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ABSTRACT

The most well-known and widely-used algorithm for computing

the Singular Value Decomposition (SVD) of an m x n rectangular

matrix A nowadays 1s the Golub—-Reinsch algorithm [11]. In this

paper, 1t 1s shown that by (1) first triliangularizing the matrix

A by Householder transformations before bidiagonalizing it,

and (2) accumulating some left transformations on an n X n array

instead of on an m xXx n array, the resulting algorithm is often more

efficient than the Golub-Reinsch algorithm, especially for

matrices with considerably more rows than columns (m >> n),

such as 1n least squares applications. The two algorithms

are compared 1n terms of operation counts, and computational

experiments that have been carried out verify the

theoretical comparisons. The modified algorithm 1s more

efficient even when m 1s only slightly greater than n, and in

some cases can achieve as much as 50% savings when m >> n. If

accumulation of left transformations 1s desired, then n 2 extra

storage locations are required (relatively small if m >> n),

but otherwise no extra storage 1s required. The modified

algorithm uses only orthogonal transformations and 1s therefore

numerically stable. In the Appendix, we give the FORTRAN code of

a hybrid method which automatically selects the more effiecient

of the two algorithms to use depending upon the input values for m

oo and n.
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(0) ~~ INTRODUCTION

Let A be a real m x n matrix, with m >> n. It is well-known

[1,2] that the following decomposition of A always exists :

A —- u 2 vT (0.1)

where U 1s a m xXx n matrix and consists of n orthonormalized

eigenvectors associated with the n largest eigenvalues of

AAT, V 1s a n xXx n matrix and consists of the orthonormalized

eigenvectors of ATA, and 2 1s a diagonal matrix consisting of

the "singular values" of A, which are the non-negative square

roots of the eigenvalues of ATA.

Thus,

vTu = vTv = wvT = 1_

and 2 = diag Cy,  ). (0.2)

It 1s usually assumed for convenience that

0 p= Gy 0 p>=0.

The decomposition (0.1) 1s called the Singular Value

Decomposition (SVD) of A.

Remarks:

(1) If rank(d) =r, then U__= T = = G _=0.

(2) There 1s no loss of generality 1n assuming that m >= n,

for if m < n, then we can instead compute the SVD of AT,

If the SVD of AT 1s equal to up vl, then the SVD of A

is equal to vy ul,
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The SVD plays a very important role in linear algebra. It

has applications in such areas as least squares problems [1,2,3],

in computing the pseudo-inverse [2], in computing the Jordan

Canonical form [4)}, in solving integral equations [5], in digital

image processing [6], and in optimization [7]. Many of the

applications often involve large matrices. It 1s therefore

important that the computational procedures for obtaining the SVD

be as efficient as possible.

It is perhaps difficult to find an algorithm that has

optimal efficiency for all matrices, SO 1t would be desirable to

know for what kind of matrices a given algorithm 1s best

suited. It 1s 1n this spirit that we were first motivated

to look for improvements of the Golub-Reinsch algorithm when the

mat-rix A has considerably more rows than columns, 1.e. m >> n.

It turns out that such an improvement 1s 1ndeed possible, with only

slight modifications to the Golub—-Reinsch algorithm, even when

m 1s only slightly greater than n, and can sometimes achieve as

much as 50% savings 1n execution time when m >> n.

In section (1) we will briefly describe the Golub—-Reinsch

algorithm. We will then present the modified algorithm in

section (2), with some computational details deferred to section

(3). Operation counts for the two algorithms will be given

in section (4) and some computational results in section (5).

We wili make some conclusions 1n section (6). In the Appendix,

5
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we will give the FORTRAN implementation of a hybrid method

which automatically selects the more efficient of the two

algorithms to use depending upon the input values for m and n.
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(1) _THE GOLYB-REINSCH _ALGORITHM _(GR=SVD)

We will use the same notation as in [1].

This algorithm consists of two phases. In the first phase

one constructs two finite sequences of Householder transformations

p(k) (k=1,2, . . . on)

and q (k) (k=1,2, . . ..n-2)

such that

pd

Te 0
Oo “i

O (m—m)x n

an upper bidiagonal matrix. Specifically, p (1) zeros out the

subdiagonal elements in column 1 and od) zeros out the appropiate

elements in row J.

The singular values of 7 (0) are the same as those of A.

Thus,

if J = GLHTY is the SVD of J,

then A = P cp HT QT

so that U =PG, V =QH (1.2)

with p-p)p(mM oq = q(D), q(0=2),



ill

The second phase is to iteratively diagonalize 3 (0) by the

QR method so that

100) 5 (1) 7

here +) Lo gD jp) 13
where s (1) and r{1) are products of Givens transformations and

are therefore orthogonal.

The matrices r (1) are chosen so that the sequence

Mil) 3 (501) converges to a diagonal matrix while the matrices

s (1) are chosen so that all J(1) are of bidiagonal form.

The products of the r (1) Cs and the s (1) " s are exactly the matrices

HI and cT respectively in Egn (1.2). For more details, see [1].

It has been reported in [1] that the average number of

iterations on J(1) in (1.3) is usually less than 2n. In other

words, 3(2n) in Egn (1.3) 1s usually a good approximation to a

diagonal matrix.

We will briefly describe how the computation 1s usually

implemented. Assume for simplicity, that we can destroy

A and return U 1n the storage for A. In the first phase, the p (1)

are stored 1n the lower part of A, and the Q (1) are stored in the upper

triangular part of A. After the bidiagonalization, the (1) __

accumulated in the storage provided for V, the two diagonals

of (0) are copied to two other linear arrays, and the P (1) are
accumulated in A.



In the second phase, for each 1,

s (1) is applied to P from the right and

(17 T
T is applied to Q° from the left

in order to accumulate the transformations.
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(2) THE MODIFIED ALGORITHM (MOD—-SVD)

Our original motivation for this algorithm 1s to find

an 1mprovement of GR-SVD when m >> n. In that case, two

improvements are possible:

(1) In Eqn (1.1), each of the transformations Pp (1) and qi)

has to be applied to a submatrix of size (m=i+l) x (n-i+l).

Nn

N=t+\
mm

m

7 m-—¢+ |

Fig. 2.1 pli) and q (1) affects the shaded portion of the matrix

Now, since most entries of this submatrix are ultimately going to be

zeros, 1t 1s intuitive that 1f it can somehow be arranged that the

(1) does not have to be applied to the subdiagonal part of

this submatrix, then we will be saving a great amount of work

when m >> n.
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. This can 1ndeed be done by first transforming A 1nto

upper triangular form by Householder transformations on the

left.

0

where R 1s n x n upper triangular and L 1s orthogonal,

and then proceed to bidiagonalize R. The Important difference

is that this time we will be working with a much smaller matrix R

than A (if n 2 << mn), and so 1t 1s conceivable that

the work required to bidiagonalize R 1s much smaller than

that originally done by the right transformations when m >> n.

The question still remains as to how to bidiagonalize R.

An obvious way 1s to treat R as an input matrix to GR-SVD,

using alternating left and right Householder transformations.

In fact, 1t can be easily verified that if the SVD of R 1s

equal to X72 YT, then the SVD of A 1s given by

A = Hx] (2.1)oO

We can identify U with [4] and V with Y. Notice that 1n orderOo

to obtain U, we have to form the extra product [4] If U 1s notneeded (e.g. in least squares), then we do not hive to accumulate
any left transformations and in that case, for m >> n, 1t seems

likely that we will make a substantial saving.



It 1s also possible to take advantage of the structure

of R to bidiagonalize it. This will be discussed in section (3).

