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Abstract

We show how to construct, from certain spectral data, a discrete inner

product for which the associated sequence of monic orthogonal polynomials

coincides with the sequence of appropriately normalized characteristic

polynomials of the left principal submatrices of the Jacobi matrix. The

generation of these orthogonal polynomials via their three term recurrence

relation, as popularized by Forsythe, then provides a stable means of

computing the entries of the Jacobi matrix. The resulting algorithm might be

of help in the approximate solution of inverse eigenvalue problems for Sturm-

Liouville equations.

Our construction provides, incidentally, very simple proofs of known

results concerning existence and uniqueness of a Jacobl matrix satisfying

given spectral data and its continuous dependence on that data.
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THE NUMERICALLY STABLE RECONSTRUCTION OF A JACOBI

MATRIX FROM SPECTRAL DATA

C. de Boor! and G. H. Golub) 2)

|. Introduction. Gantmacher and Krein [ 3] take the term '"Jacobi matrix'' to mean nothing

more than ''tridiagonal matrix'. But it seems to have become accepted in papers on the problem

of concern here to mean by ''Jacobi matrix'' a real, symmetric, tridiagonal matrix whose next-

to-diagonal elements are positive. We follow such usage here, and write such a Jacobi

matrix J] of order n as

a, by

by, 3; Bb

(1) J= 72 “3 "3 , by > 0, alli .
br-z 2n-1 Pune

bh “n

Further, we denote its left principal submatrix of order r by J.

We consider the following inverse problem.

_ Problem A. Given the sequences \ := (n,)] and p := (1b) with
(Ss) I RITE TE TIE Lp

construct an n-th order Jacobi matrix J which has ST Cee No as_its eigenvalues_and.

poe. aby a8 the eigenvalues of its left principal submatrix I | OF order n - 1.

It is well known that the eigenvalues of I ) strictly separate those of IN =] so

that condition (8) is necessary for the existence of a solution. Hochstadt [ 7] proved that

the problem has at most one solution. L. J. Gray and D. G. Wilson [ 5] showed it to have
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at least one solution, as did O. H. Hald [ 6]. The latter also demonstrated the continuous

dependence of J on XA and p and described an algorithm for the construction of ] which,

however, fails to be stable. He also announced an iterative, linearly convergent procedure

for the determination of J. A different iterative procedure was developed by Barcilon | 1].

By contrast, the algorithm described below in Section 4 is direct, i. e., not iterative,

and is stable. Its derivation provides simple proofs of the results concerning Problem A

just mentioned.

We also consider the following related problems.

Problem B. Given two strictly increasing sequences \ := (On) and nC = (nT with
Ng < No all determine an n-th order Jacobi matrix J which has St Cee, Ny as its

eigenvalues and for which the matrix 7 obtained from J by changing a to , has
ns Cee, ne as its eigenvalues.

. Problem C. Given the strictly increasing seguence \ := (ns construct an n-th order

persymmetric Jacobi matrix J having ST coe No as its eigenvalues.

Here, a matrix A = (a) is called persymmetric if it is symmetric with respect to its

second diagonal, i. e., if ay; = 3 41-1, n+l’ all i and j. The Jacobi matrix (1) is

persymmetric iff a; Fay and b, = b__i» all i.

Hochstadt [ 7] showed Problem C to have at most one solution. Hald [ 6] showed it to

have at least one solution and showed the solution to depend continuously on \.

In the analysis of these problems, the intimate connection between Jacobi matrices

and orthogonal polynomials plays an essential role. We recall the salient facts of this

connection in the next section.
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2. Jacobi matrices and orthogonal polynomials. We continue to use the notation J.
————————————————————————————————————————————————————— 1

for the left principal submatrix of order i of the Jacobi matrix (1). Let

p,(t) := det(t - J), i=1...,n.

