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ABSTRACT

The most well-known and widely-used algorithm for computing
the Singular Value Decomposition (SVD) of an m x n rectangular
matrix A nowadays 1is the Golub-Reinsch algorithm [1]. In this
paper, it is shown that by (1) first triangularizing the matrix
A Dby Householder transformations before bidiagonalizing 1it,
and (2) accumulating some left transformations on an n X n array
instead of on an m x n array, the resulting algorithm is often more
efficient than the Golub-Reinsch algorithm, especially for
matrices with considerably more rows than columns (m >> n),
such as 1in least squares applications. The two algorithms
are compared 1in terms of operation counts, and computational
experiments that have been carried out verify the
theoretical comparisons. The modified algorithm is more
efficient even when m 1is only slightly greater than n, and in
some cases can achieve as much as 50% savings when m >> n. If
accumulation of left transformations 1s desired, then n2 extra
storage locations are required (relatively small if m >> n),
but otherwise no extra storage 1is required. The modified
algorithm uses only orthogonal transformations and 1s therefore
numerically stable. In the Appendix, we give the FORTRAN code of
a hybrid method which automatically selects the more effiecient

of the two algorithms to use depending upon the input wvalues for m

and n.






(0) INTRODUCTION

Let A be a real m x n matrix, with m >> n. It is well-known

[1,2) that the following decomposition of A always exists
A - u Z vT (0.1)
where U is a m x n matrix and consists of n orthonormalized
eigenvectors associated with the n largest eigenvalues of
AAT, V is a n x n matrix and consists of the orthonormalized
eigenvectors of ATA, and 2 is a diagonal matrix consisting of
the "singular values" of A, which are the non-negative square
roots of the eigenvalues of ATA.
Thus,
T = vIv = vvT = 1
and 2 = diag( Oy, ...... ). (0.2)
It 1is wusually assumed for convenience that
0_1>- 0_2 . >= T ,>=0.

The decomposition (0.1) is called the Singular Value

Decomposition (SVD) of A.

Remarks:

= G _=0.

(2) There is no loss of generality in assuming that m >= n,

(1) If rank(A) = r, then ("-r+1' 0 o=

for if m < n, then we can instead compute the SVD of AT
T . Z T
If the SVD of A" is equal to UZ2ZV®, then the SVD of A

is equal to VZUT.



The SVD plays a very important role in linear algebra. It
has applications in such areas as least squares problems [1,2,3],
in computing the pseudo-inverse [2], in computing the Jordan
Canonical form [4), in solving integral equations [5], in digital
image processing (6], and in optimization [7]). Many of the
applications often involve large matrices. It is therefore
important that the computational procedures for obtaining the SVD

be as efficient as possible.

It is perhaps difficult to find an algorithm that has
optimal efficiency for all matrices, so it would be desirable to
know for what kind of matrices a given algorithm is best
suited. It is in this spirit that we were first motivated
to look for improvements of the Golub-Reinsch algorithm when the
mat-rix A has considerably more rows than columns, i.e. m >> n.
It turns out that such an improvement is indeed possible, with only
slight modifications to the Golub-Reinsch algorithm, even when
m is only slightly greater than n, and can sometimes achieve as

much as 50% savings in execution time when m >> n.

In section (1) we will Dbriefly describe the Golub-Reinsch
algorithm. We will then present the modified algorithm in
section (2), with some computational details deferred to section
(3). Operation counts for the two algorithms will be given
in section (4) and some computational results in section (5).

We wili make some conclusions in section (6). In the Appendix,



we will give the FORTRAN implementation of a hybrid method
which automatically selects the more efficient of the two

algorithms to use depending upon the input wvalues for m and n.



(1) _THE GOLPB-REINSCH_ALGQRITHM _(GR=SVD)

We will use the same notation as in [1].

This algorithm consists of two phases. In the first phase

one constructs two finite sequences of Householder transformations

p (k) (k-1,2, . . . ,n)
and Q(k) (k=1,2, . . ..n-2)
such that
Xg‘.'.p
o "X
P(n) . e P(l) A Q(l) ..... Q(D‘Z) - - J(O),
(@) (m-myYyx n
J
an upper bidiagonal matrix. Specifically, P( ) zeros out the

subdiagonal elements in column 1 and Q(j) zeros out the appropiate

elements in row 7J.

