Stanford Heuristic Programming Project March 1977

Memo HPP-77-6

Computer Science Department
Report No. STAN-CS-77-597

MODEL-D IRECTED LEARN ING OF PRODUCT ION RULES
by

Bruce G. Buchanan and Tom M. Mitchell
Meta-DENDRAL Group

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

Mydel-Directed Learning of Production Rules

STAN-CS-77-597

Heuristic Programmng Project Mno 77'6

Bruce G Buchanan and Tom M Mtchell

ABSTRACT

The Meta-DENDRAL program is described in general terms that are intended to
clarify the simlarities and differences to other learning prograns. Its
approach of mnodel-directed heuristic search through a conplex space of possible
rules appears well suited to many induction tasks. The use of a strong nodel
of the dommin to direct the rule search has been denonstrated for rule
formation in two areas of chemistry. The high performance of progranms which
use the generated rules attests to the success of this learning strategy.

KEY WORDS

ARTIFICI AL INTELLI GENCE, LEARNING, INDUCTION, PRODUCTION RULES, META-DENDRAL.

The views and conclusions contained in this document are those of the author and
should not be interpreted as necessarily representing the official policies,
either express or inplied, of the Defense Advanced Research Projects Agency or
the United States Governnent.

This research was supported by the Defense Advanced Research Projects Agency
under ARPA Order No. 2‘492, Contract No. DAHC-15-73-C-0435, and by The
National Institute of Health under Contract No. NH 5R24 RR 00612-07

Model-Directed Learning gf Production Rules (1)
y
Bruce G. Buchanan and Tom M. Mitchell
Heuristic Programming Project
Denartment of Comnputer Sclence

Stanford Universit
Stanford, CA 94385

ABSTRACT

The Meta-DENDRAL program is described in general terms that are
intended to clarify the similarities and differences to other learning
programs.. Its approach of model-directed heuristic search through a
complex sgace of possible rules appears well suited to many induction
tasks. The wuse of a strong model of the domain to direct the rule
search has been demonstrated for rule fomattidon im two areas of
chemistry. The high performance of programs which use the generated
rules attests to the success of this learning strategy.

1 INTRODUCTION

Knowledge-based artificial intelligence programs derive their
power from the richness and depth of their knowledge bases. It follows
that careful construction of the knowledge bases is an obvious
prerequisite for high performance in such systems, yet we have few
alternatives to hand-crafting these for each new program. We are better
off than we were several years ago, however, for it is no longer
necessary to hand-craft a whole program. A rather general program,
e.g., a production rule interpreter, can constitute the problem solving
machinery for common problems in a variety of domains. The task-
specific knowledge is then encoded in tables of inference rules,
definitions, and procedures that test predicates in the domain and
execute task-specific actions.

Waterman's early work [13] showed the advantages of using a

production rule encoding of knowledge. It also provided a model for

(1) This work was sugported by the Advanced Research Projects
A%ency under contract DAHC 15-73-C-0435, and by the National Institutes
of Health under grant RR 00612-07.

learning productions by a program. Davis has made a significant
contribution to our wunderstanding of interactive knowledge acquisition
[3)] in which a human expert's knowledge is elicited and checked by a
sophisticated acquisition program.

The Heuristic DENDRAL programs [4] are structured to read much of
their task-specific knowledge from tables of production rules and to
execute the rules wunder rather elaborate control structures. These
programs interpret analytic data from organic chemical samples in order
to help chemists determine the molecular structures of the samples. For
a number of reasons, we made little progress with the interactive
approach to building a knowledge base for DENDRAL. Instead we
constructed another set of programs, collectively called Meta-DENDRAL,
that aid in building the knowledge base. leta-DENDRAL is described
below in general terms that are intended to clarify the similarities and

differences to other learning programs (see [12]).

