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ABSTRACT

Lax-Wendroff methods for hyperbolic systems have two characteristics

which are sometimes troublesome. They are sometimes too dissipative-—-

they may smooth the solution excessively--and their dissipative behavior

does not affect all modes of the solution equally. Both of these

difficulties can be remedied by adding properly chosen accretive terms.

We develop modifications of the Lax-Wendroff method which equilibrate

the dissipativity over the fundamental modes of the solution and allow

the magnitude of the dissipation to be controlled. We show that these

methods are stable for the mixed initial boundary value problem and

- develop analogous formulations for the two-step Lax-Wendroff and

MacCormack methods.

* This work has been supported in part by the National Science
Foundation under Grant DCR75-13497 and the Office of Naval Research
under Contract NOOOl4-T75-C-1132.
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1. Introduction

We shall consider approximations for hyperbolic systems of partial

differential equations. We begin by considering the Cauchy problem for

(1.1) u = Au , -0 < Xx << © , t>0

with initial data

(1.2) u(x,0) = u(x) ) cm << X <0

where u 1s a vector of length n and A is an nXn matrix

with real eigenvalues. We assume that A has a complete set of

eigenvectors and can therefore be transformed to diagonal form. We

will denote the eilgenvalues of A by TSRPRSPITR If A is a function
of x,t we assume that this transformation can be done smoothly.

We shall discuss the well-known Lax-Wendroff method, several of

its varients, and modifications thereof. Discussions of these methods

and modifications of them which improve their phase errors and stability

regions have been carried out by Turkel [9], Gottlieb and Turkel [2],

and Eilon, Gottlieb and Zwas [l]. We are golng to discuss the

dissipative properties of these approximations and modifications of

them which improve their dissipative properties. We will also comment

on the combination of our modifications with some of those of the

previously mentioned authors. Recently, Turkel [10] has discussed
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a hybrid leap-frog-—Lax Wendroff method which 1s less

dissipative than the Lax-Wendroff method but, like the Lax-Wendroff

method, has dissipation which varies radically for the various modes

of the solution.

To make this more precise we now introduce some notation and

definitions which are discussed in Richtmyer and Morton [ 8] and

Kreiss and Oliger [6].

In order to approximate (1.1) we introduce a grid function

v, (t) - v(x, ,t), %, =Vh, h>0, v=0, £1, +2,... and

t = 0, k, 2k,...9k> 0. We write our approximations in the form

: p

(1.3) v. (t+k) = 5 Q.v,,(t-jk)
Vv . JV

J=0

where

- /

Q; = > AE and Ev, = Vii
f==00

) Associated with (1.3) is the characteristic equation

prl _ Po oay
(1.4) Gp = (n° ~ =F Qu )p = 0

= Ad
71=0

A 0 10E
where Qs = Ae’ , £ = oh. Equation (1.4) is obtained from (1.3)

f==c0 .
by letting v(x,t) = RIERA G, as defined by (1.4), is often

called the symbol of (1.3).

Definition 1.1. The approximation (1.3) 1s said to be accurate of order

(9;,9,) for solutions u of (1.1) if there 1s a function ¢(t) which
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is bounded on every finite interval [0,T] such that, for all

sufficiently small h and k,

P q

(1.5) u(x, t+k) - § Quix, t-gk)| <_kC(t)(n Ly 2) :
coun 2

If q; = 4 = gq we say the approximation (1.3) is accurate of order

gd.

We can now introduce Kreiss' definition of dissipativity [6, 8].

Definition 1.2. If the solutions ns of (1.5) satisfy

(1.6) Mix <1 51e1%T for oO < le] < 7m

for some 8 > 0 and natural numberr, then the approximation (1.3)

1s said to be dissipative of order 2r.

One important consequence of dissipativity 1s the theorem of Kreiss

and Parlett [6, 8].

Theorem 1.1. Let (1.3) be accurate of order 2m-2 or 2m-1 and

dissipative of order 2m, then (1.3) is strictly stable.

Recall that strict stability implies that the {,-norm of the approx-

imation, as a function of t, does not grow faster than the L, -norm

of the solution.

