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Manna & Shamir
Introduction

A recursive definition of the form F(x)= 7[FXx) (where F is a function variable and 7 is a
functional) can be considered as an implicit functional equation. In general, such a functional
equation may have many possible solutions (fixedpoints), all of which satisfy the relations
dictated by the recursive definition. Of all these fixedpoints, only one, the least fixedpoint, has
been studied thoroughly; however, recursive definitions have other interesting solutions (e.g.,
the optimal fixedpoint discussed in Manna and Shamir [1976)). By considering the properties of
the entire set of fixedpoints, a unified theory for the various fixedpoint approaches can be
developed.

One of the most fundamental results in the theory of recursive definitions is Kleene’s Theorem
which states that (under suitable conditions) the least fixedpoint is the least upper bound (/ub)

of the sequence @, 7[0),7%4Q),. .., where the initial function & is the totally undefined function.
This theorem gives a constructive method by which the least fixedpoint can be “accessed” from

the initial function Q.

The purpose of this paper is to generalize Kleene’s Theorem so that arbitrary fixedpoints of a
recursive definition can be accessed. This is done by altering Kleene’s access method in three
ways: by allowing an arbitrary initial function, by generating the corresponding sequence of
functions in a different manner, and by introducing a modified notion of convergence.

Part I contains all the preliminary definitions and results. Our, slightly nonstandard, model of
recursive definitions is presented in Section 1. In Section 2 we prove some properties of
functionals in this model, and in Section 3 we study the elementary closure properties of three
important sets of functions: fixedpoints, prefixedpoints, and postfixedpoints.

Our generalization of Kleene’s Theorem is discussed in Part II. In Section 4, we consider the
behavior of Kleenc’s “direct” access method for initial functions other than § . In particular,
we show that this generalized sequence of functions may fail to converge, but whenever it
converges the limit is a fixedpoint which is “close” to the initial function.

More general types of access methods are defined in Section 5. In essence, each such method
defines a sequence of transformations which should be applied to the initial function. These
transformations are defined in terms of the three basic operations: functional application, glb,
and lub. Among the access methods, we pay special attention to the “descending” access method.
The sequences of functions generated by this method always converge, but their limit need not
be a fixedpoint.

Finally, in Section 6, we show that under the composition of the “descending” and “direct”
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access methods, any initial function converges to a “close” fixedpoint. We then prove that no
single access method can enjoy this property, and thus the composition of methods is essential.
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Part I: Recursive Definitions and Their
Fixedpoints

1. The Model
1.1 The Basic Domains

The purpose of this subsection is to introduce the basic terminology about partially ordered sets
used throughout this paper.

Definition: A binary relation & over a nonempty set S is a partial ordering of S if
e is a reflexive, transitive and antisymmetric relation. The pair (S,=)
is called a partially ordered set (poset).

Definition: Let (S,£) be a poset. For a subset A of S, an element x € S is called:
(a) least if x€ A and for all ye A ,x€y;
(b) greatest if xe A and for all ye A , yEx;
(c) minimal if x € A and there is no y€ A, yw x for which y&x;
(d) maximal if x€ A and there is no y€ A, y=x for which x& y ;
(e) lower bound if for all ye A ,xey;
(f)  upper bound if for all ye A, yex;

(g) greatest lower bound (gib) if x is a lower bound of A , and for any
other lower bound y of A , yex;

(h) least upper bound (lub) if % is an upper bound of A , and for any other
upper bound yof A ,xE9y.

Definition: A semilattice is a poset (S,g) in which any two elements in S have a
glb. A complete semilattice is a poset (S,€) in which any nonempty
subset of S has a gib.

Such structures are usually called “lower semilattice” and “complete lower semilattice”. The
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notions of “upper semilattice” and “complete upper semilattice” are similarly defined with the
glb replaced by {ub in the definition. However, we omit the word “lower” since in this paper we
work exclusively with lower semilattices and no confusion is caused.

Definition: A subset A of S in a semilattice (S,5) is said to be consistent if it has
an lub. An element x € S is said 7o be consistent with an element y € S
if the set {x,3} is consistent.

Semilattices may contain both consistent and inconsistent sets. The binary relation of being
“consistent with” is clearly reflexive and symmetric, but not necessarily transitive. Note that if
the semilattice is complete, the existence of some upper bound implies the existence of a {ub.
Any subset of a consistent set is also consistent in this case, but pairwise consistency of elements
does not imply the consistency of the set as a whole.

Definition: A sequence xg,X,Xp, ... of elements in a poset S is an ascending
(descending) chain if x;s%;, 1 (x;, 1E%;) for all i. The sequence is a

chain if it is either an ascending or a descending chain.

Definition: A flar semilattice is a semilattice in which all chains contain at most
two distinct elements.

It is clear that any flat semilattice is complete; it contains a bottom element @ (which satisfies w &
d for all d), and all the other elements are unrelated. The importance of this structure in the
theory of computation stems from the fact that they represent the two-state discrete type of
knowledge which often occurs during a computation: A variable either contains a well-
characterized value or has an undefined value (if used without proper initialization); an
operation (such as a division of two numbers) may either yield a definite result or terminate as
“illegal; a procedure call may either return a proper result or loop forever. In all these cases,
one possible extreme is a totally defined entity, while absolutely nothing is known about the
other (besides its very “undefinedness”).

