Stanford Heuristic Programming Project March 1977
Memo HPP-77-14

Computer Science Department
Report No. STAN-CS-77-605

A MODEL FORLEARNINGSYSTEMS

by
R.G.Smith, T. M. Mitchell,R. A. Chestek & B. G. Buchanan

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

A Mdel For Learning Systens

STAN-CS-77-605
Heuristic Programming Project Mmoo 77-14

Reid G, Smith, Tom M, Mtchell
Richard A Chestek and Bruce G. Buchanan

ABSTRACT

A model for learning systems is presented, and representative At, pattern
recognition, and control systems are discussed in terms of its framework.
The mnodel details the functional conponents felt to be essential for any
learning system independent of the techniques used for its construction,

and the specific environment In which it operates. These conponents are
performance elenent, instance selector, critic, learning element, blackboard,
and world nodel. Consideration of learning system design leads naturally

to the concept of a layered system each layer operating at a different
level of abstraction.

KEY WORDS

ADAPTATION, LEARNING, CONCEPT-FORMATION, INDUCTION, PERFORMANCE ELEMENT,
-INSTANCE SELECTOR, CRITIC, LEARNING ELEMENI, BLACKBOARD, WORLD MDXDEL,
‘MULT!-LAYERED SYSTEMs.

The views and conclusions contained in this docunent are those of the authors
and should not be interpreted as necessarily representing the official policies,
either express or inplied, of the Defense Advanced Research Projects Adency

or the United States Governnent.

This research was supported by the Defense Advanced Research Projects Agency
under ARPA Order No, 294, Contract No. DAHC 15-73-c-0435, and by The
National Institute of Health under Contract No, NIH 5R24 RR 00612-07.

A MODEL FOR LEARNING SYSTEMS'

BY

Reid G. Smith2 Tom M. Mitchell
Richard A. Chestek,'and Bruce G. Buchanan

Departments of Computer Science and Electrical Engineering,
Stanford Universit
Stanford, California, gl‘305.
Abstract

A model for learning systems is presented, and representative Al,
pattern recognition, and control systems are discussed in terms of its
framework. The model details the functional components felt to be
essential for any learning system, independent of the techniques used
for its construction, and the specific environment in which it operates.
These components are performance element, instance selector, critic,
learning element, blackboard, and world model, Consideration of
learning system design leads naturally to the concept of a layered

system, each layer operating at a different level of abstraction.

Descriptive Terms: adaptation, learning, concept-formation,
induction, performance element, instance selector, critic, learning

element, blackboard, world model, multi-layered systems.

I Introduction

Adaptation, learning, concept-formation, induction, self-
organization, and self-repair have been of interest to researchers in a
number of fields for many years. Each discipline has brought a

© different perspective to the research, and the result has been a great

under contract DAHC 15-73-C<043 the National Institutes of Healt
under grant RK 00612-07, the Naval Air S syems Command wunder contract
N0019-76-C-0250, and the National Science Foundation under contract GK-
41972, C. Richard Johnson, Jr. provided VCI'Y helpful comments on
adaptive control 3y stems. We received many valuable suggestions from

members of the Heurdstie Programming Project "at Stanford.

----- T-"I“-}'l-ig_\:v—o_ri--\;;s svg _Forted bir the Advanced Research Projects Agenc

2 Su?ported by the Research and Development Branch of the
Department of National Defence of Canada,

variety of learning system (LS) models and descriptive terminology. We
have therefore synthesized a new model for unified characterization of
system3 constructed from these different perspectives. The model is
also useful as a paradigm for new learning systems, because it enables
the designer to isolate the functional components, and the information

that must be available to them.

2 Two Approaches to Learning

In this section, we summarize two different approaches to the
construction of systems that can be said to learn. The first approach
centers on the concept of an adaptive system and is primarily associated
with research in pattern recognition and control theory; the second is

that of artificial intelligence (AI).