Then P, is a monic polynomial of degree i, all i, and one verifies easily that the

sequence (p,) satisfies the three term recurrence

p(t) = (t - a,)p (1) - b° p (t) i= | n, withi i511 i-=l"i=2' reer BW(2)

p_,(t) := 0, Py(t) i= 1.

Conversely, if we start with a sequence (p,) of monic polynomials with deg p. = i, all1

i, which also satisfies the recurrence (2), then the Jacobi matrix (1) belongs to it in the

sense that then p(t) = det(t - J) for i =1,..., n. Since the zeros of p, are the1

eigenvalues of Is all i, we can therefore phrase Problem A equivalently as follows.

: Problem A'. Given the sequences \ := (\.) and THRE (u.) 71 with \, <u, < \,,.,—_— i'l i'l 1 1 i+]

all i, construct sequences a := (a) and b := (b)7 so that the sequence (p,) of
polynomials given by (2) satisfies

n-l n

p(t) = TT (t-p) and p(t) = TT (t=).n ) n J
j=1 j=1 :

It is clear that this problem has at most one solution since we can always run the

"recurrence (2) backwards: If we already know the monic polynomials P. and P._) (of
degree i and i - 1, respectively), then a is uniquely determined by the requirement that

i

q(t) := p(t) = (t - a,)p,_,(t)

be a polynomial of degreei- 2. Further,the number by 5 is then found as the leading

coefficient of q, and P._, is then constructed by dividing gq by its leading coefficient.

This construction of (p,) satisfying (2) from Py and p_ goes back to Wendroff [ 9]

and has been used by Hald to solve Problem A or A' numerically. We, too, did try it in
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some examples and found it to be badly unstable. But, in trying to understand Hochstadt!s

procedure for the reconstruction of J from \ and pu [ 8], it occurred to us that it

should be possible to construct a discrete inner product whose corresponding orthogonal

polynomials satisfy (2), thus allowing us to generdte a and b in the manner advocated

by Forsythe [ 2].

We recall the details. Denote by P the linear space of polynomials of order Kk,

i.e., of degree < k, with real coefficients, and let {, ) be a symmetric bilinear form

which is an inner product on F Then there exists exactly one sequence (a), of monic

polynomials, with a, of degree i, all i, which is orthogonal with respect to the inner

product (, >) , i. e., for which

- (q,, a) = 0, for i # j .

One may determine q; as the error in the best approximation from IP, to the function

f(t) := th with respect to the norm
1

Ill i= (f,£)2

in P. Alternatively, one may construct (q,) by its three term recurrence, an idea

popularized specifically for the case of a discrete inner product by Forsythe [ 2]: One computes

(3) a_y(t) = 0, apt) = 1, q(t) = (t = aa,_(t) - BZ a_,(t), i=1,...,n,

with the numbers a, and B. computed concurrently by

(4a) ap =, 9Aq pq) i=...

(4b) p= la l/l_ I, i=1,...,n-1

Here, it is assumed that (tf(t),g(t)) = (f(t),tg(t)).

The computational process (3)-( 4 ) for the vectors a and B is very stable. We will,

therefore, have solved Problem A in a satisfactory manner provided we can construct a

suitable inner product for which a, =P, for i =n-1 and i =n. This we now do.

-4-



From a computational point of view, the simplest bilinear form (, ) which is an

) inner product on bo is of the form

4

| (5) (f, g) i=), HE )a(E Jw, all fg,
i=1

with 5) <... <E and w.> 0, i=1,...,n.