All the basic domains considered in this paper are flat semilattices, denoted by D. Two domains
of special importance are the Boolean domain B =({w, true, false},€) and the domain of natural
numbers N =({w,0, 1,2, ...},5)
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1.2 Higher Type Objects

In this section we inductively define the objects of all finite types over the basic domain D;.
The two basic notions used, that of a convergent sequence and that of a continuity, are defined
in a nonstandard way. The classical definition of these notions is heavily oriented towards the
needs of the least fixedpoint approach; we need more balanced definitions in order to construct
a general fixedpoint theory of recursive definitions. In particular, we no longer concentrate on
ascending chains and their /ub, but consider also descending chains and their glb, as well as
more general forms of convergence.

Definition: A mapping ¢ : A - B between posets is monotonic if ¢(x) = ¢(y) in B
whenever ¥ £ y in A.

Definition:  The set of (finite) types is defined inductively as follows:

(i)  Any basic domain D; is a type; the objects of this type are the elements

(ii) Ife,,.... @y are types, sois ¢;x ... X &p; the objects of this type are
the vectors (xy,. ... x3) where each ¥; is an object of type @;.

(iii) If @}, 0, are types, so is [¢;- 0,}; the objects of this type are the

monotonic mappings from objects of type @ to objects of type @,.

There is a natural way to extend the & relation to the set of objects of any finite type, using the
following inductive definition:

Definition:
() If¥=(x),....x,) and y=(y;,-. yp) are objects of type & x ... X p,

then ¥ € j iff for all 1 <isk, ;€ y; as objects of type ;.

(ii) If x and y are objects of type [0~ @,], then x € y iff for any fixed
object z of type @, x(2)= y(z) as objects of type 5.

It is easy to see that the set of objects of any finite type is a complete semilattice under this
relation.
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The notions of a convergent sequence and limit are usually identified with those of an
ascending chain and /ub, respectively. Our definition of these notions is more inclusive:

Definition: A sequence of objects {xj} of some finite type @ is said to converge to

the object ¥, of type ¢, written as x,, = lim{x}, if:

(i) ¢ is some basic domain D;, and all the elements in {xj} are equal to ¥

from some index j, onwards.

(i) oise;x... x o, and for any lsisk, x,islim{xji} (where xji is the

i-th component of ¥).

(iii) @ is [#,- @] and for any fixed object z of type &, x,z) & lim{xj(z)}

(these are objects of type @5, for which the notion of convergence is
already defined).

Parts (ii) and (iii) in this definition are standard, and once we define our notion of convergence
in the basic domains, it is carried over to all finite types. It is easy to see that any ascending or
descending chain of any type is a convergent sequence (with lub or glb, respectively, as limits).
The following example shows that the converse is not true:

Example 1: Let {f;} be a sequence of objects of type [N -NJ, defined by:
i ifxzi
f@e{ 0ifx<i

i .
wifx=w

No two elements in the sequence {f;} are related by &, but the sequence converges to the object

zero of type [N - N]

ifxzw

w
zero(x) = { 0 otherwise

This follows immediately from the fact that for any argument ¥ of type N, the sequence {fy{x)}

of elements of type N is convergent, i.e, its elements are O for all sufficiently high i. O

Using the notion of a convergent sequence, we can define our notion of continuity:
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Definition:

(i) An object (x;,....%)of type ¢ x...x @ is continuous if all the

objects ¥; are continuous.

(ii) An object x of type [¢,-0,])is continuous if for any convergent
sequence {zj} of objects of type ¢, the sequence {x(zj)} of objects of

type @, is convergent and x(Zim{zj}) = Zim{x(zj)}.

Since the notion of a convergent sequence is more inclusive than that of a chain, our notion of
continuous objects (Le., of limit-preserving mappings) is potentially more restrictive than the
standard notion of chain-continuity. The following example shows that in fact an object can
preserve the {ub and glb of ascending and descending chains, and still be noncontinuous in our
system:

Example 2: Let f be an object of type [N -NJ] We say that f is closed if the sequence {x;}
defined by

xo= 0 and %;, 1= flv) (ie, xizj(i)(O) )

consists of a finite number of distinct elements, none of which is w. It is clear that a necessary
and sufficient condition for a function f to be closed is the existence of numbers 0 si<j such

that j(i)(o)s j(f)(o)aw, in which case the sequence {x;} is periodic from some point onwards.

Let the object © of type [[N -+ NJ]- B] be defined as follows:

o1f1 = { true if f contains a finite sequence of pointers

“lw otherwise
The object © preserves the lub and glb of ascending and descending chains, since the finite
number of values fl¥;) which constitute a sequence of pointers are either constructed or

destroyed at some finite point in any chain {f;}, and thus e[lim{fl}]i GVk] for some k.

However, © is not continuous in our model. Consider, for example, the following sequence of
objects {f;}:

x+1 ifx<i
X ifx2:

£ e
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The sequence converges to the object

folx) =%+ 1.

It is easy to see that 8[f,]is w , while for any i, 8[f;] is true. Thus 8Uim{f;}) 2 lim{B[f;)}and

O is not continuous. (m]

From now on, we shall be interested mainly in the lower three types of objects: values (objects
of type D;), functions (objects of type [D;x ... x Dp-=Dpgl, and (single-argument) functionals

(objects of type [[D} x ... x D} »D}1-[Dix ... x D}»D2%1)). Since we shall not deal
with systems of recursive definitions, we do not have to consider multi-argument functionals
(for which the fixedpoint theory obtained is somewhat different).