2 THE TASK DOMAIN

2.1 Rule Formation

The rule formation task that Meta-DENDRAL performs is similar to
the tasks of grammatical inference, sequence extrapolation, and concept
formation [6],[5],[15]. Programs that perform these tasks can all be
characterized as "induction" programs. Broadly speaking, the induction
task is to find a general rule that can generate, classify, or explain a
training set of specific instances, and correctly predict new instances.
The training set can be thought of as a set of I/0 pairs from a "black
box" machine; the induction program is supposed to discover the

generating principle used in the machine.

2.2 Mass Spectrometry

As described previously [l], the black box whose behavior we are
attempting to characterize is an instrument for chemical analysis known
as a mass spectrometer. The mass spectrometer bombards a small sample
of an unknown chemical with high energy electrons breaking individual
molecules into many fragments and causing atoms to migrate between
fragments. Results of these processes are observed in a recording of the
masses of the fragments that are collected. The data are usually
presented in a bar graph of the relative abundance of each fragment (Y-
axis) plotted against fragment mass (X-axis). From these data and a
strong model of mass spectrometry, a skilled chemist can reconstruct
much of the molecular structure of the unknown compound.

Throughout this paper we will use the following terms to describe
the actions of molecules in the mass spectrometer:

1) Fragmentation = the breaking of an individual
graph (molecule) into fragments bg breaking a subset of

the edges (bonds) within the grap

2) Atom migration = the detachment of nodes (atoms)
from one fragment and their reattachment to a second

fragment. This process alters the mass of both
fragments.
3) Mass spectral process, or process - a
fragmentation followed by zero or more atom migrations.
One I/0 pair for the instrument is considered to be: (INPUT) a
chemical sample with wuniform molecular structure (abbreviated to "a

structure"), and (OUTPUT) one X-Y point from the bar graph of fragment
masses and relative abundances of fragments (often referred to as one
peak in the mass spectrum, or spectrum):.

Since each structure spectrum contains 50 to 100 different data
points, each structure appears in many I/O pairs. Thus, the program
must look for several generating principles, or processes, that operate
on a structure to produce many data points. In addition, the data are
not guaranteed correct because these are empirical data from an
electronic instrument that produces some background noise. ag 3 result,
the program does not attempt to explain every I/O pair. It does,

however, choose which data points to explain.

2.3 Syntax of Rules

The model of mass spectrometrv used by chemists is often expressed
in sets of production rules. The rules (when executed by a program)
constitute a simulation of the fragmentation and atom migration
processes that occur inside the instrument. The left-hand side is a
description of the graph structure of some relevant piece of the
molecule. The right-hand side 1is a list of processes which occur:
specifically, bond cleavages and atom migrations. For example, one
simple rule is

(R1) N - C - C -—==> N - C % C
where the asterisk indicates breaking the bond at that ©position and
recording the mass of the fragment to the left of the asterisk. NO
migration of atoms between fragments is predicted by this rule.

Although the vocabulary for describing individual atoms in
subgraphs is small and the grammar of subgraphs is simple, the size of
the subgraph search space is immense. For example, for subgraphs
containing 6 atoms, each with any of roughly 20 attribute-value
specifications, there are roughly 20**6 possible subgraphs. In addition
to the connectivity of the subgraph, each atom in the subgraph has four
attributes specified: (a) Atom type (e.g., carbon), (b) Number of
connected neighbors (other than hydrogen), (c) Number of hydrogen
neighbors, and (d) Number of doubly-bonded neighbors.

The language of processes (right-hand sides of rules) is also
simple: one or more bonds from the left-hand side may break and zero or

more atoms may migrate between fragments.

2.4 Semantic Interpretation of Rules

The interpretation of rule Rl in the above example is that if a
molecule contains a nitrogen atom and two carbon atoms bonded as N-C-C
then it will fragment in the mass spectrometer between the two carbon

atoms, and the piece containing the nitrogen will ©Dbe recorded. In a

large molecule, this rule may apply more than once. For example, Ci3-

CH2-CH2-NH-CH2-CH3 will show two fragments from the application of this

rule:
CH3-CH2-CH2-NH-CH2
and CH2-NH-CH2-CH3 .

