
Stanford Heuristic Programming Project March 1977
Memo HPP-77-14

Computer Science Department
Report No. STAN-CS-77-605

| A MODEL FORLEARNINGSYSTEMS

by

R.G. Smith, T. M. Mitchell R. A. Chestek & B. G. Buchanan

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Nos +

A Mdel For Learning Systens

STAN-CS-77-605

Heuristic Programming Project Mm 77-14

Reid G, Smith, Tom M., Mtchell
Richard A Chestek and Bruce G. Buchanan

ABSTRACT

’ A model for learning systems 1s presented, and representative At, pattern
recognition, and control systems are discussed in terms of its framework.

The model details the functional components felt to be essential for any

learning system independent of the techniques used for 1ts construction,

and the specific environment In which it operates. These conponents are
performance elenent, 1nstance selector, critic, learning elenent, blackboard,

and world model. Consideration of learning system design leads naturally

to the concept of a layered system each layer operating at a different
level of abstraction.

KEY WORDS

ADAPTATION, LEARNING CONCEPT- FORMATION, INDUCTION, PERFORMANCE ELEMENT,
-INSTANCE SELECTOR, CRITIC, LEARNING ELEMENT, BLACKBOARD, WORLD MODEL,

‘MULTI-LAYERED SYSTEMS.

The views and conclusions contained in this document are those of the authors

and should not be 1nterpreted as necessarily representing the official policies,

either express or inplied, of the Defense Advanced Research Projects Adency
or the United States Governnent.

This research was supported by the Defense Advanced Research Projects Agency

under ARPA Order No, 2494, Contract No. DAHC 15-73-¢-0435, and by The
National Institute of Health under Contract No, NIH 5R24 RR 00612-07.

A MODEL FOR LEARNING SYSTEMS’

BY

Reid G. Smith? Tom M. Mitchell
Richard A. Chestek,'and Bruce G. Buchanan

Departments of Computer Science and Electrical Engineering,

Stanford YpiversityStanford, California, I 305.

Abstract

| A model for learning systems is presented, and representative Al,

pattern recognition, and control systems are discussed in terms of its

framework. The model details the functional components felt to be

essential for any learning system, independent of the techniques used

for its construction, and the specific environment in which it operates.

These components are performance element, instance selector, critic,

learning element, blackboard, and world model, Consideration of

learning system design leads naturally to the concept of a layered

system, each layer operating at a different level of abstraction.

Descriptive Terms: adaptation, learning, concept-formation,

induction, performance element, instance selector, «critic, learning

element, blackboard, world model, multi-layered systems.

Introduction

- Adaptation, learning, concept-formation, induction, self-

organization, and self-repair have been of interest to researchers in a

number of fields for many years. Each discipline has brought a

~ different perspective to the research, and the result has been a great

© T'This work was SB ported by the Advanced Research Projects Agencyunder contract DAHC 15- 3-co4ts ‘the National Institutes of Healt
under grant Ri 00612-07, the Naval Air S sgems Command under contractNO019-76-C-0250, and the National Science Foundation under contract GK-

41972. C. Richard Johnson, Jr. provided very helpful comments on
adaptive control 2 stems. We received many valuable suggestions frommembers of the Heurlstie Programming Project at Stanford.

2 Supported by the Research and Development Branch of theDepartment of National Defence of Canada,

|

variety of learning system (LS) models and descriptive terminology. We

have therefore synthesized a new model for unified characterization of

system3 constructed from these different perspectives. The model is

also useful as a paradigm for new learning systems, because it enables

the designer to isolate the functional components, and the information

that must be available to them.

2 Two Approaches to Learning

In this section, we summarize two different approaches to the

construction of systems that can be said to learn. The first approach

centers on the concept of an adaptive system and 1s primarily associated

with research in pattern recognition and control theory; the second is

that of artificial intelligence (AI).

2.1 The Adaptive System Approach

In the control literature, learning is generally assumed to be

synonymous with adaptation, and 1s often viewed as estimation or

successive approximation of the unknown parameters of a structure which

is chosen by the LS designer to represent the system under study [8]

[12]. Once this has been done, control techniques known to be suitable

for the particular chosen structure can be applied. Thus the emphasis

has been on parameter learning, and the achievement of stable, reliable

performance [30]. Problems are commonly formulated in stochastic terms,

- and the use of statistical procedures to achieve optimal performance

with respect to some performance criterion such as the probability of

correct pattern classification, or mean square error, is standard [39].