1.3 Term Functionals end Recursive Definitions

Among all the functionals 7, we shall be interested mainly in rerm functionals, which are
syntactically expressed as compositions of constants, monotonic base functions g;, a function

variable F, and individual variables x;. Associated with each symbol (including the variables)

is a type, and the composition of these types must be legal.
Example 3: A term of the form
if glx;,x;) then x, else g(x,, x3)

can be legal only if the types of xy, x5, and ¥3 are the boolean semilattice B, and the type of g is
(B x B » B]. This can be shown by the following argument:

Since g{x;,x;) appears in the if part, the range of this term must be B. Since the two subterms
x5 and g(x,,x3) must have identical ranges, the type of x; is necessarily B. Therefore the type
of g is of the form [B x ?» BI. In order to make the term g{x,, x;) legal, x; must be of type
B, implying that "?" is also B. We can thus conclude (from the term g{x5,x3)) that x5 is also of
type B. a

A term functional is denoted by T[F)(x},....xp), where x),.... % are all the individual variables

occurring in it, in some order. It can be interpreted as a functional in the following way:
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Given a function f and an argument vector @=(d,,. ... d}) (of the appropriate types), the value

of T[f)@) is the object obtained by evaluating the variable-free term in which F is interpreted
asf and ¥; is interpreted as d;. The function 7[f] to which f is mapped under 7 is the function

abstraction AX 7[f)(x). The fact that £ maps monotonic functions to monotonic functions is
immediate from the fact that all the base functions in T are monotonic, and the set of
monotonic functions is closed under composition.

Definition: A recursive definition 1s an equation of the form

F(x) = 7[F)(®),

where T is a term functional.

In order to make this equation meaningful, ¥ must map functions of the appropriate type
(D, x... x Dy = Dol to functions of the same type.

11
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2 Properties of Term Functionals

The fact that term function& are monotonic mappings which preserve the {ub of ascending
chains is one of the oldest and most basic results in the recursive definitions theory. In a
simple form it appears in Kleene [1952], while a detailed proof of this result for a model of
functionals which is quite similar to ours appears in Cadiou [1872] In this section we prove
the stronger result of continuity in our model, and discuss the behavior of term functionals
under the glb and {ub operations over arbitrary sets of functions (rather than over chains).

2.1 The Continuity of Term Functionals

Under the classical definition of continuity, any mapping which preserves the lub of ascending
chains is necessarily monotonic. However, a mapping © can preserve the limits of convergent
sequences without preserving a {ub of chains, or without being monotonic at all. This happens,
for example, when © maps an ascending chain {x;} into a descending chain {8(x;)} provided

that

Olim{x;}) = O(lub{x;}) = glb{B(x))} = lim{B(x,)}.

The property of continuity is thus totally independent from the property of monotonicity in our
model.

We now prove the basic result:

Theorem 1: Let 7 be a term functional and {f;} a convergent sequence, Then

{r{f;}} is a convergent sequence and
lim{r(f;}} = rllim{f;}].

Proof: The proof is by induction on the structure of 7, using the fact that term functionals
contain finitely many basic constructs. Note that the monotonicity of these constructs is not
used at all.

If 7 is a variable x; or constant c, the proof is trivial.

Ifris of the form g(ry,.... T,), we may apply the induction hypothesis that all the subterms 7;

are continuous. Let ¥ be fixed. Then for any 1 <% <n, there is an index ji such that

12
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fk[j}](f) e 7llim{f;})%) forallj2j,.

Let jo be max(j,, . ... jp)- Then for all j 2 jo:

TR = gr )R, - TolfXE)
g7 [im{f Y@, .., 7 Llim{f})E)

= T[lim{fi}](f).
Finally, if 7 is of the form F(7,, . . .. 7,), we define jo in exactly the same way as before. We
denote the vector (7,[lim{f;})%), ..., 7,lim{f;}Y%))by ¥, and thus by the definition of 1,

rlim{f})®) = Um{f)H) .

Since {f;} is a convergent sequence, there is some Jo such that

fj@) = (lim{f;})® for allj2 f; .

Let f;’ be max(jo, 7). Then we have, for all j 2 ;"

Tfj)%) = fj(f;[fj](a?). o Tlf5%)
= f{rlmif}IE), ., o llim{f}NE)
= £ = Um{fIG) = rlin{f}E)

Q.ED.

Some of the consequences of Theorem 1 are:
Corollary:  Let T be a term functional. Then:

(f) If {f;} is an ascending chain, then {7{f;} is an ascending chain and

lub{r(f,)} = rliub{f;})

(#) If {f;} is a descending chain, then {r{f;} is a descending chain and
gb{rlf,dt = vlgb{f;})

13
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Proof:

(i) Any ascending chain {f;} is a convergent sequence, and {ub{f;} = lim{f;}. Since term
functionals are monotonic, {[f;]} is also an ascending chain and lub{7[f;]} = lim{T[f;]}. By

Theorem 1,
tub{t(f;}} = lim{7lf;)} = Tlim{f}] = T{lub{f;})

(ii) The proof is similar.

Q.ED.

