i) A partial function fis a fixedpoint of a functional 7, or of a recursive

definition F(x)=7[FXX), if f=7[f]l The set of all fixedpoints of 7 is

denoted by FXP(7).

(11) A partial function fis a prefixedpoint of a functional 7 , or of a

recursive definition F{&) =7[F)IZ) , if fe [fl]. The set of all

prefixedpoints of 7 is denoted by PRE(7) .

(11) A partial function fis a postfixedpoint of a functional T, or of a

recursive definition F(%)= T[FI®) , if 7{flef . The set of all

postfixedpoints of 7 is denoted by POST(7).

Example 6: Consider the following recursive definition, in which F is of type [N x N = NJ:

F(xy)= if x= 0 then 9 else F(F(xy-1)F(x-19)).

The following three (quite different) functions are all fixedpoints of this recursive definition, as

can be shown by direct substitution:

(i) fi(xy)=if x=0 then y else w;

(ii) foxy)=if x2 0 then y else w;

(iii) f5(x,y) = max(x,y).

The recursive definition has infinitely many more fixedpoints. A whole family of such

fixedpoints 1s

(iv) f(xy) =if x= 0 then y else a(x)

16
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where a(x) 1s any function over the natural numbers satisfying

a(x) =» 0 and a(a(x)) = a(x) for all x > 0.

Examples of functions satisfying this conditions are the identity function, any nonzero constant

function, or the function which assigns to any n 2 2 .. greatest prime factor (with a( 1) = 1).

The totally undefined function { is clearly a prefixedpoint of any recursive definition; in our
case it 1s an example of a prefixedpoint which is not a fixedpoint.

An mifinite class of postfixedpoints which are not fixedpoints of this recursive definition 1s

for alli 2 1. O

By definition, it is clear that a partial function fis a fixedpoint of a functional 7 if and only
if it is both a prefixedpoint and a postfixedpoint of 7 (that is, FXP{(7)=PRE(T) nPOST(7)).

In this section we summarize the closure properties of the sets FXP(r), PRE(7) and POST(7)

under the operations (ub, glb and lim. These properties belong to the “folklore” of known but
seldom stated facts about recursive definitions.

Lemma 2: For any monotonic functional 7:

(i) 7 maps FXP(r),PRE(7) and POST(7) into themselves.

(ii) PRE(T) is closed under the [ub operation over consistent sets.

(iii) POST(7) is closed under the glb operation over nonempty sets.

Proof:

(1) Immediate from the monotonicity of 7.

(ii) Let {f«} be a consistent subset of PRE(r) , Then for each «, f, =7[f.]. Since

lub{f.} exists, f, €lud{f,}, and T is monotonic, we have

fo E Tlf] & vlub{f }].

17



Manna & Shamir

Thus Tliub{f}) is an upper bound of {f,;} , and therefore

lub{f,} = Tlub{f }l.

In other words, {ub{f} 1s also a prefixedpoint.

(111) Similar. Q.E.D

It is not hard to show by appropriate counterexamples that PRE(7) need not be closed under

glb, POST(T) need not be closed under (ub, and FXP(?) need not be closed under either

operation.

Let us turn now to consider yet another operation -- the {im of convergent sequences.

Lemma 3: For any term functional 7, FXP(r), PRE(7) and POST(7) are all

closed under the Zim operation.

Proof:

(1) Let {f;} be a convergent sequence of fixedpoints of 7. By Theorem 1 we have:

rllim{f;}] = im{7(f;]} = lim{f;},

and thus lim{f;} is also a fixedpoint of 7.

(ii) Let {f;} be a convergent sequence of prefixedpoints of 7. Then for any i, f; £7[f;). By
the definition of the lim operation we have

lim{f;} = lim{r{f;}},

By Theorem 1, lim{7[f;]} exists and lim{r[f;]} = Tllim{f;}). Thus

lim{f;}  vllim{f;}],

or equivalently lim{f;} 1s a prefixedpoint of 7.

(iii) Similar to (ii). Q.E.D.

An important special case 1s:

18
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Corollary: For a term functional 7, FXP(r) , PRE(f) and POST(r) are all

closed under the lub and glb of ascending and descending chains.

3.2 Maximal and Minimal Fixedpoints

We turn now to study those fixedpoints located at the extreme ends of FXP(r) -- the

maximal and the minimal fixedpoints of 7.

As usual, a maximal fixedpoint of T 1s defined to be a fixedpoint which is not less defined

than any other fixedpoint of 7. The set of all maximal fixedpoints is denoted by MA X(T).

A basic property of MAX(7) is:

Theorem 2: For a monotonic functional 7,

if fe PRE(T) then fg for some g €eMAX(T) .

Proof: This is quite a straightforward application of Zorn’s Lemma which states that if (S,<)

1s a nonempty partially ordered set in which any totally ordered subset has an upper bound,

then S contains a maximal element (see e.g. Dugundji [1966]).

“For our purposes, we take the set

S={hePRET)]| fh}

with the standard partial ordering = . This set is not empty since fe S. If S; is a totally
ordered subset of S , it 1s in particular consistent, and thus {ubS; exists. By Lemma 2(ii)

[lubS, 1s a prefixedpoint of 7 , and it clearly satisfies fe{ubS; . Thus ubS,e S and

therefore the subset S; has an upper bound in S.

We may now apply Zom’s Lemma, which guarantees the existence of a maximal element g € S .

