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A KNOWLEDGE-BASED SYSTEM FOR THE INTERPRETATION OF

PROTEIN X-RAY CRYSTALLOGRAPHIC DATA

ABSTRACT

The broad goal of this project is to develop intelligent
computational systems to infer the three—-dimensional structures of

proteins from x-ray crystallographic data. The computational
systems under development use both formal and judgmental knowledge
from experts to select appropriate procedures and to constrain the

space of plausible protein structures. The hypothesis generating and

testing procedures operate upon a varlety of representations of the
data, and work with several different descriptions of the structure
being inferred. The system consists of a number of independent but

cooperating knowledge sources which propose, augment and verify a
solution to the problem as it is incrementally generated.





l Introduction

In this report we present our first investigations into

applying Artificial Intelligence methodology to a new task domain,

Protein Crystallography. Our goal 1s to develop an intelligent
computational system for inferring the three dimensional structures of

protein molecules from x-ray crystallographic and other physical data.

Although the computer has for many years been an essential tool in x=

ray crystallography research, nearly all 1ts applications have been in

the areas of data collection, data reduction, Fourier analysis,
graphics and other essentially numerical tasks (Feigenbaum, 1976).

Those aspects of molecular structure inference which require symbolic
reasoning, and/or which use a significant amount of judgmental
knowledge are traditionally performed manually. The structure

inference process is basically an iterative cycle of hypothesize, test
and refine, of which the first phase (hypothesis generation) involves a

significant component of non—-numerical analysis.

In the course of deriving a protein structure which is a best

explanation of the given data, the crystallographer generates a three-

dimensional description of the electron density distribution of the

molecule. Due to the resolution imposed by the experimental
conditions, the electron density distribution 1s an indistinct 1mage of

the structure, which does not reveal the positions of individual atoms.

The crystallographer must interpret this function 1n light of auxiliary

data and general principles of protein chemistry in order to derive a

complete description of the molecular structure. The ensuing report is

devoted to a description of that process, our initial attempts to

characterize the process in terms of a knowledge-based problem solving

system, and a discussion of the computational system currently being
implemented.

2 Description of the problem

The 1nterpretation of an electron density map, derived from the

reduction of X-ray crystallographic data, 1s a necessary and important
step in the derivation of the 3-D structure of proteins and other

macromolecules. When crystallographers use the term "electron density
map" they usually have in mind some pictorial representation of the
electron density defined over a certain region of 3-space (usually some

fraction of the unit cell of the crystal). The most commonly used

representation 1s a 3-D contour map, constructed by stacking layers of
conventional 2-D contour maps drawn on transparent sheets. BY
carefully studying the map the experienced protein crystallographer can

find features which allow him to infer approximate atomic locations,

molecular boundaries, groups of atoms, the backbone of the polymer,
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Description of the problem

etc. After sever3il weeks (or months) he has built a model of the

molecular structure which conforms to the electron density map and is
also consistent with his knowledge of protein chemistry, stereochenical

constraints 3nd other available chemical and physical data (e.g., the

amino acid sequence). A more detailed description of this problem-
solving process 1s given below.

Traditionally, the protein crystallographer embodies his

interpretation of the electron density map in a "ball and st ick"

molecular model, fashioned from brass parts. His task 1s facilitated

by an ingenious device, called a 'Richards box', which permits the

model builder to view several layers of the nap through 3 partially
transparent mirror, so that the mirror image of his model appears to be

"inside" the map. After the model has been completed to the builder's

satisfaction, the coordinates of the atoms in the model are recorded,
and a process of quantitative refinement begins.

: Although many protein structures have been solved in this way,
the deficiencies of the brass—-model/Richards-box techniques for density

map 1nterpretation are well known to those who have used it. Among

other difficulties, the 3-D contour map 1s an awkward representation.
The locations of atomic sites and interatomic bonds are seldon directly

evident from the contours, at the resolution levels normally obtained.
Building a model 'into the density map' is a tedious process of fitting

brass parts to regions enclosed by one or more contour levels, a search

process which 1s not very well constrained by the map itself. Another
problem 1s that the brass model sags under its own weight. Consequently

the measurement of the coordinates 1s an errorful process. In recent
years an attempt to correct some of these deficiencies has led to the

creation of electronic Richards boxes, whereby the model builder can
) view a CRT display of the electron density map from various angles, and

| superinpose a line representation of the protein molecule. Although
| this line of attack 1s an admirable step towards facilitating the model

builder's task, 1t suffers 1n two major respects. First, the electron

density function 1s still represented by a contour map. Secondly, the
decisions which lead to identification of features in the map are still

left entirely to the model builder. The task remains an arduous one of

visual pattern recognition, hypothesis generation and testing.

A significant inprovement in automated assistance, beyond those
tools mentioned above, would involve a computational system that can

generate 1ts own structural hypotheses as well as display and verify
them. This capability requires l1)a representation of the electron

density function more suitable to machine interpretation, 2)a
substantial chemical and stereochemical knowledge base, and 3)a wide

| assortment of model building algorithms and heuristics, in order to

| achieve acceptable performance.
In order to obviate the inherent difficulties of contour map

3
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interpretation, investigators are actively pursuing alternate

representations. The system under development here 1s purposely
eclectic, exploiting a variety of representations appropriate to an
equally varied set of inferential procedures. For example, the

skeletal representation of Greer and the ridge line representation of
Johnson, discussed in the next section, are both included in our

system.

The components of the knowledge necessary for model building
fall 1nto three general categories: chemical topology, microstructure
and macrostructure. The chemical topology knowledge base 1s

essentially all the known chemical data about the specific protein
under study, exclusive of the electron density map itself, e.g., the

amino acid sequence, properties of cofactors (1f present), and
identification of disulfide bridges and/or other special chemical
bonds. Microstructural knowledge consists of atomic-level facts about
proteins, e.g., the geometry of peptide bonds and amino acid side

chains and hydrogen bonding properties. Macrostructure refers to

stereotype templates for the plausible major components of the

molecules, e.g., alpha helix and pleated sheet, and might also contain

statistical correlations linking these stereotypes to the amino acid

sequence.

Given these "factual" data and a tractable representation of

the electron density map, two more ingredients are required for a
complete machine interpretation system. The first 1s a collection of

rules and associated procedures for using this knowledge to make
inferences from the experimental data. The second 1s a problem solving

strategy for applying the knowledge sources (KSs) in an effective way,
so that the appropriate procedures are executed at the times they will
be most productive. Protein <crystallographers who build models move

continually across a large field of basic facts, special features of

the data and implications of the partial model already built, looking
for any and all opportunities to add another piece to their structure.