(11) The second improvement over GR-SVD that can be made

is the following. In GR-SVD, each of the sg (1) is applied to

the m x n matrix P from the right to accumulate U. If

m >> n, then this accumulation involves a large amount of work

because a single Givens transformation affects two columns of P

(of length m) and each s (1) is the product of on the average

n/2 Givens transformations. Therefore, in such cases, it would

seem more efficient to first accumulate all s (1) Onan x n

array Z and later form the matrix product PZ after

31) has converged toy .

In essence, improvement (i) works best when U is not needed,

improvement (11) works best when U 1s needed and both work

best when m >> n.

We now present the modified algorithm:

MOD-5VD:

(1) LT 4 -> IR where R 1s n xXx n upper triangular,©

T

(2) Find the SVD of R by GR-SVD, R = X2YT ,

(3) Form A = LIX Syl, the SVD of A.
o

10
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The idea of transforming A to upper triangular

form when m >> n and then calculating the SVD of R 1s mentioned

| in Lawson & Hanson [3,pp.119,122] in the context of

least squares problems where U 1s not explicitly required.

In the next section we will discuss some computational

details of this modified algorithm, and in section (4) we

will compare the operation counts of the two algorithms.

11
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(3) SOME _ COMPUTATIONAL _ DETAILS

] (i) It should be obvious that when U 1s not needed then

MOD-SVD does not require any extra storage. When U 1s needed, we can

store LT in the lower part of A, copy R into another n x n array W

and ask GR-SVD to return X 1n W. Therefore we need at most n

extra storage locations which 1s relatively small when wm >> n.

(11) The next question 1s how to form Xi without using
0

extra storage. This can be done by noting that

LIX] = L]I|X

o 0

so we can first accumulate L 1] in the space provided for0

U and then do a matrix multiplication by X.

In the experiments that we have carried out, we actually

accumulate the Householder transformations L on X .

| oo | 1%;
We do not recommend doing this 1n practice because

it requires mn 1nstead of n extra storage locations. But

one can show that both methods take about the same

amount of work and so it will not affect the comparisons.

12
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(111i) The question arises whether 1t 1s possible to bidiagonalize

| R in a way that takes advantage of the zeros that are

| already in R. One way 1s to use Givens transformations to

| zero out the elements at the upper right hand corner of R, one

| column or one row at a time. Pictorially, (for n-5) to zero out the

| (1,5) element, we do two Givens transformations as follows:

| lst rotation introduces Ist rotation to zero
nonzero element here } out the (1,5) element

—

2nd rotation to zero out the (2,1]
element introduced by the 1st rotation

It turns out however, by simple counting, that this

method takes about the same operations (4nd /3 multiplications)

as the previous method to bidiagonalize R, provided that we do

not have to accumulate transformations. If we do need to accumulate

either the left or the right transformations, then this

method will require more work (4n3 versus 4n3/3 mult.)

mainly because 1t requires two rotations to zero out each

element and these rotations have to be accumulated.

So 1t seems that taking advantage of the zero structure of R

in this fashion actually makes the method less efficient.

15
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We have to note, however, that Givens transformations involve

fewer additions and array accesses than Householder

transformations per multiplication (see section 4.1). Therefore

this method tends to be more competitive on modern computers

where the time taken for floating point additions and

multi—-dimensional array 1ndexings are not negligible compared to

that for multiplications.

There may be other ways to bidiagonalize R

using orthogonal transformations, but we shall not

pursue this subject further.

1h
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(4) OPERATION _COUNTS,

In section (2), we 1ndicated that MOD-SVD should be

more efficient than CR-SVD when m >> n. In this section,

we study the relative efficiency between

CR-SVD and MOD-SVD as a function of m and n. We

do this by computing the asymptotic operation counts for

each algorithm.

In the operation counts given below, we only keep

the highest order terms in m and n, and so the results are

correct for relatively 1arge m and n.

CR—-SVD:

(1) _Bidiagonalization (using Householder transformations)

go =p) piggy |, q(n=2) 2(mn%~n>/3) mult.

accumulate P = p (1) _ p(n) mn ’~-n3/3 mult.

accumulate Q = ol) q(n=2) 2n° mult.

(2) Diagonalization (using Givens transformations)

accumulate gs (1) on P Cmn? (C=4) mult.

(1) 3 xl ]accumulate T on Q Cn (C ) mult.

MOD-SVD:

(1) Triangularization (using Householder transformations)

[0]

(2) CR-SVD of R, R = xy vy! depends on whether
accumulations are needed.

(3) Form LX (using Householder transf.,) mn®=-n mult.
o

15
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Some comments are 1n order:

(0) The entries Cmn 2 and cn with C-4 in the diagonalization

phase of CR-SVD are obtained by assuming that the iterative

phase of the SVD takes on the average two complete QR iterations

per singular value [1], [3,pl22]). We have checked this

experimentally and found it to be quite accurate.

It is assumed that slow Givens 1s used throughout the calculation.

If fast Givens [8] had been used, then the entries would become

approximately 2mn 4 and on 3 instead (viz C-2).

(1) For the Householder transformations, each multiplication also

invokes 1 addition and approximately 2 array addressings.

- For the Givens transformations, each multiplication invokes

1/2 an addition and 1 array addressing. On many large

computers today, a floating point multiplication 1s not much

slower than a floating point addition. Also, array

indexing 1s usually quite expensive. In such cases, a

Householder multiplication actually involves more work than

a Gilvens multiplication because of the extra additions and

array 1ndexings. Therefore, the operation counts given for

the diagonalization phase of GR-SVD may be misleading

because 1t may actually involve relatively less work. The

total effect, however, can be accounted for by using a

smaller value for C. For example, 1f 1 Givens

"multiplication" takes half the work needed by a Householder

"multiplication", then the effect on the

relative efficiency can be accounted for by

16



setting C-2 instead of C-4. On older or non-scientific

machines where multiplications take much more time than

additions and array addressings, the operation count based

on multiplications alone 1s usually a good measure of

relative efficiency.

Co (1)! (1) (1)
(2) The application of S and T on J 1s actually

of order on?) and 1s therefore not included in the

above counts.

(3) We have to distinguish between 4 cases 1n the comparison:

Case a: both U and V are required explicitly,

Case b: only U 1s required explicitly,

case c: only V 1s required explicitly,

Case d: only 3 1s required explicitly.

These four cases do arise 1n applications. We will

mention a few here:

Case a arises in the computation of pseudo—-inverses [1].

Case b 1s Case c¢ for AT,

Case cc arises 1in least squares applications [1,3} and

in the solution of homogeneous linear equations [1].

Case d arises 1n the estimation of the condition number

of a matrix and in the determination of the rank of

a matrix [10].

17
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The total operation count for each case 1s given in

Table 4.1 .

Table 4.1

Total operation counts of GR-SVD and MOD-SVD for each

of the cases a, Db, c¢, and Ad.

Case GR-SVD MOD-SVD

a (3+C)mn? + (C-1/3)*3 Imn? + (2C+4/3)n3

b (3+C)mn? - n3 mn? + (C+2/3)n3

| c 2 mn? + cn” mm + (C+5/3)n>

d 2mn? 2n3/3 mn? + n°

Using Table 4.1 , we can compute the ratio of the

operation counts of MOD-SVD to that of GR-~SVD for each of

the four cases. This 1s given 1n Table 4.2 where the

ratio is expressed as a function of r = m/n.

18
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Table 4.2

Ratio of operation count of MOD~SVD to that of GR=SVD,

r = m/n

Case Ratio Cross~over point

a [3r+(2C+4/3))1/[(3+4C)r+(C=1/3)] (C+5/3)/cC

b [3r+(C+2/3)}/[(3+C)r~1] (C+5/3)/cC

c [r+(C+5/3))/[2r+C] 5/3

d  [r+1)1/[2r~2/3] 5/3

These ratios are plotted in Fig. 4.1 to Fig. 4.4 for C=2,3,4.