By definition, f= g and g £7{g). To show that g is a fixedpoint of 7 , we note that by

Lemma 2(i), Tlg] is also a prefixedpoint of 7 in S , and thus the assumption that g =7[g]

contradicts the maximality of gin S . Q.E.D.

Since for any functional 7, PRE(7) is nonempty ({ € PRE(7)) , we have:

Corollary: For any monotonic functional 1, MAX(7) is not empty.

This corollary guarantees the existence of at least one maximal fixedpoint, but it need not be

19
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unique. As a matter of fact, monotonic functionals may have any number of maximal

fixedpoints mn our semilattice model.

Let us consider now the minimal fixedpoints of a monotonic functional 7. The main result

(the Least Fixedpoint Theorem) states that a monotonic functional ? has a least (and thus a

unique minimal) fixedpoint, which we denote by /fxp(7). This is a classical theorem, and it

has two well-known types of proofs:

(i) (A nonconstructive proof, due to Tarski[1955]): In a model in which

7 1s defined over a complete lattice (rather than a complete semilattice)

of elements, one can take the g/b of any set of elements. The element

glib POST(?) 1s then shown to be a fixedpoint of ? , and it 1s clearly

below all the other fixedpoints of 7 (which are all contained in

POST(?) ).

(ii) (A constructive proof, due to Hitchcock and Park [1972], Cadiou

[1972])): This is a rather complicated proof, which constructs a

transfinite ascending chain of approximations T™[§}]. This chain is
shown (by transfinite induction) to converge to the least fixedpomt of

T.

The first approach cannot be directly applied when a model of complete semilattices is

considered. If the function gid POST(r) exists, it is the least fixedpoint of 7 in this case as

well. However, this function need not exist if POST(?) is empty, since the glb operation is

defined only over the nonempty subsets of the complete semilattice. We thus have to show that

POST(?) 1s not empty as a first stage in a Tarski-like proof. Fortunately, the existence

theorem of maximal fixedpoints (Theorem 2) implies that FXP(?) (and thus also POST(?) )

1s not empty. We thus get the following indirect proof, in which maximal fixedpoints are used

in order to show the existence of a least fixedpoint.

Theorem 3 (The Least Fixedpoint Theorem): If T is a monotonic functional (over

a complete semilattice) then FXP(7) contains a least element.

Proof: By the corollary of Theorem 2, POST(r) is not empty, and thus f =glb POST(?)

exists. By Lemma 2(iii), it is a postfixedpoint of 7, and thus 7[f]€ f. The function T[f] is

also a postfixedpoint of 7, and thus f = glb POST(r)e 7[f] as well. Consequentlyf = rf]
; and therefore f € FXP(?). It is the least fixedpoint of 7 since f =glb POST(?) = glib

EXP(?) . Q.ED.
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| Theorem 3 can be used in order to find the relationships between prefixedpoints,
postfixedpoints and fixedpoints in general. The relative form of Theorem 3 is:

Theorem 4: For a monotonic functional (oer a complete semilattice):

(i) Iff isa prefixedpoint of 7, then there exists a least fixedpoint in the
set of functions Sf ={g 1 f & g}.

(ii) Iff is a pottfixedpoint of 7, then there exists a greatest fixedpoint in

the set of functions $/ = {glge f}.

Proof:

(i) Since f € PRE(r), Theorem 2 guarantees that SJi contains at least one fixedpoint. The
proof of Theorem 3 can then be applied without change (over the complete semilattice $£).

(i) Using the inverse relation, 4;< 7, if 2, Ay, it can be shown that sf ,<) is a complete

lattice. Theorem 3 now shows that Sf contains a least fixedpoint with respect to «; this

fixedpoint 1s clearly greatest with respect to E. Q.E.D.
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Part II: The Convergence of Functions to

Fixedpoints

In Part I we defined our model of recursive definitions and studied its basic properties. Using

these results, we now analyze the methods by which fixedpoints of recursive definitions can be

“accessed” from other partial functions. In essence, each “access method” uses a given initial

function fg as a starting point, and constructs a sequence of functions which converges to a

fixedpoint of 7. We want the fixedpoint obtained to be “closest” to the initial function. Since

the ordering £ 1s only partial, one can directly compare in this sense only fixedpoints related

by € . The most natural definition of this notion is therefore:

Definition: A fixedpoint g of 7 1s said to be close to a partial function fq if

for every fixed point 2 of 7:

(¢) if A= fo then A= g , and

(mn) if foeh then g £4.

In other words, the fixedpoint g is close to fy if it 1s above any fixedpoint below fq, and

below any fixedpoint above fo. A priori, it is not clear that such a close fixedpoint must exist

for any partial function fq -- this will be one of the results proved in this part.

All the functionals considered in this part are term functionals.
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4. The Direct Access Method

Kleene’s version of the Least Fixedpoint Theorem for continuous functionals shows that by

repeated application of the functional 7 to the initial function {I , one can construct a

sequence (ran whose limit is the least fixedpoint of 7. This method (which we call the
direct access method) can be applied to an arbitrary initial function fp , but in general the

sequence obtained need not converge to a limit. The following example demonstrates such a
case:

Example 6: Consider the recursive definition over the natural numbers:

F(x) =if x210 then F(x-10) else F(x+1)

The collection of equalities implied by this recursive definition has a cyclic component:

F(O)=F(1)=FQ2)=...=F(9)=F(10)=F(0)

and the additional equalities:

F( 11) =F(l), F(12)=FQ2), ....

k 1s clear that any constant function 1s a fixedpoinr of the recursive definition and there are no

other fixedpoints; the least fixedpoint is {!, and any constant total function is a maximal
fixedpoint.