For a number of reasons the data points are not uniquely
associated with a single fragmentation and atom migration process
(rule). For example, a single process may occur more than once ip 3
molecule (as in the above example), and more than one process may
produce identical fragments (and thus produce peaks at the same mass

points in the bar graph).

2.5 Space of Instances

In order to learn rules of this form, the Meta-DENDRAL program is
presented with many examples of actual 1/0 pairs from the mass
spectrometer. Each I/O pair 1is described as a molecular graph
structure, together with a data point from the mass spectrum for that
structure. The rules to be learned constitute a description of the
relevant transformations in the black box. Typically we start with a
training set of six to ten related molecules and their associated bar
graphs , each containing 50-150 data points, or 300-1500 I/O pairs.
These are drawn from an infinitely large space of possible instances, of
which only a few for each structural class of molecules are available

from libraries of spectra.

3 THE WORLD MODEL

3.1 Reasons for Introducing Strong Biases
Purely statistical learning programs find associations that are
indicated by the data without introducing Jjudgments about the

meaningfulness of those associations. This is an advantage at times

when an investigator's Dbias inhibits seeing associations or when an
investigator is merely looking for all associations. It is a
disadvantage, however, when the number of associations is so large that
the meaningful ones are lost in the chaff. Statistical pattern
recognition programs have been applied to mass spectrometry with some
success. Clusters of data points are found to be associated with
families of molecules 80-90% of the time [7]. These programs, however,
produce no meaningful explanations of why the associations are found.

In contrast to statistical approaches, Meta-DENDRAL utilizes a
semantic model of the domain. This model has been included for two
important reasons. First, it provides guidance for the rule formation
program in a space of rules that is much too large to search
exhaustively, especially when the input data have ambiguous
interpretations. S=cond, it provides a check on the meaningfulness of
the associations produced by the program!, in a domain where the trivial

or meaningless associations far outnumber the important ones.

3.2 The Half-Order Theory
The base-level, or zero-order theory of mass spectrometry states
that every subset of bonds within a molecule may break, and that the
resulting fragments plus or minus migrating atoms will all be recorded.
This zero order model of mass spectrometry is not specific enough to
effectively constrain the rule search. Therefore, some general
guidelines have been imposed on it in the so-called "half-order"™ theory.
The half-order theory asserts that bonds will break and atoms will
migrate to produce data points, according to the following constraints.
Constraints on fragmentations:
Double bonds and triple bonds do not break.
No aromatic bonds break.
Only fragments larger than 2 carbon atoms show up in the data.
Two bonds to the same carbon atom cannot break together.
No more than 3 bonds break in any one fragmentation.
No more than 2 complete fragmentations occur in one process.
At most 2 rings fragment in a multiple step process.
Constraints on atom migration:

At most 2 hydrogen atoms can migrate after a fragmentation.
At most 1 H20 unit is lost after any fragmentation.

At most 1 CO unit is lost after any fragmentation.
One of the most helpful features of this model is its flexibility.
Any of the parameters can be easily changed by a chemist with other
preconceptions. Any of these assumptions can be removed and, as
discussed in the following section, additional statements can be added.
This power to guide rule formation will result in the program
discovering only rules within a well-known framework. On the other

hand, it also results in rules that are meaningful for the domain.

3.3 Augmenting the Half-Order Theory

A chemist will often know more about the mass spectrometry of a
class of molecules than is embodied in the half-order theory. In these
cases it is important to augment the program's model by specifying
class-specific knowledge to the program. This also provides a way of
forming rules in the context of additional intuitions and biases about
mass spectrometry. A chemist can thus see the "most interesting" rules
(as defined by the augmentations) before the other rules. For example,
one might bhe interested first in rules that mention at least one oxygen
atom before the numerous (and generally 1less interesting) rules that

mention only carbon and hydrogen substructures.

4 THE LEARNING STRATEGY

We began with the assumption that numerical parameter estimation
methods were not sufficient for the kinds of rules we wanted the program
to discover in this domain due to the large number of variables required
to describe subgraphs. We also wanted a chance to explore the power of
heuristic search 1in a learning program, in the belief that efficient
selection of alternative explanations is a large part of scientific
discovery. As mentioned above, we also wanted to make rule discovery a
model-directed procedure.