*

The cross-over point r 1s the wvalue of r which makes the

ratio equal to 1. If r > r*, then MOD-SVD

1s more efficient than CR-SVD.

From Figures 4.1 —- 4.4, we see that, in all 4 cases a,b,c

and d, MOD-SVD becomes more efficient than CR-SVD when rr

starts to get bigger than 2 approximately, and the savings

can be as much as 50% when r 1s about 10. On the other

hand, when r is about 1, CR-SVD is more efficient. This

agrees with our earilier conjectures. However, the important

19
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thing is that all the curves decrease quite fast -asr becomes

large. If we assume that 1t 1s equally likely to encounter

matrices with any wvalue of r >= 1 (this 1s not an unreasonable

assumption for designers of general mathematical software, for

example), then MOD-SVD 1s obviously preferable. In

any case, Fig. 4.1 = 4.4 give 1ndications as to when

one of the methods 1s more efficient, at least when m and

n are large enough so that our operation counts apply.

In the context of least squares applications, we can also

compare the operation counts of GR-SVD and MOD-SVD to that of the

orthogonal triangularization methods [9] (OTLS) often used for

such problems. This comparison 1s shown 1n Table 4.4 .

Table 4.4

Least squares using orthogonal triangularization versus

using SVD

OTLS = orthogonal triangularization method

for least squares problems.

OTLS : GR-SVD = [r-1/3]/7I[2r+C]

OTLS : MOD-SVD = [r=1/3] / [r+C+5/3)

These ratios are plotted in Fig. 4.5 and Fig. 4.6 for C=2,3,4 .

2h
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Fig. 4.5
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Fig. 4.6
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One sees from these figures that for m nearly equal to n,

the two SVD algorithms require much more work than OTLS.

However, when r is bigger than about 3, MOD-SVD requires only

about 3 times more work than OTLS. It may therefore become

economically feasible to solve the least squares problems at hand

by MOD-SVD instead of OTLS. The reward 1s that

the SVD returns much more useful information about the problem

than OTLS [3].

It is easy to see that as r becomes arbitrarily large, MOD-SVD

1s as efficient as OTLS since the bulk of the work 1s in the

triangufarization of the data matrix A. However, GR-SVD can be

at most half as efficient as OTLS.

27
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(5) COMPUTATIONAL RESULTS

The conclusions in the last section hold only if m and

n are both large. In this section, some computational experiments

are carried out to see 1f the conclusions are still valid for

matrices with realistic sizes.

We computed the SVD of some randomly generated matrices using

both GR-SVD and MOD-SVD. The version of GR-SVD that we used is a

modified ALGOL W translation of the procedure that appeared in [1].

MOD-SVD 1s realized by writing a procedure to triangularize the

input matrix by Householder transformations and then using the

same above-mentioned GR-SVD procedure for computing the SVD of R.

All tests were run on the IBM 370/168's at the Stanford

Linear Accelerator Center (SLAC). Long precision was used throughout the

calculation. The mantissa of a floating point number 1s represented

by 56 bits (approximately 16 decimal digits).

For each of the 4 cases, we fixed some values for n

and computed the SVD of a sequence of randomly generated matrices

with different values of r. The execution times taken by GR-SVD

and MOD-SVD were then compared, together with the accuracies of the

computed answers. Since we are working 1n a multi-programming

environment, the execution times we measured cannot be taken as the

28
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actual computing time taken. Moreover, the influence of the

| compiler on the relative efficiency of the two algorithms may be the

deciding factor [11]. However, keeping these points in mind, we can

still expect aqualitative agreement with the analysis based on

operation counts.

On the IBM 370/168’s at SLAC, a floating point multiplication

takes only about 1.5 times the work taken for a floating point

addition. Also, array indexing 1n ALGOL W 1s very expensive due to

subscript checking (it actually can be more expensive than

floating point multiplications). Therefore, as noted in section 4.1,

we should use C approximately equal to 2 instead of 4 in Table 4.2

and Table 4.4, for the purpose of comparing the relative efficiency

of the two algorithms based on the computational results.

The results of the computations are plotted in Fig. 5.1 =

Fig. 5.6 . In general, they agree very well qualitatively with

the asymptotic results we obtained by operation counts (with

C-2). We observe that the larger n 1s the better the agreement,

as 1t should be. However, even when n 1s small, the theoretical

results based on asymptotic operation counts still describe very

well the qualitative behavior of the computational results in

many cases. The computational results also show that large

savings 1n work are indeed realizable for reasonably-sized

matrices (For example, see Fig. 5.3 and Fig. 5.4).
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We also checked the accuracies of the computed results,

The singular values returned by both procedures GR-SVD and

MOD-SVD agree to within a few units of the machine precision 1in

almost all cases that we have tested. The matrices U and V also

agree to the same precision but the signs of the corresponding

columns may be reversed. However, the SVD 1s only unique to

within such a sign change, so this 1s acceptable [10].

We also computed the singular values of the following

30 x 30 matrix:

[| = .-.- =I

| =
 } » ’

O >

This matrix 1s very 1ll-conditioned (with respect to

computing 1ts inverse) and 1s very close to being a matrix of

rank 29 even though the determinant equals 1 for all wvalues of n.

The computed singular values from both GR-SVD and MOD-SVD agree

exactly with those given in [1] to 15 significant digits (which

are all the digit8 printed in ALGOL TW).

|.
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(6) CONCLUSIONS.

Firstly, the theoretical results we obtained do seem to predict

the actual computational efficiencies quite well, and they can

therefore be used to 1ndicate which algorithm to choose for a

given matrix.

The MOD-SVD algorithm clearly work8 better than GR-SVD for

matrices that have many more rows than columns. The price

that MOD-,SVD ha8 to pay whenm 1s nearly equal to n 1s not that big

(usually less than 30%). We have also seen that the cost of

solving a least squares problem by MOD-SVD can often be less than twice

that of the usual orthogonal triangularization algorithms.

It may therefore become economically feasible to solve many

least squares problems by the SVD algorithms.

Some improvements can probably be made on the bidiagonalization

of the upper triangular matrix R 1n MOD-SVD by taking advantage

of the the special structure of R. We also want to note again

that MOD-SVD requires n 2 extra storage locations 1f the left

transformations have to be accumulated. This may be a

disadvantage when storage 1s at a premium.

We have also seen that the usual practice of counting only

multiplications 1n operation counts for numerical algorithms 1s

no longer viable for many modern computers. Other properties,

such as the amount of array accesses involved, may influence the

efficiencies of algorithms decisively.
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To be sure, there may be other ways to compute the SVD that

will work better 1n some cases but not 1n others. It 1s perhaps

impossible to find an “optimal” algorithm that works best for all

matrices. Nevertheless, we hope this paper has shown that it may

be worthwhile to look for improvements 1n the organizations of

existing algorithms.
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| Appendix : Fortran Code of a Hybrid Algorithm

| Based on the results of earlier sections, we can 1mplement

| a hybrid method for computing the SVD of a rectangular matrix A

| which automatically chooses to use the more efficient algorithm

| between GR-SVD and MOD-SVD. For each of the four Cases a,b,c and

| d, if the input matrix A has a value of r (= m/n) which is less

| than the cross-over point e* for that case, then we use

GR-SVD, otherwise we use MOD-SVD. The cross-over points depend

| on the wvalue of C used. As noted before, the value of C to be

| used depends on the relative efficiencies of floating point

| multiplications, floating point additions and array indexings on

| the particular machine concerned. However, C can be determined

once for all for any particular machine and compiler combination. For

example, 1f floating point multiplications take much more time than

floating point additions and array 1indexing8 on the machine in

question, then we should use C approximately equal to 4.