There are many overlapping and sometimes contradictory definitions

of the terms “adaptive system”, Yearning system", "self-repairing

system", and "self-organizing system". The following set, formulated by

Glorioso [13] serves to illustrate the main features, An adaptive

system 1s defined as a system which responds acceptably with respect to

some performance criterion in the face of changes in the environment or

its own internal structure. A learning system is a system that responds

acceptably within some tine interval following a change 1 n its

environment, and a self-repairing system is one that responds acceptably

within some time interval following a change in its internal structure 3

Finally,a self-organizing system is an adaptive or learning system in

which the initial state is unknown, random, or unimportant.

Other terms often used to describe, learning systems in the pattern

| recognition and control literature are “learning with teacher” or

"supervised learning” and “learning without teacher” or "unsupervised

learning” [12]1[7]. Learning with teacher assumes the existence of an

external entity (usually a human) which presents the system with a

training set of instances, evaluates the performance of the system for

those instances, and provides the correct responses. Learning without

teacher assumes that the environment provides all instances, but does

not provide the correct responses. Performance is to be evaluated by the

system itself. Tsypkin [33] has pointed out that unsupervised learning

is somewhat of an illusion in the sense that a teacher/designer defines

the structure which determines the quality of operation of the LS at the

outset, whether or not he is present during the actual operation of the

system.

2.2 The Artificial Intelligence Approach

Although early Al research was closely tied to pattern

recognition, and the techniques commonly associated with the adaptive

system3 approach, (see, for example [28] and [34]), the two fields

diverged in the 1960°s, and are now quite distinct. Whereas the pattern

"recognition and control research emphasizes adjustment of parameters, Al

research emphasizes construction of symbolic structures, baaed on

conceptual relations. For example, Feigenbaum’a EPAM program [9] used a

"Learning and self-repairing systems have been considered as
specialized adaptive systems [30].

|

discrimination net (i.e., a tree of tests and branches) to store the

relations required to recall nonsense syllables in a rote learning

experiment (see [31], [11], and [37] for further examples).

The kind of learning that involves only estimation of unknown
parameters (i.e., the parameter learning of Section 2.1) has been

referred to as terminal learning in the AI literature [22]. In AI, it

is commonly believed that a learning system should have sufficient
internal structure to develop a "strong theory" of its environment [10]

[19]. Much emphasis has therefore been placed on building “knowledge-

based" or "expert" systems that not only have the capacity for high

performance, but can also explain their performance in symbolic terms

[6]. Concept-formation systems in particular stress the construction of

symbolic descriptions [14].

Winston [38] describes various levels of sophistication in

learning systems: learning by being programmed, learning by being told,

learning from a series of examples, and finally learning by discovery.

We see in this categorization a gradual shift in responsibility from the

designer/teacher to the learning system/student. At the highest level,

the system is able to find its own examples, and carry on autonomously.

3 The LS Model

We are concerned with the functional description of LS’s and their

interaction with the environments in which they operate. Many of the

- functional components of an LS are essential to intelligent systems in

general, as noted also by Simon and Lea [29].

3.1 Environment

The environment in which an LS operates may have a profound effect

upon its design, and therefore it is of interest to consider a few major

environment classes. LS environments can be divided into two major

categories: those that provide the correct response for each training

instance (supervised learning) and those that do not (unsupervised

learning). Supervised learning systems operate within a stimulus-

response environment in which the desired output of the LS is available

along with each training instance [12] [7]. Samuel's "book move"

checkers program [26][27], and grammatical inference programs [15]

(i.e., programs that attempt to infer the rules of a grammar from sample

sentences generated by that grammar) are further examples of LS’s

operating within such an environment. This is also the nature of the

| environment for automatic programming systems [14] which construct

programs to reproduce (or explain) a set of sample input/output pairs.

Unsupervised LS“s operate within an environment of instances for

which the correct response 1s never available, The version of Samuel's

program which learns by playing checkers against an opponent falls into

this category [26]. Learning systems operating within this type of

environment must themselves infer the correct response to each training

instance by observation of system performance for a series of instances.