The singular values of J(O) are the same as those of A.

Thus,
if J = GZHT is the SvD of J,
then A = P GZHT QT
so that U =P G, V =QH (1.2)

with P—P“)....P(“), Q = Q(l)_.“Q(n-Z).



The second phase is to iteratively diagonalize J(0) by the

QR method so that

300 5 5 (1) _, -3

T
where g+ o (1) ;) p (1) (1.3)

where (1) ana 1(1) are products of Givens transformations and

are therefore orthogonal.

The matrices T(i) are chosen so that the sequence

T
mi) o 507 5(1) converges to a diagonal matrix while the matrices

S(i)' are chosen so that all J(1) are of bidiagonal form.

1 L[4
The products of the T (1) s and the s(1) s are exactly the matrices

T T . .

H® and G respectively in Egn (1.2). For more details, see [1].
It has been reported in [l] that the average number of

iterations on J{1) ;g (1.3) is usually less than 2n. In other

words, J(Zn) in Egn (1.3) is wusually a good approximation to a

diagonal matrix.

We will briefly describe how the computation is wusually
implemented. Assume for simplicity, that we can destroy
A and return U in the storage for A. In the first phase, the p(i)
are stored in the lower part of A, and the Q(i) are stored in the upper

triangular part of A. After the bidiagonalization, the ¢ (1) are

accumulated in the storage provided for V, the two diagonals

of 3¢0) 4o copied to two other linear arrays, and the P (1) are

accumulated in A.



In the second phase, for each i,
S(i) is applied to P from the right
COLIY - T
T is applied to Q° from the left

in order to accumulate the transformations.

and



(2) THE MODIFIED ALGORITHM (MOD—SVQ)_

Our original motivation for this algorithm is to find
an improvement of GR-SVD when m >> n. In that case, two

improvements are possible:

(1) In Ean (l1.1), each of the transformations p (1) and Q(i)

has to be applied to a submatrix of size (m=i+l1) x (n-i+l).

> m-t+1

N

J

| =

Fig. 2.1 P(i) and Q(i) affects the shaded portion of the matrix

Now, since most entries of this submatrix are ultimately going to be
zeros, it 1is intuitive that if it can somehow be arranged that the
Q(i) does not have to be applied to the subdiagonal part of

this submatrix, then we will be saving a great amount of work

when m >> n.



This can indeed be done by first transforming A into

upper triangular form by Householder transformations on the

left.

il

C Al - [ = 8

o

where R 1s n x n upper triangular and L 1is orthogonal,
and then proceed to bidiagonalize R. The important difference
is that this time we will be working with a much smaller matrix R

than A (if n2

<< mn), and so it 1is conceivable that
the work required to bidiagonalize R 1is much smaller than

that originally done by the right transformations when m >> n.

The question still remains as to how to Dbidiagonalize R.
An obvious way is to treat R as an 1input matrix to GR-SVD,
using alternating left and right Householder transformations.
In fact, it can be easily verified that if the SVD of R 1is

equal to XZYT, then the SVD of A 1is given by

A=l x]ZYT (2.1)
[~}
We can identify U with L[_X_] and V with Y. Notice that 1in order
(]
to obtain U, we have to form the extra product L}X[. If U is not
(-]

needed (e.g. in least squares), then we do not have to accumulate
any left transformations and in that case, for m >> n, it seems

likely that we will make a substantial saving.



It is also possible to take advantage of the structure

of R to bidiagonalize it. This will be discussed in section (3).

(1ii) The second improvement over GR-SVD that can be made

is the following. In GR-SVD, each of the S(i) is applied to
the m x n matrix P from the right to accumulate U. If

m >> n, then this accumulation involves a large amount of work
because a single Givens transformation affects two columns of P
(of length m) and each s (1) is the product of on the average
n/2 Givens transformations. Therefore, in such cases, it would
seem more efficient to first accumulate all S(” onanx __n

array Z and later form the matrix product PZ after

J(i) has converged toz.