Consider now the two initial functions:

0 ifx=0 =k if 0 <x <10,fix) = » otherwise FA 21 Gherwise

The sequence (rf1J} does not converge, since the value 0 is rotated in the cycle x=0,1,...,10

under the repeated application of 7. On the other hand, the sequence (rf,0 converges to
the fixedpoint zero of 7, since all the nonzero values of f, are eventually replaced by 0.

Note that this sequence is neither an ascending chain nor a descending chain (in fact, no two

distinct hlements are ever consistent), but it converges according to the generalized notion of Zim.
O
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Definition: = The function f, converges to g (under a functional 7) if (rs, 3 1s a
convergent sequence and g 1s its limit.

We now state and prove the basic result:

Theorem 5: If fo converges to g under 7, then g 1s a fixedpoint which is close to f, .

Proof: To show that g is a fixedpoint of 7, we use the (generalized) continuity of 7:

rig) = Tllim{r 0) = tim {rr O10 = tim{r@+ Ie] =

To show that g 1s close to fp, consider an arbitrary fixedpoint 4 of 1:

(i) If A= fu then by the monotonicity of 7, ria] +f) for all 1, and thus since Ais a
fixedpoint

re limOh ye timrOf 3 = ¢.

() If foeA then similarly:

g = Uim{r fel e lim{r@pY = 1 Q.E.D.

We can describe the result of Theorem 5 as follows: if g; and g, are any two fixedpoints of

T such that g;c fog, and if re, converges, then it converges to a fixedpoint g
which is also in the “box” g; =g=g,. Note that, unless fo€ PRE(f)u POST(r), an initial

function fg need not be related by & to the fixedpoint g to which it leads. Furthermore,

there need not be a greatest element among the fixedpoints which are less defined than fq or a

least element among the fixedpoints which are more defined than fy .

Given an arbitrary initial function fy, it may be hard to determine in advance whether the

sequence (rife) converges or not. One important case in which the convergence is
guaranteed 1s when fq 1s either a prefixedpoinr or a postfixedpoint of 7. In these cases the

generated sequence 1s a chain, and thus has a lint.

We now proceed to characterize two other cases in which the sequence must converge.

Lemma 4: If fi foE f2 where f, and f, both converge to the fixedpoint g

of T, then f; also converges to g .
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Proof: By the monotonicity of 7, #0f, 1 Uf)  7[f,) for any i. The definition of
convergence implies that for each x there is a natural number jg such that

rf) = TOI)E) = g® foralljz go,

and therefore

rf)%) = gm for alljz jg.

In other words, the sequence (rf) converges to g . Q.E.D.

One immediate corollary of this “sandwich” property is:

Corollary: If fp € {fxp(T), then lim {r 0) = Ifxp(T)

The least fixedpoint of 7 thus has the interesting property that any initial function fy

fxp(T) converges to it under the repeated application of 7 (but not necessarily in the form of

an ascending chain). Consequently, in order to access other fixedpoints of 7, one must start

with mitial functions which are already sufficiently defined.

A slightly different type of result is:

Lemma 5: If fie fo, and g¢= mir) 1s a total fixedpoint of 7, then f,
also converges to g.

Proof: By the monotonicity of 7, lf{J = 70)[f,) for all i . Since the sequence (rls J}
converges to g , for any X there 1s a jy such that:

rf x)= glx) foralljzj,,

or, in other words:

g®@ e rilf,)kx) foraljzj,.

Since g 1s a total function, we obtain:

gx) = UTA) for allj 2 jo,

and thus lim{rl[f,)} = g. Q.E.D.
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Note that the requirement that g is total is essential; it may well happen that a function f |

converges to a nontotal maximal fixedpoint g, while a function f, , which 1s more defined

thanf |, does not converge at all.

Taking f; = §} , we obtain an important special case of Lemma 5:

Corollary: If Ifxp(T) is a total function, then any initial function f, converges to

Ifxp(T) .

If a recursive definition has only one fixedpoint, then it is clear that the lim of any convergent

sequence rf) is [fxp(r) . However, if the unique fixedpoint {fxp(?) is not total, there

may be initial functions f, for which the sequence TTA)! does not converge at all.
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5. General Access Methods

In the previous section we have considered one of the simplest ways by which we can access the

fixedpoints of T -- the repeated application of 7 to an initial function fg. This method may

fail to converge when applied to certain iitial functions f,. In this section we investigate some

more general access methods, which are later used in order to access fixedpoints of T from

arbitrary 1nitial functions.

5.1 Access Methods

In order to formally introduce the genera! notion of an access method, we first define:

Definition: The set offormula& 1s defined inductively as follows:

(i) The symbol F 1s a formula (F 1s said to be afunction variable).

(ii) If is a formula, then T (Fis a formula (T is said ro be a functional
variable).

(iii) If &;, §, are formulae, then gib{3',,5>} and ub{& |,&,} are formulae.

Given a formula & and a functional 7, we denote by &7 the formula in which the functional

variable 7 is interpreted as 7. &7 can be considered as a functional (over the same domain of

functions as 7) in the following way: Given any function f, &7[f] is the function obtained by

evaluating the formula & in which ¥ is interpreted as 7 and F is interpreted as f. Unlike the

functionals considered so far, $7 may fail when applied to certain functions f, in case the {ub of

inconsistent functions is to be taken during the evaluation process; in this case, & T [f] is not
defined.

Example 7: Consider the formula:

glb{T [[ub{F,T [F1}]F}

and the functional

T[FXx) : F(x+1)
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over the natural numbers.