As a result, assignment of credit or blame for overall performance to

individual responses is a problem for these systems [21].

Environments can be further categorized as "noise-free" or

"noisy". Noise-free environments, such as that of Winston's structural

description learning program [37] provide instance/correct-response

pairs in which the data are assumed to be perfectly reliable. Noisy

environments, on the other hand, do not provide such perfect

information, as is usually the case when real data are involved (pattern

recognition and control systems frequently operate within noisy

environments [7] [8] [1]). Environments which react to the LS

responses in some way that is not under the control of the system can

also be considered to fall into this category. The opponent in a game

for example, operates on the response of the LS to provide the next

instance [35].

3.2 The Model = overview

The LS model is shown in Figure 1. The PERFORMANCE ELEMENT is

responsible for generating an output in response to a training instance.

The INSTANCE SELECTOR selects suitable training instances from the

environment. The CRITIC analyzes the output of the performance element

in terms of some standard of performance. The LEARNING ELEMENT makes

specific changes to the system in response to the analysis of the

critic. Communication among the functional components is shown via a

BLACKBOARD to ensure that each functional component has access to all

required system information. Finally, the LS operates within a WORLD

MODEL containing general assumptions and methods defining the domain of

activity of the system.

Existing systems can seldom be partitioned unambiguously into the

functional components shown in Figure 1. These components are conceptual

entities which simplify the characterization of existing systems, and

will assist designers in the construction of new systems. They

correspond to functions that must be performed to effect learning. In

many existing systems, one or more of the functions are fulfilled by a

human who is considered to be part of the LS.

In the following sections, we present detailed discussions of the

LS model components shown in Figure 1. In addition, Appendix I

contains detailed characterizations of representative AI, pattern

recognition, and control systems in terms of the model. The reader may

find it helpful to refer occasionally to this appendix while reading the.

following sections.

0

|

ec cccece mean | | |

world performance |
| model |

element |
| { TT Tom |

| |
i | i
| |I BE ee eee be! i

| Frestance |
Ra blackboard | ===" critic |

| selector | |
| | m= ———————— EE RL | ------f

le

| learning |

| element || TTT |

Figure 1. The Components of a Learning System

3.3 Performance Element

The performance element is the mechanism that uses the learned

information to perform the stated task. It has been included in the LS

model because of the intimate relationship between what is to be learned

by an LS and the way in which the learned information is to‘ be used.

Performance elements are usually tailored more to the requirements

of the task domain than to the architecture of the LS. In general, the

performance element can be run in a stand-alone mode without learning,

independent from the rest of the LS (e.g., Samuel’s checker playing

program [26][27]). In any LS, however, the ability to improve

performance presupposes a method of communicating learned information to

the performance element. Therefore, the architecture of the performance

element must allow learned information to affect its decisions, and so

additional constraints are placed on any performance element that jg to

be used as a component of an LS. The performance element must be

T

constructed so that information about its internal machinations is

readily available to the other system components. This information can

be used to make possible detailed criticism of performance, and

intelligent selection of further instances to be examined by the system.

The performance elements of existing systems vary in the number of

ways in which they may be altered by learning. Systems which adjust

parameters as their sole learning method are relatively limited in the

performance variations they can exhibit [17]1[20]}, whereas systems whose

operation 1s determined by a set of production rules can exhibit greater

variations [35][36].

3.4 Instance Selector

The instance selector is a mechanism that selects training

instances from the environment that are to be used by the system in

learning. It 1s a functional component not clearly isolated in earlier

adaptive system models [12][30][13].

In reviewing existing LS“s we have found that methods for instance

selection vary mainly along the dimensions of responsibility and

sophistication. The responsibility for instance selection varies

between the extremes of completely external ("passive") selection, and

completely internal ("active") selection. Instance selection in

Samuel’s book move checkers program [26][27] is externally controlled,

whereas Popplestone’s program [24], which learns the features that

characterize a winning position in tic-tat-toe, generates its own

training instances. It forms alternate hypotheses, and then generates

instances to choose among them (relying upon an external critic to

evaluate these instances). In the adaptive systems literature, Tse and

Bar-Shalom [32] discuss the use of "dual-control" in an attempt to

identify the parameters of a system at the same time as it is being

controlled.