In this Appendix, we give the codes of a Fortran subroutine

called HYBSVD which implements the above-mentioned hybrid algorithm.

HYBSVD will need to call a standard Golub-Reinsch SVD subroutine

during part of its computation and so we have included such a

routine, called GRSVD, in the listing of the codes of HYBSVD.
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The routine GRSVD 1s actually a slightly modified version of the

subroutine SVD in the EISPACK [12] package. The main modification

that we have made 1s to eliminate the requirement 1n subroutine

SVD that the row dimension of V declared in the calling program

be equal to that of A. This minimizes the storage requirements

of GRSVD at the cost of one more argument in the argument list.

There 1s one additional feature implemented in HYBSVD (and

also in GRSVD). In least squares applications, where we are

looking for the minimal length least squares solution to the

overdetermined linear system Ax = Db, the left transformations

yT have to be accumulated on the right-hand side vectors Db

(there may be more than one Db). This can be done by putting

the vectors b in the matrix argument B when calling HYBSVD and

—setting IRHS to the number of b's.

The calling sequences and usages of HYBSVD and GRSVD are

explained 1n the comments 1n the beginning of the listings of

the subroutines.
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C v%%%222222"? FIRSTCARD OFHYBSVD: 22232: 2:

C

SURRDUTINE +FYBEVDINAUNV ¢gNZs Mg Ne Ag Wa MATU Us MATVeV,Z:,B,1IRHS, IERR,
1 RV1)

INTEGER NAUANVI ANZ Me Ne IRHSOs IZRNR« IPs Iv Je Ke IM1, IBACK
DOURLE PRECISION A(NAU JN) sWIN) JUINAU GN) J VINV NYS Z(NZ +N),

R B(NAU, IRHS)Y,RV1(N)

DCUBLE PRECISION XOVRPTesCosRsGeSCALE,DSIGN,DABSsD SQRT Fs Se H
REAL FLOAT

LOGICAL MATUSMATY

C

C THIS SUBROUTINE I SA MODIFICATIONOF THE GOLUB~-REINSCHPROCZCEDURE

C T
C (IYFCRCOMFUTINC THE SINGULAQ VALUE OECOMPOSITION A = UWyV OF A
C REAL MBYN RECTANGULARMATRIX. THE ALGORITHM IMPLEMENTED IN THIS

C ROUTINE HASA HYBRIDONATURE. WHENMIS APPROXIMATELY EQUAL TO No

Cc THEGOLUBRFEINSCFALGORITHMI SUSEDBUT WHENMISGREATER THAN
Cc APPROXIMATELY 2%2N,s, A MODIFIED VERSION OF THE GOLUB-RRE INSCH
of ALGORITHM S USED. THISMODIFIEO ALGORITHM FIRST TRANSFORMS A
C T

Cc INTOUPPEF TRIANGULARFODORMB YHOUSEHOLDERTRANSFORMAT IONS L
C AND THEN USCS THE GOLUB REINSCHALGORITHMT OFIND THES I N Gu L AR
C VALUE OECOMPOSITION OF THERESULTING UPPER TRIANGULAR MATRIXR.

C WHENU ISNCEDEDEXPLICITLY+ AN EXTRA ARRAYZ(OFSIZE AT LEAST
C N BYN) I S NEECELC, BUTDTHERWISEZ MAY COINCIDE WITHEITHER
C A DR V ANDN OE XTRASTORAGEI S REQUIRED. THIS HYBRID METHOD

SHFOULDBEMCREEFFICIENTTHAN THEGOULUBRE INSCHALGNDRITHM WHEN

C MITSM UCCHBIGGER TH A NN. FORDETAILS, SEE(2)e.
C

C HYRSVOCANALSQBFE USED TQCOMPUTETHFE MINIMAL LENGTH LEAST

C SQUARES SOLUTICNTO THECVERDETESMINMNEDLINFARS YS TEMAXX=Be
C

- NOTICE THAT THE SINGULARVALUEDFCOMPASITIONOF AMATRIX

ol I SUNIQUE ONLY UPTO THESIGN OF THE CORRESPONDING COLUMNS
C - OF U AND Ve.

4 THIS ROUTINFHASBEENC CHECKED BY THE PFORT VERIFIER(3)FOR
C ADHFRENCET O A LARGEs CARFFULLY OEFI NEDes PORTABLE SUBSET OF
C AMERICAN NATIONAL STANDARD FORTRANCALLEDPF(ORT,.
C

C REFFRENCES®

C

C (i1)GOLLUBsGeHe A N DREINECHCo(3:197C0) “SINGULARVALUE

C NDECCMPOSITICh A NDULEASTSQUARKES SOLUTIONS,
C NUMER. MATH. 14.403 &¢20, 1970.

C

C (2) CHAN,T «fe (S76) “ONCOMPUTING THE SINGULAR VALYE
- DECOMOPOSITICN," TOAPPEAR AS A STANFORD COMPUTER

C SCIENCE RFPORT.

C (Z)FYDER +B «Ge (1G784)"THEPFORTVERIFIER.” SOFTYARC
C PRACTICE ANC EXPERIENCE,VOL 49 3593771974.

C

C HYBSVD ASSUMESMGESN © | FMealTe NeTHEN COMPUTE THE

C T T T T

- SINGULAR VALUE CECOMPODSITIONOTF A eo IF A =UWV  THENA=VWU ,
Cc

C ON INPUT:

C
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C NAUMUSTBE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL

C ARRAYFARANETERSAZUANOBAS DECLARED IN THE CALLING PROGRAM
C CINMENS TC N.zic-6e~22 NOTE THAT NAU MUSTB8E AT LEAST
C AS LARGE AS M3
C

C NV MUSTERESET TO THE RO WDIMENSICNOF THE T¥O~-DIMZINSIONAL

Cc ARRAY PARAMETER V AS DECLARED IN THE CALLING PROGRAM
C ODIMENSICNSTATEMENT. NV MUSTRBE AT LEAST AS LARGE AS N:
C

C NZMUSTEE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL

C ARRAY PARAMETER Z AS DECLARED IN THE CALLING PROGRAM
C DIMEMNS ION STATEMENT. NOTE THAT NZ MUSTBE ATLEAST

C AS LARGE AS N: .
Cc

C MIS THENUMBEROF ROWS OF A (ANDU);
C

C N IS THE NUMBER OF COLUMNS OF A (ANDU)AMDTHE 2RDPEROF V:
C

Cc A CONTAINSTHE RECTANGULAR INPUT MATRIX TOBREDECOMPOSED:
C

C BCONTAINS THE IRHS RIGHT-HAND SIOESOF THEOQVERDETERMINED
C LINEAR SYSTEMAXX=8s | F I RHSeGT«0s
C THEN ONOQUTPLTs THESEEIRHSCOLUMNS | NB

C T

C WIlILLCONTAIN U BeTHUSy TO COMPUTE THE MINIMAL LENGTH LEAST
C +

C SQUARES SOLUTION, ONEMUSTCOMPUTE V x9 TIMES THE COLUMNS OF
C + +

C Bs WHERE W |] S ADIAGONAL MATRIX ,W (I)=01 FW(I)I S
C NEGLIGIRLE, CTHERWISEIS I/W (Il). IFFIRHS=0,.,8M A YCCUGINCIDE
C WITHA CR UANDWILLNOTB EREFERENCED

C

Cc IFHSITI STHENUIMBEROF RIGHT HAND-SIDESOF THEOVERDETERMINED
C SYSTEMAXX=Pe IRMSSHOULDBSESET TOZERKOIF ONLY THE SINGULAR

C VALUEDECOMPCSITIONOFAIS DESIRED;
C

C MATUSHOULDPRESET TOSTFUEeI F THE U MATRIX IN THE

C DECOMPOSITIONIS DESIP=De AND TOFALSE«¢ OTHERWISE;
C

Cc MATVSHO ULDBESET TO«TRUZeIFTHE VMATRIX INTHE
C DECOMPCSITICNI S DES IREDANDT O «FALSE OTHERWISE.
C

C WHEN HYBSVOISUSFDTOCOMPUTETHE MINIMAL LENGTH LEAST

C SQUARESCSOLUTIONTO ANOVERDETERMINEDSYSTEM, MATUSHOJULD
C RES ET T CeFALSEees AND MATV SHOULD RESET TO© T=!UE..

