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Abstract

We show how to construct, from certain spectral data, a discrete inner
product for which the associated sequence of monic orthogonal polynomials
coincides with the sequence of appropriately normalized characteristic
polynomials of the left principal submatrices of the Jacobi matrix. The
generation of these orthogonal polynomials via their three term recurrence
relation, as popularized by Forsythe, then provides a stable means of
computing the entries of the Jacobi matrix. The resulting algorithm might be
of help in the approximate solution of inverse eigenvalue problems for Sturm-
Liouville equations.

Our construction provides, incidentally, very simple proofs of known
results concerning existence and uniqueness of a Jacobi matrix satisfying

given spectral data and its continuous dependence on that data.






THE NUMERICALLY STABLE RECONSTRUCTION OF A JACOBI
MATRIX FROM SPECTRAL DATA

C. de Boorl) and G. H. Golubl)’z)

1. Introduction. Gantmacher and Krein [ 3] take the term 'Jacobi matrix'' to mean nothing

more than ''tridiagonal matrix'. But it seems to have become accepted in papers on the problem

of concern here to mean by '"Jacobi matrix'' a real, symmetric, tridiagonal matrix whose next-

to-diagonal elements are positive. We follow such usage here, and write such a Jacobi

matrix ] of order n as

a, b A
by 3, b,
b a b
2 3 3
(1) J= | - , b > 0, all i
bn—z an-l bn-l
bn—l an J

Further, we denote its left principal submatrix of order r by ]r.

We consider the following inverse problem.

Problem A. Given the sequences \ := (xi)il

n ,
and p := (“i)l with
(s) NoSwg <Ay Bohoo.on-l

construct an n-th order Jacobi matrix J which has \ oy )‘n as_its eigenvalues_and.

e

Bpoee oMy @S the eigenvalues of its left principal submatrix In ] < order n - 1.

It is well known that the eigenvalues of In ) strictly separate those of In =] so
that condition (S) is necessary for the existence of a solution. Hochstadt [ 7] proved that

the problem has at most one solution. L. J. Gray and D. G. Wilson [ 5] showed it to have
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at least one solution, as did O. H. Hald [ 6]. The latter also demonstrated the continuous
dependence of J on A and p and described an algorithm for the construction of ] which,
however, fails to be stable. He also announced an iterative, linearly convergent procedure
for the determination of J. A different iterative prc;cedure was developed by Barcilon [ 1].

By contrast, the algorithm described below in Section 4 is direct, i. e., not iterative,
and is stable. Its derivation provides simple proofs of the results concerning Problem A
just mentioned.

We also consider the following related problems.

Problem B. Given two strictly increasing sequences \ := ()‘i)? and x* = (k::)? with
xi < )\;, all determine an n-th order Jacobi matrix J which has xl, cee, )‘n as its
eigenvalues and for which\'the matrix J*, obtained from ] by changing an to n’ hlg
xf, .. ’)‘n as its eigenvalues.

Problem C. Given the strictly increasing sequence \ := ()‘i)?’ construct an n-th order

persymmetric Jacobi matrix J having X\

..., \_as its eigenvalues.
1’ ' "n

Here, a matrix A = (aij) is called persymmetric if it is symmetric with respect to its

second diagonal, i. e., if a,, = all i and j. The Jacobi matrix (1) is

a
1) n+l-j,n+l-i’

nersymmetric iff ai = a and bi = bn—i’ all i.

n+l-i
Hochstadt [ 7] showed Problem C to have at most one solution. Hald [ 6] showed it to
have at least one solution and showed the solution to depend continuously on \.
In the analysis of these problems, the intimate connection between Jacobi matrices

and orthogonal polynomials plays an essential role. We recall the salient facts of this

connection in the next section.



2. Jacobi matrices and orthogonal polynomials. We continue to use the notation ],
1

for the left principal submatrix of order i of the Jacobi matrix (1). Let

pi(t) := det(t - Ii), i=1...,n.