2.1 The Adaptive System Approach
In the control literature, learning is generally assumed to be
synonymous with adaptation, and is often viewed as estimation or
successive approximation of the unknown parameters of a structure which
is chosen by the LS designer to represent the system under study [8]
[12]. Once this has been done, control techniques known to be suitable
for the particular chosen structure can be applied. Thus the emphasis
has been on parameter learning, and the achievement of stable, reliable
performance [30]. Problems are commonly formulated in stochastic terms,
and the wuse of statistical procedures to achieve optimal performance
with respect to some performance criterion such as the probability of
correct pattern classification, or mean square error, is standard [39].
There are many overlapping and sometimes contradictory definitions
of the terms “adaptive system”, Yearning system", "self-repairing
system", and "self-organizing system". The following set, formulated by
Glorioso [13] serves to illustrate the main features, An adaptive

system is defined as a system which responds acceptably with respect to

some performance criterion in the face of changes in the environment or
its own internal structure. A learning system is a system that responds
acceptably within some time interval following a change in its
environment, and a self-repairing system is one that responds acceptably
within some time interval following a change in its internal structure 3,
Finally, a self-organizing system is an adaptive or learning system in
which the initial state is unknown, random, or unimportant.

Other terms often used to describe, learning systems in the pattern
recognition and control literature are “learning with teacher” or
"supervised learning” and “learning without teacher” or "unsupervised
learning” [121[7]. Learning with teacher assumes the existence of an
external entity (usually a human) which presents the system with a
training set of instances, evaluates the performance of the system for
those instances, and provides the correct responses. Learning without
teacher assumes that the environment provides all instances, but does
not provide the correct responses. Performance is to be evaluated by the
system itself. Tsypkin [33] has pointed out that unsupervised learning
is somewhat of an illusion in the sense that a teacher/designer defines
the structure which determines the quality of operation of the LS at the
outset, whether or not he is present during the actual operation of the

system.

2.2 The Artificial Intelligence Approach

Although early Al research was closely tied to pattern
recognition, and the techniques commonly associated with the adaptive
system3 approach, (see, for example [28] and [34]), the two fields
diverged in the 1960°s, and are now quite distinct. Whereas the pattern
" recognition and control research emphasizes adjustment of parameters, Al
research emphasizes construction of symbolic structures, baaed on

conceptual relations. For example, Feigenbaum’a EPAM program [9] used a

..... gms=mmmmmeoeme-

2 Learning and self-repairing systems have been considered as
specialized adaptive systems [30].

discrimination net (i.e., a tree of tests and branches) to store the
relations required to recall nonsense syllables in a rote learning
experiment (see [31], [11], and [37] for further examples).

The kind of learning that involves only estimation of unknown
parameters (i.e., the parameter learning of Section 2.1) has been
referred to as terminal learning in the AI literature [22]. In Al it
is commonly believed that a learning system should have sufficient
internal structure to delvelop a "strong theory" of its environment [10]
[19]. Much emphasis has therefore been placed on building “knowledge-
based" or "expert" systems that not only have the capacity for high
performance, but can also explain their performance in symbolic terms
[(6]1. Concept-formation systems in particular stress the construction of
symbolic descriptions [14].

Winston [38] describes various levels of sophistication 1in
learning systems: learning by being programmed, learning by being told,
learning from a series of examples, and finally learning by discovery.
We see in this categorization a gradual shift in responsibility from the
designer/teacher to the learning system/student. At the highest level,

the system is able to find its own examples, and carry on autonomously.

3 The LS Model

We are concerned with the functional description of LS“s and their
interaction with the environments in which they operate. Many of the
functional components of an LS are essential to intelligent systems in

general, as noted also by Simon and Lea [29].

3.1 Environment

The environment in which an LS operates may have a profound effect
upon its design, and therefore it is of interest to consider a few major
environment classes. LS environments can be divided into two major

categories: those that provide the <correct response for each training

instance (supervised learning) and those that do not (unsupervised
learning). Supervised learning systems operate within a stimulus-
response environment in which the desired output of the LS is available
along with each training instance [12] [7]. Samuel's "book move"
checkers program [26][27], and grammatical inference programs [15]
(i.e., programs that attempt to infer the rules of a grammar from sample
sentences generated by that grammar) are further examples of LS’s
operating within such an environment. This is also the nature of the
environment for automatic programming systems [14] which construct
programs to reproduce (or explain) a set of sample input/output pairs.

Unsupervised LS“s operate within an environment of instances for
which the correct response is never available, The version of Samuel's
program which learns by playing checkers against an opponent falls into
this category [26]. Learning systems operating within this type of
environment must themselves infer the correct response to each training
instance by observation of system performance for a series of instances.
As a result, assignment of credit or blame for overall performance to
individual responses is a problem for these systems [21].