Lemma l. Let (a), be the sequence of monic orthogonal polynomials for the inner
product (5). Then

n

(6) TT-¢)=aq(t
) n

j=1

and

n

(1) wo=yAa (Ja (E)),1=1,... .n, withv:=la_ 12/3 a (&)/a(e)
i n-1""i""n">i""’ Pete mT ee n-1 f2p 0-17 ne

Consequently, we can recover (5) from a l and a.
n

Proof. The polynomial q(t) := TT (t - £) 1s a monic polynomial of degree n which is
— j=1

orthogonal with respect to the inner product (5) to all functions, hence must agree with qQ.-

This proves (6). As to (7), we know that a, is orthogonal to P I" This means that

the linear functional L given by the rule

n

Lf := ( f, q__;) = L f(g,)a__,(E)w,, all f

vanishes on PI Since any n - l distinct point evaluations are linearly independent on

P_p this implies that

a__,(&) 0, all i

For the same reason, there is, up to multiplication by a scalar, exactly one linear functional

M, of the form Mf = z Eg, )m,, all f, which vanishes on PI Since both L and

-5=



the (n - l)st divided difference [ &, - . -, £,] on the points §,,..., £ are such linear

functionals, it follows that, for an appropriate scalar Y,

n n |

LEE, 6 1F =v) f6)/TT (6 -¢), all f.i j
i=1 j=1

j#i

But this states, with (6), that

t

ql 8Jwe. val(E), 1.1... .n.

and, in particular,

2 n
—_ !la 1% =v 2, a, je) ale) ,

i=1

thus proving (7). |

One may view Lemma | as giving a way to construct the computationally simplest

inner product with respect to which a given sequence (2) of monic polynomials satisfying
a three term recurrence (2) is orthogonal.
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3. A solution of Problems A, B, C. Lemma l shows how to reconstruct the discrete

inner product (5) from its last two orthogonal polynomials. It also shows the well known

facts that qa has n real zeros, all simple, and that the n - | zeros of a, l strictly

| separate those of a: Indeed, the positivity of the w.'s demands by (7) that

a (60a (€ )signumy > 0, all i, while, clearly, (-)" ar (&) > 0, all i, therefore

< j = -1

showing a \ to have a simple zero between any two zeros of q.-

Conversely, if we compute w by

8 += ! 1 =

where

(8b) £, = Ny, i1=1L...n

n-l

(80) p(t) = TT (t -n)
n-1 J

j=1

n

(8d) p(t) := [] (t-x))n )
j=1

with A < Hy < Nog all i, then w, > 0, all i, hence (5) is then an inner product on

P, and necessarily p= 4d, by (6), and p._, = 4, since p_ (A) = a _,(),

i=1,...,n, by (7), and both polynomials are of degree < n.

This proves that Problem A has exactly one solution for given \_and un satisfying(2).

Further, since a = a and b = B as determined by (3)-(4) depend continuously on £ and

w, while the latter, as determined by (8), depend continuously on \ and pn, it follows

that J depends continuously on \ and p.

- Problem B is closely related to Problem A. In terms of the monic polynomials

p,(t) = det(t - J), i=1l,...,n,

-7 -



we are given the information that

Jn >
- _ (4 — _ "

0 (t=) =p (O=(t-a )p__(1 bp _,(t)
and that

TT Sik = 3 2
ol (t - A) =p (1) =(t-a)p (t)-b p(t).

We conclude that

n sk n 3
TT t=-2)- TT t=) = (a -a)p_,(t),
; J J n n n-l

3%

and therefore, comparing coefficients (or else, comparing the trace of J with that of J),

_ n 2 3K)

), W=x)=a-a .
j=1 J j

This allows calculation of a_ once we know a. Further, since we only need to know
the weights w for the inner product (5) up to a scalar multiple in order to reconstruct a

and b via (3)-( 4), it follows that we get J (and uniquely so) by choosing

Es = Nos i=1,...,n

(9) noo,
:= CT-N)w i= 1/(pt (0) TT (n= 2)

j=1

Nate how the assumption N < A < Nop all i, insures that w, > 0, all i.
The solution of Problem C leads to an intriguing fact which is also of help in the final

algorithm for the solution of these problems. We came upon this fact accidentally. We

had somehow gained the impression in reading Hochstadt's paper [ 8] that the correct weights

in Lemma | would probably be

— } — a.(10) wo=a (8)/a(6), 1=l...,n,

and a quick numerical experiment confirmed this guess. Yet, when it came to proving it,
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we could only prove that w, = Ia _(&)al (€,)), all i. This seeming contradiction is

resolved by consideration of the characteristic polynomials of the right principal sub-

matrices of J.