Then p, 1is a monic polynomial of degree i, all i, and one verifies easily that the
sequence (pi) satisfies the three term recurrence

2 ) ,
Di(t) = (t - ai)pi—l(t) - bi--lpi-z(t)’ i=1 ..., n with

(2)

p_l(t) := 0, p(t) :=1.

0
Conversely, if we start with a sequence (pi) of monic polynomials with deg ;1) = i, all
i, which also satisfies the recurrence (2), then the Jacobi matrix (1) belongs to it in the
sense that then pi(“t) = det(t - Ii) for i =1, ..., n. Since the zeros of p,1 are the
eigenvalues of Ii’ all i, we can therefore phrase Problem A equivalently as follows.

n (u ).n—l

' ; .= . .
Problem A'. Given the sequences \ : ()‘i)l and p : D with NoSEy S NG

all i, construct sequences a := (a i)il and b := (bi)?-l so that the sequence (pi) of

polynomials given by (2) satisfies

n-1 n
P _y(t) = TT (t- u) and p(t) = TT -2 .
j=1 ! j=1 :

It is clear that this problem has at most one solution since we can always run the
recurrence (2) backwards: If we already know the monic polynomials P, and P (of
degree i and i -1, respectively), then a, is uniquely determined by the requirement that

i

q(t) := pi(t) - (t-a)p,_,(t)

be a polynomial of degreei- 2. Further,the number -b.2 is then found as the leading

i2
coefficient of q, and pi_2 is then constructed by dividing g by its leading coefficient.
This construction of (pi) satisfying (2) from P} and p, goes back to Wendroff [ 9]

and has been used by Hald to solve Problem A or A' numerically. We, too, did try it in



some examples and found it to be badly unstable. But, in trying to understand Hochstadt's
procedure for the reconstruction of J from X\ and p [ 8], it occurred to us that it
should be possible to construct a discrete inner product whose corresponding orthogonal
polynomials satisfy (2), thus allowing us to generdte a and b in the manner advocated
by Forsythe [ 2].

We recall the details. Denote by IP, the linear space of polynomials of order Kk,

k
i.e., of degree < k, with real coefficients, and let {(, ) be a symmetric bilinear form

which is an inner product on ]Pn. Then there exists exactly one sequence (qi)g of monic
polynomials, with qi of degree i, all i, which is orthogonal with respect to the inner

product (, ) , i. e., for which

<qi, qj> =0, for i #j .

One may determine q, as the error in the best approximation from ]Pi to the function

f(t). := t,  with respect to the norm

=

el == (£, £)

. ) n .
in IPn. Alternatively, one may construct(q.) by its three term recurrence, an idea

i'0

popularized specifically for the case of a discrete inner product by Forsythe [ 2]: One computes

(3) a_y(t) =0, qyt) = 1, q(t) = (t - a)a,_ (1) - B> q (1), i=L...,n,

with the numbers a and ﬁi computed concurrently by

4 = i= .
( a) ai <tq1_l’ ql—l>/<q1'l, ql-l>’ 1 om . ) n

(4b) B,

= la /eI, i=1. 0
Here, it is assumed that (tf(t),g(t)) = (£(t),tg(t)).
The computational process (3)-( 4 ) for the vectors « and B is very stable. We will,

therefore, have solved Problem A in a satisfactory manner provided we can construct a

suitable inner product for which qi = pi for i =n-1 and i = n. This we now do.



From a computational point of view, the simplest bilinear form (, ) which is an

inner product on ]Pn is of the form

n
(5) (f, ) := ), £(&)g(E )W, allf, g,

, i i

i=1
with gl <... <§n, and Wi> 0, i=1,...,n.