The Lax-Wendroff approximation for (1.1) 1is

K° O
(1.7) v, (t+k) = v, ((t) + kAD v, (t) + > A D,D_v, (t)



where

Dv. (t) = (20) Fv, (6)-v, (¢))
oV v+1 v-1

Dv, (t) = nt(v,,, (t)-v, (t))
+ v+1 V

Dv, (t) = nt(v, (t)-v, , (t)
-V V v-1

This method 1s well known to be accurate of order 2 and dissipative

of order 4 if A = k/h satisfies 0 < A max lus < 1. TheJ

characteristic equation (1.5) can be written as

2 :

(1.8) Hs = 1 + Nu sin & - IN sin” (&/2) , J = 1,2,...,0

SO

Cb, 4

(1.9) [1° = 1 = IEE (13%) sin &/2 = 1 - mo

2 2 2 2

where we let oa = sin &/2 and m., = IA 05 (1270). This equality

ylelds an inequality of the form (1.6) if 0 < A max [us < 1 but it is. J

more convenient to leave it in this form for our purposes. Note that the

m, are functions of the Ls and that the "amount of dissipation", the

amount nd differs from 1, is dependent on the eigenvalues of A. The

dissipation 1s greatest for intermediate values of lu, | and least
for the smallest and greatest values of lus . See Fig. 1 where we
plot oe | as a function of Br = Ns for several values of &. The
fact that the dissipation vanishes for all a if Mus = 0 is often
troublesome in nonlinear calculations. The onset of nonlinear

p,
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instability 1s often attributed to these facts, this has been

discussed by Richtmyer and Morton [8] beginning on page 334, and by

Turkel [ 9]. It is also often true that the fastest moving waves

associated with the largest values J are often of minimal interest,
contain the greatest observational error, and are contaminated by the

| most computational error. In such situations it would be appropriate

to dissipate these modes most rapidly rather than least rapidly.

Further, there 1s generally no reason why intermediate modes should be

singled out for most rapid destruction. It is this aspect of Lax-

wendroff methods that we shall discuss. Our subsequent modifications

will be directed to the equilibration of dissipativity over the modes

(values of is) or, alternatively, to produce decay of |u| as a

function of [Ip
Before proceeding we shall introduce the two-step Lax-Wendroff

method and the MacCormack method which are also dissipative and behave

similarly. The two-step Lax-Wendroff method can be written as

v "vee®t ven) + = a0 B)v, (+)
V = 2 2 02 Vv

(1.10)

v, (t+k) = v(t) + KAD_(2)7,,

where D(F)v,(6) = n7hw,,0(6)yn (8).
Our introduction of indices of the form V+ 1/2 deviates from our

earlier definition of the grid function but the meaning should be clear.

The characteristic equation for (1.10) is just (1.8) in the linear

case we are considering and the equality (1.9) holds in this case too.

In this situation (1.10) 1s simply a rearrangement of (1.7). However,
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our modifications of (1.10) will not be the same as those of (1.7) since

we may want to take advantage of the separate steps and implement them

in a two-step manner. The MacCormack method can be written

v = +v, = v,(t) + KAD v(t)

(1.11) 0) _v.,\(t) + v
Vv V k —+k) = ——— + =v, (t k) 5 + 5 AD_v,

where the v,, are intermediate values. The characteristic equation
can be written

(1.12) of = 1/2 + T + 21M J1-0F T + Phu

where T = 1/2 + TA J1-0P a - Muyo” .

—- of can again be seen to satisfy (1.8) and (1.9). Again, in this
simple situation, this 1s a rearrangement of (1.7) but our modifications

will again be different since we will implement them 1n a two-step

) manner.

T.
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2. The Modified Methods and Their Properties

A nondissipative method like the leap-frog method,

+k) = —v, (t+k) = v((t-k) + 2KkADv, (t) ,

can be modified to yield a dissipative method by adding dissipative

terms, e.g.,

(t+k) = v,_(t-k) + 2KAD v(t) - ¢ 0! (D.D )2v. (t-k)Vy REA ov 18 “+ v

is accurate of order 2 and dissipative of order 4 for

OK e <1, IA] <1-¢f[6]. The eigenvalues of the symbol of this

method satisfy

2 a -
be. | = 1 - e sin (2)

so the amount of dissipation, the magnitude of 6 in (1.6), can be

controlled by varying ce.