The functional &7 fails for the identity function f(x) =x, since f and 7[f] are inconsistent, and

thus their lub is not defined. However, &7 does not fail for the function:

0 if x=0 (mod 3)
fix) =

w otherwise

and the function §7(f] is Q. 0

Given a functional 7 and initial function f, we may consider a function &7*[f] as a modification

of f. A sequence of formulae (83 can thus be used in order to construct a sequence of

successively modified functions E12. If the sequence (8) 1s properly chosen, this sequence

of functions may converge to a fixedpoint of 7. We thus define:

Definition: An access method A is a sequence of formulae {5}. For a given

functional 7, a partial function f is said to converge to g under % if all

the functions i¥0 exist, and im {ST} = g. If some of the functions

371 do not exist, the method is said to fail for 7 and f

In the case the formulae 5; become successively more complicated, it 1s convenient to use a
slightly modified notation for formulae. We use a sequence of function variables Fg, Fy, . . ..

where each F; represents the function $f), given randf. Each function variable F; 1s

defined by a formula in which all the function variables Fo, Fy, . . . . F;_;, In addition to F, may

appear. This representation 1s equivalent to the original one, since one can always expand the

formulae in the new representation to formulae in which only the function variable F may

appear.

Some of the simplest access methods, in the new representation, are:
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F; =T(F;_{Jforizl.

F; = glb{Fy 7 WF} forix1.

(C) Fo= F

F; = glb{F;_T[F;_(}} foriz I

F; =glb{FT[F;_ 1} forizl.

Fie T(glb{FF;_(}] for iz2l.

Note that methods C-E represent all the nontrivial ways by which F; can be defined in terms

of F;_{ and F, using one occurrence of T and one occurrence of glb. Four other simple access

methods (denoted by B’-E’) can be obtained from methods B-E by replacing each gib by lub.

Method A is the direct access method discussed in Section 4, since the expanded form of any F;

is 7 OXF). Method B is closely related to this method, since each F; is simply the glb of a finite
number of powers:

F; = glb{F,T [F1T @[F)....T OF].

For any functional 7 and initial function f, the sequence of functions {f;} generated by method

B 1s a descending chain, since the g/t in the formula for F;_ { contains one more term than the

glb in the formula for F;. The convergence of any initial functionf is thus guaranteed, but

unlike the case of the direct access method, the limit function need not be a fixedpoint of 7.

This 1s demonstrated in the following example:

Example 8: Let 7 be the following functional over the natural numbers:

T[FXx) : if x= 0 then F(x)+ 1 else 0. F(x-1).

Letf be the initial function:
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| v0 if x=0,1

fix) = le otherwise .

For any i 2 0,

i if x=0

rif ={0  ifisesis]
w otherwise ,

and thus the gib of all these functions is:

; 0 if x=1
7(i) =SN La lo otherwise .

This function 1s not a fixedpoint of 7 (as a matter of fact, it 1s not even a prefixedpoint or a

postfixedpoint of 7). 0

5.2 The Descending Access Method

Among the access methods listed above, we shall be interested mainly in method C, called xe

descending access method, and in method C’, called the ascending access method. In this section

we study the behavior of the first method.

For any initial function f, the descending access method constructs a descending chain of

functions {f;}, since each f; is the git of f;_; with some other function. The idea behind the

method 1s to “smooth up” the initial function f by repeatedly taking the common part f; of the

functions f;_j and 7(f;_ J; hopefully such a process may result in a function whose values are

preserved under the application of 7, i.e. a fixedpoint of 7.

If the initial function f is a prefixedpoint or a postfixedpoint of 7, then the sequence {fi}

generated by method C has an especially simple form:

Lemma 6: Let {f;} be the sequence generated by the descending access method C

for r and f. Then:

(0) Iff ePRE(r)then foralli, f;=f.
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(ii) Iff ePOST(T) then for all i, fi = +f).

| Proof:

| (i) The proof is by induction on i. Fori=0, fo= f by definition. Suppose that for some i, fi
| = f. Then:

fin = glb{f, Tif; }} = glb{f, rf} = f,

| since f = T[f].

| (ii) This part is again proved by induction. Fori=0, fo= f by definition. If for some i, f; =

ris, then f; 1s also a postfixedpoint of 7 by Lemma 2(i), and thus:

| fie1 =UT = 70) = 7lrlf) = 2H Dp) QE.D.

| Part (i) of Lemma 6 shows that an initial functionf may converge under method C to a limit
| function which 1s not a fixedpoint of 7. However, we have:

Theorem 6: For any functional 7 and imtial function f, the sequence {fj} generated

by the descending access method C converges to a prefixedpoint of 7.

This limit function is the greatest among the prefixedpoints of 7 that

are belowf

Proof: The fact that the descending chain {f;} converges to some limit function g, which is

| belowf, is clear. We now show that g is a prefixedpoint of 7,i.e ge7lg] . By definition

g = lim{f;} = lim{glb{f;_1.7f;_13}} -

Since both {f;_1} and {7(f;_{]} are convergent sequences

| g = gb{lim{f;_\Mim{T(f;_1}}},

and by the continuity of 7 and the definition of g

g = gb{lim{f;_\}Lrllim{f;_1}]} = glb{g.7lgl}.

The fact that g =7[g] follows now from the equality g = glb{g,7[gl}.
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Finally, we show that if 4 is any prefixedpoint of T such that 2g f, then A eg. It suffices to

show that Aef; for all i. We prove this by induction on i.