In essence, improvement (1) works best when U is not needed,

improvement (ii) works best when U is needed and both work

best when m >> n.

We now present the modified algorithm:

MOD-SVD:
(1) LT[A] -> [_I_{_] where R i1s n x n upper triangular,
©

(2) Find the SVD of R by GR-SVD, R = Xp Yl ,

(3) Form A = L[X]ZYT, the SVD of A.
o

10



The idea of transforming A to upper triangular
form when m >> n and then calculating the SVD of R is mentioned
in Lawson & Hanson [3,pp.119,122] in the context of

least squares problems where U 1is not explicitly required.

In the next section we will discuss some computational

details of this modified algorithm, and in section (4) we

will compare the operation counts of the two algorithms.

11



(3) SOME _COMPUTATIONAL _ DETAILLS

(i) It should be obvious that when U is not needed then

MOD-SVD does not require any extra storage. When U 1is needed, we can
store LT in the lower part of A, copy R into another n x n array W

2

and ask GR-SVD to return X in W. Therefore we need at most n

extra storage locations which i1s relatively small when m >> n.

(ii) The next gquestion 1is how to form I_&] without using
0

extra storage. This can be done by noting that
L|X| = LJI}X
o o

so we can first accumulate L _I_] in the space provided for

(]
U and then do a matrix multiplication by X.

In the experiments that we have carried out, we actually

accumulate the Householder transformations L on X

©
1%L
We do not recommend doing this in practice because
it requires mn instead of n2 extra storage locations. But

one can show that both methods take about the same

amount of work and so it will not affect the comparisons.

12



(1ii) The qguestion arises whether it 1s possible to bidiagonalize

R in a way that takes advantage of the zeros that are

already in R. One way is to use Givens transformations to

zero out the elements at the upper right hand corner of R, one
column or one row at a time. Pictorially, (for n-5) to zero out the

(1,5) element, we do two Givens transformations as follows:

¥\

lst rotation introduces lst rotation to =zero
nonzero element here out the (1,5) element

\_/

H r
2nd rotation to zero out the (2,1]
element introduced by the 1lst rotation

It turns out however, by simple counting, that this
method takes about the same operations (4n3/3 multiplications)
as the previous method to bidiagonalize R, provided that we do
not have to accumulate transformations. If we do need to accumulate
either the left or the right transformations, then this
method will require more work (4n3 versus 6n3/3 mult.)
mainly because it requires two rotations to zero out each
element and these rotations have to be accumulated.
So it seems that taking advantage of the zero structure of R

in this fashion actually makes the method 1less efficient.

13



We have to note, however, that Givens transformations involve
fewer additions and array accesses than Householder
transformations per multiplication (see section 4.1). Therefore
this method tends to be more competitive on modern computers
where the time taken for floating point additions and
multi-dimensional array indexings are not negligible compared to

that for multiplications.

There may be other ways to bidiagonalize R

using orthogonal transformations, but we shall not

pursue this subject further.

14



(4) OPERATION __COUNTS
In section (2), we indicated that MOD-SVD should be
more efficient than CR-SVD when m >> n. In this section,
we study the relative efficiency between
CR-SVD and MOD-SVD as a function of m and n. We

do this by computing the asymptotic operation counts for

each algorithm.

In the operation counts given below, we only keep
the highest order terms in m and n, and so the results are

correct for relatively iarge m and n.

CR-SVD:

(1) _Bidiagonalization (using Householder transformations)

go=p(m p(Daq(l) [ q(n=2) 2(mn2-n3/3) mule.
accumulate p = p (1), p(m) mn’=n3/3 mult.
accumulate Q = Q (1) C _Q(n~2) 2n3 mult.

(2) Diagonalization (using Givens transformations)
accumulate s (1) on P Cmn2 (C=4) mult.
accumulate T(i) on Q Cn3 (C=4) muit.