The degree of sophistication used for LS instance selection is

also an important consideration. In order to qualify as sophisticated,

8

an instance selector must be sensitive to the current abilities and

deficiencies of the performance element and must construct or select

instances which are designed to improve performance. Winston [37] has

shown the advantages to be accrued through presenting carefully
constructed examples and ‘“near-misses" of the concepts to be acquired by

an LS. In general, careful instance selection can improve the

reliability and efficiency of an LS. We must note, however, that this

may not always be permitted by the environment in which the LS operates,

as is generally the case for adaptive control systems [8].

3.5 Critic

The critic may play three roles; EVALUATOR, DIAGNOSTICIAN, and

THERAPIST. It always operates as an evaluator, in that it embodies a

standard by which to assess the behaviour of the performance element.

This 1s the role that has been emphasized in earlier adaptive system

models [12] [30] [13].

The critic may also operate as a diagnostician, and localize the

reasons for poor performance. This type of behavior is essential for

resolution of the credit assignment problem described by Minsky [21]. In

its role as diagnostician, the critic is exemplified by the bug

classifier and summarizer in Sussman’s HACKER [31].

Finally the critic may be able to operate as a therapist, and make

specific recommendations for improvement or suggestions about future

instances. In Waterman’s poker player [35], the critic as therapist

suggests the bet that should have been made by the performance element

for a particular training instance.

Not all systems exhibit sufficiently complex behavior to warrant

“critics that fulfill all three functions. The critic as therapist in

particular 1s not often seen in simple systems.

The dividing line between critic and learning element is difficult

to distinguish, and it is certainly possible to view therapy as a

9

a

function of the learning element, rather than one of the critic.

However, in mapping existing LS’s into our model, we have adopted the

convention that the critic's recommendations to the learning element are

at an abstract level removed from the implementation details such as

data representation.

In some LS"s the functions of the critic have been left to the

human who uses the system. For example, MYCIN/TEIRESIAS [6] uses a

human critic, acting as evaluator, diagnostician, and therapist to

suggest alterations to its rule base.

3.6 Learning Element

The learning element is an interface between the critic and the

performance element, responsible for translating the abstract

recommendations of the critic into specific changes in the rules or

parameters used by the performance element.

Representations for learned information exhibit great variety.

They include, for example production rules [35], parameterized

polynomials [26], executable procedures [31], signature tables [27],

stored facts [9], and graphs [37]. The method of incorporating new

learned information is dependent upon this representation, and even

among systems which use similar representations, competing methods are

found (contrast, for example, [3] and [35]).

The extent to which the learned information is altered in response

to each training instance is an important LS design consideration. In

"some systems [37], the learning element incorporates exactly the

information supplied by the critic. Were the same training instance to

occur later, the response of the performance element would be exactly as

the critic advised for the first occurrence. This type of learning is

well suited to environments which provide perfect data and to systems

with reliable critics. Under these conditions the LS will converge

rapidly toward the desired behavior. If such a system were provided

with an incorrect classification by the environment or less than

10

reliable advice by the critic, however, it might commit itself to

| incorrect assumptions from which it is difficult to recover. Systems

which make less drastic changes to the learned knowledge on the basis of

| a single training instance are less vulnerable to imperfect information,

but consequently require more training instances to converge to the

desired behavior. Many statistical LS’s fall into this category [23].

Other systems consider several training instances at a time in order to

minimize the effect of occasional noisy instances [3].

3.7 Blackboard

The blackboard of our model 1s an extension of the concept

introduced in the HEARSAY system [18], functioning as both global data

base and communications mechanism, The blackboard holds two types of

information: --the information usually associated with the “knowledge

base” in AI programs, and the temporary information used by the LS

components. The knowledge base often contains the set of rules,

parameter values, symbolic structures, and so on, currently being used

by the performance element. Such information can be used as an aid to

sophisticated instance selection if it is readily available. The

temporary, system-oriented information includes, for example, the

internal decisions made by the performance element in selecting a

particular response. Detailed criticism by the critic is dependent upon

the availability of this information, written by the performance

element .

In many existing systems this information is not so clearly

separated or defined. The communication links between functional

components, especially, are often programmed directly. Such a non-

- modular approach is known to lead to difficulties when redesign is

attempted [2].