C

C ON OUTPUT:

C

2 4 ISUNALTERED (UNLESSOVERIWRITTENBYUNDNRV)S
C

Cc W CONTAINS THERN((NONNEGATIVE)S INGULARVALUES OF A (THE
C DI AGONAL ELEMENTS OF W) . THEY ARE UNORDERED . IF AN
C ERROR FXITI S MADEey THE SINGULAR VALUES SHOULD BE CORRECT

C FORINCICESIERR+1,IFRR+2se¢« m sNy

C

c U CONTAI NS THE MATRIX U(ORTHOGONAL COLUMNVECTORS)OF T HE

C DECOMFCSITICN I FMATUH A SBEENSETT Oe«TRUE. ITHZRWISE
z UISUSEDAI A TEMPORARY ARRAY. U MAY COINCIDE WITH A.

C IF AN CRROREXITISMADESsTHE COLUMNSOF U COREE SPONDING
C TO INDICESCF CORRECT SINGULAR VALUES SHOULO BR=CORRECT;
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Cc

C V CONTAINS THFEMATRIXY (ORTHOGONAL) OF THEDECOMPOSITIONIF
C MATVHASBEENSET TO «TRUE. OTHERWISEV IS NOT REFERENCED.

Cc V MAY ALSO COINCIDEWITHAITIFUIS NOT NEECED. IF AN ERROR
C EXIT ISMADE. THECCOLUMNS OFV CORRESPONDING TOINDICES OF

C CORRFCTS INCGULAR VALUES SHOULDBE CORGECT:
~

C 7 CONTAINSTFEMATRIXX IN THE SINGULAR VALUE DECOMPOSITION
C T

Cc O F R=XS5Y, IF THE MODIFIED ALCOFITHM IS USED. IF THE
C GOLUB-FEINSUGCHPROCEDUREISUSEDs THEN ITISNODTRFFERENCED.
C IF MATU HASBEENSET TO FALSE. ZM A YCCINCIDE
C WI TH AORV ANDISNOTEREFERENCED;

Cc

C iIERRIS SET TC

Cc ZERO F C R NORMAL RETURN,
z K IF THE K~-THSINGULAR VALUE HAS NOT BEEN

C DETFRMINED AFTER 30 ITERATIONS:

Cc co IF IRHS LT. 0

c - 3 IF NAU «UTeM

Cc 4 IF NV LT. N .
C 5 IF NZ LT. N

C

~ FV1IS ATEMFCRAPY STORAGE ARRAY.

C

Cc PROGRAMMED EY STTONYCHANsCOMPSCT « DEPT oo»
Cc STANFORDUNI V. CA 94305e
Cc LASTMQODIFIEC:1 2 SEPTEMBER.1 9 7 6 .
C

C a - . a— vs -— gE me wr. Twoo. ME Bmw SE Se MT BY ow FEY wma PRE 4 Sam HE Rr a Me GF Se GEE rv. we GL AE vm Ge. aT wee wie aw SE wgee Yaw dr -

IERPR=0

| F(IRHS .GE«C)G O T O 2

IEE R= 1

QETURN

2 I FI(MeGES NY GO TO 3

IEFRR= 2

RETURN

3 IF (NAUGE« M) GO TO 4
IERR=-3

RETURN

4 IF (NV GEN)GGC TO 5

1EFR=-4

FETURN

5 IF (NZGE «N) CO TO 6
IFRR= §

RETURN

6 COMTYY NUE

C

Cc SETVALLEFCRCe THE VALUEFQORC DEPENDS ON THE RELATIVE
C EFFICIENCYC F FLCATINGPOINTMULTIPLICATIONSFLOATING P OI NT

Cc ACDITIONS AND TUYCDIMENSIONALARRAYINDEXINGSON THE
C COMPUTER WHERC THIS SUBROUTINETIT ST OBER U N . C SHOULD

Cc USUALLYBE FETWFEN?2 A N Da, FORDETAILS ON CHCOSINGCsSEE
C (2). THE ALGORITHM IS NOTSENSITIVE TOTHE VALUE 0= C

C ACTUALLYUSEDA SIONGA SCI SBETWEENZ2AND 4.

C

Cc = 4.000

C

Cc DETFRM]I NE CRCSS~CVER POINT
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C

IFI(MATU cANDe MATVIX OV RPT =(C4+5,D0/3.D0)/C
| F(MATU ¢ARDe NOT oMATV) XOVRPT = (C+S.00/73.D0)/C
I F (oNOTeMATU. AND .MATV) XOVRPT = S.D00/73.D0

C

C DETERMINE WHETHER TO USE GOLUB-REINSCH OR THE MODIFIED

Cc ALGORITHM,
C

R = FLOAT(M)/FLCAT(N)
| F(R. GE. XCVFPT)YGO TO 8

C

C USE GOLUBREINSCEE PROCEDURE

N CALL GRSVD (NAU +NVoMoNs As We MATUSUsMATV,VsB,sIRHS IERRsRV1)
FETURN

C

C USE MODIFIED ALGCRITHM

C

8 DO !0 I=1,M
D C10J=1+N

10 UY oJ) =A(ToJ)

C

C TRI AMGULARI?EU BYHOUSEHDLDER TRANSFORMATIONS »USING
C W ANDRVI A STEVNVMFOPARY STORAGE
C

DO ?2C1I=1sN
G=C.0D0

S=0,.0D0
SCALE=N" .0DC0

C

C PERFORM SCALING OF COLUMNSTO AVOID UNNECSSAXY OVERFLOW
C O RUNDERFLOW
C

DOC3 0K=1I.M

30 SCALE= SCALE + DABS(U(K,I))
IF (SCALE EQCe Q0ODCYG O T 020
0 04 O0K=I,M

U(KsI) =U(K,I1)/SCALE
S =3 + UKTI) *%x2

4a CG CONTINUE
C

C THE VECTOR EOF THE HOUSEHOLDER TRANSFORMATION + E&YH
C WILLBESTORED INCOLUMNI OF U. THE TRANSFORMEDEELEMENT
C U(ILI)VYILLBES  TORED I NW(IANCTH ESCALARHIT N