There are several requirements to working in this "opportunistic" mode
of hypothesis formation: (1) the inference making rules and the
strategies for their deployment must be separated from one another, (2)

the rules must be separated from the mechanics of the program in which

they are embedded, and (3) the representation of the hypothesis space

must be compatible with the various kinds of hypothesis generating
rules avallable. (The hypothesis structure represents an a priori
established plan for problem solving.) The modularity of such a system
allow users to add or change rules for manipulating the data base, as
well as to investigate different solution strategies, without having to

make major modifications to the system. These issues are discussed
further in Sections 6 and 7.
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3 Related work

3.1 Protein crystallography

Research on the interpretation of electron density maps has

focused on the representation of the electron density function. Greer

(1974, 1976) has developed a system for reducing the map to clusters of

connected line segments, a process he calls skeletonization. Using the

skeletonized map he has developed a set of rules for isolating the main

chain, determining directionality and proposing coordinates for

specific atoms along the main chain. Greer's program draws heavily on

the notion of continuity 1n the electron density function to produce

the skeletonized map, and 1t uses some knowledge of bond lengths and

connectivity to infer main-chain and side-chain coordinates. Knowledge

of the amino acid sequence 1s not assumed. If the sequence were known,

the 1nferences to be drawn from it would presumably be introduced into

the program's data base 1n an ad hoc fashion.

Greer's skeletonization technique, although attractive in 1its

simplicity, suffers in several respects. For one, the procedure 1s

non—-deterministic, i.e., one produces a different skeleton by scanning
the map in a different order. For another, features of the map easily

identifiable to the protein crystallographer, such as helical or ringed

structures, are difficult (if not impossible) to identify after
skeletonization. The main problem is that one must necessarily lose

some information 1in the process of abstracting a body of numerical data

into a highly symbolic representation. One must seek a symbolic

representation, or a set of representations, which minimizes the loss

of rich detail present in the original data. Skeletonization falls

somewhat short 1n preserving the detail required for complete structure
inference.

Recently, another approach toward re-representation of the nap

has been to apply numerical analysis to the electron density function.

Johnson and Grosse (Johnson, 1976) have developed a method of '"ridge-
line analysis", wherein they can locate alternating peaks and passes in
the electron density function by using an interpolation polynomial.

This scheme, which 1is currently in the implementation and testing

phase, will generate a topological representation of the density map,

showing all resolved, unique maxima and the most probable interpeak

bonds. Although the computational effort required for the application

of the interpolation polynomial method 1s expected to be large, the

procedure needs to be done only once for a given structure analysis,

and provides both a high level of abstraction of the map and the
preservation of most of the significant details that are resolved 1n
the raw electron density function.



Related work 3.2

3.2 Knowledge-based systems

An area of AI research which the current work resembles is the

speech understanding system, Hearsay-IT (Erman, 1975)) specifically

with respect to the issues of knowledge integration and focus of
attention (Hayes—Roth 1976). In Hearsay—-1I1I the central task is to

build a sentence hypothesis which 1s a best explanation of the given

speech 1nput data. An "iterative guess-building"™ process takes place,

in which a number of different knowledge sources (facts, algorithms,

heuristics), operating on various descriptions of the hypothesis, must

cooperate. In order to use the knowledge sources efficiently a global
data base —- the "blackboard" —— 1s constructed which contains the

currently active hypothesis elements, at all levels of description.
The decision to activate a particular knowledge source 1s not fixed,

but depends at any point on what has thus far been established and what
available knowledge source 1s most likely to make further progress.

For example, one 1s unlikely to make much progress by trying to analyze

the first segment of the speech wave completely before examining other

portions of the utterance. The control is, to a large extent,

determined by what has just been learned: a small change in the state

of the "blackboard" may establish a new island of opportunity,

providing the preconditions to instantiate further knowledge sources

(an 1llustration of this process 1in the context of electron density map

interpretation 1s given below) . Figure 1 shows the different

information levels at which hypotheses are constructed in the Hearsay-

IT system, and some of the knowledge sources used. Knowledge sources

are used to establish support for hypothesis elements. These supports

are represented by links. A KS may either create, modify or verify a

hypothesis element (s) at the target level, given a subset of the

existing hypothesis elements at the source level(s). For example, the

Syntactic—-Semantic Hypothesizer shown 1n the figure uses syntactic and

semantic knowledge of the input language to propose new words adjacent

to a word or phrase already on the blackboard.
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Figure 1. The Current Knowledge OSources in Hearsay II. (from Erman, 1976)

Figures 2 through 4, which are explained in more detail in the

next two sections, are descriptions of the protein density map
interpretation system. As 1in Hearsay-II the hypotheses are represented

in a hierarchically organized data structure. In our case the

different information levels can be partitioned into three distinctly

different "planes", but the concept of a globally accessible space of
hypotheses 1s essentially the same for both systems. Knowledge sources
also play a similar role as in Hearsay—-1I, adding, changing, or testing

hypothesis elements on the blackboard.
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3.2

4 The Nature of a Hypothesis

The goal hypothesis in our system 1s a model of a protein

molecule which best explains the given experimental data and 1s

consistent with accepted principles of stereochemistry and protein

chemistry. As was mentioned earlier, ther are many diverse sources of

knowledge being brought to bear on the problem of electron density map

interpretation. In order to capitalize on these sources of knowledge,
the hypothesis 1is represented as hierarchically organized levels of

descriptions, as shown in Figure 2. A KS is a collection of rules

which makes inferences between any two levels 1n the hypothesis space.

There are three levels of description on the model plane. The most

detailed level of description of the model 1s the atomic level; a

specification of the spatial coordinates of all atoms in the model with

respect to some arbitrary origin (the coordinate of hydrogen atoms are

generally omitted). Proteins all exhibit well-defined topological

constraints which permit descriptions at higher levels of aggregation.

Thus, proteins consist of a linear polymeric chain and, 1n many cases,

attached atonic groups called co—-factors. The level of description

which describes the model in terms of the position of the polymeric

units (links of the polymeric chain and side chains) is called the

superatomic level. These units may be aggregated still further into

what 1s generally called a "secondary structure", 1.e., a specification

of the relative locations of large identifiable portions of the

protein. Examples are the alpha helix and the beta sheet conformations,

well-known to protein chemists. Many other such "stereotypes" exist in

proteins, although they may be associated with a specific family such

as the heme binding region 1n the cytochrome c¢ proteins. This level of

description is labelled stereotypic in Figure 2.