3.8 World Model

Whereas the blackboard contains information that can be altered by

11

H

the LS components, the world model contains the fixed conceptual

framework within which the system operates. The contents of the world

model include definitions of objects and relations in the task domain,

the syntax and semantics of the information to be learned, and the

methods to be used by the LS. Again, there are no clear lines of

separation between the world model and the other parts of the LS. Our

working definition is that the world model contains all definitions,

parameters, vocabulary, and assumptions that are available for

modification. (Insofar as the designer can change any piece of the LS we

suggest separating those that are easily modified from the rest. See

[25] for a philosophical treatment of this issue, and [5] for the

discussion that led to our including a world model.) Among task domain

definitions are, for example , the rules of a game, and the

representation of --inputs and outputs for the performance element. This

part of the world model simply defines the task of the performance

element, and the standard of performance (the evaluation function) to be

applied by the critic. Definitions of the syntax and semantics of

information to be learned define the mode of communication between the

learning and performance elements.

The world model may include several additional items. Some

systems require a model for translating input data into the specific

training instances to be used. For example, the controller in [17]

preprocesses inputs in a control system, and the first part of Meta-

DENDRAL [3] translates each input molecule/data-point pair into

"plausible molecule/process pairs under a simple theory of the task

domain. Domain specific heuristics are also commonly added to the world

model of AI systems to guide inferences made by the LS (e.g., the blocks

world heuristics of Winston’s program [37]).

Although the world model cannot be altered by the LS that uses it,

the designer can alter its contents in order to improve LS performance.

He often changes parameters and procedures of the basic LS after

observing and criticizing its behavior for some carefully chosen

12

i

training set. These alterations result in a new version of the LS, which

is then tested on some training set, and so on. The designer views the

whole LS as a system whose performance needs improvement, and he selects

instances, criticizes performance, and makes changes accordingly. In

other words, the designer’s activities can be modeled by a system whose

components are just those in Figure 1. This leads us to the concept of

layered LS’s, each higher layer able to change the world model

(vocabulary, assumptions, etc.) of the next lower layer on the basis of

criticizing its performance on a chosen set of instances. Thus,

adjustments can be made to the world model of some learning system LS1

by another learning system, LS2, which has its own functional components

(critic, world model, etc.). In turn, it 1s conceivable that a third

system, LS3, could adjust the world model of LS2, and so on. The final

critic, however, is the designer, operating outside of the "top-level"

LS.

One existing LS which may be viewed as a layered system is the

version of Samuel’s program [27] which learns a polynomial evaluation

function for selecting checkers moves (see Appendix I for details).

The lower layer (LS1) in this system adjusts the coefficients of a given

set of game board features in order to improve performance of the move

selection program. The second layer system (LS2) adjusts the set of

board features used in the evaluation function in order to improve the

learning performance of LS 1. Since LS1 is contained in LS2 as the

performance element, all the assumptions necessary for its operation

also belong to the LS2 world model. In addition, the LS2 world model

contains assumptions about the set of allowable game board features and

the standard for evaluating LS1 performance.

A single layer LS, then, can never move outside its world model to

make radical revisions to its way of viewing the task to achieve a

"paradigm shift”, as discussed by Kuhn [16]. However, a shift in the

conceptual framework of LS1 could be made by a properly programmed LS2

[3]. We believe that a layered approach such as that described above

13

provides a useful system organization for learning at various levels of

abstraction in complex domains. Although there are examples of this

kind of layering in the literature [26][34], no one has carried it as

far as our model suggests, and it appears that we are just now reaching

the point of understanding single layer learning systems well enough to

consider developing more sophisticated systems.

4 Summary

The proposed LS model provides a common vocabulary for describing

different types of learning systems which operate in a variety of task

domains. It encourages classification and comparison of LS”s and helps

identify unique or strong features of individual systems. We believe

the model is a useful conceptual guide for LS design, because it

isolates the essential functional components, and the information that

must be available to these components. The model also suggests a

layered architecture for learning at different levels of abstraction.

14

Appendix I

Characterization of Existing Systems in Terms of the Model

In this appendix several existing LS“s are characterized using the

framework provided by the model described in Section 3. The systems

selected are representative of several approaches to machine learning.

Because the blackboard contains information in a state of flux, its

contents are not specified explicitly for the systems characterized

below.

Meta-DENDRAL, Buchanan, et al, [3][4]

Domain: Mass spectrometry.