We can similarly modify the Lax-Wendroff methods by adding terms—-

we can reduce the amount of dissipation by adding accretive terms.

Such terms must be of the order of the truncation error of the method

so that they do not constitute a modification of the differential

equation and do not affect the order of accuracy and the rate of

convergence of the method.

We first consider a modification of the Lax-Wendroff method (1.7).

Let M, M, and My be arbitrary matrices which are diagonalizable
by the same transformation which diagonalizes A. We consider

8
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kK ©
v, (t+k) = (I + KAD + = A°D,D Jv, (t) +

(2.1) . 53
h 2 h” 2 h” 2

(My Tg (0,0 )° + M, 5 DID + M; = DD,)v, (t) .

The symbol of (2.1) 1is

GCG =1 + 2iNaV 1-0F - NACHE + Mo
(2.2)

+ Ms (-1V1-07 o@ + ot) + My (-1V1-a" o@ - a)

where ¢ = sin £/2 and A = k/h. We also have

Re(G) = 1 NAP + (M+ - ow)e\u) = 1 - Q 1 TY 3 ’

Im (G) A/1-0f a (PNA - (M, + My)a?) ,
and

) 2 hh, 22 _
Hy o= 1 + [LA {bs UA Ls (bm, bmg hu

+ 2m, , = 2 - 2 Jo +
15" “3 T My

2 2

(2.3) [ (-bmy 5 bm, (Him ON op + (lm, +h re

2 2. 6

Fly emmys bongslon

(2. + (em. .-om. )m.. - L Jo
1j 23 M35 M1 T Maite

9



where the mys are the diagonal entries which result when M, is
transformed to diagonal form with A.

We now define the phase error'per time step, E, of an approxi-

mation as (see [ 91):

E = (approximations phase speed - solutions 'phase speed) X k

Then it follows that [9]

_ ) 71) - ae(2.4) E = arctan ((Im G)(Re G - .

The components of E = diag (ey5--25e,) for our diagonalized system are

1 (03 3 5 + 0(e”)2.5) e. = = WAN uT-4Au.-3m. .-3m, ‘(2.5 ; oh ( HS Hs bp) 2 3 3 5508

We now consider two specific modifications. Let M, = M = 0.
If we take

: (2.6) 2M, = [-eI + BA°A%(1-3°A%)]

then (2.3) becomes

2 2.2 2 hol
2.7 uw. =1 -[ethm ops-m.(2.7) pe | [ ethim) opm sa" la

where

2 2
m,. = -¢ + 4g5(1-p.) . = Au. -13 € 5 ( Bs and Bs A

10



i

We have thus cancelled out the ., dependence of the coefficient

of at We demonstrate the effect of this in Figures 2a-2d where

we plot [ul as a function of p for several values of €& and e.
For smaller values of ¢ the dissipation 1s reduced and nearly constant

for a considerably larger neighborhood of B = 0. For larger values of

¢ the dissipation does not vanish for all § in the neighborhood of

B= 0.

We next consider a modification which introduces a quadratic decay

in be. | as a function of hse We take

(2.8) 2M, = [8NA% + IAT ITATAT)]

Equation (2.3) 1s now

2 2 22 2 ho
2. H. = 1 - [®p%5+km, .a BS -m-.a Ja(2.9) | [8p +m, opm]

where

2 2 2
m,. = =p + up (1-85) .1] B; ByiPs

We demonstrate the effect of this modification in Figures Ja-3d

where we plot oe | as a function of P for several values of &
and © as before.

The stability of the modified methods given 1n (2.6) and (2.9)

follows from our general results in Section 3. We will state the

particular form those results take for these methods here. The

modification (2.6) is strictly stable if

(2.10) 0 <e< b(1-]p I)
max

11
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where Bmax 1s the value of Bs = Muy with largest magnitude. The
modification (2.9) 1s strictly stable if

b(1-lp 1")
(2.11) 0 <0 KL—>

Bax

We could have introduced a term -BAA in (2.9) instead of the term

_BACA° and this would result in a linear decay of In, | with respect
to Bs in the = term. However, the stability analysis corresponding
to (2.11) would yield 0 < 8, < (1-57) for J = 1,2,. . .,0 SO
that 6 would have to be chosen to agree in sign with Bs» l.e.,

8I would need to be replaced by a matrix which, after transformation

to diagonal form, would yield a matrix with entries + © in appro-

priate places to match up with the hs If all the Ms are of the
same sign this 'poses no problem; however, if they are of both signs

this does not yield a practical procedure in general.