2.2 Behavior Under the glb and (ub Operations

Lemma 1: For any monotonic functional 7:

() If{f,}is anonempty set of functions, then

rlgb{f.}) & gb{r(f, )} .
(ii) If {f}is a consistent set of functions, ehen so is {r[f,J},and

lub{r(f, )} = TLub{f 3]

Proof:

(i) Since 7 is monotonic and gb{f e f, for all a, 7lglb{f,}]1& 7[f,] for all «. Thus
T{glb{fu}] is a lower bound of the set {7[f,)}, and therefore T(gib{f,}1& gib{r(f.J}.

(ii) Since {f,} is consistent, its {ub exists. By the same procedure as above, T[lub{f}] can be
shown to be an upper bound of {r[f,}}. In our model this implies the existence of lub{r[f 1},
and we have (ub{r(f J}= r[lub{f }]. Q.E.D.

According to corollary (ii) of Theorem 1, the inequality 7{glb{f.}]= glb{T[f. ]} becomes an

equality if 7 is a term functional and {f.} is a descending chain. This result can be
strengthened by showing that for a wide subclass of term functionals in our model, the words “a
descending chain” can be replaced by “a consistent set”. Mappings which preserve the gib of
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consistent sets of arguments are defined and studied in Berry [1976] in connection with the

bottom-up computations of least fixedpoints.

The dual property of preserving the /ub of arbitrary consistent sets of functions holds only for a

very restricted subclass of term functionals (mainly those in which the term T{FXx) can be
simplified, for any given ¥, , to a term with a single occurrence of F). The problem in more

realistic cases is demonstrated by the following example:

Example 4: Let 7 be the following functional over the natural numbers:

7[FXx): Flx+1)-F(x+2)

(where 0.w=w. (0 =w). Define the functions

0 ifxis odd
w otherwise

0 ifxis even
fita) = {w otherwise

fa = |

Then f ; and f; are consistent, but

lub{r[f,17f2)} = ub{Q.Q} = O 2 zero = Tlzero) & T[IUd{f, fo}] .

15
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3. Properties of Fixedpoints, Prefixedpoints
and Postfixedpoints

A recursive definition F(x)= 7[f)(x) can be considered as an implicit functional equation in F.
With each such recursive definition, we associate three important sets of functions: fixedpoints,
prefixedpoints, and postfixedpoints.

3.1 Closure Properties

Definition:

(i) A partial function fis a fixedpoint of a functional 7, or of a recursive
definition F(x)=7[FXR), if f= 7[f] The set of all fixedpoints of 7 is
denoted by FXP(r).

(i1) A partial function fis a prefixedpoint of a functional T, or of a
recursive definition F(@) =7[F)7) , if fe7[f]. The set of all
prefixedpoints of 7 is denoted by PRE(7) .

(ii1)) A partial function fis a postfixedpoint of a functional T, or of a
recursive definition F(¥)=7[FX%),if 7[fJe f . The set of all
postfixedpoints of 7 is denoted by POST(7).

Example 6: Consider the following recursive definition, in which F is of type [N x N - NIJ:
F(xy) = if x= 0 then y else F(F(xy-1),F(x-19)).

The following three (quite different) functions are all fixedpoints of this recursive definition, as
can be shown by direct substitution:

(i) filxy)=if x=0 then y else w;
(ii) folxy)=if x2 O then y else w;
(iii) fz(xy) = max(xy).

The recursive definition has infinitely many more fixedpoints. A whole family of such
fixedpoints is

(iv) fy(x9)=if x= 0 then y else a(x)

16
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where a(x) is any function over the natural numbers satisfying
a{x) = 0 and a(a(x)) = a(x) for all x> 0.

Examples of functions satisfying this conditions are the identity function, any nonzero constant
function, or the function which assigns to any n 2 2 .. greatest prime factor (with a( 1) = 1).

The totally undefined function Q is clearly a prefixedpoint of any recursive definition; in our
case it is an example of a prefixedpoint which is not a fixedpoint.

An infinite class of postfixedpoints which are not fixedpoints of this recursive definition is

9y ifO0gx<gi
gi(x, 9) { w otherwise
for alli 2 1. a

By definition, it is clear that a partial function  is a fixedpoint of a functional 7 if and only
if it is both a prefixedpoint and a postfixedpoint of 7 (that is, FXP(7) = PRE(T) n POST(7) ).

In this section we summarize the closure properties of the sets FXP(r), PRE(7) and POST(7)
under the operations {ub, glb and lim. These properties belong to the “folklore” of known but
seldom stated facts about recursive definitions.
Lemma 2: For any monotonic functional 7:

(#) 7 maps FXP(r),PRE(7) and POST(r) into themselves.

(ii) PRE(T) is closed under the (ub operation over consistent sets.

(iii) POST(7) is closed under the glb operation over nonempty sets.
Proof:

(1) Immediate from the monotonicity of 7.

(ii) Let {f«} be a consistent subset of PRE(r) , Then for each «, f, ©7[f,]. Since

lub{f .} exists, fo €lud{fy}, and T is monotonic, we have

So & Tlfo) & llub{f 1.

17
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Thus T[lub{f,}] is an upper bound of {f,} , and therefore
lub{f,} & Tlub{f,}].
In other words, {ub{f} is also a prefixedpoint.
(iii) Similar. Q.ED

It is not hard to show by appropriate counterexamples that PRE(7) need not be closed under
glb, POST(T) need not be closed under (ub, and FXP(7) need not be closed under either
operation.