Let S be the permutation matrix carrying (1, 2, ..., n) into (n, n-1, ..., 1), i.e.,

n -1
= (6 =

5 ( i+j, n+li, j= 1 5,

and denote by J] the reflection of J across its second diagonal,

a Py

b. a, b
J :=S Ls = 3 I 2 2

- bo-1 9

with a, Tay b, = b__:» all i. Correspondingly, let

p_(t) := 0, py(t) := 1, p(t) := det(t - 7), i=1...,n.
- 2

L 2. F i =1,... = .

Proof. For each i, Pb (Jp (A) is the product of the (n - l)st order left
principal minor with the (n - 1)st order right principal minor of the singular matrix

A := N -J,

1,. .,n-1 - 2, . n

i.e. = det A{,"". = also = 0.Le, pp yy) =det Al aot) andpy O0) =det All. als and det A

Apply Sylvester's identity (see, e.g., [3, p. 15]), using a2 te 0 - 1 as pivotal block,’ LIC ’ -—

to get that

get a(n 7 get ay nH5 NEY I,...,n-1 2,..., n
0 = det AS a. a. } | det A = detI |

2, ., " [£0det A(T det Al, on i
- n-1 2

cp(NB)= (=) Tbe)

-9 =



Here, we have used the abbreviation

fp "Tr r Ss
al SN BEE CHINEJOR

ERRRER tole p=1,

If now J is persymmetric, then J = i and so p, = Pp,» all i. The lemma then
2 2

implies that (pM) . (b, CLL b__,) , all i. Since we only need to know the

weight vector w up to a scalar multiple, it follows that we only need to know Pp in

order to reconstruct a persymmetric J, thus solving Problem C.

We conclude further that the computations (3)-(4) always generate the diagonals «

and 3 of a persymmetric Jacobi matrix if we use the discrete inner product

n n

~ (9) =), HeDa(e)/TT le -¢ |.
i i’, i j

i=1 j=1

j#1i

We were interested in Lemma 2 because of its importance for the algorithm in the

next section and have therefore not followed the more customary treatment of Problem C.

This treatment goes back to Gantmacher and Krein and consists in using the persymmetry of

J] to construct an equivalent problem of the form B and of half the size, thus reducing it

to a problem with a known solution.

-10-



4. An algorithm. Lemma 2 shows that we could also determine the correct weights

. w for the generation of a and b via (4) by

| w, = p(x )/pL(N), i=1,...,n.

To say it differently, if the inner product (5) is given by

0 £, t= Nos i=1,...,n,
w, =p _(A)/pIN), i=l 0,

then the quantities generated by (3)-(4) are q, = P, a, = a, B, = b,, all i. This says
that use of the weights (11) rather than the weights (8b) in the computations (3)-(4) also

generates the nonzero entries of J, but in reverse order. This explains the success in

our numerical experiments using the weights (10) alluded to earlier: all examples happened

to have been persymmetric.

Use of the weights (11) in preference to (8b) has some computational advantages.

Because of the interlacing conditions (S), we get the bounds

A, - Wu, ERY

(12) Ey very <p p(X) <T,
where the first (last) factor in the lower bound is to be omitted in case i =1 (i = n). This

shows that overflow or underflow is highly unlikely to occur in the calculation of the weights

] (11). By contrast, the computation of the numbers Vp _ (xp (X)) has to be carefully
monitored, in general, for the occurrence of overflow or underflow, else, one has to

. compute the logarithms of these numbers, a somewhat more expensive procedure.