Lemma 1. Let (qi)g be the sequence of monic orthogonal polynomials for the inner

product (5). Then

n
(6) TT-g)=q

i=1

and

1

n
(1) wo=vAa ((g)al(g)),i=1, .. on, with v = llq IIZ/Zlqn_le)/q;l(g].)
| @

Consequently, we can recover (5) from qn 1 and qn.

n
Proof. The polynomial g(t) := _ﬂ- (t - gj) is a monic polynomial of degree n which is
i=1

orthogonal with respect to the inner product (5) to all functions, hence must agree with qn'

This proves (6). As to (7), we know that q is orthogonal to ]Pn E This means that

the linear functional L given by the rule

n

Lf:= (£, q ) = ), H&)a__(&)w, all T,

1:
vanishes on ]Pn-l' Since any n - 1l distinct point evaluations are linearly independent on
]Pn-l’ this implies that

q (§i) # 0, all i .

n-1
For the same reason, there is, up to multiplication by a scalar, exactly one linear functional

M, of the form Mf = E?f(gi)mi, all f, which vanishes on ]Pn-l' Since both L and



the (n - l)st divided difference | gl, ey, gn] on the points gl, cee gn are such linear

functionals, it follows that, for an appropriate scalar Y,

n n
L=yl &, .- 0 =y ), H8)/TT (6 - g), all £
i=1 j=1
j#
But this states, with (6), that
q (EJw . val(g), il n
and, in particular,
2 n
la__ I° =~ i};l a,_(E)/aL(E)

thus proving (7). |l

One may view Lemma 1l as giving a way to construct the computationally simplest
n . . , . .
inner product with respect to which a given sequence (pi)O of monic polynomials satisfying

a three term recurrence (2) is orthogonal.



3. A solution of Problems A, B, C. Lemma l shows how to reconstruct the discrete

inner product (5) from its last two orthogonal polynomials. It also shows the well known

facts that qn has n real zeros, all simple, and that the n - |l zeros of qn strictly

1
separate those of qn. Indeed, the positivity of the wi's demands by (7) that

q l(zgi)ql:l(gi)sigm.lmy > 0, all i, while, clearly, (_)n—1

n q;l(gi) > 0, all i, therefore

q (gi)q (g )<O, i=1,...,n-1,

n-1 n-1'"i+l

showing qn to have a simple zero between any two zeros of qn.

1

Conversely, if we compute w by

(8a) w,o:= Vp  (()pr(E)), i=1.. .,n
where
(8b) §i = A i=1, ,n
n-1l
(8c) p__ (1) := TTl (t -n)
(8d) p(t) = T (t-2)
j=1 ’

with xi < My < )\i+ all i, then wi >0, all i, hence (5)is then an inner product on

l,
]Pn’ and necessarily P, = 9 by (6), and p,_, = 9, since pn_l(xi) = qn_l(xi),
i=1l,...,n, by (7), and both polynomials are of degree < n.

This proves that Problem A has exactly one solution for given \_and p satisfying (2).

Further, since a = @ and b = B as determined by (3)-(4) depend continuously on £ and
w, while the latter, as determined by (8), depend continuously on X\ and p, it follows

that J depends continuously on \ and .

Problem B is closely related to Problem A. In terms of the monic polynomials

pi(t)=det(t']i), i=l...,n,



we are given the information that

n
2
joTl (t-x) =p (=(t-a)p (- b o (1)
and that
n ; * 2
J];(t' ) =P ()= (t=a)p _()-b o (1)

We conclude that

- a
, n n n-

n “ n
T w-2)-TTt-xr) = (a
j=1 SR :

*
and therefore, comparing coefficients (or else, comparing the trace of ] with that of J),

3

This allows calculation of a once we know a - Further, since we only need to know
the weights w for the inner product (5) up to a scalar multiple in order to reconstruct a
and b via (3)-( 4), it follows that we get J (and uniquely so) by choosing

£, =\, 1i=1...,n

(9)

I sk
w, = /(e ) JTTl (SERWI

e

Nqte how the assumption xi < )\;< )\i+l’ all i, insures that w, >0, all i.
The solution of Problem C leads to an intriguing fact which is also of help in the final

algorithm for the solution of these problems. We came upon this fact accidentally. We

had somehow gained the impression in reading Hochstadt's paper [ 8] that the correct weights

in Lemma | would probably be

(10) wo=q (§)/a(E), i=1...,n,

and a quick numerical experiment confirmed this guess. Yet, when it came to proving it,



we could only prove that w, = l/(qn_l(gi)qr'l(gi)), all i. This seeming contradiction is

resolved by consideration of the characteristic polynomials of the right principal sub-

matrices of J.