Let us turn now to consider yet another operation -- the &m of convergent sequences.

Lemma 3:  For any term functional 7, FXP(r), PRE(T) and POST(r) are all
closed under the lim operation.

Proof:

(i) Let{f;} be a convergent sequence of fixedpoints of 7. By Theorem 1 we have:
rllim{f;}] = lim{r[f;)} = lim{f}},
and thus lim{f;} is also a fixedpoint of 7.

(ii) Let {f;} be a convergent seqhence of prefixedpoints of 7. Then for any i, f; =7[f;]. By

the definition of the lim operation we have
lim{f;} € lim{7(f;}},

By Theorem 1, lim{r(f;}} exists and lim{r[f;]} = (lim{f;}). Thus
lim{f;} € rllim{f;}],

or equivalently lim{f;} is a prefixedpoint of 7.

(iii) Similar to (ii). Q.E.D.

An important special case is:

18
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Corollary: For a term functional 7, FXP(r), PRE(7) and POST(r) are all
closed under the {ub and glb of ascending and descending chains.

3.2 Maximal and Minimal Fixedpoints

We turn now to study those fixedpoints located at the extreme ends of FXP(r) -- the
maximal and the minimal fixedpoints of 7.

As usual, a maximal fixedpoint of 7 is defined to be a fixedpoint which is not less defined
than any other fixedpoint of 7. The set of all maximal fixedpoints is denoted by MAX(r).

A basic property of MAX(7) is:

Theorem 2: For a monotonic functional 7,
if f e PRE(T) then f =g for some g e MAX(T) .

Proof: This is quite a straightforward application of Zorn’s Lemma which states that if (S,€)
is a nonempty partially ordered set in which any totally ordered subset has an upper bound,
then S contains a maximal element (see e.g. Dugundji [1966)).

“For our purposes, we take the set
S={hePRE(T)| feh}

with the standard partial ordering = . This set is not empty since fe S . If S, is a totaily
ordered subset of S , it is in particular consistent, and thus ubS; exists. By Lemma 2(ii)

lubS, is a prefixedpoint of 7 , and it clearly satisfies felubS; . Thus ubS,e S and
therefore the subset S; has an upper bound in S.

We may now apply Zorn’s Lemma, which guarantees the existence of a maximal element g €S .
By definition, f= g and g £7(g). To show that g is a fixedpoint of T, we note that by
Lemma 2(i), r{g]is also a prefixedpoint of 7 in S , and thus the assumption that g =7[g]
contradicts the maximality of gin S . Q.E.D.

Since for any functional 7, PRE(7) is nonempty (0 € PRE(T)) , we have:
Corollary: For any monotonic functional 7, MAX(7) is not empty.

This corollary guarantees the existence of at least one maximal fixedpoint, but it need not be



Manna & Shamir

unique. As a matter of fact, monotonic functionals may have any number of maximal
fixedpoints in our semilattice model.

Let us consider now the minimal fixedpoints of a monotonic functional 7 . The main result
(the Least Fixedpoint Theorem) states that a monotonic functional ? has a least (and thus a

unique minimal) fixedpoint, which we denote by Ifxp(7). This is a classical theorem, and it
has two well-known types of proofs:

(1) (A nonconstructive proof, due to Tarski[1955]): In a model in which

7 is defined over a complete lattice (rather than a complete semilattice)
of elements, one can take the g/t of any set of elements. The element

glb POST(?) is then shown to be a fixedpoint of ? , and it is clearly
below all the other fixedpoints of 7 (which are all contained in
POST(?) ).

(ii) (A constructive proof, due to Hitchcock and Park [1972], Cadiou
(1972)): This is a rather complicated proof, which constructs a

transfinite ascending chain of approximations ™[] . This chain is
shown (by transfinite induction) to converge to the least fixedpoint of

T.

The first approach cannot be directly applied when a model of complete semilattices is
considered. If the function gib POST(r) exists, it is the least fixedpoint of 7 in this case as

well. However, this function need not exist if POST(?) is empty, since the glb operation is
defined only over the nonempty subsets of the complete semilattice. We thus have to show that

POST(?) is not empty as a first stage in a Tarski-like proof. Fortunately, the existence

theorem of maximal fixedpoints (Theorem 2) implies that FXP(?) (and thus also POST(?) )
is not empty. We thus get the following indirect proof, in which maximal fixedpoints are used
in order to show the existence of a least fixedpoint.

Theorem 3  (The Least Fixedpoint Theorem): If T is a monotonic functional (over
acomplete semilattice) then FXP(7) contains a least element.