Environments can be further categorized as "noise-free" or
"noisy". Noise-free environments, such as that of Winston's structural
description learning program [37] provide instance/correct-response
pairs in which the data are assumed to be perfectly reliable. Noisy
environments, on the other hand, do not provide such perfect
information, as is usually the case when real data are involved (pattern
recognition and control systems frequently operate within noisy
environments [7] [8] [1]). Environments which react to the LS
responses in some way that is not under the control of the system can

also be considered to fall into this category. The opponent in a game
for example, operates on the response of the LS to provide the next

instance [35].

3.2 The Model = overview

The LS model is shown in Figure 1. The PERFORMANCE ELEMENT is
responsible for generating an output in response to a training instance.
The INSTANCE SELECTOR selects suitable training instances from the
environment. The CRITIC analyzes the output of the performance element
in terms of some standard of performance. The LEARNING ELEMENT makes
specific changes to the system in response to the analysis of the
critic. Communication among the functional components is shown via a
BLACKBOARD to ensure that each functional component has access to all
required system information. Finally, the LS operates within a WORLD
MODEL containing general assumptions and methods defining the domain of
activity of the system.

Existing systems can seldom be partitioned unambiguously into the
functional components shown in Figure 1. These components are conceptual
entities which simplify the characterization of existing systems, and
will assist designers in the construction of new systems. They
correspond to functions that must be performed to effect learning. In
many existing systems, one or more of the functions are fulfilled by a
human who is considered to be part of the LS.

In the following sections, we present detailed discussions of the
LS model components shown in Figure 1. In addition, Appendix I
contains detailed characterizations of representative AI, pattern
recognition, and control systems in terms of the model. The reader may
find it helpful to refer occasionally to this appendix while reading the.

following sections.

| e e o o e o e e o e
world del , performance
mode
! element
| mm—Se e ———
|
]
[1 e b)
, Frrstance |' ' { }
| lect e | blackboard |=-=-e= | critic
selector
jneleeier LA Lt A I |
|
|
b |
i learning {
|| elementi
| ~m——— e ———

Figure 1. The Components of a Learning System

3.3 Performance Element

The performance element is the mechanism that uses the learned
information to perform the stated task. It has been included in the LS
model because of the intimate relationship between what is to be learned
by an LS and the way in which the learned information is to‘ be used.

Performance elements are usually tailored more to the requirements
of the task domain than to the architecture of the LS. In general, the
performance element can be run in a stand-alone mode without learning,
independent from the rest of the LS (e.g., Samuel’s checker playing
program [26]1[27]). In any LS, however, the ability to improve
performance presupposes a method of communicating learned information to
the performance element. Therefore, the architecture of the performance
element must allow learned information to affect its decisions, and so
additional constraints are placed on any performance element that jg (o

be wused as a component of an LS. The performance element must be

constructed so that information about its internal machinations is
readily available to the other system components. This information can
be used to make possible detailed criticism of performance, and
intelligent selection of further instances to be examined by the system.

The performance elements of existing systems vary in the number of
ways in which they may be altered by learning. Systems which adjust
parameters as their sole learning method are relatively limited in the
performance variations they can exhibit [17]1[20], whereas systems whose
operation is determined by a set of production rules can exhibit greater

variations [35][36].

3.4 Instance Selector

The instance selector is a mechanism that selects training
instances from the environment that are to be used by the system in
learning. It is a functional component not clearly isolated in earlier
adaptive system models [12][30][13].

In reviewing existing LS“s we have found that methods for instance
selection vary mainly along the dimensions of responsibility and
sophistication. The responsibility for instance selection varies
between the extremes of completely external ("passive") selection, and
completely internal ("active") selection. Instance selection in
Samuel’s book move checkers program [26]1[27] is externally controlled,
whereas Popplestone’s program [2U4], which learns the features that
characterize a winning position in tic-tat-toe, generates its own
training instances. It forms alternate hypotheses, and then generates
instances to choose among them (relying upon an external critic to
evaluate these instances). In the adaptive systems literature, Tse and
Bar-Shalom [32] discuss the use of "dual-control" in an attempt to
identify the parameters of a system at the same time as it is being
controlled.