As described in more detail below, the learning program is based

on a generator of production rules of a predetermined syntax operating
under the constraints of a semantic world model. 1In common with other
induction programs, it also contains an instance selection component and

a critic for evaluating potential rules.

4.1 Instance Selection

Unlike the sophisticated instance selection procedure described by
Simon and Lea [11], Meta-DENDRAL merely looks at the next I/0O pair,
which is the next data point for the current molecule or, when there are
no more for this molecule, the first data point for the next molecule.
For each iteration through the learning cycle, training data are
presented several spectra at a time, and are then interpreted and
summarized before any rule formation takes place. In Hunt’s terms [6]
the data are presented in parallel, and not sequentially, for each
iterative step.

Some interesting wvariations <can be introduced to improve the
instance selection procedure. For example, we have suggested elsewhere
[1] allowing the program to request new data that will answer specific
questions raised wupon examination of the current best rule set.
However, the cost of obtaining new data can be prohibitive in cases
where chemical samples are difficult to obtain. Thus, the program
cannot assume that it will receive each training instance which it

requests.

4.2 The Critic

Any learning system must employ a critic to compare current
performance with some desired standard. In Meta-DENDRAL there are two
critics - one associated with rule generation and the other with rule
modification. Both critics rely heavily upon examining evidential
support for rules in the training data. Each rule is evaluated in terms

of its positive evidence (correct explanations of data points) and its

negative evidence (incorrect predictions associated with the rule).
Both critics treat evidence which is uniquely explained by a rule
(unique positive evidence) differently from evidence which is ghareq by
several rules. In particular, a data point which can be explained by
only one rule is stronger evidence for the rule than a data point which
has several alternate explanations.

The rule generation critic analyses candidate rules in terms of
their positive evidence only; for reasons of efficiency it does not
consider negative evidence. If the positive evidence of a candidate
rule exhibits characteristics typical of good rules, then the critic
adds this candidate rule to the 1list of output rules. Otherwise it
'decides whether the candidate rule should be further refined and
reconsidered or should be abandoned.

The rule modification critic analyses both positive and negative
evidence of individual rules in order to fine-tune each rule. Since
rule modification involves several distinct tasks (explained below) the
critic makes several types of decisions. The criteria used for making
all of these decisions can be summarized as follows.

L. The set of rules as a whole should be made as compact and
correct as possible without decreasing the positive gyidence of
the rule set.

2. Rules should be modified to increase their positive evidence
without increasing negative evidence.

3. Rules should be modified to decrease their negative evidence

without decreasing their unique positive evidence.

4.2.1 Credit Assignment

After evaluating performance, the critic must assign credit (or
blame) to specific rules or components of rules. This credit assignment
problem is an instance of a large class of such problems which have been
recognized for some time [8] as important to learning programs. When
blame for poor performance can be assigned to a component of a rule,

modifications to that component are attempted.

For the rule generation critic, credit assignment is quite simple.
During the rule search it must credit individual features in the left
hand side of a rule for the evidence collected by the rule. Therefore,
as each new feature is added to a rule its effect on the rule's
supporting positive evidence is examined. If the effect 1is unfavorable
(see section 4.3.2) the new feature receives the blame and is removed
immediately from the rule.

There are three credit assignment problems during rule
modification corresponding to the three decision criteria listed above.

(A) In order to make the rule set more concise, the critic must
assign credit among redundant rules for explaining a specific data
point. Credit is assigned to the rule with the strongest evidence over
the entire training data set. Strength of evidence is a measure of a
rule's positive and negative evidence weighted by the @average intensity
(Y-component) of the data points which the rule explains. In the event
that two redundant rules have equally strong evidence, credit is given
to the rule with the simpler left hand side.

(B) In order to increase the positive evidence of a rule, some
attribute wvalue 1in the ieft hand side of the rule must be made less
specific. The critic must search for an overly specific feature to
blame for excluding additional positive evidence for the rule.
Currently the critic must search by trial and error for such a feature.