Proof: By the corollary of Theorem 2, POST(r) is not empty, and thus f = glb POST(?)
exists. By Lemma 2(ii), it is a postfixedpoint of 7, and thus 7[f]e f. The function 7[f] is
also a postfixedpoint of 7, and thus f =gl POST(r)& 7[f] as well. Consequently f = 7[f)
and therefore f € FXP(?) . It is the least fixedpoint of T since f =glb POST(?) & gib
FXP(?) . Q.E.D.
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Theorem 3 can be used in order to find the relationships between prefixedpoints,
postfixedpoints and fixedpoints in general. The relative form of Theorem 3 is:

Theorem 4: For a monotonic functional (o%er a complete semilattice):

(i) Iff isa prefixedpoint of 7, then there exists a least fixedpoint in the
set of functions Sf ={g [ f = &}

(i1) Iff is a pottfixedpoint of 7, then there exists a greatest fixedpoint in

the set of functions Sf-{glg Ef}.
Proof:

(i) Since f €PRE(r), Theorem 2 guarantees that Sf contains at least one fixedpoint. The

proof of Theorem 3 can then be applied without change (over the complete semilattice S f)'

(i) Using the inverse relation, A;< %, if 2, €44, it can be shown that (sf , €) is a complete

lattice. Theorem 3 now shows that Sf contains a least fixedpoint with respect to &; this

fixedpoint is clearly greatest with respect to €. Q.E.D.
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Part II: The Convergence of Functions to
Fixedpoints

In Part I we defined our model of recursive definitions and studied its basic properties. Using
these results, we now analyze the methods by which fixedpoints of recursive definitions can be
“accessed” from other partial functions. In essence, each “access method” uses a given initial
function fy as a starting point, and constructs a sequence of functions which converges to a

fixedpoint of 7. We want the fixedpoint obtained to be “closest” to the initial function. Since
the ordering = is only partial, one can directly compare in this sense only fixedpoints related
by €. The most natural definition of this notion is therefore:

Definition: A fixedpoint g of 7 is said to be close to a partial function fq if

for every fixed point 2 of 7 :
() if he fo then 2= g, and
(i) if foeh then g sh.

In other words, the fixedpoint g is close to fp if it is above any fixedpoint below fo, and
below any fixedpoint above fo. A priori, it is not clear that such a close fixedpoint must exist
for any partial function fq -- this will be one of the results proved in this part.

All the functionals considered in this part are term functionals.
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4. The Direct Access Method

Kleene’s version of the Least Fixedpoint Theorem for continuous functionals shows that by
repeated application of the functional 7 to the initial function &, one can construct a

sequence {‘r(i)[m} whose limit is the least fixedpoint of 7 . This method (which we call the
direct access method) can be applied to an arbitrary initial function fp , but in general the

sequence obtained need not converge to a limit. The following example demonstrates such a
case:

Example 6: Consider the recursive definition over the natural numbers:
F(x) =if x210 then F(x-10) else F(x+1)

The collection of equalities implied by this recursive definition has a cyclic component:
F(O)=F(1)=F2)=...=F(9)=F(10)=F(0)

and the additional equalities:
F(11)=F(l), F(12)=F@2), .. ..

k is clear that any constant function is a fixedpoinr of the recursive definition and there are no

other fixedpoints; the least fixedpoint is £, and any constant total function is a maximal
fixedpoint.

Consider now the two initial functions:

ifx=0
otherwise

if 0 gx <10,
otherwise

filx) = {2 fo%) = {?

The sequence {‘r(i)[f 1J} does not converge, since the value 0 is rotated in the cycle x=0,1,..,10

under the repeated application of 7. On the other hand, the sequence {T(i)[fg]} converges to

the fixedpoint zero of 7, since all the nonzero values of f, are eventually replaced by 0.

Note that this sequence is neither an ascending chain nor a descending chain (in fact, no two
distinct hlements are ever consistent), but it converges according to the generalized notion of lim.
a
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Definition:  The function f, converges fo g (under a functional 7) if {f(i)[]’o]} isa
convergent sequence and g is its limit.

We now state and prove the basic result:

Theorem 5: If fo converges to g under 7, then g is a fixedpoint which is close to fq .

Proof: To show that g is a fixedpoint of 7, we use the (generalized) continuity of 7:
7lg) = 7m0 = limir e = timr+ gl = 4.

To show that g is close to £, consider an arbitrary fixedpoint 4 of I:

(i) If A= f, then by the monotonicity of 7, 7)) e T(i)[fol for all i, and thus since 4 is a
fixedpoint

h= lim{r O e lim{rO 3 = 5.
(i) If foeh then similarly:

g = Um{r Ol e limir@al = . Q.E.D.

We can describe the result of Theorem 5 as follows: if g, and g, are any two fixedpoints of

T such that g,€ fosg,, and if {‘r(i)[fo]} converges, then it converges to a fixedpoint g
which is also in the “box” g, £gEg,. Note that, unless fo€ PRE(f)u POST(r), an initial
function fg need not be related by & to the fixedpoint g to which it leads. Furthermore,
there need not be a greatest element among the fixedpoints which are less defined than fq or a
least element among the fixedpoints which are more defined than fj .

Given an arbitrary initial function fy, it may be hard to determine in advance whether the

sequence {f(i)[.fo]} converges or not. One important case in which the convergence is
guaranteed is when fy is either a prefixedpoinr or a postfixedpoint of 7 . In these cases the

generated sequence is a chain, and thus has a lint.

We now proceed to characterize two other cases in which the sequence must converge.

Lemma 4: If fie foS f2 where f) and f, both converge to the fixedpoint g
of 7, then f; also converges to g .
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Proof: By the monotonicity of 7, 7(i>[f1]E‘r(i>[fo]5‘r(i)[j’2] for any i . The definition of

convergence implies that for each ¥ there is a natural number jg such that
0@ = 7@ = @ foralljzjo,
and therefore
)@ = g7 for allj 2 jq .
In other words, the sequence {T<£)[fo]} converges to g . QE.D.