We offer the following algorithm for the solution of Problem A, and recall that Problems

n-1

B and C can also be solved by it, if the definition of Pp (NM) = 1 (\, - bs) used here is
modified appropriately.

~1]1-
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Algorithm. Given the n eigenvalues S) <...X< A of _the_Jacobi matrix_(l)_and_the_

n - | eigenvalues iy <.,..< T of its left principal minor of order n - l. Note_that,

necessarily, N Hy Nap all i

1. Compute the weights w _from \ and pu:

1.1 temp(i = 1) := \pi=2,...,n

1.2 for i =1,..., n, do:

n-1

1.21 w, := [| (\, = un. )}/(n. - temp(j))
i i j i

j =1

1.22 temp(i) := MN

2. Generate the values at \ of the first two orthogonal polynomials:

j=1

- n - =
2.2 a, :=(), w,)/s={p,,D,)/s1 J 0’ "1

j=1

2.3 for i=1..., n, do:

2. 31 pkml(i) :=1 = po(r,)

2. 32 pk(i) := Nas p(x)

3. Compute lp |I% and b , then use them to generate the values at \ of pb
. k k? “k-I = ) k+l

from those of Py and Py | by_the three term recurrence:

3.1 for k =2,..., n, do:

EST -
3.18 == lp I
3.12 s :=t := 0

3.13 for i = 1,..., n, do:

3.131 p := w, *pk(1)##2

3.132 s :=s + p

3.133 t:=t + A FP

~12~



| 3.14 be _, := 5/58!

- 3.15 a, c= t/s

3.16 for i = 1,..., n, do:

3.161 p := pk(i)

3.162 pk(i) := (N; ~ a, )*p - by _ *pkml(1)
3.163 pkml(i) := p

4. Compute b, from by. Also, if a and b, rather than the vectors a and b are
wanted, this is the place to reorder them.

4.1 b, = saritb,), k=1,...,n~-1
Output_consists of the vectors aaand b, with. =a1p b, = b__i all i, and a
and b the diagonals of (1).

We have carried out various numerical experiments with this algorithm and describe

here only three.

For the n-th order Jacobi matrix I with general row 1, -2, 1, the eigenvalues

are given explicitly (and in order) by the formula

NS = 2(cos wo -1), ji=1l...,n.

Starting with these values and the corresponding sequence (w)] for Ip the algorithm

produced approximations to the diagonal and the offdiagonal entries of I whose maximum

and average error are recorded for n = 25, 50, 100, and 200 in the first columns of the

following table. All calculations were carried out on a UNIVAC 1110 in single precision

(27 binary bit floating point mantissa).

~]13-



=H

o diagonal offdiagonal diagonal offdiagonal
max. ave. max. ave. max. ave. max. ave.

25 4,-17 2. =7 2.-7 6.-8 2.-6 5.=-7 1.-6 4, -7

50 9.-7 1.-7 4.-7 2.-7 6.-4 1.-5 5.=5 2.-6

100 2.-6 T.=7 8.-7 2.=7 7.-1 3.-2 3.-1 1.-2

200 3.-6 9.-7 1.-6 3.-7 8.~-1 2.-2 5.=1 l1.=-2

Table 1. Maximum and average error in the diagonal and ofidiagonal

entries of two specific Jacobi matrices as reconstructed with

the algorithm of this section from (approximate) spectral data.

For variety, we also consider the n-th order Jacobi matrix I with general row

1 -i/n,i/n -2,1- (1 + 1)/n, i=1,...,n.

We know of no simple formula for its eigenvalues, therefore used the algorithm tdf 1 on

pp. 232-233 of Wilkinson and Reinsch' handbook [10] to compute them and those of I

The tolerance (relative error requirement) for tqf 1 we chose as 1. -7. With this spectral

information, we entered the above algorithm and so reconstructed I approximately. Errors

of this reconstruction are also given in Table 1, in the last four columns. There is a

significant deterioration as n increases.