We now note that the first term of our expression (2.5) for the

phase error 1s not affected by our choice of Ml, so M, and My

can be chosen as in Gottlieb and Turkel [2] to reduce the phase error

to 0g”). However, these modifications do affect our expression for

: [1° given 1n (2.3) and the results (2.10) and (2.11) no longer hold.
(2.3) must be reexamined when nonzero M, and My are used to

establish the stability bounds for €, 8, 1B | etc.
We now consider modifications of the two-step Lax-Wendroff method.

We begin by noting that the modifications of the Lax-Wendroff method

which we have already discussed can all be used in the second step of

the two-step method as given in (1.10). Since the symbol is unchanged

12



all our previous results hold for such modifications. We next consider

modifications to the first step of (1.10) as given by

v (+) + v (t)
— Vys1/2 y-1/2" kK _ hy 1 33h
v==+ 3 D(z)v (8) - 7 MED (5) (t)

(2.12)

h\— 1 L 4 h

v(t4k) = v, (£) + KAD (3)V, + oz Ma D_(5)v, (t)

The symbol for this method 1is

G=1 + oAAiafY 1-0 + i(\g + 0,0) + ot ’
2.2

(2.13)  Re(d) = 1 - 2\°A° - Mo b 4+ Mo ’

Im(G) = 2M /1-0° ’

and

2 bh, 22 4
A° =1 + [WN Tps- us -2m)Ap. +2m,be. | [LA Hs = 135MM m, ; Jo

© (2.1) «hm, 2202 + bm A210
13 7d 2J TJ

2 2 2 2
- [mS WA. +2m.o.m, Au.-ml. Ja.
EAT RlsBe =F ke ELAS =

The phase error 1s now given by

c= > (Wui-nuETL 087)(2.15) es = g (Wui-huy)t (g

We again note that ey 1s not changed through terms of order g>

15
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and that the *phase error modification schemes of Gottlieb and Turkel

can agaln be applied with our modifications in a straightforward

manner.

If we choose

_ 2,2
(2.16) 2M, = WA(T-A7A%) + Ba

and M, = 0 we have

2 = 2 5 2 2 4h, Llw. lc=1 - (885 - 4m. .p~ - m;.B.0 JXJ (0B - 4mpsBJ0r - mf)
(2.17) .

with 20, 5 = OB. = hg. (1-62) .
J J J

Notice that in this case we have a quadratic decay of x. | with Bs
in the o term. Thus this method 1s similar to our earlier modifi-

cation (2.8). In fact, (2.17) 1s identical to (2.9). Cur remarks

following (2.9) about linear decay modifications also apply here.

The stability of the modification (2.16) again follows from our

general results in Section 3. This method 1s stable if the inequality

(2.11) 1s satisfied.

We now turn to modifications of the MacCormack scheme. For the

same reason as before for the two-step Lax-Wendroff method, we only

consider modifications to the first step of (1.11). Modifications to

the second step will be the same as those for Lax-Wendroff. We consider

14
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v, = [T+ KAD, + Mh DD Iv, (t) ’

(2.18) 0) 4 7v. \t) + Vv
V Vv K =

v,, (+k) = — 5 A D_v, .

The symbol for this method is

a

(2.19) G=2+T+ 20M Vid” T 4 OMGET

where

—
. 2

T = . + MM V1-6P - Mo© - biM, of V1i-g~ + off ,

|

Re(G) = 1 + oF (22°47) +a" (ly + GMM)
2

Im(G) = ov 1-07 [2M + Of (=bn J] ’

and

: LoL 2 2 4
2 1p [Tar - TLS + Em lans [4A Ms = 15

(2.20) + [-32m A - 1€m 222 +16m Au. +1608 1013° "J 13 J Jd J

2.Z 2 2 8
: + [Bumldn 5 + 6umSAu. loLOIN us 1305]

The phase error 1s now given by

1 33 3 5: . = Aus - . - . .(2.21) es = ¢ ( 17 = My 3m, 5 )& + 0(¢7)

Notice that the oe”) term of the phase error 1s affected by our

choice of My this time. Simultaneous modifications to improve the

phase error are not so easy to carry out for this method.