One immediate corollary of this “sandwich” property is:

Corollary:  If fo & Ifep(r), then lim{r\fol} = ifxp(r).

The least fixedpoint of 7 thus has the interesting property that any initial function fo,

lfxp(t) converges to it under the repeated application of 7 (but not necessarily in the form of

an ascending chain). Consequently, in order to access other fixedpoints of 7, one must start
with initial functions which are already sufficiently defined.

A slightly different type of result is:

Lemma 5: If fie f, and g= Zim{f(i)[f]]} is a total fixedpoint of 7, then f,
also converges to g .

Proof: By the monotonicity of 7, 7()(f,] =7{)[f,) foralli.Since the sequence AL

converges to g , for any ¥ there is a jy such that:
O (@ =g® foralljzj,

or, in other words:
gx) fg)szl(E) forallj 2 j,.

Since g is a total function, we obtain:
g® = fLXm  foralljzj,,

and thus lim{f(i>[_f2]} =g. Q.ED.
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Note that the requirement that g is total is essential; it may well happen that a function f
converges to a nontotal maximal fixedpoint g, while a function f; , which is more defined
thanf | , does not converge at all.

Taking f; = § , we obtain an important special case of Lemma 5:

Corollary:  If[fxp(7)is a total function, then any initial function f, converges to

lfxp(r) .

If a recursive definition has only one fixedpoint, then it is clear that the lim of any convergent
sequence {‘r(i)[fojl} is Ifxp(r) . However, if the unique fixedpoint Ifxp(f) is not total, there

may be initial functions fq for which the sequence {‘r(i)[fol} does not converge at all.
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5. General Access Methods

In the previous section we have considered one of the simplest ways by which we can access the
fixedpoints of T -- the repeated application of 7 to an initial function fp. This method may
fail to converge when applied to certain initial functions fp. In this section we investigate some

more general access methods, which are later used in order to access fixedpoints of T from
arbitrary initial functions.

5.1 Access Methods

In order to formally introduce the genera! notion of an access method, we first define:
Definition: The set of formula& is defined inductively as follows:

(i) The symbol F is a formula (F is said to be a function variable).

(i) If&isaformula, then T[] is a formula (T is said 7o be a functional
variable).

(iii) If &, &, are formulae, then glt{S,,F,} and lub{& |, ,} are formulae.

Given a formula & and a functional 7, we denote by &7 the formula in which the functional
variable 7 is interpreted as 7. 7 can be considered as a functional (over the same domain of

functions as 7) in the following way: Given any function f, 7[f] is the function obtained by

evaluating the formula & in which T is interpreted as 7 and F is interpreted as f. Unlike the
functionals considered so far, &7 may fail when applied to certain functions f, in case the fub of

inconsistent functions is to be taken during the evaluation process; in this case, %f[f] 18 not
defined.

Example 7: Consider the formula:
glb{T [lub{F,T [F}}]F},
and the functional

T[FXx) : F(x+1)
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over the natural numbers.

The functional &7 fails for the identity function f{x) =x, since f and [f] are inconsistent, and

thus their dub is not defined. However, &7 does not fail for the function:

(0 ifx=0(mod 3)
fix) = { w otherwise
and the function §7T[f]is Q. w

Given a functional  and initial function f, we may consider a function &*[f] as a modification
of f. A sequence of formulae {&;} can thus be used in order to construct a sequence of
successively modified functions {&7f3}. If the sequence {&,} is properly chosen, this sequence

of functions may converge to a fixedpoint of 7. We thus define:

Definition:  An access method ¥ is a sequence of formulae {&;}. For a given
functional 7, a partial function f is said to converge to g under ¥ if all

the functions $f exist, and lim{F (T} = ¢. If some of the functions
&7f1 do not exist, the method is said to fail for 7 and f .

In the case the formulae ('}i become successively more complicated, it is convenient to use a
slightly modified notation for formulaec. We use a sequence of function variables Fo, Fy, .. ..
where each F; represents the function $7f) given rand . Each function variable F;is

defined by a formula in which all the function variables Fo, Fy, . . . . F;_j,in addition to F, may

appear. This representation is equivalent to the original one, since one can always expand the
formulae in the new representation to formulae in which only the function variable F may

appear.

Some of the simplest access methods, in the new representation, are:
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(A) Fo=F
F;=T[F;_(dforiz I

(B) Fo= F
F; = glb{Fy 7 WIF} foriz1.

(C) Fo= F
F; = glb{F;_|,T (F;_(}} foriz 1.

(D) Fo= F
F; =glb{FTIF,_ 1)} forizl.

(EYFo= F
Fie T [glb{FF;_(}] for izl

Note that methods C-E represent all the nontrivial ways by which F; can be defined in terms

of F;_and F, using one occurrence of T and one occurrence of glb. Four other simple access

methods (denoted by B’-E’) can be obtained from methods B-E by replacing each glb by {ub.

Method A is the direct access method discussed in Section 4, since the expanded form of any F;

is 7 OrF). Method B is closely related to this method, since each F; is simply the glb of a finite

number of powers:
F; = glb{F,T [F1T @IF)....T OIFY).

For any functional 7 and initial function f, the sequence of functions {f;} generated by method
B is a descending chain, since the gib in the formula for F;, | contains one more term than the

glb in the formula for F;. The convergence of any initial function f is thus guaranteed, but

unlike the case of the direct access method, the limit function need not be a fixedpoint of 7.
This is demonstrated in the following example:

Example 8: Let 7 be the following functional over the natural numbers:
T[F)x) : if x = 0 then F(x)+ 1 else 0. F(x-1).