A partial or complete hypothesis consists of linked hypothesis

elements. A hypothesis element is a labelled node in the space of

hypotheses. Attached to each node 1s a set of attributes which define

the hypothesis element in terms appropriate to the level of description

on which it resides. For example, each node at the atomic level of

description in the model plane corresponds to a discrete atom in the

hypothesized structural model. A list of attributes associated with a

node of this type includes:
name

type

spatial location (coordinates of the atom)

member of superatom (link to superatoa hypothesis element)

assoclated peak (link to a density plane description)

assoclated skeleton node (link to a density plane

description)

hydrogen bonds (list of other atoms to which this one

1s hydrogen bonded)

11
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Nodes at the superatomic level of description would have a

different list of attributes. The relationships between the hypothesis

elements are represented by links. For example, a hypothesis element

representing a sulfur atom belonging to a particular Cysteine side
chain will have a description (ISAMEMBER CYSi) attached to it. Another

example of a link spanning two levels 1s (HASASMEMBER GLU1i ALAj . ..).

This could be a description attached to a helix on the stereotypic
level 1ndicating a part of the amino acid sequence associated with the

helix. There are also relational 1links confined to a level, such as

ISNEXTTO, used to describe the adjacency of the superatoms in terms of

the sequence. These links are determined by the KSs and represent some
of the inferences which they make. The links also have arrowheads to

indicate the direction—-in which the inferences are being made. For
example, 1f a Cysteine side chain is inferred from a sulfur atom, the

link will be from the direction of the atomic level to the superatomic
level. On the other hand, if the atomic coordinates of some atoms are

inferred from some particular side chain, the links will be from the

superatomic to the atomic level. Knowledge sources may make inferences

from any level to any other level in Figure 2.

So far we have mentioned the hypothesis structure only with

respect to the descriptions of the model. On the other two planes
shown 1n Figure 2 are other descriptions, not of the model but of the

data from which the model 1s derived. The chemical plane contains a

static description of known compositional and topological features of

the molecule under study; the empirical formula, the amino acid

sequence, known hydrogen bonds, di-sulfide bridges, salt links, metal

coordinating bonds, etc. These data are errorful and may be modified

at a later stage 1n the structure building process (e.g., an amino acid

residue postulated in the sequence may be wrong in light of structural

constraints.) However, this occurs rarely and we have, for the time

being, made the assumption that the sequence 1s always correct. Once
the amino acid sequence information 1s assumed to be correct, it can be

used as a powerful guide to finding the side chains 1n the density
plane. The use of such knowledge 1s very similar to the way in which

the Syntactic—Semantic Hypothesizer in Hearsay-II uses syntactic and
semantic knowledge to predict the next word from the word or phrase
already on the blackboard.

The density plane contains the data to be interpreted. In its

most elementary form, the density map is typically a very large table

of wvalues of the electron density, defined on a 3-di ensional grid.The number of entries in the table 1s on the order of 70 to 10 It
1s not only prohibitive computationally to search through this data
base continually to infer or validate elements of the model. It 1s

also unnecessary, because 1) a large fraction of the map represents

regions outside the ,molecules, and 2) we are searching for the
positions of 10 to 10 atoms, so only a fraction of the total table of

values contains the most relevant data. Consequently it 1s clearly

12
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desirable to transform the map to other levels of description which

drastically reduce the volume of stored data, yet preserve most of the

information required for structure elucidation. Consequently, several

other descriptions, or abstractions, of the density map are used. The

simplest 1s a list of peak heights and their locations. Another

description exploits the property that most of the protein can be
modeled by a single, branched chain, and uses the skeletonization

algorithm (Greer, 1974, 1976) to reduce the map to sets of connected

line segments. Yet another description 1s the "ridge—line"

representation of the density map, a node—link graph in which the nodes
are best estimates of the positions of the maxima, and the links are

best estimates of the paths between the maxima (Johnson, 1976).

d How the Hypotheses are Built by the Knowledge Sources

5.1 Steps in the structure determination process

The inferences made to create, modify or support hypothesis

elements are generated by exploiting a large body of facts, formal

procedures (algorithms), and informal rules of good guessing
(heuristics). These inference makers are called knowledge sources. To

appreciate their scope it 1s 1nstructive to review the steps normally

taken by a protein crystallographer in proceeding from an electron

density map to a molecular structure. The program organization and the

organization of the knowledge sources we have adopted reflect the

problem solving processes of the human protein model builder.

There are five major steps 1n density map 1nterpretation:

A. Qualitative identification

B. Quantitative molecular modeling

C. Calculation of structure factors and comparison

with observed structure amplitudes

D. Calculation of a new density map using observed

structure amplitudes and model—-generated phases.
E. Refinement of the model

Steps C through E, which start with an atomic-level description of the

structure, are well-established procedures 1n crystallographic

computing and form the "back end” of a total structure determination

system. Our goal 1s to build the front end, which consists of the

first two steps. Qualitative identification 1s the process of matching

parts of the chemical description of the protein (side chain,

cofactors, etc.) to corresponding regions of the density map.

13
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Quantitative molecular modeling carries this process further by
assigning specific coordinates to the hypothesized structural elements,
based on stereochemical or other constraints.

Qualitative identification requires the protein

crystallographer to use his knowledge of chemistry and crystallography
and his skills in visual identification, all at the same time. In

order to develop a program which performs this task automatically, we
have analyzed the model builder's reasoning steps in some detail. The

process may be subdivided into five sub-processes, although these are

not necessarily performed sequentially:

1. Identification of the molecular surface boundary

2. Identification of heavy atoms and major cofactors

3. Identification of the polymer backbone

4, Identification of polymer side chains
5. Identification of minor cofactors and ordered

solvent

1. Tdentification of molecular surface boundary. The size, shape and
symmetry elements of the unit cell of the crystal are always known to
the crystallographer by the time he has a density map to interpret. He

doesn't know, however, where the fundamental repeating unit (1.e., the

protein molecule or a cluster of molecules such as a diner, tetramer,
etc.) 1s positioned with respect to the "walls" of his density map. He

_. may thus have, say, the left half of one molecule and the right half of

another. For visual 1dentification it 1s desirable that the map be
positioned such that at least one complete and contiguous molecule is

contained therein. To accomplish this, the crystallographer uses
several sources of information; a) low density regions of the map or
"channels" can often be sighted, which indicate the gap between one
structural unit and another; b) the molecular weight and volume are
tsed to verify that the hypothesized unit is reasonable in size; C)

size and shape data fron light scattering or other auxiliary data may
also be used to identify the bounding surface; d) knowledge of the
relative densities of the protein and solvent indicate the contrast one

may expect between the protein-containing and interstitial regions.