As can be expected from formula (11) for the weights (w,), the condition of the problem

of determining J from (A) and ( o,) deteriorates as some or more My approach the

corresponding Ng since then one or more of the weights approach zero. This is shown even

more strikingly when the matrix of the last example is reflected across its second diagonal,

i.e., when the Jacobi matrix with the following general row

l-(n+l-i)/mn,(n+1-i)/n-2,1-(n- i)/n, i=1...,n,

is considered. Now the reconstruction breaks down in single precision already for n = 30 since

oi “XN becomes too small. Even for n = 20, we have he SE 2. -7. In fact, in computations

using tq 1 to obtain the spectral information, some weights become negative for n = 30, while,

for n = 10 and 20, we obtain approximations with errors of the order of 1. -4 and 2. -2,

respectively.
~14-
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5. The connection with Gauss quadrature. For the given Jacobi matrix J in (1), let

(P), be the polynomial sequence generated by the recursion

= - -b P t i = Cs ~- 1by By (= (=a JP (1) -bP (8), j=0,...,n
13

(13) P(t) :=0, P(t):=1,

with b, arbitrary, b_ # 0. The sequence (P,) is related to the sequence (p,)

w i t h p,(t):= det(t - J), all i, of monic polynomials byi

= P(14) Pp, (by .....DbJP,

as one verifies easily, e.g., by comparing (13) and (2).

n

Let now w be a monotone function on some interval [A, B] so that (Py is

orthonormal with respect to the inner product

B

(fy, 9) =f f(t)g(tde(dt) .
Ww

A

(Lemma 1 provides a simple proof of the existence of such w. ) Then the zeros M <...< A

of Po must lie in [A,B], and there exist positive weights Wye ' on so that, for every
fe C*"[a, BI,

; ; (2n)
(15) f f(tho(dt)= ), w E(x ,) +b - EN b f (¢£)/(2n)! for some £e]A, B[ .

A j=1 7)

"If we take this fact for granted, then it follows that

n
6) P =) i i <ij { iF > ), w P(N JP (A) fori + j <2n,

r=1

showing that

n
(51) (£, 9) =) Nn, )a(\,)w,

i i’ i

j=1

-1

1s an inner product on P with respect to which (Pg is orthonormal, hence for which

(p,)g is an orthogonal sequence.

~15-
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This shows that the construction of the weights (w,) for (5), which was crucial for

our numerical solution of the various inverse eigenvalue problems, can be started from any

convenient formula for the weights in a Gaussian quadrature formula.

For instance, one could start with the following consequence of the Christoffel-Darboux

formula,

(16) w PO) PO) =1forj=1...,n
Here, P(\) denotes the n-vector (Py(0), Coe P__,(M)). By (13), P(r) is an eigenvector

for J] belonging to the eigenvalue A. Therefore, with b= (us .. ug) a unit eigen-

vector of J for Aj (16) implies that

(17) Ww, = uf JPL 00), i=1,...,n.

Since P(x) = 1, we obtain in this way the formula

(18) w =u’ j=1,...,n
IS I A

used by Golub and Welsch [ 4] to compute the weights. Problems A, B, and C can now be

solved by deriving from the given data information about the eigenvectors of J.

A more direct approach might be to start with the well known formula

19) wo = EE j=1,...,n,
n n+l j nj

with ks the leading coefficient of Ee i.e., k. = 1/(b, Ce ee b,). This formula involves

the ''mext'' orthogonal polynomial Pil But, since P(X i) = 0 for all j, we have

Pp (\)/k =p (A) =-bp (\)=-bZP__(\)/k
n+l jj’ n+l n+l j n n-1j n n=-1'j n-1

by the three-term recurrence, therefore we also have

(19') wo. 1bPOPOV), GL en

which shows how equation (7) could have been derived from standard results in Gauss

quadrature.

~16-
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