Let f be the initial function:
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u0 if x=0,1
w otherwise .

flx) e {
For any i 2 0,

i if x=0
rMAw={0 ifisxsicl

w  otherwise ,
and thus the gib of all these functions is:

if x=1
otherwise .

i) = {2,

This function is not a fixedpoint of 7 (as a matter of fact, it is not even a prefixedpoint or a

postfixedpoint of 7). 0

5.2 The Descending Access Method

Among the access methods listed above, we shall be interested mainly in method C, called t/e
descending access method, and in method C’, called the ascending access method. In this section
we study the behavior of the first method.

For any initial function f,the descending access method constructs a descending chain of
functions {fib since each f; is the glb of f;_| with some other function. The idea behind the

method is to “smooth up” the initial function f by repeatedly taking the common part f; of the
functions f;_; and 7(f;_,); hopefully such a process may result in a function whose values are

preserved under the application of 7, i.e. a fixedpoint of 7.

If the initial functionf is a prefixedpoint or a postfixedpoint of 7, then the sequence {f;}

generated by method C has an especially simple form:

Lemma 6: Let {f;} be the sequence generated by the descending access method C

for r and f. Then:

@) 1ff ePRE(r)then foralli, f;=f.
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(i) Iff ePOST(r)then foralli, f; = 7)f.

Proof:

(i) The proof is by induction on i. Fori=0, fo= f by definition. Suppose that for some i, fi
= f. Then:

Sin = g{fprlfi} = glb{frlfly = f
since f £ 7[f]
(i) This part is again proved by induction. Fori=0, fo= f by definition. If for some i, f; =
‘r(i)[f], then f; is also a postfixedpoint of 7 by Lemma 2(i), and thus:

fie1 = gL = 7Y = o lrl) = 24 g QED.

Part (i) of Lemma 6 shows that an initial function f may converge under method C to a limit

function which is not a fixedpoint of 7. However, we have:

Theorem 6: For any functional 7 and initial function f, the sequence {f;} generated

by the descending access method C converges to a prefixedpoint of 7.
This limit function is the greatest among the prefixedpoints of 7 that
are belowf.

Proof: The fact that the descending chain {f;} converges to some limit function g, which is

below f, is clear. We now show that g is aprefixedpoint of 7,ie g&g7(g] . By definition
g = lim{f;} = lim{glb{f;_1,7(f;_11}} -

Since both {f;_} and {7(f;_{]} are convergent sequences
g = gb{lim{f;_|Mim{r(f;_1 ]},

and by the continuity of 7 and the definition of g
g = glbllim{f;_ Lrltim{f; 111} = glb{g7lgl} .

The fact that g £7[g] follows now from the equality g = glb{g,7[g]}.
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Finally, we show that if £ is any prefixedpoint of 7 such that k& f, then A eg. It suffices to
show that ke f; for all i. We prove this by induction on i.

Ifi=0,then fo= f and thus A= f, by assumption. If f; satisfies A f; for some i, then:
h e f[’l] € T[fl] ,

and thus % is below both f; and 7[f;], implying that

k= glb{fy,Tlfil} = fia1 -

Q.ED.

The existence of a greatest prefixedpoint below an arbitrary partial function f can be
independently proved by taking the (ub of the consistent set of all the prefixedpoints of 7 below

f, and using the fact that this /ub is itself a prefixedpoint of 7. Theorem 6 shows that the
descending access method always leads to this greatest prefixedpoint. Note that the set of
fixedpoints below f  need not have a greatest element (in fact, it may even be empty if f =

Ifep(T) ).

-We can now show that the descending access method is the least access method in the following
sense:

Theorem 7: For any functional 7,if an initial function f converges to g; under the
descending access method C and to g, under some other access method

U, then g,= g2

Proof: We first prove that for any formula & for which $7{f] exists, g, FT[f). The proof is

by induction on the structure of the formula .
(i) IfSisF, then clearly g,= f = &7

(ii) If & is of the form 7[¥,), then by the induction hypothesis g1 & ,7[fl. Since by

Theorem 6, g; is a prefixedpoint of T, we have:

g & 7lg) et = &1
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(iii) if & is of the form glb{%,T,} then g, =TI and g, FFf) by the induction
hypothesis, and thus

g1 £ gAY = F7IA
(iv) If & is of the form lub{T &} then

g1 € A = wh{F AT = ST
The lub exists since we assume that $7(f] is defined.

Let U be the sequence of formulae {K'z-}, The functions ﬂfﬂ exist since we assume that this

sequence converges to g,. Since g, =& for all i, and the sequence {8‘{[]‘]} is convergent,

g € lim{EN) = g» Q.ED.

Using Theorems 6 and 7, we can now indirectly show that access methods C and D are
equivalent. One can easily show that any initial function f converges under method D to some
prefixedpoint g, of 7. If we denote by g5 the prefixedpoint to which f converges under the
descending access method C, then g,& g, by Theorem 6, and g,5 g, by Theorem 7.
Consequently, any initial function f converges to the same function under access methods C and
D.

5.3 The Ascending Access Method

In this section we consider the ascending access method C’, which is dual to rhe descending
access method C. The following<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>