2. Identification of heavy atoms and major cofactor positions
(if any are present). The locations of heavy atoms, such as iron, will

be obvious in the density map, and are usually the first pieces of
structural information to be inferred. Major cofactors often have

characteristic shapes, and/or contain the heavy atoms Just identified,
SO they are normally found next. The crystallographer uses the
following knowledge sources to carry out this step: a) heavy atoms are

located at the maxima in the density map; Db) the empirical formula of
the protein tells him how many and of what type of heavy atoms and
cofactors to look for; c) the number of disulfide bridges, determined
from chemical analysis, 1s used to direct the search for these peaks in

14
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the density map; d) the atomic numbers of the atoms determine relative

peak heights, SO that different types of heavy atoms may be

distinguished; ee) the known shape of major co-factors 1s used to direct

the search for their positions in the map (e.g., a flat, quasi-circular

group).

3. Identification of the polymer backbone. Distinguishing the
malin chain of the protein from side chains and cofactors is a crucial

task 1n the model building process. The relevant knowledge sources

here include: a) if a relatively long connected region in the density

map can be identified, it usually indicates the 1mage of the main

chain; b) the number of amino acids in the protein implies a total

length for the main chain; c) the amino acid sequence, including

disulfide bridges, can be used to infer the length of loops in the

chain, dd) predictions of the fraction of the polymer which is in a

helical configuration can be obtained fron optical rotatory dispersion

data or from statistical analyses of amino acid sequences in known

proteins (Chou, 1974); e) knowledge of the geometry of characteristic

configurations, such as the alpha helix or the pleated sheet, can be

used to match thelr shapes against clusters of density in the map.

4, Identification of polyner side groups. Identifying even
one or two specific side chains along the polymer allows the model

builder to start matching his model to the amino acid sequence. Once

this foothold 1s established, he can make rapid progress in adding the
side chains to the backbone, because he has strong expectations which

limit the possibilities. Among¢ the many knowledge sources employed for

this task are: a) protrusions found on the backbone at regular

intervals indicate the presence of side chains and their points of
attachment; Db) the "4 Angstrom" rule for alpha carbon separation can be

used to verify the points of attachment of the side chains; c) the

sizes and shapes of these bumps can be used to infer which amino acid

side chains 1t may represent - e.g., big, flat bumps are most likely to

be phenylalanine, tyrosine or arginine; d) the amino acid sequence,

particularly useful when two or more adjacent side chains can be

identified, ee) the shapes of the amino acid side groups can be used to

verify an identification of a side chain in the map; f) family

resemblances among classes of proteins can be exploited to locate

relatively long sequences 1n the density map; g) special properties of
the different amino acid residues are also used, such as their

tendencies to occur within or outside of helical regions, or their

tendencies to point away from (hydrophobic) or toward (hydrophilic) the
surface of the molecule.

5. Identification of minor cofactors and ordered solvents.
Small clusters of atoms often co-exist with the protein, and it 1s

necessary to distinguish them as separate entities. Examples are the

inhibitor in an enzyme-inhibitor complex, or interstitial water

molecules. Information sources for this phase of the analysis include:
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a) the residual density in the map; Db) the empirical formulae for the

cofactors and the solvent molecules; the general rules that c) the

solvent 1s almost always located outside the molecular boundary; d)
substrate/inhibitor cofactors have access to both the inside and the

outside; e) the ordered solvent 1s usually hydrogen-bonded to polar
side chains.

5.2 How the automated interpretation system uses knowledge =
Examples

We have begun building a system which employs those knowledge
sources used by the crystallographers which are relatively easy to

implement. The system's control structure (see Section 7) permits the
knowledge sources to be discrete, independent entities, so that the

addition of new knowledge sources, Or new rules within the KSs,
involves little Or no reprogramming of the existing system. Which
knowledge sources are used, and in what order, 1s determined by the
latest changes in the hypothesis. In addition, the complete hypothesis
space 1s always available for pursuing other strategies.

: Two examples are given here which 1llustrate the use of several

knowledge sources and their integrated effects. The first 1s a

subproblem which the current system can solve, and, though relatively
i . trivial, demonstrates the flavor of the system's problem-solving

behavior. The second is a more difficult subproblem but also a more
typical model-building task.

5.2.1 Example 1 (see Figure 3)

The knowledge sources used in the first example are shown
schematically in Figure 3. The problem is that of cofactor

identification, step 2 in the above discussion of qualitative
identification. In this example the structure under investigation was a

member of the cytochrome c family of proteins. The density map was
derived from a theoretical model of the protein, not from
crystallographic data, so the density map is of high quality. The
electron density function was computed to a resolution of 2 Angstroms
and sampled on a grid of approximately 1 Angstrom spacing.
Consequently most atoms in the structure are not individually resolved
in the map. The most readily i1dentifiable features 1n the map are the

heavy atoms —-- 1ron and sulfur —-— and the heme group, characteristic of
all members of this protein family.

The program starts with the density map, the composition of the
) protein, the amino acid sequence, and the general knowledge base

discussed previously. As shown in the figure, six knowledge sources
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are invoked. KS-1 1s a preprocessor which abstracts fr0n the

parametric description of the density map (i.e., the lattice-sampled
electron density function) a list of the locations of the most

prominent peaks, sorted from highest to lowest peak heights. Thus
several points in the parametric representation, in the vicinity of a

peak, are mapped into a single hypothesis element at the nodal level,

as shown. Each element at the nodal level 1s assigned a name, and its

height and position are entered as properties of that nane. KS—-2

infers from the chemical data that certain heavy atoms are present in
the structure. For example, the cysteine side chains at positions 14,
17, 55 and 91 in the sequence are noted and, using the global knowledge

base, infers that there are four heavy atoms of type sulfur in the
protein. A similar inference can be made for the one 1ron in the

protein. KS-2, therefore, creates and establishes support for several
heavy atom hypothesis elements at the atomic level of the model

description. These elements are assigned identifiers (Al, A2, etc.)

and properties which associlate them with specific atoms in the
topological description are attached. KS—-3 establishes the spatial
locations of tlie atoms by looking at the list of nodes and selecting
candidates which are most likely to correspond to the heavy atoms. The

iron atom position is taken as the position of the highest peal: in the
map . The sulfur atoms in the vicinity of the iron are also located in

the node list, using general knowledge of the cytochrome c¢ family
structure.

Having inferred as much as possible about heavy atoms at this

stage of the analysis, the system shifts its attention to locating the
heme structure. KS—-4 makes the simple inference, based on the
protein's family membership, that one of the superatomic hypothesis
elements 1s a heme, and creates that element on the "blackboard". KS-5

provides support for the heme by linking it with the iron atom already
found. The combination of having located the iron atom and having
hypothesized the heme superatom triggers the heme locater, KS-6. KS—6

searches through the node list to find those peaks in the density which
are most likely to lie within the planar structure of the heme, and

predicts the direction of the normal to the plane. We present here a
trace of the first few steps of the program's reasoning activity for
this example in order to illustrate the flow of control as it evolved.