C

F = U(I,1)
G = «“DSIGN(DSQRT(S),F)
H = FXG- S

U(TILl) =F - G
RV1U(I) = H

W(I) - SCALEZXG

C

I F(I «e&£Qe NY) GO TO 85

C

c APPLY TRANSFCRMATIGONS TO REMAINING COLUMNS OFA
C

IP = 1 4+ 1}

00 5 0J=YPisN
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S = C.0DC

DO EQ K=z=1,N

63 S =8 + U(Ke IN) XU(K LJ)
F = S/H

D0 7 OK=1I.M

U(KesJ) = U(KeJ) + FRU(K, I)
70 CONTINUE

SQ C ONT INUE

C

C APPLY TRANSFCRMATIONS TO COLUMNS OF BIF ITRHS GTO

C

RE I F{IFHS<EGC«0)Y)GO T O 20

D O 80J=141FRHS
S = 0000

DO GO K=],.WM

90 S = € + WIKL,IY%AB(KJ)
F = S/H

D O :00K=1,M

B{KsJ) = B(Kes J) ¢ FEU(K,LT)
» 03 CONTINUE

R20 CONTINUE
20 CONT| NUE

C

C CCPY RINTOZIF MATU =TRUE,.
~

Il F («.NOT.MATU)YG O TO 300
DO 110 I=1 oN

D 0110 J=1sN
F(J «CEe I) GO TO 112

Z(I.,J) = 0.900
GAOT O 1:0

2 I F (J «EQe I) GO TO 114

Z(1,Jd) = U(I,J)
G OTC110

La Z(I +1) = W(Il)
10 CONTINUE

C

C- ACCUMULATE HOUSEHOLDER TRANSFORMATIONSIN U

C

D O i201IBACK=1,N
I = N - IBACK+ |

G = W(1)

H = RV1(1)
IF (I EQeN) GO TO 130

C

D C *40 J=IP1+N
140 U(r ,.J) = 0.300

C

*30 | F(H .FQe Ce0ODO)YGO TO11S0

I F (I e6EQe NGO TO 160
C

D O70 J=1IP1eN

S = 0.CCC

DO “8 0 K=IP1M

1890 S = SS + U(KeI)*xU(KeJ)
F = S/H

D O J]70K=1,M

CIKL,J) = U(Ke J) + FXU(K, I)
70 CONTINUE
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C

*60 S = U((l.1Y/” H
DO '90 J=l eo =z

90 Ul 44d) = UJ, I)V%S
GO TO2CO0

IY D 021C J=1.M
210 UJI) = 0.CDO
20C UC(ILI) = UlTILId+ 1.000
© 20 CONTINUE

C

C COMPUTE SVD OFF (WHICH IS STORED INZ)

i} CALL GRSVDINZ +NVsNoNeZoWeMATU+Z+sMATV,V,BsIRHSIERR,RV1)
C

C T
C FORMUXXTO OBTAIN U(WHERER=XWY J). X IS RETURNED IN Z
C BY GRSVDe TFEMATRIX MULTIPLYI SDONEONEROW AT ATIME,
C USING RVIA S SCRATCH SPACE,

C

D O22C 1=1,W

PO 230 J=1,N

S = 0.000

P O 240 K=1 +N
240 S — 8S + U(TK)XRZ(KJ)

E30 RVI{J)-= S
DN2 5 0J=1sN

25G L{T,sJd) = RVIC(D)
220 CANT | NUE

RE TURN

C

C FOFMRIN U BY ZEROINGTHELOWERTRIANGULARPART OF R IN U
C

CC IF (N eEQell) GC TO 280
D 0Os601I=2.N

P O 27C J=1,1IM1

270 U(l,sJ) = 0.0D0

UII) = w(l)
260 CONTINUE

280 U(ilel) = wW(}!)

C

CALL GRSVDINAU NV ,MN,N,U, ¥ ysMATU,UsMATV,V,BsIRHSJIERR,RV1)
RETURN

C THE BODY OF SUPROUTINE GRSVDSHOULD BE INCLUDED WITH HYESVD
C

C ®, . BOLANDEEE ttAST CARD OF HYBSVD sissies
END
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C 8. ..0--0"::: FIRSTCARD OFGRSVD::22%2232-"

C TTL Ls

C

SUBROUTINE GRSVD(NAUNVM NgA Wi MATU, UUMATV,VeB:IRHS,IZRPRA,RV1)
C

INTEGER Todosl oMaNeTT 11 KKegKToLUoT +MNJNAUJNVL,ITS,IERR,IRHS

OOJBLE PRECISION A(NAUJN)I,WIN)ZU(NAUSNISVINV,N)BI(NAU,IR4AS),RV1(N)
DOUBLE PRECISION C oF sG oH S sXeY¥ eZ EPS SCALE MACHEP
DOUSLE PRECISION DSQRT,DMAX]1 +DABS,DSIGN
LOGICAL MATU  MATYV

C

C THIS SUBROUTINEIS A TRANSLATIONOF THEALGOLPROCEDURE SVD

C NUM. MATH. 18, 3403-420 (1970)Y BY GOLUB A N D REINSCHe.

C HAND3SQOKFORAUTDSCCMPas VO LIf-LINEARALGEBRA,134-151(1971).
C

C THIS SUBROUTINEDEZTERMINES THE SINGULAR VALUE DECOMPOSITION
C T

C A=UWYV OF AREALMABY NRECTANGULAR MATRIX. HOUSEHOLDER
C S3IDIAGONALIZATIONAYDA VARIANT OF THE OR ALGORITHM ARE USED.

C GREVD ASSUME SMGESN . I FM LTeN, THENCOMPUTE THE SI'JGULA?
C T T T T
C VALUEDECOMPOSITIONOF A . IF A =UWV o THEN A=VWU .
C

C GRSVDCANALSOREUSEDT OCOMPUTETHEWMINIMALLENGTH LEAST SQUARES
C SOLUTION TO THE JDQVERDETERMINEDLINEAR SYSTEM A%X=8B,
C

| C ON INPUT
C

C NAU MUSTBESET TOTFEROWNDIMENSION OF THE TWO-DIMENSIONAL

C ARRAY PARAMETERSAU AND 8 AS DECLAREDIN THECALLING PROGRAM

C DIMENSION ST ATEMENT. NOTETHAT NAUMUST BEATYLEAST

Cc. AS LARGE AS Mj
C

C NV MUSTBESET TOTFERCW DIMENSION OF THE TWO-DIMENSIONAL

C ARRAY PARAMETER V AS DECLAREDINTHE CALLING PROGRAM
C DIMENS ION STATEMENT. N VMUSTBEAT LEAST ASLARGE AS Nj
C

C MIS THENUMBERO FRCWSO FA (ANDU)S
C

C N IS THE NUMBERDF COLUMNS OF A (ANDU))AND THE ORDERGOFV;
C

C A COJTAINS THE RECTANGULARINPUT MATRIX TO BEDECOMPIOSED
C

C 8 CONTAINS THE IRHS RIGHT-HAND~-SIDES OFTHE OVERDETERMINED
C LINEARSY STE MAXX =Be | F I RHSGT eD,
C THEN ON JQUT2UT,2 THESEIRHS COLUMNS
C T

C WIL. CONTAINU Be¢THUSsTO COMPUTE THE MINI MAC LENGTH LEAST
C +

C SQUARES SOCUTI ON. ONEMUST COMPUTE Vw TIMES THE COLUMNS OF
C + 3

C : 8s WHERE W I S ADIAGCNAL MATRIX, W (I)=CI1F W(I)IS
C NEGLIGIBLZsy OTHERWISE IS 1/W(I)eIF IRHS=D0,B MAY COINCIDE
C WITH A OR U ANDWILLNOYBE REFERENCED:

C

C IPHS ITS THENUMBER O FRIGHT-HAND~-SIDESOF THE OVERDETERMINED

C SYSTEM A¥X=Be |IRHSSHOULDBESET TOZEROIFONLYTH4=ZS|I NGULA?