Let S be the permutation matrix carrying (1, 2, ..., n) into (n, n-1, ..., 1), j{.e.

_ n _ <l
5= (6i+j,n+1)i,j=l =5

’

and denote by ] the reflection of ] across its second diagonal,

_ _ =
3 B
b, a, b
7.-s 1IS - | 2 2
- bn—l an
N— —
with a = a bi = bn-i’ all i. Correspondingly, let

P_(8) 1= 0, po(1) := 1, p.(t) := det(t - T, 1=l

Lemma 2. For i =1,..., n, pn_l()\i)pn_l()\i) = (b1

Proof. For each i, P l()\i)ﬁn 1()\i) is the product of the (n - 1l)st order left

principal minor with the (n - 1)st order right principal minor of the singular matrix

A= -7,
,. .,n-1 - 2, . ,n
= Al = A’..’) = 0.
i.e., p l(ki) det L. .. -1 and pn—l()‘i) det (2-,...,1’51 » and det A
Apply Sylvester's identity (see, e.g., [3, p. 15]), using A(g’ o "2 : H as pivotal block,
y ey

to get that

L...,n-1 IL...,n-1
2 - o= ] detA(lt"'sn-l detA(Z,---, n]
0 = det AlS?"" 7Y )detA=det

2,...,n-1
2, ., n 2,...,n
LdetA(1,...,n-1) detA[z,...,n)
= n-1 2
Py (AR ()= (=) L b )" I



Here, we have used the abbreviation
i, ...
l’ ’
A‘ r) 1= (a,l )

jl,...,js

If now ] is persymmetric, then J = ] and so P, = 51’ all i. The lemma then

2
(b, .. ...b )% all i. Since we only need to know the

()

implies that (pn—l i

weight vector w up to a scalar multiple, it follows that we only need to know P, in
order to reconstruct a persymmetric J, thus solving Problem C.
We conclude further that the computations (3)-(4) always generate the diagonals «
and B of a persymmetric Jacobi matrix if we use the discrete inner product
n n
~ (fe) = ) HEa(e)/TT g - ¢ |
. i i, i j
i=1 j=1
j#i
We were interested in Lemma 2 because of its importance for the algorithm in the
next section and have therefore not followed the more customary treatment of Problem C.
This treatment goes back to Gantmacher and Krein and consists in using the persymmetry of

] to construct an equivalent problem of the form B and of half the size, thus reducing it

to a problem with a known solution.

-10-



4. An algorithm . Lemma 2 shows that we could also determine the correct weights

w for the generation of a and b via (4) by

= 5 ' i =
w, Pn_l()\i)/?n()\i), i=1,...,n.

To say it differently, if the inner product (5) is given by

£, 1=\, i=1,...,n,
(11) i i

w

I
Ko
o
1
o
—~
>
e
N
ke
==
—~—~
>
ot
N
-
"
‘l—'
o]

it

then the quantities generated by (3)-(4) are q = Bi’ @, = Si, ﬁi = bi’ all i. This says

that use of the weights (11) rather than the weights (8b) in the computations (3)~(4) also

generates the nonzero entries of J, but in reverse order. This explains the success in

our numerical experiments using the weights (10) alluded to earlier: all examples happened
to have been persymmetric.

Use of the weights (11} in preference to (8b) has some computational advantages.
Because of the interlacing conditions (S), we get the bounds

s Y s B
N, = X, A= X\,
i 1 'n i

(12) <p (0 )/RLN) <1,

where the first (last) factor in the lower bound is to be omitted in case i =1 (i = n). This
shows that overflow or underflow is highly unlikely to occur in the calculation of the weights
(11). By contrast, the computation of the numbers l/(pn_l()\i)p;l()\i)) has to be carefully
monitored, in general, for the occurrence of overflow or underflow, else, one has to

. compute the logarithms of these numbers, a somewhat more expensive procedure.