15
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If we choose

(2.22) 8M, = IA“AZ (I-\°A%) - EI

we have

2

ps1? = 1 - ea + 0a”)

We illustrate the effect of this modification in Figures 4a-4d where

we agaln plot be | as a function of B for selected values of € and e.
We can also choose

2,2

(2.23) BM, = UACAT (1-)°A°) - BAA

to introduce a quadratic decay so that

2
: lu. | = 1 - 5020 + 02) .

J J

We have also plotted this in Figures ba-54d.

The situation here is unlike that arising from our previous modifi-

cations. Previously the stability limit for IB, has increased as ¢
decreased to zero and, in fact, approached 1 as ¢ tended to zero.

Here the stability limit tends to zero as ¢ tends to zero. From the

plots in Figures kha-4d it seems that we should use ¢ somewhere between

0.1 and 2 in order to have a reasonable stability limit for 1B, - The
same comment applies to the MacCormack scheme with quadratic decay.

The case shown in Fig. 4b seems to achieve our goal of equilibration

quite well but increases the dissipation.

In summary we remark that modifications of the second step analogous

to those used with Lax-Wendroff are much more successful for both the two-

step Lax-Wendroff and the MacCormack methods.

16



Je Stability of the Modified Methods

First of all, note that all the unmodified methods we have considered,

namely, the one-step Lax-Wendroff, the two-step Lax-Wendroff and the

MacCormack schemes, have the same ns and are all dissipative of order

L (and therefore strictly stable by Theorem 1.1) if |g |< 1. For
2

each of our modified schemes, we can write the modified Hy in the

following form:

2 4 2
= - . . pe(3.1) Hy, = 1 CCF(Bom 55 55703 55 )

By Theorem 1.1, our modified schemes will be strictly stable 1f, for each j,

(3.2) F(R MA. Me oF) > 0 for 0Fe[0,1] .

Since max el =m, (3.2) will imply (1.6).
0 < |e] <7 [sin 3

Usually, the my, 's are functions of Bs Hence (3.2) defines a

stability limit for Bye It is difficult to determine this stability

'limit for general functions m, (8). However, for specific functions

mys (By); this stability limit can always be determined numerically as in

our -plots of MT

Consider the modified one-step Lax-Wendroff scheme (2.1) with

M, = Ms = 0. The following theorem gives the conditions which the My S
will have to satisfy in order to guarantee stability.

Theorem 3.1. Consider the scheme (2.1) with M, Mz = 0.

17
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2 2 2
. If - - - ;(3.3) [I—- <1 and -2(1 55) < Im, < 2p: 1 BZ), for all J ,

then the resulting scheme is dissipative of order 4% and hence strictly

stable by Theorem 1.1.

Proof: Condition (3.2) implies that the following has to be satisfied:

2 4 2 2 2 2 :

(3.4) F ti 50 m, (bps 2) Py tLB; for all J .

Since F 1s a quadratic 1n m, 5 with negative leading coefficients,
(3.4) will be satisfied if (see Fig. 6), for every 7,

: 2 2

(i) F has real roots, say m_ (of ) and mg (0 ) for the larger
and the smaller root, respectively (considered as functions of of), and

2
(3.5 ) (ii) m (0°) < m. < m (oF) for all ao [0,1].

oS 1 L

F

m (of)
m (of)
S

5
mS

Fig. b

18
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Now

2 2 - 2 2 It } 2
m, (0) =[-1 + 2B +11 + hoi - ho B- 1a, if of #0

- 06° (1-6) if of =0
(3.6) dd

co J ha 22%,

J J

2
= undefined 1f a = 0

Hence the roots will be real if

1 + org - hol > 0 for all J and for all oF e[0,1]
or if

ae < Lt for all Jj and for all oF e[0,1]
J 2 2hot (1-0° )

or if

2 1
(3.7) B. < min —(————— =1 for all j ,

JF <1 of (1-0)

1.e., 1f [EN < 1.