The degree of sophistication wused for LS instance selection is

also an important consideration. In order to qualify as sophisticated,

an instance selector must be sensitive to the current abilities and
deficiencies of the performance element and must construct or select
instances which are designed to improve performance. Winston [37] has
shown the advantages to be accrged through presenting carefully
constructed examples and “near-misses"™ of the concepts to be acquired by
an LS. In general, careful 1instance selection can improve the
reliability and efficiency of an LS. We must note, however, that this
may not always be permitted by the environment in which the LS operates,

as is generally the case for adaptive control systems [8].

3.5 Critic

The critic may play three roles; EVALUATOR, DIAGNOSTICIAN, and
THERAPIST. It always operates as an evaluator, in that it embodies a
standard by which to assess the behaviour of the performance element.
This is the role that has been emphasized in earlier adaptive system
models [12] [30] [13].

The critic may also operate as a diagnostician, and localize the
reasons for poor performance. This type of behavior is essential for
resolution of the credit assignment problem described by Minsky [21]. In
its role as diagnostician, the critic is exemplified by the bug
classifier and summarizer in Sussman’s HACKER [31].

Finally the critic may be able to operate as a therapist, and make
specific recommendations for improvement or suggestions about future
instances. In Waterman’s poker player [35], the critic as therapist
suggests the bet that should have been made by the performance element
for a particular training instance.

Not all systems exhibit sufficiently complex behavior to warrant
“critics that fulfill all three functions. The critic as therapist in
particular is not often seen in simple systems.

The dividing line between critic and learning element is difficult

to distinguish, and it is certainly possible to view therapy as a

function of the learning element, rather than one of the critic.
However, in mapping existing LS’s into our model, we have adopted the
convention that the critic’s recommendations to the learning element are
at an abstract level removed from the implementation details such as
data representation.

In some LS’s the functions of the critic have been left to the
human who uses the system. For example, MYCIN/TEIRESIAS [6]uses a
human critic, acting as evaluator, diagnostician, and therapist to

suggest alterations to its rule base.

3.6 Learning Element

The learning element is an interface between the critic and the
performance element, responsible for translating the abstract
recommendations of the critic into specific changes in the rules or
parameters used by the performance element.

Representations for learned information exhibit great variety.
They include, for example production rules [35], parameterized
polynomials [26], executable procedures [31], signature tables [27],
stored facts [9], and graphs [37]. The method of incorporating new
learned information is dependent upon this representation, and even
among systems which use similar representations, competing methods are
found (contrast, for example, [3] and [35]).

The extent to which the learned information is altered in response
to each training instance is an important LS design consideration. In

“some systems [37), the learning element incorporates exactly the
information supplied by the critic. Were the same training instance to
occur later, the response of the performance element would be exactly as
the critic advised for the first occurrence. This type of learning is
well suited to environments which provide perfect data and to systems
with reliable critics. Under these conditions the LS will converge
rapidly toward the desired behavior. If such a system were provided

with an incorrect <classification by the environment or less than

reliable advice by the critic, however, it might commit itself to
incorrect assumptions from which it is difficult to recover. Systems
which make less drastic changes to the learned knowledge on the basis of
a single training instance are less vulnerable to imperfect information,
but consequently require more training instances to converge to the
desired behavior. Many statistical LS’s fall into this category [23].
Other systems consider several training instances at a time in order to

minimize the effect of occasional noisy instances [3].

3.7 Blackboard

The blackboard of our model is an extension of the concept
introduced in the HEARSAY system [18], functioning as both global data
base and communications mechanism, The blackboard holds two types of
information: --the information usually associated with the “knowledge
base” in Al programs, and the temporary information used by the LS
components. The knowledge base often contains the set of rules,
parameter values, symbolic structures, and so on, currently being used
by the performance element. Such information can be used as an aid to
sophisticated instance selection if it is readily available. The
temporary, system-oriented information includes, for example, the
internal decisions made by the performance element in selecting a
particular response. Detailed criticism by the critic is dependent upon
the availability of this information, written by the performance
element .

In many existing systems this information is not so clearly
separated or defined. The communication links between functional
components, especially, are often programmed directly. Such a non-
- modular approach is known to lead to difficulties when redesign is

attempted [2].