Purpose: Learn to predict data points in the mass spectra of

molecules.

Environment: Set of all known molecule/data-point pairs.

Performance Element: Predicts peaks (data points) in mass-spectra of

molecules using learned production rules. Employs a model of

mass spectrometry for translating between mass-spectral

processes (predicted by the rules) and data points in the

spectrum.

Instance Selector: Accepts a set of known molecule/spectrum pairs

from the user.

Critic: Evaluation =~ determines the suitability of the set of

predictions generated by a rule. Diagnosis = states whether the

rule 1s acceptable, too specific, or too general. Therapy -

recommends adding or deleting features to the left-hand sides of

rules.

Learning Element: Conducts a heuristic search through the space of

plausible rules using a predefined rule generator. At each step

in the search the potential rule’s performance is reviewed by

the critic.

15

_

World Model: Representation of molecules as graphs, production rule

model of mass spectrometry, vocabulary of rules used to

represent learned information; heuristics used by the critic in

directing the rule search,)

Program to Learn Structural Descriptions from Examples, Winston [37]

Domain : Blocks world.

Purpose: Learn to identify blocks world structures (such as arches

and towers).

Environment: Set of possible line drawing/structure-classification

pairs.

Performance Element: Decides class of structures to which the input

structure belongs. Uses a model of the structure class supplied

by the learning element.

Instance Selector: Accepts training instances supplied individually

by the user.

Critic: Evaluation - compares the classification made by the

Performance Element against the correct classification as

supplied with each training instance. Diagnosis - generates a

comparison description pointing out differences between the

model and the structure description.

Learning Element: Constructs a model of the class of structures

) under consideration. Examines the comparison description

supplied by the critic, and modifies the model to strengthen or

weaken the correspondence between the model and the training

. instance.

Wor 1d Model: Representation of scenes as line drawings, method of

translating line drawings to graphical descriptions, grammar for

representing the learned information, domain-specific heuristics

for resolving among possible changes to each structure class

model.

16

Checker Player, Samuel [26][27]

Domain: Game of checkers. |

Purpose: Learn to play good game of checkers (here we discuss only

the version of the program which learns a linear polynomial

evaluation function by examination of moves suggested by experts

("book moves").

Environment: Set of all legal game boards,

LS1 (lowest layer):

Purpose: Learn a good set of coefficients for combining board

features in a linear polynomial evaluation function.

Performance Element: Uses the learned evaluation function to rank

plausible moves for a given board position.

Instance Selector: Reads instances from a list of pre-defined game-

board/recommended-move pairs.

Critic: Evaluation - examines the ranking given to the book move by

the performance element. Diagnosis - suggests that the book move

should be ranked above all other moves.

Learning Element: Adjusts weights of linear polynomial to make move

selection correspond to the critic's recommendation.

World Model: Syntax of game board, form and features of linear

polynomial evaluation function, method for adjusting evaluation

function, and rules of checkers.

LS2:

Purpose: Improve the performance of LS1 by selection of a good set

of board features.

Performance Element: LS1.

Instance Selector: The entire set of possible training instances 1s

simply passed to LS? (via the blackboard).

Critic: Evaluation - analyses the learning ability of LS1 (i.e., the

LLS2 performance element) with the current set of evaluation

17

function features. Diagnosis = singles out features which are

not useful, Therapy - selects new features from a predefined

list to replace useless features;

Learning Element: Redefines the current set of features as

recommended by the critic.

World Model: The LS1 world model, plus the set of features which may

be considered, and the performance standard employed by the LS2

critic.

Poker Player, Waterman [353

Domain : Draw poker.

Purpose: Learn a good strategy for making bets in draw poker.

Environment: Set of-all legal poker game states.

Performance Element : Applies the learned production rules to

generate actions in a poker game, e.g., bets.

, Instance Selector: Selects each game state derived by play against

an opponent as a training instance.

Critic: Two versions of the program use two different critics. In

both cases the critic performs the following functions:

Evaluation =- decides whether the poker bet made by the

Performance Element was acceptable. Diagnosis - gives important

state variables for deciding the correct bet. Therapy = provides

the bet which the Performance Element should have made. In

"explicit" learning the critic is an expert poker player ,

either human or programmed. In "implicit" learning, the

evaluation and therapy are deduced from the next action of the

opponent and a set of predefined axioms, while diagnosis is read

from a predefined “decision matrix”.