We offer the following algorithm for the solution of Problem A, and recall that Problems

n-1
B and C can also be solved by it, if the definition of P, l()\i) 1= _H- (xi - p.j) used here is
L

modified appropriately.

-1~



Algorithm. Given the n eigenvalues A\, < ... < xn of_the_Jacobi matrix_(1)_and_the

1

n - | eigenvalues ) <...< By of its left principal minor of order n - 1. Note_that,

necessarily, xi < By < xi

,p all i

1. Compute the weights w _from X\ and p:

1.1 temp(i - 1) := Npi=2,...,n
1.2 for i=1,..., n, do:
n-1

L2l w = T (= 1)/ - temp(j))

i

1.22 temp(i)

=\

i

2. Generate the values at M of the first two orthogonal_polynomials:

n

-~

2.1s := ), w; = (py,Py)

=1

n

2.2 a = ( Z Wj)‘j )/s = (IBO, 131>/S

j=1

2.3 for i=1,..
2. 31 pkml{i) :=1

2. 32 pk(i) := \, - a, = Bl(x )

3. Compute “E)k”Z

n, do:

"
kel
o
—
>

i 1

- -2
and ., b,

then use them to generate the values at \ of Bk+l

from those of Ek and I_Jk | by_the three term recurrence:

3.1 for k =2,...,n, do
318 =8§8= lliklll2
3.12 s :=t := 0
3.13 for i = 1, , n, do:
3.131 p := wi*pk(i)**Z
3.132 s :=s t+ p
3133 ti=t 4\ %p

-12-



-2 - 1
3.14 by _| = 8/s
3.15 Ek := t/s
3.16 for i = 1,.
3.161 p := pk(i)
3.162 pk(i) := (xi -
3.163 pkml(i) := p

4. Compute bk from b

Also, if a and b, rather than the vectors a and b are

2
K

wanted, this is the place to reorder them.

- -2
4.1 bk = sqrf(‘bk),k=l,...,n—l
Output_consists of the vectors aaand b, with ; =a_ ., ., b = b ., all i, and a

and b the diagonals of (l).

We have carried out various numerical experiments with this algorithm and describe
here only three.

For the n-th order Jacobi matrix In with general row 1, -2, 1, the eigenvalues

are given explicitly (and in order) by the formula

= _].Tr_ - = . .
)\J = 2(cos —yy 1), =1, e
n-1 ,
Starting with these values and the corresponding sequence (“j)l for J _» the algorithm

produced approximations to the diagonal and the offdiagonal entries of In whose maximum
and average error are recorded for n = 25, 50, 100, and 200 in the first columns of the
following table. All calculations were carried out on a UNIVAC 1110 in single precision

(27 binary bit floating point mantissa).

~13-



diagonal offdiagonal diagonal offdiagonal

max. ave. max. ave. max. ave. max. ave.

. -8 2.-6 5.=-7 1.-6 4.-7
6."4 1.-5 5.-5 2»-6
. =7 7.-1 3.-2 3.-1 1.-2

25 4.-7 2.-7 2.-7
50 9.-7 1.-7 4.-7
100 2.-6 7.-7 8.-7
200 3.-6 9.-7 1.-6

w N NN
1
~

=7 8.~-1 2.-2 5.-1 1.-2

Table 1. Maximum and average error in the diagonal and offdiagonal
entries of two specific Jacobi matrices as reconstructed with

the algorithm of this section from (approximate) spectral data.

For variety, we also consider the n-th order Jacobi matrix In with general row

1-1i/n,i/n-2,1-(i+1)/n, i=1,...,n.

We know of no simple formula for its eigenvalues, therefore used the algorithm tqf 1 on
pp. 232-233 of Wilkinson and Reinsch' handbook [10] to compute them and those of In—l'
The tolerance (relative error requirement) for tqf 1 we chose as 1. -7. With this spectral
information, we entered the above algorithm and so reconstructed In approximately. Errors
of this reconstruction are also given in Table 1, in the last four columns. There is a
significant deterioration as n increases.