Note that (3.7) is just the unmodified stability limit. Now, by

straightforward differentiation, we can show that

ang (dd) an (o°) a
(2.8) — 5 2 0 and — 5 2 0 for o €[0,1] if Bx cl .

do doy

Hence, (3.5) will be satisfied if

2\ _ I~ 2
-2(1-g7) = mg (1) < m,; < m, (0) = 2B3 (1 Bg) fbr all J

which is (3.3). OJ

19
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Corollary 3.1: The modification (2.6) is strictly stable if (2.10) 1s

satisfied.

Proof: By the previous theorem, the following has to be satisfied:

2 € 2 2 2 2
2(1-85) < - = + 285(1-p%) < 2p5 (1-85) for all(1-p 5 + 265 (1-5) < 2p5 (1p j

which reduces to

(3.9) 4 (1-7) > €>0 for all

Note that (3.9) automatically implies [:N- <1. Also, (2.10) easily
follows from-(3.9). []

Corollary 3.2: The modification (2.9) is strictly stable if (2.11) 1s

satisfied.

Proof: Follows immediately from Theorem 3.1.[]

Next, consider the two-step Lax-Wendroff modification (2.12) with

M, = (0. The F we obtain in this case 1s very similar to that which

we obtained for the Lax-Wendroff method, (3.L). We only need to replace

) m, in (3.4) by my 5B to obtain the correct F. Thus, we easily
obtain the following theorem.

Theorem 5.2: Consider the scheme (2.12) with M, = 0. If

IB <1
(3.10)

2 2 2
d -285(1-g%) < m,.B, < 2(1-%)an B; ( B;) 13P; ( PB; for all J ,

then the resulting scheme is dissipative of order 4 and hence strictly

20
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stable by Theorem 1.1.

Corollary 3.35: The modification(2.16) is strictly stable if (2.11) is

satisfied.

A stability analysis 1s more difficult for modifications of the

first step of the MacCormack method. No condition analogous to the

condition(3.8 ) holds in this case. We have not been able to obtain

clean conditions like those in Theorems 5.1 and 3.2 for the MacCormack

scheme. However, given a specific My one can easily determine the

stability interval by examining igh! as a function of Bs
We finally remark that the previous sufficient conditions for

stability are all necessary 1f we allow equality. This easily follows

. from the von Neumann necessary condition [6,8].

21
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Lh. The Initial Boundarv Value Problem

We now consider the problem of approximating equation (1.1) on a

bounded x- interval a < x < b. Since the modified methods we have

discussed have larger stencils (involve more neighboring points) than

their unmodified counterparts there are more points at the ends of the

interval [a,b] where these approximations cannot be used than there

are with the original methods. However, this problem is easily avoided.

Stable approximations for the initial boundary-value problem for

the Lax-Wendroff, two-step Lax-Wendroff, and MacCormack methods are

discussed by Gustaffson, et. al. [4] and by Gottlieb and Turkel [3 ].

le will base our methods on these.

Assumptions

We assume that boundary conditions are given at the points a

and b which yield a well posed problem for (1.1), see Kreiss [5 1.

We further assume that stable approximations for this problem are known

for the underlying method that we are modifying, see [3,4] for

candidates, and finally that the mesh ratio A and modification

. parameters €, 6, etc., are chosen so that both the modified and un-

modified methods are stable for the Cauchy problem.

We now form our approximations for the initial boundary-value

problem by coupling the unmodified method with its stable boundary

conditions to the modified method in the neighborhood of the boundary

points a and b in the manner discussed by Oliger [7 ].

The Methods

We will use the desired modified method at all interior net points

22
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where it can be used, we then drop the modification (set My = M, = Mg = 0)
and use the underlying method at all those points in the neighborhood

of a and b where it can be used (at most one or two points at each

end), the remaining points (only a and b) are then treated using

the stable boundary approximation.

Theorem 4.1, The methods proposed above are stable in the sense of

Gustaffson, et. al. [4] (definition 3.3) if our assumptions hold.

Proof: This result follows immediately from Theorem 2.4 of r71.0
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