Learning Element: Modifies and adds production rules to the system.

Mistakes are corrected by adding a new rule in front of the rule

responsible for the incorrect response.

18

World Model: Rules of poker, features used to describe the game

state, the language of production rules, heuristics for updating

the rule base, the model of an opponent. /

Model Reference Adaptive Control, e.g. Landau [17]

Domain: Control Systems.

Purpose: Construct a “controller” which preprocesses inputs to an

existing system (called the "plant"). The behavior of the

combined controller-plant system is to mimic the behavior of a

third system (called the “reference model”) on the training

data.

Environment: The plant to be controlled, and the set of possible

inputs (including disturbances).

Performance Element: The controller = a system whose output is used

as input to the plant, Its behavior is a function of the input

signal, past I/O behavior of the plant, and a set of adjustable

parameters.

Instance Selector: Accepts data sequence (as input to the

controller) from the environment.

Critic: Evaluation - applies a measure of performance which is some

function of the arithmetic difference between the plant and

reference model outputs. In some cases the reference model is

mathematically defined, and can therefore be considered part of

the critic. In other cases the reference model is an actual

system, and 1s considered part of the environment.

Learning Element: Modifies the parameters of the performance element

(controller), depending on the performance measure supplied by

the critic.

World Model: Control theory assumptions (time invariance, linearity,

etc.) and techniques, and the standard of performance embodied

in the critic.

19

References

1. H. G. Barrow and R. J. Paplestone, "Relational Descriptions in
Picture Processing? in achine Intelligence 7, B. Meltzer andD. Michie, eds., American Elsevier, N. Y., 1972, pp. 377-396.

2. F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading,
Mass., 1975.

3. B. G. Buchanan, "Scientific Theory Formation by

Computer” Eroceedings of NATO Advanced Study Institute onComputer briented Learning Processes, Bonas, France, 1974.

4. B. G. Buchanan and T. M. Mitchell, "Model-Directed Learning of
Production Rules”, to be presented at the Workshop on Pattern-
Directed Inference Systems, Honolulu, Hawaii, May 1977.

5. C. W. Churchman, "The Role of Weltanschauung in Problem Solving and

Inquiry? in R. RR, Banerji and Ma. D. Mesarovic,
eds., Theoretical Aprcoaches to Non-Numerical Problem Solving,Springer-Verlag, N.Y., 1970, pp. 141-151.

6. R. Davis "Applications of Meta-Level Knowledge to
the Construction Maintenance.., and Use of Lar e Knowledge
Bases", STAN-CS-36-552, Stanford University, July 1876.

1. R. 0. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, Wiley, N. Y., 1973.

8. D. D. Donalson and FF. H. Kishi, "Review of AdaptiveControl Theories and Techniques’ in C. T. Leondes, ed. odernControl Systems Theory, McGraw-Hill, N. Y., 1965, pp. 228-281.

9. E. A. Feigenbaum, "The Simulation of Verbal Learning Behaviour", in

E. A. Feigenbaum and J.. Feldmap nads., Computers and Thought,McGraw-Hill, N. Y., 1963, pp. 297-309.

10, E A. fei genbauin B. G. Buchanan, and J. Lederberg "On Gancecalityand Problem Solving: A Case Study Using The DEN RAL Program", in
Machine Intelligence 6, B. Meltzer and D. Michie, eds.,
American Elsevier, N. Y., 1971, pp. 165-190.

11. R. Fikes, P. Hart, and N. J. Nilsson, "Learning and
Executing Generalized Robot Plans", Artificial Intelligence
1972, 3, pp.251-288.

12. K. S. Fu, "Learning Control Systems -Review and Outloak" IEEETrans. on Automatic Control, Vol. 15,. No.2. April 1970, PP.
210-221.

20

13. R.M Glorioso, En aginering Cybernetics, Prentice-Hall, EnglewoodCliffs, N. J. 1875.

14. c. Cc. Green, "The Design of the PSI Program SynthesisSystem" Second International Conference on Software Engineering,
San Francisco, California, October 1976.