As can be expected from formula (11) for the weights (wi), the condition of the problem
of‘determining Jn from ()\i) and ( pi) deteriorates as some or more My approach the
corresponding )‘i since then one or more of the weights approach zero. This is shown even
more strikingly when the matrix of the last example is reflected across its second diagonal,
i.e., when the Jacobi matrix with the following general row

l-(n+1-i)/n,(n+1-1i)/n-2,1-(n - 1i)/n, i=1,...,n,
is considered. Now the reconstruction breaks down in single precision already for n = 30 since

Ky -xl becomes too small. Even for n = 20, we have By~ N, ~ 2. =7. In fact, in computations

1

using tqf 1 to obtain the spectral information, some weights become negative for n = 30, while,

for n = 10 and 20, we obtain approximations with errors of the order of 1. -4 and 2. -2,

respectively.
-14-



5. The connection with Gauss quadrature. For the given Jacobi matrix J in (1), let

(Pi)g be the polynomial sequence generated by the recursion

(H=(t-a )Pj(t)-bij_l(t), j=0,...,n-1

bj+1Pj +1
P—l(t) := 0, Po(t) =1,

jtl
(13)

with bo arbitrary, bn # 0. The sequence (Pi) is related to the sequence (pi)
w it h pi(t) := det(t - Ii)’ all i, of monic polynomials by

(14) p, = (b

as one verifies easily, e.g., by comparing (13) and (2).

Let now w be a monotone function on some interval [A, B] so that (Pi):)1 is
orthonormal with respect to the inner product
B
¢, 9 = [ f(tg(th(dt) .
w

A

(Lemma 1 provides a simple proof of the existence of such w. ) Then the zeros )\1 <...<\
n

of Pn must lie in [A,B], and there exist positive weights w.,..0 %l so that, for every

I
fe Czn[A, B],
B

n
(15) {f(t)w(dt)=zjm=r_,lf(xj)+§31~... ® bt

#2)(e)f20)1 for some g<]a, B -

If we take this fact for granted, then it follows that

n
5 P =) i+ ]
iy (PP r;l w PO )P ) fori+j<an,
showing that
n
(5') (£, @) = ), fx,)g(\)w,
j=l 1 1 1

is an inner product on ]Pn with respect to which (Pi)g-l is orthonormal, hence for which

n .
(pi)0 is an orthogonal sequence.

-15-



This shows that the construction of the weights (w,,) for (5), which was crucial for
our numerical solution of the various inverse eigenvalue problems, can be started from any

convenient formula for the weights in a Gaussian quadrature formula.

For instance, one could start with the following consequence of the Christoffel-Darboux

formula,

(16) wjfT(xj)f(xj) =lforj=1,...,n

Here, P(\) denotes the n-vector (Po(x), C e, Pn_l(x)). By (13), NP(xj) is an eigenvector
for ] belonging to the eigenvalue )i Therefore, with Bj:= (ulj, . "unj) a unit eigen-

vector of ] for )‘j’ (16) implies that

2,2 .
(17) w, = ui],/Pi_l(xj), i=1,...,n.

Since Po(x) = 1, we obtain in this way the formula
(18) W, = u,,

used by Golub and Welsch [ 4] to compute the weights. Problems A, B, and C can now be
solved by deriving from the given data information about the eigenvectors of J.
A more direct approach might be to start with the well known formula

k

19) W= - E:l PnH()\j)lP;l()\j) , j=1...,n,
with kj the leading coefficient of l;_,, i.e., k. = l/(bl ..... bj)' This formula involves
the ''next" orthogonal polynomial Pn+1' But, since Pn(x j) = 0 for all j, we have

P .(\)/k . =p  (\)=-bp (\)=-bP _(x)/k

n+l' i n+l n+l'j nn-1"j n n-1"j n-l

by the three-term recurrence, therefore we also have

(19') Wj . 1/(bnpn~l()\j)P;‘l()\j))’ i 17 IR

which shows how equation (7) could have been derived from standard results in Gauss

quadrature.

-16-
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