C VALUEDECOMPOSITIONO F AISDESIRED;
C
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Cc MATU SHOULD BE SET TC «TRUE«IFTHE UMATRIX IN THE
C DECOMPOSITION IS DESIREDJANDTID FALSE OTHERWISE:
C

C M ATV SHOULDBESET TO «TRUESGIFTHEYV MATRIXIN THE

Cc DECOMPOSITIONIS DESIREFDs AND TO oFALSEes OTHERWISE.
C

C O NOUTPUT?

Cc

C A TSUNALTER=Z=D (UNLESS OVERWRITTENBYUO RV)»
C

| C W CONTAINS THE N{NIN-NEGATIVE)SINGULAR VALUES OF A (THE
C ODIAGDNAFL EMENTS OF W)e THEY ARE UNORDERED, | F AN

Cc ERROR EXITI S ADEs THE SXNGULAR VALUES SHOU_DBECIORRECT
C F O RINDICESIERR#+1,2JERR+24500e0¢9Nj

C

C U CONTAINS THE MATRIX U (ORTHOGONAL COLUMN VECTORS1 OF TH E
C DECOMPOSITIONIF MATU HASSZENSET TO« TRUE, OTHERWISE

C U KS USED AS ATEMPORARY ARRAY. U MAY COINCIDE WITH A.

C IF AN ERRO?EXIT IS MADEs THE COLUMNS OF UCORRESFONDING
C T O IMDICES OF CORRECT SINGULAR VALUES SHOULDBECORRECT

C

C V CONTAINS THE MATRIX V (ORTHOGONAL)OF THEDECOMPOSITIONIF

Cc MATV HASBEENSET TO «TRUE OTHERWISE VISNOTREFERENCED
C V MAY ALSOCOINCIDEWITHA IF U IS NOT NEEDED. IF AN ERROR

C EXITIS MADE, THE COLUM’JS OF V CORRESPONDING TO INDICES OF

C CORRECT SINGULAR VALUES SHOULDBE CORRECT;
C

C IERR IS SET TO

Cc ZERO FOR NDRFAL RETURN,
C K IF THE K-TH SINGULAR VALUE HAS NOT BEEN

Cc DETERMINED AFTER 30 ITERATIONS
C - 1 IF IRHS «lL Tee. { o

C -3 | FNAU«aL Te M

Cc og IF NV «UL Te N
Cc

C RV1IS A TEMPORARY STORAGEA RR AY .

C

C

C THIS SUBROUTINE HAS BEEN CHECKED BY THE PFORT VERIFIER

C (RYDER ,BeGe “THE PFORT VERIFIER”, SOFTWARE -PRACTICE AND
C EXPERIENCE, VOLe.4A, 359-3774+ 1974)FOR ADHERENCE TO A LARGE,
C CAREFUL-Y DEFINED, PORTABLESUBSET OO" AMERICANNATIONAL. STANDARD
C FORTRAN CALLED PFORT.

C

C ORIGINAL. VERSIONOF THTS CODEI S SUBROUTINESVDIN RELEASE 2 OF

C ET SP ASK.

C MODIFIEDBY TONY CHAN. (COMPS CI. DEPT.STANFORDUNIV .,CAQ430S.

C L AS TMNODIFIED:2 SEPTEMBER. 1976.

C

C em mm mmm mmm mmm amma a mamma mama mm amma mm mm mmm mm mm mm mm me me mm mm ee ee a ae ea

CC

C titlesd MACHEDIS A MACHINE DEPENDENT PARAMETER SPECIFY ING
C THE RELATIVEPRECISIONO FFLOATINGPOINT ARITHMETIC.

Cc MACHEP = 16GD0*x{(—-13)FOR LONGF ORM ARITHMETIC
C ON S367 21:13:32

DATAMACHER/2e22D0-15H/

C

TERR = 3

IF (IRHS«a GEe (0) GC TO 2
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JERR=-1

RETURN

2 IF (M .GEe N GD TO 3
[ZRR==-2

RETURN

3 IF (NAU «GEeM) GO TO 4
I ERR=-3

RETURN

4 IF (NV «GEeN) GO TOS
ISRR=-4

RETURN

5 CONTI NUE

C

DO 1G531 = 1, M
C

DO 190 J = 1e N

| U(TI,J) = A(T,J)
100 CIONTINUS

C sis dlllSS HOUSEHOLODFRREODUCTIONTOBIDIAGONAL FORMS2 222212:

| G = 0e0DO
SCALE = 0.CDO

X = QCeODD

| C
DO 303 I = 14 N

L = 1 + 1

| QVI(I) = SCALE =* G

|. S = 0.000

| SCALE = 0.0CDNC

C COMPUTE LEFTTRANSFIRMATIONSTHAT ZEROS THE SUBDIAGONALELEMENTS
C OF THE IITH COLUMN.

C.
DN 120 K = JTeM

120 SCALE = SCALE +DABS(U(K,I))
C

IF (SCALE +EQaeD0DO)YGO TO 210
C

DO 130K = 1+M

U(KyI) =U(Ks1)/ SCALE
S = S+U(K,I)*%2

130 CONTINUE
C

F = U(TI,L1)

G = —DSIGN(DSQRT(S),,F)

U(IsT) = F = @G

| I F (1eEQe N) GO TO 155
C

C APPLY LEFTTRANSFORYATTONSTO REMAINING COLUMNS OF A

; C

| DO 150 J = Ls N
s = G.0DC

C

| DO 140 K = I+M
140 Ss = S + U(K,I)* U(K,J)

C

| F = s /H
C

| DO 150 K = 14M
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U(KsJ) = U(KeJ) + F *U(KeI)
150 CONTI NUE

C

: C APPLY LEFT TRANSFORMATIONS TO THE COLUMNS OF B IF ITIRHS «GTe Ce

| 155 | FCIRHS 4EQ.0)G O T 0190
: D1 6 0J=1, IRHS

DO 170K=1,'4

170 S = 5 + UIK,T)XB(KyJ)
F = S/H

DO 180K=1I,M

180 B(KesJd) = BIKsJ) + FXU(K.1)

| 160 CONTINUE
i C

; C COMPUTE RIGHT TRANSFORMATIONS»

190 DO 200 K = T+M

200 U(KsI) = SCALE®U{K,I)

210 W(I) = SCALEX*G
| G = 0.0DG

: SCALE = 0.,0D0
IF (I eGT ee M e0Re | ¢EQe N) GO TO 2930

C
: DOC 220 K = Ls N

220 SCALE = SCALE+ DABS(U(T,K))
C

] |F (SCALEEQe QeCDO)IGO TO 290
| C

U(IeX) = U(I1,K)/ SCALE
S = S +UT4, K)H%2

230 CONTINUE

C

F = U(I,L)

G = —=DSIGN(DSQART(S),,F)

H = F | G - 8S

UCT 4.) = F -G

C
DO 240 K = Ls N

240 PVI{K) = U(l.K)7 H
C

FI «sEQe MY) GO TOGO 270

| C

DO 260 J = LM

1 S = C200

C

DO 250 K = LN

3 250 s = S + Ul JoeK)*» UT ,K)

| DO 26C K = Ls N
k UJ XK) = U(JeK)+ S x RV1(K)

i 260 CONTI NUE
j C

279 DO 280 K = Lys N

280 UCT +K) = SCALE*®U(],K)

C

| 29c x = DMAX1(X,DABS(W(I))+DABS(RVI(1)))
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300 CONTINUE
C SL ts 22 ACCUMULATION OF RIGHT-HAND TRANSFORYATIONS 232222222:

| F{eNOTe MATVIGO TO 410

Cc T1222FOR I=N STEP-1TUNTIL1 DO --®°°2ceccsoeon
DO 40C 1 1 = 1s N

I = N + 1 =-11

IF (I <ENe N) GC TO 390

| FIG «eEQele ODN)G O TO 360

C

30 320 J =Ls N

C ® . x=.%.:: DOUBLEDIVISION AVOIDS POSSIBLE UNDERFLOW ****sescsoe

320 V(Je,1) = (U(T,J)Y7 U(CTI,L))/ G

C

30 353 Jd = LeN

S = Cr.000

C

DO 340 K = Use N

340 s = S + U(TIK)XX VIKysJ)
C

DO 353 K = Le N

VIKesJd) = VI(KeJd)+ S * VI{K,,1)