Ifi=0,then fo= f and thus ke fo by assumption. If f; satisfies 2& f; for some i, then:

and thus # is below both f; and 7{f;], implying that

he gift =fi

Q.E.D.

The existence of a greatest prefixedpoint below an arbitrary partial function f can be

independently proved by taking the (ub of the consistent set of all the prefixedpoints of 7 below

f, and using the fact that this (ub is itself a prefixedpoint of 7. Theorem 6 shows that the
descending access method always leads to this greatest prefixedpoint. Note that the set of

fixedpoints belowf need not have a greatest element (in fact, it may even be empty if f =

Ufa p(T) ).

-We can now show that the descending access method is the least access method in the following
sense:

Theorem 7: For any functional 7,if an initial function f converges to g; under the
descending access method C and to g, under some other access method

UA, then g,=g2

Proof: We first prove that for any formula & for which 87{f] exists, £5 5701). The proof is

by induction on the structure of the formula &.

(i) If isF, then clearly g;= f = TT[A

(ii) If & is of the form 7[§|), then by the induction hypothesis £1: 8,701] Since by

Theorem 6, g; 1s a prefixedpoint of 7, we have:

g & lg) e rE = 870)
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(iii) if & is of the form glb{&,>} then g,= 87 and g,& §3f by the induction
hypothesis, and thus

g: € gb{ETATI = TTA

(iv) If & is of the form [ub{&,,&,} then

g1 € &T = wbTAS = TTA

The lub exists since we assume that 87[f] is defined.

Let A be the sequence of formulae (&3. The functions 1x0 exist since we assume that this

sequence converges to g». Since g, = $17] for all {, and the sequence (ST 1S convergent,

gi € um{Ef} = go Q.E.D.

Using Theorems 6 and 7, we can now indirectly show that access methods C and D are

equivalent. One can easily show that any initial function f converges under method D to some

prefixedpoint g, of 7. If we denote by g, the prefixedpoint to whichf converges under the
descending access method C, then g,5¢; by Theorem 6, and g,&go, by Theorem 7.

Consequently, any initial function f converges to the same function under access methods C and
D.

5.3 The Ascending Access Method

In this section we consider the ascending access method C’, which 1s dual to the descending

access method C. The following results (which are stated without proofs) are analogous to

those obtained in subsection 5.2; the main difference 1s that access methods in which the {ub

operation occurs may fail if the [ub of consistent functions is taken.

Lemma 7: Let {f;} be a sequence of functions generated by the ascending access

method C’ for 7 and f. Then:

() Iff ePRE(r)then forall; f;=+[f
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(@i) If f € POST(?) then for all i, f; = 1.

Theorem 8: For any functional 7 and initial function f, if the functions f;

generated by the ascending access method C’ exist, then the sequence

{f;} converges to a posttixedpoint of 7. This limit function is the least

among the postfixedpoints of 7 that are above f.

Theorem 9: For any functional 7,if an initial function f converges to g; under the

ascending access method C’ and to g2 under some other access method

A, then gg.

The following Lemma gives a sufficient condition on 7 andf which guarantees the existence of

&7[f] for an arbitrary formula &.

Lemma 8: For a given 7 andf, if there is a postfixedpoint g of 7 which satisfies

fe g, then for any formula &, the function &7[f] exists.

Proof: We show (by induction on the structure of &) that &7[f] exists and satisfies $Tlfleg

for any formula 5:

(i) If& is of the form F, then §7[f]= f  ¢ by assumption.

(ii) If & is of the form 7[&,], then by the induction hypothesis &7[f] exists and satisfies

&T(fle g, and thus:

ST = rE rlgle ge

iit) If & is of the form glb{&,,F,}, where 87(f1€ g and $7 fe g, then clearly:

ST = ghb{TTASTD = elblg, gl = ¢.

(iv) Similarly, if & is of the form /ub{¥ ,.& 2} where 87(f1e ¢ and 83f1= g, then these two
functions are consistent, and thus their {ub exists and satisfies:

FTL = wo{S TA, SU = luble, g) = ¢ Q.E.D.
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Corollary: For a given 7 and £, if there 1s a postfixedpoint g of 7 which satisfies

fe g, then no access method ¥ can fail for 7 and f.

Note that this corollary does not imply that such anf converges to a limit under U.

The sufficient condition in this corollary 1s clearly not necessary in general. Consider, for

example, the following access method:

Fo = glb{F,T [F}

F |= glb{T [F1T °[F}}

For any functional T and initial function f, all the pairs of functions f;_1, Tlf;_o] to which the
lub 1s applied are consistent, and thus this access method can never fail.

We now show that for the special case of the ascending access method, the condition in Lemma

8 exactly characterizes the cases in which the method does not fail.

Lemma 9: A necessary and sufficient condition for a function f to converge under

the ascending access method C’ is the existence of a postfixedpoint g

of T such that fe g.

Proof: If the postfixedpoint g exists, then by the corollary of Lemma 8 the sequence {f;} is

defined. Since it is an ascending chain, it is a convergent sequence and thus f converges under
method C’.

On the other hand, iff converges under C’ then, by Theorem 8, the limit g of the generated

sequence {f;} is a postfixedpoint of 7. Furthermore, f = g, since {f;} is an ascending chain

whose first element 1s f. We have thus shown the existence of a posttixedpoint g of 7 which

satisfies f € g.

Q.E.D.