MOD-SVD:
(1) Triangularization (using Householder transformations)
[] -> [] mn2—n3/3 mult.
(2) CR-SVD of R, R =X ZYT depends on whether
accumulations are needed.
(3) Form L [X] (using Householder transf.) mn®=-n mult.

15



(0)

Some comments are in order:

2

The entries Cmn and Cn3

with C-4 in the diagonalization

phase of CR-SVD are obtained by assuming that the iterative

phase of the SVD takes on the average two complete QR iterations
per singular wvalue [1]1, [3,pl22). We have checked this
experimentally and found it to be gquite accurate.

It is assumed that slow Givens 1s wused throughout the calculation.

If fast Givens [8] had been wused, then the entries would become

2 3

approximately 2mn and 2n instead (viz C-2).

For the Householder transformations, each multiplication also
invokes 1 addition and approximately 2 array addressings.
For the Givens transformations, each multiplication invokes
1/2 an addition and 1 array addressing. On many large
computers today, a floating point multiplication is not much
slower than a floating point addition. Also, array

indexing 1s wusually quite expensive. In such cases, a
Householder multiplication actually involves more work than
a Givens multiplication because of the extra additions and
array 1indexings. Therefore, the operation counts given for
the diagonalization phase of GR-SVD may be misleading
because 1t may actually involve relatively less work. The
total effect, however, can be accounted for by using a
smaller wvalue for C. For example, if 1 Givens
"multiplication" takes half the work needed by a Householder
"multiplication", then the effect on the

relative efficiency can be accounted for by

16



setting C-2 instead of C-4. On older or non-scientific
machines where multiplications take much more time than
additions and array addressings, the operation count based
on multiplications alone is usually a good measure of

relative efficiency.

T
(2) The application of S(i) and T(i) on J(i) is actually
of order O(n2) and 1s therefore not i1included in the

above counts.
(3) We have to distinguish between 4 cases in the comparison:

Case a: both U and V are required explicitly,
Case b: only U 1is required explicitly,
case c: only V is required explicitly,

Case d: only Z is required explicitly.

These four cases do arise in applications. We will

mention a few here:

Case a arises in the computation of pseudo-inverses [1].
. T
Case b is Case c for A",
Case c arises in least squares applications [1,3} and
in the solution of homogeneous linear equations [1].
Case d arises in the estimation of the condition number
of a matrix and in the determination of the rank of

a matrix [10].

17



Table

The total operation count for each case is given in

Iable 4.1
Total operation counts of GR-SVD and MOD-SVD for each

of the cases a, b, ¢, and d.

e mew
L et s et e cea
L memrew e+ e
e amtear ot s
o amrewn wree

Using Table 4.1 , we can compute the ratio of the
operation counts of MOD-SVD to that of GR=~SVD for each of
the four cases. This is given in Table 4.2 where the

ratio is expressed as a function of r = m/n.

18



Table 4.2

Ratio of operation count of MOD~SVD to that of GR=SVD.

r = m/n
P  cemeever poim
e lmaem s e
v bmcamieesn e
e s
e

These ratios are plotted in Fig. 4.1 to Fig. 4.4 for C=2,3,4.
. *

The cross-over point r is the wvalue of r which makes the

ratio equal to 1. If r > r*, then MOD-SVD

is more efficient than CR-SVD.

From Figures 4.1 - 4.4, we see that, in all 4 cases a,b,c
and d, MOD-SVD becomes more efficient than CR-SVD when r

starts to get bigger than 2 approximately, and the savings

can be as much as 50% when r is about 10. On the other
hand, when r is about 1, CR-SVD is more efficient. This
agrees with our eariier conjectures. However, the important

19
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thing 1s that all the curves decrease dquite fast -asr becomes
large. If we assume that it 1is equally 1likely to encounter
matrices with any wvalue of r >= 1 (this 1s not an unreasonable
assumption for designers of general mathematical software, for
example), then MOD-SVD 1is obviously preferable. 1In

any case, Fig. 4.1 = 4.4 give indications as to when

one of the methods is more efficient, at least when m and

n are large enough so that our operation counts apply.