350 CONTI NUE

C

360 DN 380 J = Le N

V(IsJ) = 0.000

V(Je,1) = 0 .0D0

380 CONTI NUE

C

390 V(Is+1) = 1.0D9

G = RVI(1)

L = 1

C400 CONTINUE

C tSsILtITSIACCUMULATION OF LEFT-HAND TRANSFORMATINDNS®***%*" seo

41c IF («NOTe MATU)IGAT O0OS10 a. }
C ttt st 2FORI=MIN(MN)ISTEP=IUNTILI DO -- . . + 00

MN = N

IT (CM JLTeaN) MN = WV

C

DO S5G&T1= 1, MN
I = MN +1- II

L = IT + 1

G = w(1)

IF (1 +EQe N) GO TO 430

C

DO 420J = Ls N

420 Ul +J) = 00DO0

C

430 F(G ¢«eEQe 0.000)GO TO 475
I F(YIsEQe MN )»?GO TO 460

C

| DO 450 J = Ls N
S = 0.CDC

C

DO 440K = Le M

4410) 3 = S§S + UKs I) ®* UK, J)
C Crt DOUBLEDIVISICNAVOIDS POSSIBLE UNDERFLOW 295222322

F = (S / U(T.,1)) 7/7 G
C

DO 4SG K = | oe M

UKeJ) = U(KeJ)+ F%* U(KeT1)
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450 CONTI NUE

C

460 DO 470 J =1IsM
470 UJI) = UlJ1)/ CG

C

G O0TO490

C

47S DC 480 J] = TM
480 UJI) = 0.000

C

490 U(TI LI) = U(l,I) + 1,000
500 CONTINUE

C Corfe DIAGONAL IZATIONOF THEBIDIAGONAL FORM © m0 nono0

510 EPS = MACHEP¥% X

C tts tttsessF O RXK=NS TEP- 1TUNTIL 1 DO --33s223¢2s2%2
ON.7C0 KK = 14N

Ki = N = KK

K = K1 + 1

ITS = €

C e. ese .0eee TEST FOR SPLITTYTINC.
C FOR L=K STEP =] UNTIL 1 DO - - 22223223 cs333

520 DO |S3”LL= 1, K
L1 = KX « LU

L = LI + 1

IF (DABS(RVI(LL) ) «LF EPS)GO TO 565

C ttt Li IVILI)I)ISALWAYSZERO, SO THEREISNIJDEXIT
Cc THPOUGH THE BCTTOMO3FTHE LOOPS: c222

I F(DABS(W(L1))YLEEPS)YG O T 05490

530 CONTI NUE

C io 2:%% wwe CANCELLATION OFRVI(L)IFLGREATER THANZ1:3232323222:¢

S = 1 000

C

DO S60 | = L, K

F = S *xRV1(1)

RV1(Y) = C *RV1(1l)

IF (DABS (F) eLEeEP S)G OTQS6S
G = W(1)
t-i = DSQRT(F*F +G2G)

wl) = H
c = 6 / H

C

C APPLYL E F TTYRANSEODRMATIONSTT o alF IRHS «GTe Co
C

| F(IRHS LENNYG O T 0542
DO 545J=1,1RHS

Yy=8(L1 ,J)

Z=8B(1 ,J)

B(LY1,J) = Y*C + Z*S
B(Il.+J) = -Y%S +z * ¢

545 CONT INUE

54% CONTI NUF

C

| F{eNOTe MATU)IG OTC560

C

DO e680 J = 1, M
Y = U(J.L1)

Z = UJd.1)

U(JsL1)= VY Xx C + 72 x S
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’ U{Jel) = -Y # § + Z « C
550 CONTINUE

C

S60 CONTI NUE

| C $:3222222:: TEST FOR CONVERGENCE :ft::2:2ss:
5685 Zz = w(K)

IF (L +EQe KY) GO TO 650
C testis SHIFT FRCM BAOTTOM 2 BY 2 MINNDR 23:32:23:12:

IF (ITS EQ 30) GO TO 10CO

ITS = ITS + 1 |
X = WL)
Y = W(K}1)

G = RV1(K}1)

H = RVI(X)

F = ((Y = Z) *% (YY + Z) + (GC = H) *¥ (G + H)) / (2¢TD0 % H ¥ Y)
GCG = DSART(FL*F+1 «DD

F = ((X = ZZ) 2 (X + Z) + H * (Y / (F & DSIGN(G,F)) - H)) / X
C : sess testst NEXT QR TPANSFOPMATION 2:52:22 3222:

C = 1.000

S = 1 .NDD
C

DO 500 11 = L, KI

I = 1I1 +1

G = RVI(1)

Y = wW(])
H = S = G

. G = C * G

Z = DSQRT(F*F ¢#t{%H)

RVI(I1) = 2
C =F / 2

- S = H/ 2

- F = X # C +4 G * §

G =X * S$ + G x C
H =Y% S

Y = YY % C

IF (NOTe MATV) GO TO £75
 C

DO 579 J = 14 N
X = v(J, 11)

Z = V((J,.,1)
V(Js12)= X ££ C + 2 x S

V(J,1) = =X % § 4+ Z x C :
570 CONTINUE

C

STS IZ = DSQRT(FxF+H*H)
will) = 2

C Tesi etits ROTATION CAN BE ARBITRARY IF Z 1S ZERO 2222: 232132:
IF (Z «ENe CL4NDC)Y GO TO S80
C =F v7 Z

S =H/ Z

s80 F = C 2 G +4 S =» VY
X = =-§ * GC + C * vY

Cc

C APPLY LEFT TRANSFORMATIONS TO B8 IF IRHS GT. ND,
C

IF (IRHS .FQa C) GO TO S82
DD S8%S J=1,1FHS

Y = B(11,J)

Zz = 8(1.,J)
? B(I1s3) = YRC + 2Z22§

| 53 |



B(l+J) = —-Yx§g , 7%
585 CONT :NUE

582 CONTI NUE

C

| F(.NOTe MATU)IGAT O 600

C

DO 590 J = 1+M

Y = U(J,11)

Z = U(J,1)
U(Js,I1)- Y¥ «= C + Z = S

U(Jesl) = =-Y ss + z * ¢

590 CONT IYUE
C

600 CONTI NUE

C

RVI(L) = 0,000

RV]1I(K) = F
w(K) = X

GO TO S520

C sr: ::::::: CONVERGEYCE zs3s2s22%s222:2¢
650 ] F (Z ¢6GEe DeIDNQ)YGOT O 700

C coves W(K) ISMADE NON-NEGATIVE ss2sc22s22
WK) = =—=2

IF ( eNOYe MATV)Y GO TO 7CO

C

DO 590 J = 1 N

690 V(Je<) = =-V(J,K)

C

7 00 CONTINUE

C

GO TO 10¢1

C ct: SET ERROR -- NO CONVERGENCE TOA
C SINGIJLARVALUEAFTER3CITERATIONS2s ss sc2c2-

1CO0 I=ERR = K
100 1 RETURN .

C 28222222L AST CARD O F GRSVD =» =n mee
END
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