The terminal output 1s given immediately below. Annotations occur

within the output in lower case type, and also occur following the
output.
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INITIAL VALUES FOR CYTOCHROMEC2
COFACTOR: HEME

KNOWN. LOCATIONS: ((FE +216 .063 .427))

SEQUENCE: GIVEN

IMFERENCE : EVENT-1 BY RULE-1 IN RULESET INITIALIZATIONRULES

EVENT NAME: COFACTOR-POSITED

CURRENT HYPOTHESIS ELEMENT: SAl

NEW PROPERTIES: ((TYPE COFACTOR) (NAME HEME))

A set of rules, called "initializationrules", is called

unconditionally in order to "get something on the board". Here the

first hypothesis element is created in the model plane, and the token

"cofactor posited" becomes the initial item on the event list.

INFERENCE: EVENT-2 BY RULE-1 IN RULESET INITIALIZATIONRULES

EVENT NAME: HEAVYATOM POSITED

CURRENT HYPOTHESIS ELEMENT: Al

NEW PROPERTIES: ((TYPE FE) (NAME FE) (BELONGSTO HEME)

(MEMBEROF SAl))

The same rule may generate more than one event. Here the rule which

_ Just posited a heme structure 1n the protein also creates a

subsidiary hypothesis (the iron atom) and establishes membership
links between the two hypothesis elements. (This inference was made

using general knowledge about the composition of the heme group.)
Assoclated with each event 1s a particular hypothesis element, which

1s the current focus of attention. The event may signal the creation
of the hypothesis element, as 1it does here, or may signal the
establishment of new properties for a pre-existing hypothesis
element, as in the next event below.

INFERENCE: EVENT-3 BY RULE-2 IN RULESET INITIALIZATIONRULES

EVENT NAME: HEAVYATOM LOCATED

CURRENT HYPOTHESIS ELEMENT: Al

NEW PROPERTIES: ((SPACE-LOC (+216 .063 .427)) (D-NODES (ND1)))

INFERENCE: EVENT-4 BY RULE-4 IN RULESET INITIALIZATIONRULES

EVENT NAME: HEAVYATOM POSITED

CURRENT HYPOTHESIS ELEMENT: AZ

NEW PROPERTIES: ((TYPE S) (NAME SG14) (BELONGSTO (CYS 14)))

INFERENCE: EVENT-5 BY RULE-4 IN RULESET INITIALIZATIOMRULES

LVENT HAME: HEAVYATO!M POSITED
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CURRENT HYPOTHESIS ELEMENT: A3

NEW PROPERTIES: ((TYPE S) (NAME SG17) (BELONGSTO (CYS 17)))

INFERENCE: EVENT-6 BY RULE-4 IN RULESET INITIALIZATIONRULES

CVENT NAME : HEAVYATOM POSITED
CURRENT HYPOTHESIS ELEMENT: A4

NEW PROPERTIES: ((TYPE S) (NAME SD55) (BELONGSTO (MET 55)))

INFERENCE: EVENT-"7 BY RULE-4 IN RULES ET INITIALIZATIORPULES

EVENT NAME : HEAVYATOM POSITED
CURRENT HYPOTHESIS ELEMENT: AS

NEW PROPERTIES: ((TYPE S) (NAME SD91) (BELONGSTO (MET 91)))

Events 4 thru 7 were generated by a rule which scans the amino acid

sequence for those side chains that should be "visible" as heavy

atoms in the density plane. These heavy atoms would then serve as

foci of attention for further hypothesis formation activities.

EVENT-1 COFACTOR-POSITED SAl

The normal processing cycle begins here. An event 1s picked off the
event list, here identified by its number, name and associated

hypothesis element. In the current implementation the event list 1is

a queue, SO that the first event generated 1s the first to be

examined. The event 1s passed first to the strategy rule processor

to see 1f any special strategies apply. In this case, a strategy

rule for merging two events (1 and 3) does apply, and a new event 1s

placed 1n the front of the event list, overriding the breadth first

strategy represented by the queueing of events.

MERGED INFERENCE: EVENT-8 FROM EVENT-1 AMD EVENT-3

BY STRATEGY RULE-1

EVENT-8 HEME AND FELOC SAL

INFERENCE: EVENT-9 BY RULE-1 IN RULESET HEMEANALYSIS

EVENT NAME: HEME LOCATED

CURRENT HYPOTHESIS ELEMENT: SAl

NEV! PROPERTIES: ((D_NHODES (ND17 ND30 ND33 ND38)))

The new "merged" event 1s passed down to the event processor, which

matches the event name to a rule set called "hemeanalysis". A member

of this rule set 1is found to be applicable, thereby establishing new

properties for the current hypothesis element, and a new event 1s

queued on the event list.

EVCIJT-2 HEAVYATOM POSITED Al
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INFEKENCE : EVENT-10 BY RULE-1 IN RULESET FINDHEAVYATOMS

EVENT NAME: HEAVYATO!M LOCATED

CURRENT HYPOTHESIS ELEMENT: A3

NEW PROPERTIES: ((D.NODES (ND3))

(SPACE-LOC (.3425 .0917 .4778)))

INFERENCE: EVENT-11 BY RULE-1 IN PRPULESET FINDHEAVYATOMS

EVENT NAME: HEAVYATOM LOCATED

CURRENT HYPOTHESIS ELEMENT: AZ

NEW PROPERTIES: ((D.NODES (ND2))

(SPACE LOC (.1649 -.0868 .4673))

Event—-2 now comes to the top of the list, and triggers a new ruleset,

called "findheavyatons". The application of this knowledge source

results 1n establishing links between the two hypotheses elements,

A2 and A3, and specific peaks in the density map.

The event processor 1s governed by its own set of rules. If an

- event triggers a set of knowledge rules, and no inferences can be made,

the failure 1s due either to insufficient data, a lack of necessary

information in the model thus far constructed, Or 1gnorance of that

] . particular knowledge source. Since the model hypothesis may change as

the result of processing other events, the event is placed on the job-

list, to be examined at a later time by other knowledge sources.

Another type of failure may be due to general ignorance, 1.e., the

program simply has no knowledge sources which may be invoked for the

current event. An event rule for this situation 1s to place the event

at the back of the event-1list, awaiting either the creation of new

events which may be merged with the current one to form a "processable"

event; or the addition of new knowledge sources to the system.