3.8 World Model

Whereas the blackboard contains information that can be altered by

the LS components, the world model contains the fixed conceptual
framework within which the system operates. The contents of the world
model include definitions of objects and relations in the task domain,
the syntax and semantics of the information to be learned, and the
methods to be used by the LS. Again, there are no clear lines of
separation between the world model and the other parts of the LS. Our
working definition is that the world model contains all definitions,
parameters, vocabulary, and assumptions that are available for
modification. (Insofar as the designer can change any piece of the LS we
suggest separating those that are easily modified from the rest. See
[25] for a philosophical treatment of this issue, and [5] for the
discussion that led to our including a world model.) Among task domain
definitions are, for example , the rules of a game, and the
representation of --inputs and outputs for the performance element. This
part of the world model simply defines the task of the performance
element, and the standard of performance (the evaluation function) to be
applied by the critic. Definitions of the syntax and semantics of
information to be learned define the mode of communication between the
learning and performance elements.

The world model may include several additional items. Some
systems require a model for translating input data into the specific
training instances to be used. For example, the controller in [17]
preprocesses inputs in a control system, and the first part of Meta-
DENDRAL [3] translates each input molecule/data-point pair into
plausible molecule/process pairs under a simple theory of the task
domain. Domain specific heuristics are also commonly added to the world
model of Al systems to guide inferences made by the LS (e.g., the blocks
world heuristics of Winston’s program [37]).

Although the world model cannot be altered by the LS that uses it,
the designer can alter its contents in order to improve LS performance.
He often changes parameters and procedures of the basic LS after

observing and criticizing its behavior for some carefully chosen

training set. These alterations result in a new version of the LS, which
is then tested on some training set, and so on. The designer views the
whole LS as a system whose performance needs improvement, and he selects
instances, criticizes performance, and makes changes accordingly. In
other words, the designer’s activities can be modeled by a system whose
components are just those in Figure 1. This leads us to the concept of
layered LS“s, each higher layer able to change the world model
(vocabulary, assumptions, etc.) of the next lower layer on the basis of
criticizing its performance on a chosen set of instances. Thus,
adjustments can be made to the world model of some learning system LS1
by another learning system, LS2, which has its own functional components
(critic, world model, etc.). In turn, it is conceivable that a third
system, LS3, could adjust the world model of LS2, and so on. The final
critic, however, is the designer, operating outside of the "top-level"
LS.

One existing LS which may be viewed as a layered system is the
version of Samuel’s program [27] which learns a polynomial evaluation
function for selecting checkers moves (see Appendix I for details).
The lower layer (LS1) in this system adjusts the coefficients of a given
set of game board features in order to improve performance of the move
selection program. The second layer system (LS2) adjusts the set of
board features used in the evaluation function in order to improve the
learning performance of LS 1. Since LS1is contained in LS2 as the
performance element, all the assumptions necessary for its operation
also belong to the LS2 world model. In addition, the LS2 world model
contains assumptions about the set of allowable game board features and
the standard for evaluating LS1 performance.

A single layer LS, then, can never move outside its world model to
make radical revisions to its way of viewing the task to achieve a
"paradigm shift”, as discussed by Kuhn [16]. However, a shift in the
conceptual framework of LS1 could be made by a properly programmed LS2

[3]. We believe that a layered approach such as that described above

13

provides a useful system organization for learning at various levels of
abstraction in complex domains. Although there are examples of this
kind of layering in the literature [26][34], no one has carried it as
far as our model suggests, and it appears that we are just now reaching
the point of understanding single layer learning systems well enough to

consider developing more sophisticated systems.

4 Summary

The proposed LS model provides a common vocabulary for describing
different types of learning systems which operate in a variety of task
domains. It encourages classification and comparison of LS’ s and helps
identify unique or strong features of individual systems. We believe
the model is a wuseful conceptual guide for LS design, because it
isolates the essential functional components, and the information that
must be available to these components. The model also suggests a

layered architecture for learning at different levels of abstraction.

Appendix I

Characterization of Existing Systems in Terms of the Model

In this appendix several existing LS"s are characterized using the
framework provided by the model described in Section 3. The systems
selected are representative of several approaches to machine learning.
Because the blackboard contains information in a state of flux, its
contents are not specified explicitly for the systems characterized

below.

Meta-DENDRAL, Buchanan, et al, [3][4]

Domain: Mass spectrometry.