(C) In order to remove negative evidence from a rule, the critic
must assign blame to some overly general feature. The set of attribute
values common to positive evidence instances provides a menu of possible
rule attribute values. Attribute values from this list are added to the

rule to remove the negative evidence.

4.3 The Learning Cycle
The learning cycle is a series of "plan-generate-test'" steps as

found in many AI systems [4]. After pre-scanning a set of several

10

hundred I/0 pairs, the program searches the space of rules for plausible
explanations and then modifies the rules on the basis of detailed
testing. When rules generated from one training set are added to the
model, and a second (or next) block of data examined, the rule set 1is
further extended and modified to explain the new data. That is, the
program can now iteratively modify rules formed from the initial
training set (and add to them), but it is currently unable to "undo"

rules. Details of each of these processes are provided below.

4.3.1 Data Interpretation

The planning step in the procedure is reinterpretation of all the
'given I/0 pairs in terms of the vocabulary of the specified model (the
augmented half-order theory). That is, the output half of each I/0 pair
is reinterpreted to be a 1list of fragmentation and atom migration
processes (potential right hand sides of rules) which are feasible
explanations of the data point within the specified model. This must be
done since we want the final rules to propose processes that produce
data points, not just the X and Y components of the data points. This
step is called INTSUM, for interpretation and summary of the initial
data. For each molecule in a given set, INTSUM produces the plausible
mass spectral processes which might occur, i.e., breaks and combinations
of breaks, with and without migration of atoms. INTISU!{ then examines the
spectra of the molecules looking for evidence (spectral peaks) for each
process. Finally it produces a summary showing the total evidence

associated with each possible process.

4.3.2 Rule Generation

After the data have been interpreted in INTSUM, control passes to
a heuristic search program known as RULEGEN, for rule generation.
RULEGEN creates general rules by selecting "important" features of the
molecular structure around the site of the fragmentations proposed by

INTSUM. These important features are combined +to form a subgraph

11

description of the local environment surrounding the broken bonds. Each
subgraph considered becomes the left hand side of a candidate rule whose
right hand side is INTSUM s proposed process. Essentially RULEGEXN
searches within the constraints of the half-order theory through a space
of these subgraph descriptions looking for successively more specific
subgraphs that are supported by successively "better" sets of evidence.

Conceptually, the program begins with the most general candidate
rule, X*X (where X is any unspecified atom and where the asterisk is
used to indicate the broken bond, with the detected fragment written to
the left of the asterisk). Since the most useful rules lie somewhere
between the overly-general candidate, X*X, and the overly-specific
complete molecular structure (with specified bonds breaking), the
program generates refined descriptions by successively specifying
additional features. This is a coarse search; for efficiency reasons
RULEGEN sometimes adds features to several nodes at a time, without
considering the intermediate subgraphs.

The program systematically adds features to subgraphs, always
making a "parent" subgraph more specific, starting with the parent X*X.
(Recall that each node can be described with any or all of the following
attributes: atom type, number of non-hydrogen neighbors, number of
hydrogen neighbors, and number of doubly bonded neighbors). Working
outward, the program assigns one attribute at a time to all atoms that
are the same number of atoms away from the breaking bond. Although
different values may be assigned to each of these atoms, the coarseness
of the search prevents examination of subgraphs in which this attribute
is totally unimportant on some of these atoms. In addition, each of the
descendants of the parent X*X is checked to see if the supporting
evidence is "better" (see below) than the evidence for the parent.
Those which satisfy the test become new parents for a next level of
descendants with one more feature specified. For example, from the rule
X*X the program will arrive, after several steps, at rule (R1l)

(R1) N - C - C ====> N-C*C

12

In (R1) the only important features are the atom types and the
connections of three atoms; the other features and atoms have been
generalized away. The point of generalizing is to abstract away
unimportant attributes of atoms and unimportant atoms.