In the context of least squares applications, we can also

compare the operation counts of GR-SVD and MOD-SVD to that of the

orthogonal triangularization methods [9] (OTLS) often wused for
such problems. This comparison is shown in Table 4.4
Table 4.4

Least squares using orthogonal triangularization versus
using SVD
OTLS = orthogonal triangularization method

for least squares problems.

- D D D D D D D D R AP D D A Y AY A D O D D ) D D A Y D A D MO A A P D M D

OTLS : GR-SVD = [r-1/3]/1[2r+C]

D D D D D D D D WD WD D D D W D A P WD D D O D D D Y D D D A WD A D D S A D D D D D WD D D D D D D D D

OTLS : MOD-SVD = [r=1/3) / [r+C+5/3)

D D D D D D D D D D D D D D D Y D D Y D AP D N D S D WS Y D R D A O D D R D A D D D VO A U A R D D D D o

These ratios are plotted in Fig. 4.5 and Fig. 4.6 for C=2,3,4

2k
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One sees from these figures that for m nearly equal to n,
the two SVD algorithms require much more work than OTLS.
However, when r is bigger than about 3, MOD-SVD requires only
about 3 times more work than OTLS. It may therefore become
economically feasible to solve the least squares problems at hand
by MOD-SVD instead of OTLS. The reward is that
the SVD returns much more useful information about the problem

than OTLS [3].

It is easy to see that as r Dbecomes arbitrarily large, MOD-SVD
is as efficient as OTLS since the bulk of the work is in the
triangufarization of the data matrix A. However, GR-SVD can be

at most half as efficient as OTLS.

27



(5)  CQMPUTATIONAL __RESULTS

The conclusions in the last section hold only if m and
n are both large. In this section, some computational experiments
are carried out to see if the conclusions are still wvalid for

matrices with realistic sizes.

We computed the SVD of some randomly generated matrices using
both GR-SVD and MOD-SVD. The version of GR-SVD that we used 1is a
modified ALGOL W translation of the procedure that appeared in [1].
MOD-SVD 1s realized by writing a procedure to triangularize the
input matrix by Householder transformations and then wusing the

same above-mentioned GR-SVD procedure for computing the SVD of R.

All tests were run on the IBM 370/168's at the Stanford
Linear Accelerator Center (SLAC). Long precision was used throughout
calculation. The mantissa of a floating point number is represented

by 56 Dbits (approximately 16 decimal digits).

For each of the 4 cases, we fixed some values for n
and computed the SVD of a sequence of randomly generated matrices
with different wvalues of r. The execution times taken by GR-SVD
and MOD-SVD were then compared, together with the accuracies of the
computed answers. Since we are working in a multi-programming

environment, the execution times we measured cannot be taken as the

28
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actual computing time taken. Moreover, the influence of the
compiler on the relative efficiency of the two algorithms may be the
deciding factor [11]. However, keeping these points in mind, we can
still expect aqualitative agreement with the analysis based on

operation counts.

On the IBM 370/168’s at SLAC, a floating point multiplication

takes only about 1.5 times the work taken for a floating point

addition. Also, array indexing in ALGOL W is very expensive due to
subscript checking (it actually can be more expensive than
floating point multiplications). Therefore, asnoted in section 4.1,

we should use C approximately equal to 2 instead of 4 in Table 4.2
and Table 4.4, for the purpose of comparing the relative efficiency

of the two algorithms based on the computational results.

The results of the computations are plotted in Fig. 5.1 =
Fig. 5.6 . In general, they agree very well qualitatively with
the asymptotic results we obtained by operation counts (with
C-2). We observe that the larger n is the better the agreement,
as it should be. However, even when n is small, the theoretical
results based on asymptotic operation counts still describe very
well the qualitative behavior of the computational results 1in
many cases. The computational results also show that large
savings 1in work are indeed realizable for reasonably-sized

matrices (For example, see Fig. 5.3 and Fig. 5.4).

29
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We also checked the accuracies of the computed results,
The singular wvalues returned by both procedures GR-SVD and
MOD-SVD agree to within a few units of the machine precision in
almost all cases that we have tested. The matrices U and V also
agree to the same precision but the signs of the corresponding
columns may be reversed. However, the SVD is only unique to

within such a sign change, so this is acceptable [10].