15. E. B. Hunt, Artificial Intelligence, Academic Press, N. Y., 1975.

16. T. S. Kuhn The Structure of Scientific Revolutions, 2nd edition,
Univ. Chicago Press, 1970.

17. I. D. Landau, "A Survey of Model Reference Adaptive Techniques -

Theory and Applications”, Automatica, Vol. 10, No. 4, July 1974,

18. V. R. Lesser R. D. Fennell L. D. Erman and D. R.

Reddy, "Organization of the HEARSAY II peect! Understanding
System" IEEE Pans. on Acoustics, peech, and SignaProcessing, Vol. ASSP-23, No. 1, February 17 5, pp. 11-23.

19. J. McCarthy ‘Programs with Common Sense" ,”"1n Minskyed., Semantic Information Processing, MIT Press, Cambridge:
Mass., 1968, pp. 403-418.

20. D. Michie, On Machine Intelligence, Wiley, N. Y., 1974,

21. M. Minsky, SLeps Toward Artificial Intelligence”, in E. A.Fei enbaum and J. Feldman,eds...Computers and Thought, McGraw-
Hil, N. Y., 1963, pp. 406-1450.

22. M. Minsky and Ss Pa en, "Artificial Intelligence -
Progress Report”, A.I. MI! AI Memo 252, January 1972:

23. N. J. Nilsson, Learning Machines, McGraw-Hill, N. Y., 1965.

) 24. R. J. Popplestone. "An Experiment in Automatic Induction? in
Machine Intelligence 5, B. Meltzer and D. Michie, eds.,
Edinburgh University Press, 1969.

25. W V.0. wine, "Two P@mas of Empiricism’, in from a logicalpoint of view, Harvard UniversityPress, Cambridge, Mass., pp.

26. A. L. Samuel, "Some Studies in Machine Learning Using the Game of
Checkers", in BE. A. Feigenbaum and v. ¥eldman, eds.Computers and Thought, cGraw-Hill, N. Y., 1963, pp. 71-105.

217. A. L. Samuel, "Some Studies in Machine Learning Using the Game of
Checkers II -~ Recent Progress", IBM Journal of Research
and Development, Vol. 11, No. 6, November 1967, pp. 601-617.

21

28. O. G. Selfridge and U. Neisser, "Pattern Recognition by Machine",

in E. A, FFelgenbaum and J. Feldman. , Computers andThought, McGraw-. HLL, WW Y., 1963, pp. 237-250.

29. H. A. Simon and GG. Lea, "Problem Solving and Rule Induction: A
Unified View", in L. W. - Gregg, ed., Knowledge and
Cognitinn., Lawrence Erlbaum Associates, Potomac Maryland, 1974,
PP. 105-127.

30). J. Sklansky, "Adaptation, Learning, >elf-Repair, and Feedback",IEEE Spectrum, Vol. 1, No. 5, May 1964, pp. 172-174.

31. G. J. Sussman "A Cob utational Model of Skill Acquisition", MITAI-TR-297, August 1973.

32. E. Tse and Y. Bar-Shalom, "Actively Adaptive Control for NonlinearStochastic Systems" IEEE Proceedings, Vol. 64, No. 7,
August 1976, pp. 1172-1181.

33. Ya. Z. Tsypkin, "Self Learnin ~- What Is It?" IEEE Trans. on

Automatic Control, Vol. AC-13, No. 6, December 1968, pp. 608-}

34, L. Uhr and C. Vossler, "A Pattern Recognition ProgramThat Generates, Evaluates, and Adjusts Its Own Operators”, in E.

A. Feigenbaum and J.. Feldman, eds., Computers and Thought,McGraw-Hill, N. Y., 1963, pp. 251-268.

35. D. A. Waterman, "Generalization Learning Technigues for Automating
the Learning of Heuristics", Artificial ntelligence, Vol.1, Nos. 1 ama 2, 1970, pp. 121-170.

36. D. A.Waterman "Adaptive Production Systems", IJCAI4 Proceedings,
Tbilisi, USSR, September 1975, pp. 296-303.

37. P. H. Winston, "Learning Structural Descriptions From Examples”,
MIT AI-TR-231, September 1970.

38. P. H. Winston, ed., The Psychology of Computer Vision, McGraw-
Hill, 1975.

39. B. Wittenmark, "Stochastic adaptive control methods: a survey",
Int, J. Control, Vol. 21, No. 5, May 1975, pp. 705-730.

22