The program adds specifications to candidate rules until it finds
a rule that is (a) specific enough to make correct predictions and (b)

general enough to account for more than a few special cases. (2)

4.3.3 Rule Modification

The last phase of the program (called RULEMOD) evaluates the
plausible rules generated by RULEGEPJ and modifies them by making them
'more general or more specific. In order to extend the range of
applicability of the rules, RULEMOD uses a less constrained model than
RULEGEN. Rules generated by RULEGEN under an augmented half-order

theory, e.g., in which only fragments containing an oxygen atom were

considered, cannot immediately Dbe applied by a performance program
useing a more general model. Therefore RULEMOD refines the rule so that
it can stand on its own under a more general model. In contrast to

RULEGEN, RULEMOD considers negative evidence (incorrect predictions) of
rules in order to increase the accuracy of the rule's applications
within the training set. RULEGEN performs a coarse search of the rule
space for reasons of efficiency, leaving the fine tuning to RULEMOD.

RULEMOD will typically output a set of 8 to 12 rules covering
substantially the same training data points as the input RULEGEN set of
approximately 25 to 100 rules, but with fewer incorrect predictions.
This program is written as a set of five tasks (corresponding to the
five subsections below) which we feel are closely analogous to this
aspect of human problem solving.

Selecting a Subset of Important Rules. As a first step, the
selection procedure is applied to the whole set of rule candidates

produced by RULEGEN. The local evaluation in RULEGEN has ignored

negative evidence and has not discovered that different RULEGEN pathways

13

may yield rules which are different but explain many of the same data
points. Thus there is often a high degree of overlap in those rules and
they may make many incorrect predictions.

To select rules, scores are calculated, the rule with the best
score selected, and the evidence peaks supporting that rule removed from
the supporting evidence for other rules. Then the whole process 1is
repeated until either (i) all scores are below a selected threshold or
(ii) all evidence has been explained. The scoring function (3) applies
the standard of performance of the RULEMOD critic discussed above.

Merging Rules. Although most of the redundant rules have been
deleted in the first step of RULEMOD, there may still remain sets of
rules that explain many of the same data points. For any such set of
rules, the program attempts to find a slightly more general rule that
(a) includes all the evidence covered by the overlapping rules and (b)
does not bring in extra negative evidence. If it can find such a rule,
the overlapping rules are replaced by the single compact rule.

Deleting Negative Evidence by Making Rules More Specific. RULEMOD
tries to add attribute-value specifications to atoms in each rule in
order to delete some negative evidence while keeping all of the positive
evidence. This involves local search of the possible additions to the
subgraph descriptions that were not considered by RULEGEN. Because of
the coarseness of RULEGEN’s search, some ways of refining rules are not
tried, except by RULEMOD. For example, rule (R2) below would be a
specification of (R1) that PRULEGEN would miss because it specifies
different attributes (not just different values) for atoms that are the
same distance from the broken bond (asterisk):

(R2) N - CH2 - ¢ ———=> N - CH2 * C
In this case, the number of hydrogen neighbors is specified for the

first left-hand atom but not for the first right-hand one.

Making Rules More General. RULEGEN often forms rules that are more

specific than they need to be. At this point we have a choice whether

14

to leave the rules as they are or to seek a more general form that
covers the same (and perhaps new) data points without introducing new
negative evidence. Rule (R1l) for example, could be made more general by
removing the atom type specification on one of the first atoms next to
the asterisk:

(RL") N-C-X —_—— N-C#*X

Again, because of the coarseness of its search, RULEGEN could not have
considered this form of the rule. VUle assume here that RULEGEN produces
good approximations and that RULEMOD can refine them.

Selecting the Final Rule Set. The selection procedure described
above is applied again at the very end of RULEMOD in order to remove
'redundancies that might have been introduced during generalization and
specialization.

Evaluating the Rules. Rules may be evaluated by measuring how well
they explain, or "cover", the given spectra. We call this the
"explanatory power" of the rules. We also want to be able to estimate
how well they can be used to discriminate the most plausible structures
from the rest in a list of candidate explanations of an unknown spectrum

(from a known class). We call this the "discriminatory power" of the

rules.