Purpose : Learn to predict data points in the mass spectra of
molecules.

Environment: Set of all known molecule/data-point pairs.

Performance Element : Predicts peaks (data points) in mass-spectra of
molecules using learned production rules. Employs a model of
mass spectrometry for translating between mass-spectral
processes (predicted by the rules) and data points in the
spectrum.

Instance Selector: Accepts a set of known molecule/spectrum pairs
from the user.

Critic: Evaluation - determines the suitability of the set of
predictions generated by a rule. Diagnosis - states whether the
rule is acceptable, too specific, or too general. Therapy -
recommends adding or deleting features to the left-hand sides of
rules.

Learning Element : Conducts a heuristic search through the space of
plausible rules using a predefined rule generator. At each step
in the search the potential rule’s performance is reviewed by

the critic.

15

World Model: Representation of molecules as graphs, production rule
model of mass spectrometry, vocabulary of rules used to
represent learned information; heuristics used by the c¢ritic in

directing the rule search,

Program to Learn Structural Descriptions from Examples, Winston [37]

Domain : Blocks world.

Purpose: Learn to identify blocks world structures (such as arches
and towers).

Environment: Set of possible line drawing/structure-classification
pairs.

Performance Element : Decides class of structures to which the input
structure belongs. Uses a model of the structure class supplied
by the learning element.

Instance Selector: Accepts training instances supplied individually

by the user.
Critic: Evaluation - compares the classification made by the
Performance Element against the correct classification as

supplied with each training instance. Diagnosis - generates a
comparison description pointing out differences between the
model and the structure description.

Learning Element: Constructs a model of the class of structures
under consideration. Examines the comparison description
supplied by the critic, and modifies the model to strengthen or
weaken the correspondence between the model and the training
instance.

Wor 1d Model : Representation of scenes as line drawings, method of
translating line drawings to graphical descriptions, grammar for
representing the learned information, domain-specific heuristics
for resolving among possible changes to each structure class

model.

16

Checker Player, Samuel [26][27]

Domain: Game of checkers.

Purpose: Learn to play good game of checkers (here we discuss only
the version of the program which learns a linear polynomial
evaluation function by examination of moves suggested by experts
("book moves").

Environment: Set of all legal game boards,

LS1 (lowest layer):

Purpose: Learn a good set of coefficients for combining board
features in a linear polynomial evaluation function.

Performance Element: Uses the learned evaluation function to rank
plausible moves for a given board position.

Instance Selector: Reads instances from a list of pre-defined game-
board/recommended-move pairs.

Critic: Evaluation - examines the ranking given to the book move by
the performance element. Diagnosis - suggests that the book move
should be ranked above all other moves.

Learning Element: Adjusts weights of linear polynomial to make move
selection correspond to the critic's recommendation.

World Model: Syntax of game board, form and features of linear
polynomial evaluation function, method for adjusting evaluation
function, and rules of checkers.

Ls2:

Purpose: Improve the performance of LS1 by selection of a good set
of board features.

Performance Element: LS1.

Instance Selector: The entire set of possible training instances is
simply passed to LSt (via the blackboard).

Critic: Evaluation - analyses the learning ability of LS? (i.e., the

LS2 performance element) with the current set of evaluation

function features. Diagnosis - singles out features which are
not useful, Therapy - selects new features from a predefined
list to replace useless features;

Learning Element: Redefines the current set of features as
recommended by the critic.

World Model: The LSt world model, plus the set of features which may
be considered, and the performance standard employed by the LS2

critic.

Poker Player, Waterman [353

Domain : Draw poker.

Purpose: Learn a good strategy for making bets in draw poker.

Environment: Set of-all legal poker game states.

Performance Element : Applies the learned production rules to
generate actions in a poker game, e.g., bets.

, Instance Selector: Selects each game state derived by play against
an opponent as a training instance.

Critic: Two versions of the program use two different critics. In
both cases the critic performs the following functions:
Evaluation - decides whether the poker bet made by the
Performance Element was acceptable. Diagnosis - gives important
state variables for deciding the correct bet. Therapy = provides
the bet which the Performance Element should have made. In
"explicit"™ learning the critic is an expert poker player ,
either human or programmed. In "implieit" learning, the
evaluation and therapy are deduced from the next action of the
‘opponent and a set of predefined axioms, while diagnosis is read
from a predefined “decision matrix”.