By the corollary of Lemma 8 and by Lemma 9, the ascending access method C’ 1s the most

exacting in the sense that:

Corollary: If method C’ does not fail for a given 7 and f, then no other access

method ¥ can fail for 7 and f.
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| 6. The Fixedpoint Method

In this section we finally devise a method which always succeeds and under which any initial

function converges to a fixedpoint. As we show in subsection 6.2, no single access method can

achieve this goal; we thus need a somewhat more complicated method, based on compositions of

access methods. This notion 1s formally defined as follows:

Definition: For a functional 7, an initial function f is said to converge to A

under the composition po U, of two access methods A; and A, , if

f converges to some function g under %, and g converges to 4

under U,.

This definition can be naturally extended to an n-fold composition Uo... 0%0M.

6.1 Properties of the Fixedpoint Method

Definition: The fixedpoint method 1s the composition A o C of the two access
methods C and A .

The main result concerning the fixedpoint method is:

Theorem 10: For a functional 7, any initial function f converges under the

fixedpoint method A o C to a fixedpoint of 7 which is close tof
Furthermore, this fixedpoint 1s the least among all the fixedpoints of

7 which can be reached from f under any composition of access
methods.

Proof: Any initial function f converges under A o C to a fixedpoint 4 of 7, since f
converges under C to a prefixedpoint g of 7 (by Theorem 6), and g converges under A

to a fixedpoint 4 of 7 (by Theorem J).

We now show that #4 is close to the initial function f. Let { be an arbitrary fixedpoint of
7. Then:

(i) If t= f , the prefixedpoint ! is below f , and by Theorem 6, the prefixedpoint g to
whichf converges under C satisfies { £ g. Consequently,

l= im{r OU) € lim{r@lgl = 4
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and thus (E4.

(ii) If f=! , then clearly g =, since g= f . This implies that:

b= im{rgl & lim{r®ul = 1

and thus A=!l.

Finally, we show that 2 1s the least among all the fixedpoints of ¥ which can be reached

from f under any composition of access methods.

Suppose that f converges to a fixedpoint { of 7 under the composition ¥, oY, ;0...0

A, of access methods. Let us denote by g; (i=1...n) the successive limit functions to which f

converges under the partial compositions %;o...o%, (in particular, g,=!). The function

f converges to the prefixedpoint ¢ under C. We now show that g & g; for all i=1,..,n.

Since f converges to g and g; under the respective methods C and %,, we have (by

-Theorem 7) that g € g, . The function g, converges to g, under A, , and to some

prefixedpoint g," under C (this convergence is assured since any initial function converges

under C ). By Theorem 6, g;,’ is the greatest among the prefixedpoints of 7 which are

below g; . However, g is one such prefixedpoint and thus g & g;" . On the other hand, g,’ =

g2 by Theorem 7; we thus conclude that g £ g5 .

Continuing this type of reasoning for i=3,..n, we can show that g &g; for all { . In

particular, g, 1s the fixedpoint (of 7, and thus ge.

We still have to show the relation 2 =! between the fixedpoints 4 and! obtained under the

compositions A o C and A, 0... 0%, respectively. We already know that g=/, and that

the prefixedpoint g converges to ~ under the direct access method A . By Theorem 5, the

fixedpoint4 is close to g , and in particular # €% for any fixedpoint k of 7 satisfying g
c k . Since { is one such fixedpoint, we obtain the desired result A=!

Q.E.D.

An 1nitial function f which converges under the ascending access method C’, converges to a
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pcstfixedpoint g of # (by Theorem 8). The function g is assured to converge to a

fixedpoint 4 of 7 under the direct access method A , and thus any f converges under A o

C’ to a fixedpoint of 7 , provided only that method C’ does not fail for f . By Lemma 8,

this condition 1s equivalent to the existence of a postfixedpoint of 7 above f . The dual to
Theorem 10 is therefore:

Theorem 11: For any functional # and initial function f such that there exists a

postfixedpoint of ¥ above f, the function f converges under A o

C’ to a fixedpoint of 7 which is close to f . Furthermore, this

fixedpoint 1s the greatest among all the fixedpoints of 7 which can

be reached from f under any composition of access methods.

The proof of Theorem 11 1s analogous to the proof of Theorem 10; the additional assumption

about the existence of a postfixedpoint 1s used only in order to establish the existence of the

appropriate limuts.

Two other compositions of access methods which are equivalent to A © C and A o C’ are

characterized in the following lemma:

Lemma 10:

({) Forany rand f, f converges to the same function under A o C and
C'oC.

(11) For any T and f, f converges to the same function under A o C’

and C o C’, provided that C* does not fail.

Proof:

(1) The function g to which f converges under C is a prefixedpoint of £. By Lemma

7(1), methods A and C’ behave in the same way for prefixedpoints, and thus the

compositions A o C and C’ o C are equivalent.

(ii) Similar, by Lemma 7(i). Q.E.D.

An arbitrary initial function f can be considered as a “distorted fixedpoint” to which two

types of corrections must be applied:

(i) Defined parts, which are either changed or replaced by w under the

application of 7, must be deleted from the function since they do not

represent possible fixedpoint values.
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(ii) Undefined parts, which are replaced by defined values under the

application of 7, must be completed with the appropriate fixedpoint
values.

The descending access method performs only the first type of correction, while the ascending

access method performs only the second type of correction. None of them can transform an

arbitrary initial function f to a fixedpoint of 7, but when both of them are applied to f, a

fixedpoint of 7 1s obtained. The order in which the two correcting stages are performed (i.e.,

C’ 0 C or C 0 C’ ) may affect the fixedpoint obtained, since the two access methods C and

C’ do not commute in general. Furthermore, the composition C o C’ in which the deletion

stage comes after the completion stage may fail, while the fixedpoint method C’ eo C cannot.