5.2.2 Example 2 (see Figure 4)

The second example is the subproblem of helix identification.

The model builder attempts to find helical regions 1n his density map

at an early stage in the model building process, because such regions

have a well-defined density 1n the 3-D contour map. A helix of

sufficient length (at least seven residues) will appear 1n the map as a

"rod" of high density, often with a hole running through it. Once the
helix template has been fitted into the density, the model builder can

exploit its highly constrained structure to determine the direction of

the chain, the regions of surrounding density which correspond to side

) chains attached to the helix, and the 1dentity of those side chains
having recognizable sizes or shapes.
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T h e corresponding analysis made by the automated system 1s

sketched 1n Figure 4. In the density plane, the density map 1S
abstracted into either a skeletal description or a ridge line

representation (KS-7 and KS-8, respectively), as discussed previously.

KS-9 examines the shape 0f the main chain hypothesized by the
skeletonizer and looks for helical features (e.g., patterns formed by

vectors between adjacent carbonyl groups) . KS-10 is a similar

knowledge source which uses the more detailed representation of the
density function provided by the ridge line analysis. If either KS 1s
successful an hypothesis element 1s entered at the stereotypic level on

the model plane. Properties for this element include the location of

its centroid, the direction of the helical axis, number, size and shape

of side chains, and polarity. KS-11, t he sequence —structure
correlacor, examines the amino acid sequence and predicts subsequences

which are' likely to be within helical regions. KS—-12 uses the side
chain information associated with the helix to establish hypothesis

elements at the superatomic level, one for each side chain. KS—-13

matches the side chain sizes and shapes with those expected in the

helical subsequences 1n order to establish the identity of these

superatoms. KS—-14 creates hypotheses at the atomic level from the

known superatoms by determining the appropriate translation and bond

rotations which bring the side chain template for the current superatom

hypothesis into best agreement with peak locations 1n the density map.

0 Representation of Knowledge 1n the System

As illustrated in the previous section there are many diverse

sources of information used 1n protein structure inference. The

problem of representing all this knowledge, in a form which will allow
it to be used cooperatively and efficiently 1in the search for plausible

hypotheses, 1s of central concern to this research. The system

currently under development draws upon many concepts which have emerged

in the design of other large knowledge-based systems, e.g., the use of

production rules and blackboards. In this section we describe how

these concepts have been adapted to our particular task.

Knowledge consists of facts, algorithms and heuristics (rules

of good guessing). Facts required for protein structure inference are

general physical, chemical, stereochemical and crystallographic

constraints. Typical factual knowledge stored in the system includes

physical properties of the elements commonly found 1n proteins,

molecular structure and chemical properties of the twenty amino acids,

bond lengths and symmetry properties of various crystal structures.

These facts are encoded as tables or 1n property lists attached to

specific structural entities. An example of the latter 1s the property

list associated with glutamic acid, shown in Figure 5. Factual
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knowledge comprises a global data base, which is used as needed by the
knowledge sources as they attempt to infer elements of the structural
hypothesis.

GLU

FULL N AME GLUTAMIC ACID
POLARITY ACIDIC

IIYDRO HYDROPHILIC

H BOND ACCEPTOR (6 (OE1 . 3) (OE2 . 3))

H-BOND-DONOR NIL

SHAPE ACYCLIC BRANCHED
RESIDUE-WT 72.0

HELIX 1.53

BETA 0.26

ATOM LIST ((CA 0.0 0.0 0.0)
(CB =-.05 -.933 1.244)

(CC 1.221 -1.754 1.5406)

(CD 1.431 -3.015 .625)

(OE1l .957 -3.081 =-.47)

(OE2 2.13 -3.821 1.239))

BOND LIST ((CB . CG) (CC . CD) (CD . OEl)
i (CD . OE2))

SEGMENTATION LIST (BO (B1 (B2 B3 B4)))

Figure 5. A Component of the Global Data Base:

Property List for Glutamic Acid

Algorithms and heuristics comprise the formal and informal

knowledge which generate and/or verify hypothesis elements. We have
been guided by two general principles 1n the representation of the
knowledge sources:

1) decompose identifiable areas of knowledge 1nto elementary
units, each of which increments the hypothesis when specified

preconditions are met.

2) represent the elementary units as situation—action rules.

To illustrate, consider the relatively simple example of heavy
atom location. This subproblem 1s decomposed into two independent
parts: 1) inferring the presence of heavy atoms and 2) determining
their spatial locations. These two independent parts are represented
as two separate KSs, invoked under different conditions. In the

specific example of cytochrome c2, the presence of the heavy atoms is
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inferred from a KS containing two rules, one which infers the iron from

the presence of the heme cofactor in the composition list, and the
other which infers the presence of sulfur atoms from the amino acid

sequence. The two rules nay be stated as situation—action rules as
follows:

Rule 1

IF the composition list contains a cofactor of type heme,
THEN

1) create a superatom node of type hene in the model plane,

2) create an atom node of type iron in the model plane,

3) create membership links between the iron and the hene,

4) put "cofactor posited" on the event-list,

5) put "heavyatom posited" on the event-list.

Rule 2

IF the amino acid sequence 1s given,
THEN:

for each residue in the sequence,

1) IF the residue 1s cysteine,
THEN:

1.1) create an atom node of type S in the model plane and

name SGn, where n is the sequence no. of the residue,

1.2) put "heavyatom posited" on the event-list;
2) IF the residue 1s methionine,

THE I?

2.1) create an atom node of type 5 1n the model plane

and name SDn,

2.2) put "heavyatom posited" on the event-list.

Note that in both rules above several actions may be performed

for a given situation. Also, as shown in rule 2, an action may itself

be a situation—-action rule, and may be iterative. Not shown here, but

present 1n the LISP implementation of these rules 1s a position in the

rule for setting parameter values, to avoid repetitious calculation of

parameters appearing in several situation—action clauses. Also note

that at least one of the actions of each rule is to place a token on an

event—-list. In the actual implementation the syntax of the "action"
clause 1s represented as one function. An example follows:

syntax: (<inference type> (element being changed> <att-value pairs>)

example: (HEAVYATOM.POSITED (GEHATOYM) ((TYPE FE) (CELONGSTO tIEMEL))

In this example, the hypothesis element Al will be created. It will be

described as an iron atom belonging to a heme. Further, an event

HEAVYATOM.POSITED will be generated and queued on the event list. The

event—list 1s used by the interpreter, discussed 1n the next section,
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to determine what to do next, i.e., which set of knowledge sources will
be invoked after the current event has been processed.