Learning Element: Modifies and adds production rules to the system.
Mistakes are corrected by adding a new rule in front of the rule

responsible for the incorrect response.

World Model: Rules of poker, features used to describe the game
state, the language of production rules, heuristics for updating

the rule base, the model of an opponent.

Model Reference Adaptive Control, e.g. Landau [17]

Domain: Control Systems.

Purpose: Construct a “controller” which preprocesses inputs to an
existing system (called the "plant"). The behavior of the
combined controller-plant system is to mimic the behavior of a
third system (called the “reference model”) on the training
data.

Environment: The plant to be controlled, and the set of possible
inputs (including disturbances).

Performance Element: The controller - a system whose output is used
as input to the plant, Its behavior is a function of the input
signal, past I/O behavior of the plant, and a set of adjustable
parameters.

Instance Selector: Accepts data sequence (as input to the
controller) from the environment.

Critic: Evaluation - applies a measure of performance which is some
function of the arithmetic difference between the plant and
reference model outputs. In some cases the reference model is
mathematically defined, and can therefore be considered part of
the critic. In other cases the reference model is an actual
system, and is considered part of the environment.

Learning Element: Modifies the parameters of the performance element
(controller), depending on the performance measure supplied by
the critic.

World Model: Control theory assumptions (time invariance, linearity,
etc.) and techniques, and the standard of performance embodied

in the critic.

19

10,

11.

12.

H.

B.

“and Pro

References

G. Barrow and R. 7, P(ﬂplestone, "Relational Descriptions in
Picture Processing", in achine Intelligence 7, B. Meltzer and
D. Michie, eds., American Elsevier, N. Y., 1972, pp. 377-396.

P. Brooks, lr., The Mythical Man-Month, Addison-Wesley, Reading,
Mass., 1975.

G. Buchanan, "Scientific Theory Formation by
Computer” Proceedings of NATO Advanced " Study Institute on
Computer briented Learning Processes, Bonas, France, 1974.

G. Buchanan and T. M. Mitchell, "Model-Directed Learning of
Production Rules", to be presented at the Workshop on Pattern-
Directed Inference Systems, Honolulu, Hawaii, May 1977

W. Churchman, "The Role of Weltanschauung in Problem Solving and
Inqu1r¥", in . R Banerji and M. D. Mesarovic,
eds., Theoretical Aprcoaches to Non-Numerical Problem Solving,
Springer-Verlag, N.Y., 1970, pp. 141-151.

Davis "Applications of Meta-Level Knowledge to
the Construction = Maintenance.., and Use of Lar e Knowledge
Bases", STAN-CS-36-552, Stanford University, July 1876.

O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, Wiley, N. Y., 1973.

D. Donalson and F. H. Kishi, "Review of Adaptive
Control Theories and Techniques" in C. T. Leondes,. ed., Modern
Control Systems Theory, McGraw-Hill, N. Y., 1965, pp. 228-28L.

A. Feigenbaum, "The Simulation of Verbal Learning Behaviour", in
E. A. Feifenﬁaum and J.. Feldmap ads., Computers and Thought,
McGraw-Hill, N. Y., 1963, pp. 297-309.

A. Feignbaum B. G. Buchanan, and J. Lederbef\]% "On CGanecality

lem Solving: A Case Study Using The DE RAL Program", in
Machine Intelligence _6, B. Meltzer and D. Michie, eds.,
American Elsevier, N. Y., 1971, pp. 165-190.

Fikes, P. Hart, and N. J. Nilsson, "Learning and
Executing Generalized Robot Plans", Artificial Intelligence
1972, 3, pp.251-288.

S. Fu, "Learning Control Systems -Review and Outloak" IEEE

"Trans. on Automatic Control,” Vol. 15, No. 2., April 1976, PP-

210-221.

20

13.

20.

21.

22.

23.

24,

- 25.

26.

27.

R. (lé/[1 fCf}lorloso En 151ner1ng Cybernetics, Prentice-Hall, Englewood
i

c. Green, "The Design of the PSI Program Synthesis
System" Second International Conference on Software Engineéring,
San Francisco, California, Dctober 1976.