4.3.4 Integrating Subsequent Data

A requirement for any practical learning program is the ability to
integrate newly acquired data into an evolving knowledge base. MNew data

nay dictate that additional rules be added to the knowledge base or that
existing rules be modified or eliminated. New rules may be added to the
rule base by running RULEGEN on the new data, then running RULEMOD on
the combined set of new and previously generated rules.

When an existing rule is modified, the issue is raised of how to
maintain the integrity of the modified rule on its past training
instances. To see this consider an example. A new training instance is

acquired and, after credit assignment questions are resolved, it is

15

decided that rule R incorrectly "triggered" on some situation S. The
left hand side of rule R must be modified so that it will no longer
match S. In general there will be many possible changes to B which will
disallow the match to S, but some will be better choices than others.
The correct changes to R are those which do not alter past correct
applications of R. Of course there is no way of knowing which of the
possible changes to R will turn out to be correct upon examining still
more data, and once a single change 1is selected the possiblity exists
that backtracking will be necessary at some future point. This whole
issue nay be viewed as a problem of credit assignment among the features
which nake up the left hand side of R.

Different learning programs have taken different approaches to
this problem of insuring that rule modifications are consistent with
past training 1instances. Some [10] have assumed that the correct
performance of each rule on past data need not be preserved. Other
programs [14] keep past training instances in memory so that they may be
reexamined to evaluate later changes to rules, and to allow backtracking
in cases where incorrect changes to rules were made. Still other
programs [15] use domain specific heuristics to select the most likely
change to R.

We are currently developing a method for representing all versions
of the left hand side of a rule which are consistent with the observed
data for all iterations thus far. This representation is referred to as
the "version space" of the rule. By examining the version space of R,
we can answer the question "Which of the recommended changes to R will
preserve its performance on past instances?". The answer is simply "Any
changes which yield a version of the rule contained in the version
space". By using version spaces we avoid the problem of selecting a
single unretractable modification to R. Instead all the elements of the
version space which do not match some negative instance, S, are
retained, and those which do match S are eliminated. Similarly, when

new data are encountered in which a situation S' is found to correctly

16

trigger R, only those elenents of the version space which match S' are

retained.

5 RESULTS

One measure of the proficiency of Meta-DENDRAL is the ability of
the corresponding performance program to predict correct spectra of new
molecules using the learned rules. One performance program ranks a list
of plausible hypotheses (candidate molecules) according to the
similarity of their predictions (predicted spectra) to observed data.
The rank of the correct hypothesis (i.e. the molecule actually
associated with the observed spectrum) provides a quantitative measure
of the "discriminatory power" of the rule set.

The Meta-DENDRAL program has successfully rediscovered known,
published rules of mass spectrometry for two classes of molecules. More
importantly, it has discovered new rules for three closely related
families of structures for which rules had not previously been reported.
Meta-DENDRAL’s rules for these classes have been published in the
chemistry literature [2]. Evaluations of all five sets of rules are
discussed in that publication. This work demonstrates the wutility of
Meta~-DENDRAL for rule formation in mass spectrometry for individual
classes of structures.

Recently we have adapted the Meta-DENDRAL program to a second
spectroscopic technique, 13C-nuclear magnetic resonance (13C-NMR)
spectroscopy [9]. This new version provides the opportunity to direct
the induction machinery of Meta-DENDRAL under a model of 13C-NMR
spectroscopy. It generates rules which associate the resonance
frequency of a carbon atom in a magnetic field with the local structural
environment of the atom. 13C-IMR rules have been generated and used in
a candidate molecule ranking program similar to the one described above.
13C-IMR rules formulated by the program for two classes of structures

have been successfully wused to identify the spectra of additional

17

molecules (of the same classes, but outside the set of training data
used in generating the rules).

The rule based molecule ranking program performs at the level of a
well educated chemist in both the mass spectral and 13C-NYMR domains. We
view this performance as indicative of the quality of the rule base

discovered by Meta-DENDRAL.