7 Control Structure for the Map Interpretation System

7.1 Event—-driven versus goal-driven control

There are several choices of control structure faced by the
designer of a knowledge-based system. Basically the choices are among
points on a spectrum, at the extremes of which are goal-driven and
event-driven systems. In a goal-driven system (of which MYCIN is a

well-known example (Shortliffe, 1976)) the rule interpreter selects a

rule which concludes with the goal being sought. In our system, we
might 1magine having such a goal rule as follows:

IF

1) the topological description 1s complete, and

2) the coordinates of all atoms 1n the structure are assigned,
and

3) the structure satisfies stereochemical constraints, and

4) the structure 1s consistent with the electron density

function, and

5) the structure 1s consistent with auxiliary chemical data,
THEN:

signify that a model has been completed.

The interpreter would then attempt to verify each of the
premises in the goal rule. To do that, other rules would be selected

whose conclusions (the right-hand sides) verified the premises under
consideration and the interpreter would attempt to verify the premises
of these rules, and so on, working through the list of rules in this

recursive fashion. The program's focus of attention is determined by
the current rule whose premises are being evaluated. Many levels of
recursion may occur before a rule 1s reached which 1s relevant to the

current state of the system. A goal-driven monitor 1s attractive, in

that 1t pursues a logical chain of reasoning, in which the purpose of
each move 1s clearly revealed by the tree of subgoals.

An alternate way to focus attention 1s to employ an event=
driven control structure. In this scheme the current state of the

hypothesis space determines what to do next. The monitor continually
refers to a list of current events = the event-lists mentioned In the

rules discussed above - which 1s used to trigger those knowledge
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sources most likely to make further headway. As a knowledge source

makes a change in the current hypothesis, it also places a symbol on
the event-list to signify the type of change made. Thus as events are

drawn from the event-list for processing, new events are added, so that

under normal conditions the monitor always has a means for choosing its
next move.

The system we are currently developing operates in both goal-

| driven and event-driven modes, with an emphasis on the latter. The
normal iterative cycle of problem solving uses the event—-list to

trigger knowledge sources, which create or change hypothesis elements

and place new events on the event-lists. Thus the system’s behavior 1s

"opportunistic" in that it is guided ©primarily by what was most
recently discovered, rather than by a necessity to satisfy sub—goals.

| The choice,of an event-driven control structure as the primary mode of

operation 1s based partly on efficiency 1n selecting appropriate

knowledge sources and partly on conformity with the structure modeling

process normally employed by protein crystallographers. Some parts of

the model building process, however, are handled more appropriately

within a goal-driven framework. For example, having identified a side

chain within a particular region of the electron density map, 1t may be

desirable to defer the task of determining the locations of the

constituent atoms in that side chain until other, neighboring side
chains have also been located. The system then sets up a subgoal (find

the atomic positions of superatom SAl7) and places it on a list of

jobs. _ Whether to process this subgoal or not 1s determined by the

strategy rules which take into consideration the 1mpact of pursuing

this subgoal on the overall solution and the likely success of such a
| move.

7.2 Knowledge—deployment rules, event rules and strategy
rules

The formal and 1nformal procedures which comprise our knowledge

sources are expressed as rules, as discussed above. These rules are

collected into sets of rules, each set being appropriate to use on a

particular class of events. The events generally reflect the level on

which the inference 1s being made, which 1n turn reflects the level of

| the detail of the model. The correspondence between event classes and

rule sets 1s established by another set of rules, the event rules. The

event rules thus form a second layer of rules which direct the system's

choice of knowledge sources for a given event, reflecting the system's

knowledge of what it knows. (A similar set of rules, the job rules,

perform the same role when the system operates in goal-driven mode.)

Maintaining the rule-based structure affords a flexibility in choosing

different combinations of knowledge sources to work together, without

having to make any changes in the knowledge sources themselves. Thus,
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vet a higher level knowledge source, the strategy rules, can manipulate

the events 1n order to choose the appropriate combination of KSs suited

to a particular stage or state in the solution hypothesis. This was

illustrated in Example 1 when two events were merged into one event by
a strategy rule.

The part of the monitor which interprets and obeys the event

rules may be likened to a middle-level project manager, who knows which

specialists to call in as new, partial solutions to a particular
problem are discovered. Continuing the analogy, the middle-level

manager occasionally gets stuck and needs help from a higher level of

management. As mentioned earler, some high-level decision, such as
merging two Or more events to produce a new event that can lead to

further progress, or shifting from event-driven to goal-driven mode, is

required. This level of decision making 1s embodied 1n a set of

strategy rules, which are used for directing the top level flow of

control. We thus have a completely rule-based control structure,

employing three distinct levels of rules (or knowledge) : the

specialist, commonly called the knowledge sources, the event processing
rules (or Job processing rules), representing knowledge about the
capabilities of the specialist, and the strategy rules which know when

to use all available knowledge to solve the problem. Although this

i pyramidal structure of rules and meta—-rules could continue
indefinitely, the flexibility of knowledge deployment offered by our
three-tiered system would appear to be sufficient for this problem

solving system. Similar ideas 1n a simpler context have been explored
by Davis (1976) for the MYCIN system.

8 Summary

In this report we have attempted to describe, in all its

complexity, the problem of determining the structure of proteins.
Conventional methods for solving this problem demonstrate that many
kinds of formal and heuristic knowledge cooperate 1n building the
structural hypothesis, piece by piece. A characteristic feature of the

process 1s that a contribution by one KS often enables other KSs to

build further. We have also described a knowledge-based system, now
under development, which we feel 1s suited to the activities involved

in this opportunistic way of solving problems.
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10 Appendix. A Glossary of Terms Used 1n Protein Crystallography

, PROT EIN

A linear chain of amino acids. Of the several classes of proteins,
the most interesting are the enzymes, which have a generally globular

shape . Proteins are often described as a polypeptide chain plus amino

acid residues, or side chains, attached at each link in the chain.

POLYPEPTIDE

A repeating sequence of atons,

-=CA-- (C=0 )==NH~==CA=- (C=0 )==NH--CA=-- (C=0 ) ——NHE——

where CA is the alpha carbon to which the amino acid residue is
attached.