E. B. Hunt, Artificial Intelligence, Academic Press, N. Y., 1975.

T. S. Kuhn The Structure of Scientific Revolutions, 2nd edition,
Univ. Chicago Press, 1970.

I. D. Landau, "A Survey of Model Reference Adaptive Techniques -
Theorgaag';ig Applications", Automatica, Vol. 10, No. 4, July 1974,

V. R. Lesser R. D. Fennell man and
Reddy, "Organization of the HEARSAY II Sspeech Understandm%
System" IEEE Pans. on Acoustics, geech and Signa
Processing, Vol. ASSP-23, No. 1, February pp. 11-23.

J. McCarthy "Programs ~ with Common Sense",”"1in Minsky
ed., Semantic Information Processing, MIT Pr‘ess, Cambridge:
Mass., 1968, pp. 403-418.

D. Michie, On Machine Intelligence, Wiley, N. Y., 1974,

M. Minsky, "Steps Toward Artificial Intelligence", in E. A.
Fei enbaum and Feldman,eds..Computers and Thought, McGraw-
Hil?, N. Y., 1963, pp. 40&-150.

M. Minsky and Ss Pa evd, "Artificial Intelligence -
Progress Report", A.I. MI! AI "Memo 252, January 1972.

N.J. Nilsson, Learning Machines, McGraw-Hill, N. Y., 1965.

R. J. Popplestone. "An Exnerlment in Automatic Induction? in
Machine Intelligence 5, B. Meltzer and D. Michie, eds.,
Edinburgh University Press, 1969.

W V.0. aine, "Two (ﬁmaq of Blr'icism", in from a logical
881_% of view, Harvard UniversityPress, Cambridge, Mass., pp.

A. L. Samuel, "Some Studleq 1n Machine Lear’n1n§ U31ng the Game of
Checkers", in E. 1\%enbaum Feldman, eds.,
Computers and Thought, cGraw-Hill, N. Y., 1963, pp. T1- 1

A. L. Samuel, "Some Studies in Machine Learning Using the Game of
Checkers II - Recent Progress", IBM Journal gf Reqearch
and Development, Vol. 11, No. 6, November 1967, pp.601-6

21

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

0. G Selfrldge and U. Neisser, "Pattern Recognition by Machine",
. FFelgenbaum and __ J. Feldm.an., Computers and
Thought McGr'awwH.‘u, Y., 1963, pp. 237-250.

H. A. Simon and G. Lea, "Problem Solving and Rule Induction: A
Unified View", in L. W. - Gregg, ed., Knowledge and
Cogn{(tjlgqn1é7Lawr'ence Erlbaum Associates, Potomac Maryland, 1974,

J. _Sklansky, "Adaptation, Learning, Self-Repair, and Feedback",
IEEE Spectrum, Vol. 1, No. 5, May 1964, pp 172-174.

G. J. Sussman "A Cong1 utational Model of Skill Acquisition", MIT
AI-TR-297, August 1973.

E. Tse and Y. Bar-Shalom, "Actlvely Adaptive Control for Nonlinear
Stochastic System.s" IEEE Proceedings, Vol. 64, No. 7,
August 1976, pp. 1172-1181.

Ya. Z. Tsypkin, "Self Learnin -~ What Is It?", IEEE Trans. on
2111téomatlc Gontrol, Vol. AC-13, No. 6, December 1968, pp. 608-

L. Uhr and C, Vossler, "A Pattern-Recognition Program
That Generates, Evaluates, and Adjusts Its Own perators”, in E.
A. Feigenbaum and J.. Eeldman, eds., Computers and Thought
McGraw-Hill, N. Y., 1963, pp. 251-268.

D. A. Waterman, "Generalization Learning Techniques for Automating
the Learmng of Heuristics" Artificial ntelligence, Vol.
1, Nos. 2, 1970, pp. 121=170.

D. A. Waterman "Adaptive Production S_Vstems"; IJCAIY Proceedings,
Tbilisi, USSR, September 1975, pp. 296-303.

P. H. Winston, "Learning Structural Descriptions From Examples",
MIT AI-TR-231, September 1970.

P. H. Winston, ed., The Psychology of Computer Vision, McGraw-
Hill, 1975.

B. Wittenmark, "Stochastic adaptlve control methods: a survey",
Int, J. Control, Vol. 21, No. May 1975, pp. 705-730.

22