6 SUMMARY

Ve believe that automated knowledge base construction 1is feasible
for constructing high performance computer programs. The functional
components of !eta-DENDRAL are common to other induction programs. The
Meta-DENDRAL approach of model-directed heuristic search through a
complex space of possible rules appears well suited to many induction
tasks. The use of a strong model of the domain to direct the rule
search has been demonstrated for rule formation in two areas of
chemistry. The high performance of programs which use the generated

rules attests to the success of this learning strategy.

FOOTNOTES

(2). The program judges a rule to be an improvement over its
parent if three conditions hold: (a)the new rule predicts fewer
fragments per molecule than the parent (i.e. the new rule 1is more
specific); (b) it predicts fragmentations for at least half of all the
molecules (i.e. it is not too specific); and (c) either the new rule
predicts fragmentations for as many molecules as its parent or the
parent rule was '"too general" in the following sense: the parent
predicts more than two fragments in some single molecule or, on the
average, it predicts more than 1.5 fragments per molecule.

(3). The scoring function is Score = I * (P + U - 2N), where: I =

the average Y-component (fragment abundance) of positive evidence data

12

points; P = the number of positive evidence instances for the rule; U =
the number of unique positive evidence instances for the rule; N = the

number of negative evidence instances for a rule.

19

10.

11.

References

Buchanan, B.G. Scientific theory formation by compuérs in
Proceedings of NATO Advanced Study Institute on Computer
Oriented Learning Processes, Noordhoff, Leydon, 1976.

Buchanan, B.G., Smith, D.h. , White, Woc., Gritter,
R.J., Feigenbaum, E.A., Lederberg, J., and Djerassi, C.
Automatic rule formation in mass spectrometry by means of the
Meta-DENDRAL program. Journal o the American Chemical

Society, 98, 20, Septenber 1976.

Davis, Ree Applications of meta-level knowledge to
the construction, maintenance, and use of large knowledge bases.
Ph.3 thesis (STAN-CS-76-552), Stanford University, July 1976.

Feigenbaum, E.A., Buchanan, B.C., and Lederberﬁ, J. On generality
and problem solving: a case study using the DENDRAL program.
Machine Intelligence 6, Meltzer, B. and Michie, D.
eds., American Elsevier, New York, 1971, 165-190.

Hedrick, C. A computer program to learn production systems usinp
a semantic net. Ph.D. thesis, Graduate School of Industrial
Administration, CMU, July 1974.

Hunt, Earl B. Artificial Intelligence, Academic Press, New York,

1975.
Jurs, P.C. in Computer Representation and Manipulation of
Chemical 1Information, Wi &e WeTe, et. al. eds., Wiley-

Interscience, New York, 1974: p.265.

Minsky , M. Steps toward artificial intellignce. Computers and
Thought, Fiepenhanm. E.A. and Feldman, J. eds., McGraw-Hill, Hew
York, 1963, 406-450.

Mitchell, T. 4. and Schwenzer, G. Mo A computer program for
autonated empirical 13C NHR rule formation. Submitted to
Journal of the American Chemical Society, 1977.

Samuel, A. L. Some studies of machine learning using the %?me of
checkers. in Computers and Thought, Feigenbasm, ¥.' and
Feldman, J. eds., McGraw-Hill, New York, 1963, 71-105.

Simon, H.A., and Lea, G. Problem solving and rule induction: a
unified view. CMU Conplex Information Processing Working Paper
227 (revised), June 1973.

20

12.

13.

14.

15.

Smith, R.G. Mitchell, T.M., Chestek, R.A., Buchanan, B.G. A
model for iearnlng systems. Submitted to the 6th IJCAI, 1977.

Waterman, D.A. Generalization learning techniques for automating
the learning of heuristics. Artificial Intelligence , 1, 1970,
121-170.

Waterman, D.A. Adaptive production systems. Complex Information

Processing Working Paper 285, CMU Deptt. of Psychology,
December, 1974.

Uinston, P.H. Learnln% structural descriptions from examples.
Ph.D. thesis (MIT AI-TR-231), September 1970.

21