Let us’ denote by ST the set of fixedpoints of 7 which can be reached from f by
compositions of access methods. The following immediate corollaries summarize the structure

of ST in the case where method C’ does not fail for 7 andf

Corollaries:

(i) The set ST contains a least element (accessed by C’ oC) and a

greatest element (accessed by C oC’).

(ii) If f converges to the same function #4 under C’o C and C o C’,

then #4 is the only fixedpoint of 7 which can be reached from f
(by any composition of access methods).

(m) If f 1s either a prefixedpoini or a postfixedpoint of T , which

converges to 4 under the direct access method A , then 4 is the

only fixedpoint of 7 which can be reached from f (by any

composition of access methods).

(lv) If f is a fixedpoint of 7, then f converges to itself under any

composition of access methods.

(v) All the fixedpoints in $7 are close to f (however there may be

other fixedpoints which are close to f but which are maccessible from

f by any composition of access methods).

(vi) All the fixedpoints in ST are consistent with the initial function f
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If access method C’ fails for 7 and f , then the set sT need not have a greatest element,

and the functions in ST need not be consistent with f . However, if f is either a

prefixedpoint or a postfixedpoint of 7, then C’ cannot fail for 7 andf .
|

Theorem 10 guarantees that for any initial function f , there 1s at least one fixedpoint 4 of 7

which is close to f . For a fixed functional 7, we can consider the fixedpoint method A o C

as a functional M, which maps any function f to some fixedpoint of 7 that is close to f .

The functional M, maps the set PF of partial functions (over the appropriate domain) onto

the set FXP(r), since any fixedpoint # of 7 is mapped to itself under $M, . Our aim in

the rest of this subsection is to study the monotonicity and continuity properties of MR, .

Theorem 12: For any functional 7, IR. : PF-FXP(r) is monotonic.

Proof: By induction on the structure of formulae it 1s easy to show that for a fixed functional

T , any access method 1s a monotonic mapping from initial functions to limit functions

(whenever they exist). Consequently, the composition A o C (for which limits always exist) is
also monotonic.

Q.E.D.

Note that the existence of such a monotonic mapping from PF onto FXP(7) is not surprising

(due to the many structural similarities between the two sets); however, the theory of access

methods enables us to define the mapping in a simple and constructive way.

The functional mn. whose monotonicity was shown above, 1s not continuous. This fact does

not stem from the special way in which I, is defined. The following theorem shows that for

certain functionals 7, any such mapping is inherently noncontinuous.

Theorem 13: There are functionals 7, for which any mapping ©: PF-FXP(r),

which assigns to each partial function f a fixedpoint of 7 that 1s
close tof , must be noncontinuous.

Proof: Let 7 be the following functional over the integers:

T[Flx):1f F(x-1)=0 then F(x)t0.F(x+ 1) t Oe x
else F(x=1)t 0. F(x+ 1) t Qe x .

The special property of this functional is that for a certain sequence {f;} of initial functions,

each f; has exactly one fixedpoint -- { -- which is close to it. By the assumption on ©,
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8[f;1=Q for all i, and thus 4m{8[f;]}= {&. We shall use this fact in order to show that ©

does not preserve the lim of convergent sequences.

The two subterms 0. x in the functional guarantee that any fixedpoint of 7 1s undefined for x =

w. For other values of x, 7{F)x) is defined in terms of both F(x-1) and F(x+1) , and thus

any fixedpoint of 7 is either © or total over the defined integers. Among the total functions,

only two types of functions are fixedpoints of 7 :

(1) The constant functions:

g(x) =c for some defined integer c ;

(11) The split-constant functions:

vw _[0ifxsgy SE
glx) = cif xs for some defined integers ¢ and j.

Consider now the ascending chain of functions {f;} , where

0 if x <i

fi) = lo otherwise.
Each f; is a postfixedpoint of 7, which descends to the fixedpoint { of 7 under the direct

access method A . We now show that is the unique fixedpoint of ¥ which is close to f; .

Let A be a fixedpoint of 7 which is close to f; . By definition, 2 must be below any

fixedpoint of 7 which is above f; . Two such fixedpoints above f; are:

g(x) =0

0 if xsi

LOL

The only fixedpoint of 7 which is below both g, and g, is § , since no other nontotal

function can be a fixedpoint of 7. On the other hand, one can easily show that § itself is a

fixedpoint which is close to f;. We have thus shown that { is the unique fixedpoint of

which is close to f; . Using the assumption on 8, we can now deduce:

41



Manna & Shamir

O[f;1=Q for all i .

Let us consider now the function zero=lim{f;} . Since zero 1s a fixedpoint of 7, it 1s the

unique fixedpoint of 7 which is close to itself, and thus:

Bllim{f;}] = Blzero] = zero .

We have thus shown that © does not preserve the limit of convergent sequences (or even the

lub of ascending chains).

Q.E.D.

6.2 The Insufficiency of a Single Access Method

Theorem 10 showed that the composition A o C of access methods has the interesting

property that any initial function converges to a fixedpoint under it. A natural question is

whether there exists some single access method % which has this property, i.e., whether the

fixedpoints of 7 can be reached from arbitrary initial functions by means of a single limiting

process.