AMIUO ACID, AMINO ACID RESIDUE

An amino acid has the following topological structure:

R

|

NH2-- CA ——(C=0)-0OH

|

H

The alpha carbon (CA) 1s surrounded by an amino group, a carboxylic
acid group, a hydrogen atom, and a side chain (R) which characterizes

the particular amino acid. By removing a molecule of water (H on one
side, OH on the other) the remaining amino acid residue can be linked

to other amino acid residues in a polypeptide chain (g.v.). There

are twenty common amino acid residues found in proteins. They are
referred to by either their full names, their 3—letter names, or

their 1l-letter names, as foll VS:
1. ALANINE ALA A

2. ARGININE ARN R

3. ASPARAGINE AS N |

4, ASPARTIC ACID ASP D

5. CYSTEINE CYS C

0. GLUTAMIC ACID GLU L

7. GLUTAMINE GLH Q
8. GLYCINE GLY G

9. HISTIDINE HIS H

10. ISOLEUCIME ILE I

11. LEUCINE LEU L

12. LYSINE LYS K
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13. METHIONINE MET M

v 14. PHENYLALANINE PHC F

15. PROLIHNE PRO P

16. SERINE SER S

17. THREO NINE THR T

18. TRYPTOPHAN TRP W

19. TYROSINE TYR Y

20. VALINE VAL V

The PRIMARY STRUCTURE of a protein is a description of the amino acid

sequence.

The SECONDARY STRUCTURE of a protein 1s a description of the

structure in terms of common substructures, such as alpha helices and

pleated (or beta) sheets.

The TERTIARY STRUCTURE 1s a complete specification of the positions
of all atoms 1n the molecule.

ALPHA HELIX

A special configuration of the polypeptide chain, similar to the

“ helical construction of DNA and RNA. There are approximately 3.6
alpha carbons per complete turn of the helix. The helix is held in

place by hydrogen bonds between the backbone nitrogen and the

- carbonyl oxygen four links further down the chain. The protein
myoglobin has a high helix content.

PLEATED SHEET or BETA SHEET

The polypeptide chain can often make a U-turn and run back alongside

itself, locking the two chains together by hydrogen bonding. Pleated

sheets can be either parallel or anti-parallel. Silk 1s an example of

a protein which 1s almost entirely in the pleated sheet
configuration. The globular protein concanavalin A (a toxic protein
from jack beans) has a high beta sheet content.

CO-FACTOR \

A co—factor 1s an integral part of the protein, although it 1s not

part of the sequence of amino acids. The heme group in the globin
and cytochrome families 1s an example of a co—-factor. Co-factors are

held in place by hydrogen bonds or metal coordination bonds to the

amino acids 1n the polymeric sequence.

HYDROGEIJ BOND

- A hydrogen link between two other atoms,

il.e., X""H...Y where X,Y = O,N
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COORDINATION BOND

A bond of the sort metal-—-X where X = 0,N and metal = le,Cu,etce.

DI-SULFIDE BOIJD

VAN DER WAAL’S RADIUS

The effective radius of an atom, determining the distance of closest

approach of two non-bonded atoms.

AMIDE PLANE

Between every pair of alpha carbons 1n the polypeptide chain are two

groups, —-NH- and —-(C=0)-. The atoms of these two groups, plus the two

alpha carbons, all lie in a plane, called the amide plane.

11 CA

\ /
N-C=0

/
CA

Amide Plane

DIHEDRAL ANGLES

Angles between planes containing atoms. A pair of dihedral angles

which specify rotations about the CA--N and C(C--CA bonds determines

the orientation of one amide plane with respect to an adjoining amide

plane. The configuration of the protein backbone 1s thus completely

specified by a list of dihedral angle pairs, one pair for each set of

adjacent amide planes, assuming a fixed geometry for the amide

planes.

UNIT CELL \

The basic repeating parallelepiped in a crystalline structure. The

crystal can be "generated" by translating the unit cell along each of

its three principal axes.

SYMMETRY ELEMENT

A geometrical entity, such as a point, a line, or a plane, with

respect to which a particular symmetry operation 1s performed.

31



a

Appendix. A Glossary of Terms Used in Protein Crystallography

SYMMETRY OPERATION

The actual or hypothetical movement of a body, by translation,

rotation (an n—-fold rotation 1s a rotation of 360/n degrees, where
n=2,3,4,0or 6), rotatory 1nversion (rotation plus inversion of all

points through a center lying on the axis of rotation), screw

rotation (rotation plus translation along axis by 1/n of unit cell

dimension) or translation plus reflection (glide plane operation).

Successive applications of a symmetry operation must eventually
return the object to 1ts initial position (or, in a crystal, to one
related by translation). Since proteins are inherently left-handed,

symmetry operations involving reflections or inversion are

prohibited.

POINT GROUP

A group of symmetry operations, all of which leave unmoved one point

within the object to which they apply. The kinds of symmetry
elements that may be present include simple rotation and

rotatory —inversion axes; the latter include the center of symmetry
and the mirror plane. Since one point remains invariant, all rotation

axes must go through this point and all mirror planes must contain
it. A point group 1s used to describe isolated objects such as

single molecules.

¢ SPACE GROUP

A group or array of operations consistent with an infinitely
extended, regularly repeating pattern. There are just 230

three—-dimensional space groups, which can be obtained by the addition

of translation components to the 32 point groups appropriate for

structures arranged on lattices. The additional symmetry elements

present 1n space Jgroups include simple translations, screw axes, and

glide planes.

TRIAL STRUCTURE

A possible structure for a crystal, which is tested by a comparison
of calculated and observed structure factors and by the results of an

attempted refinement of the structure.

FOURIER DENSITY MAP

The electron density function for a crystal sampled at a set of

three-dimensional grid points. This map is calculated as a
three-dimensional Fourier series using the structure factors as
coefficients.
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STRUCTURE FACTOR (F)

1 The magnitude of the structure factor, |F|, is the ratio of the
amplitude of the radiation scattered in a particular direction by the

j contents of one unit cell to that scattered by a single electron
under the same conditions. The structure factor has both a magnitude

1 (amplitude) and a phase; from the 1ntensity we can derive directly
the amplitude but not the phase. Structure factors represent values,

§ at the reciprocal lattice points h, k, 1, of the Fourier transform
of the electron distribution in one unit cell. The structure factor

: depends on:

3 1. the nature of the scattering material
} 2. the arrangement of the scattering material (including
] thermal motion)
| 3. the direction of scattering.

| The experimentally measured ("observed") structure factor amplitudes
are designated by |Fo|; those calculated for a model of the structure

are designated |TFc]|.

| INTENSITY (I)

The calculated or experimentally measured quantity related to the
structure factor F:

2
I = |F| * geometrical correction factor

AMPLITUDE

The modulus of the structure factor, i.e. |F]|.

PHASE

; The quantity phi in the identity F = |F|*exp(phi)

THE PHASE PROBLEM

Given all the experimentally measured values of |F|, find the F's so
that the Fourier density nap can be calculated.

: I50i{ORPHOUS REPLACEMENT TECHNIQUE

] An experimentally based procedure for solving the phase problem by
using several protein crystals containing different heavy atoms.
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