A plausible candidate for such an access method is:
Fo = F

Fo,.1 = T[Fy;] J forall 120.
Foiro=gtb{Fo, 1.7 (Fo; 11}

In this method, the functions with odd indices are defined as in method A , and the functions

with even indices are defined as in method C . Unfortunately, one can easily show that certain

initial functions f do not converge under this “alternating access method.”

In this section we formally prove that any such attempt to construct a single access method, in

which anyf converges to a fixedpoint, must fail. It suffices to consider for this purpose the

simple functional 7y[FXx):F(x+1) over the natural numbers. What we actually show is that

for any “candidate” access method ¥ , one can construct an appropriate initial function f such

that f does not converge to a fixedpoint of 7 under U .

Two useful properties of the selected functional 74{FXx) : F(x+1) are

(i) For any two functions f,, f»:
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Tolglb{f1.f2}]) = gib{Tolf117olf2]},

(11) For any two consistent functions fi, fo .

Tollub{f1 f2}) = lub{7olf J7olf2)} .

Let & be an arbitrary formula. The interpreted formula To 1S a composition of Tg, glb and
lub, and To commutes with both the g/b and (ui operations. We can thus push each occurrence

of T4 In iM% all the way inwards, and obtain a modified formula in which various powers of
To are combined by a structure of gb and {ub operations.

Example 9: Consider the formula 3:

T [ub{F,T (glb{F,T [F}}]}].

For the special case of the functional 7, To can be transformed in the following way:

7o[lub{F,7ol glb{F,7[F1})}] »

7 ollub{F,glb{ro[F17, P[FI}}] »

lub{To[F17olglb{7[Flr PF] -

lub{To[Fl,glb{toP [Flr CF] .

In this modified formula, there are three powers of To (Tq, To? 70); these powers are
connected by a structure consisting of one glb and one lub operation. OC

T aT T

For a formula & °, we define the depth of & °, d(& °), to be the greatest power of To occurring

T :

in the modified formula. Since 70%) = flx+h), the value of & °lfXx) is totally determined

by the values of fix’) for x x’ < rd 0). We shall later use the fact that any change in the

values of f(x’) for other arguments x’ cannot affect the value of Le).
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We can now prove the theorem:

Theorem 14: Let Tq be the following functional over the natural numbers:

| TolFXx) : Flx+ 1).

Then there is no single access method ¥ under which any initial

function f converges to a fixedpoint of 7.

Proof: We first give an informal overview of the proof. Suppose that the theorem is not true,

and access method U = {8}, has the desired property, We derive a contradiction by

constructing an initial functionf in such a way that for some ascending sequence ig <i; <... of
indices,

T w 1f kis even

BHO = {yi i odd

T

The sequence of functions (8; °[f)} thus cannot converge, since it changes value infinitely

many times at x = 0.

The function f is defined as the lim of some convergent sequence of functions {g;}. This
sequence satisfies, for each k:

T w if kis even

35,7600 = {gir} is ona.

For any fixed function gi, the other functions gy for k’ > k, are constructed in such a way that

g(x) and g(x) are identical for all 0 <x < a; Consequently, the limit f of {g;} also
satisfies:

T

fix) = glx) forall 0<xg a(S; 9)

T T

Since the value of &; Te Xo) depends only on the value of gg for the first a(S;
arguments, we obtain:
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T T

This equality establishes the oscillating nature of the sequence of values (3; 1X0), which 1s
the desired result.

We now formally define the convergent sequence of functions {gj} and the ascending sequence

of indices {ij}.

As first elements in these sequences, we take go={ and iy = 0. We justify this selection by
: T

noting that 0IANO)=w , since © is a fixedpoint of 7 and thus for any formula &,& °[Q]
= {l.

We now proceed to define gyandi;. As discussed above, we want g(x) to be identical to g(x)
T :

for any 0 sx < a(S; We thus define:
T

x) if 0<x<dd;
g(x) = { Bol¥) =a i)0 otherwise.

By assumption, any initial function converges under ¥ to a fixedpoint of 7,, and thus g,

converges under U to some fixedpoint 4 of 7. Since g; converges to the same fixedpoint zero

under the two extreme compositions C’ o C and C o C’, the function A must be zero. By

definition of convergence, there is some index i; such that

T

and we have thus found the second function g¢; and second index ij.

We now briefly outline the next stage in the construction of {gj} and {ij} (i.e., g2 and ip). Let m,
be defined as:

] T 7

my, = max( 2, a(S; °)  d(S;.°)).

The function g, 1s defined as:
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_ [&ilx) if Osxs<my82%) = lo otherwise .

This function converges to £ under both compositions C’ o C and C o C’, and thus g,

converges to f under ¥ as well. This convergence implies the existence of an index ip >i,
such that

T

8;lg) = w.

The other functions gj in the sequence are constructed by taking an appropriate initial segment

of g,_1 and changing the value of the constant tail from 0 to @ or from w to 0 (according to

the oddity of k). The boundary of the initial segment, my, 1s defined in such a way that mj, 2

k, and thus the sequence gj} of functions is assured to converge at any argument ¥ (since g(x)

1s constant for all k 2 x). The function f = lim {gs} 1s thus defined, and by its definition, it
satisfies:

To _&To _[ w if xiseven| , FXO) = 5, 80) = { 0 if xisodd.

Q.E.D.
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Future Research

This paper covers only the lattice-theoretical aspects of access methods. Other problems which

might be of interest include the computability aspects of access methods, the relations between

access methods and substitution/simplification techniques for evaluating fixedpoints, and

characterizations of those cases in which a single access method 1s sufficient in order to access

fixedpoints.
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