We also computed the singular values of the following

30 x 30 matrix:

This matrix 1s very ill-conditioned (with respect to
computing its inverse) and is very close to being a matrix of
rank 29 even though the determinant equals 1 for all values of n.
The computed singular wvalues from both GR-SVD and MOD-SVD agree
exactly with those given in [l1] to 15 significant digits (which

are all the digit8 printed in ALGOL W).
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(6) CONCLUSIONS

Firstly, the theoretical results we obtained do seem to predict
the actual computational efficiencies quite well, and they can
therefore be used to indicate which algorithm to choose for a

given matrix.

The MOD-SVD algorithm clearly work8 Dbetter than GR-SVD for
matrices that have many more rows than columns. The price
that MOD-,SVD ha8 to pay when m is nearly equal to n 1s not that big
(usually less than 30%). We have also seen that the cost of
solving a least squares problem by MOD-SVD can often be 1less than twice
that of the wusual orthogonal triangularization algorithms.
It may therefore Dbecome economically feasible to solve many

least squares problems by the SVD algorithms.

Some improvements can probably be made on the bidiagonalization
of the upper triangular matrix R in MOD-SVD by taking advantage
of the the special structure of R. We also want to note again
that MOD-SVD requires n? extra storage locations 1if the left

transformations have to be accumulated. This may be a

disadvantage when storage is at a premium.

We have also seen that the wusual practice of counting only
multiplications in operation counts for numerical algorithms is
no longer viable for many modern computers. Other ©properties,
such as the amount of array accesses involved, may influence the

efficiencies of algorithms decisively.
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To be sure, there may be other ways to compute the SVD that
will work better in some cases but not in others. It is perhaps
impossible to find an “optimal” algorithm that works Dbest for all
matrices. Nevertheless, we hope this paper has shown that it may
be worthwhile to 1look for improvements in the organizations of

existing algorithms.
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Appendix : Fortran Code of a Hybrid Algorithm

Based on the results of earlier sections, we can implement
a hybrid method for computing the SVD of a rectangular matrix A
which automatically chooses to use the more efficient algorithm
between GR-SVD and MOD-SVD. For each of the four Cases a,b,c and
d, if the input matrix A has a value of r (= m/n) which is less
than the cross-over point r* for that case, then we use
GR-SVD, otherwise we wuse MOD-SVD. The cross-over points depend
on the wvalue of C used. As noted before, the wvalue of C to be
used depends on the relative efficiencies of floating point
multiplications, floating point additions and array indexings on
the particular machine concerned. However, C can be determined
once for all for any particular machine and compiler combination. For
example, if floating point multiplications take much more time than
floating point additions and array indexing8 on the machine in

question, then we should use C approximately equal to 4.

In this Appendix, we give the codes of a Fortran subroutine
called HYBSVD which implements the above-mentioned hybrid algorithm.
HYBSVD will need to call a standard Golub-Reinsch SVD subroutine
during part of its computation and so we have included such a

routine, called GRSVD, in the 1listing of the codes of HYBSVD.
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The routine GRSVD is actually a slightly modified version of the
subroutine SVD in the EISPACK [12] package. The main modification
that we have made is to eliminate the requirement in subroutine
SVD that the row dimension of V declared in the calling program
be equal to that of A. This minimizes the storage requirements

of GRSVD at the cost of one more argument in the argument list.

There is one additional feature implemented in HYBSVD (and
also in GRSVD). In least squares applications, where we are
looking for the minimal length least squares solution to the
overdetermined linear system Ax = b, the left transformations
UT have to be accumulated on the right-hand side vectors b
(there may be more than one Db). This can be done by putting
the vectors b in the matrix argument B when calling HYBSVD and

-setting IRHS to the number of Db's.
The calling sequences and usages of HYBSVD and GRSVD are

explained in the comments in the beginning of the 1listings of

the subroutines.
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vress22r222., FIRSTCARD OFHYBSVD:IIsz st

SURRDUT INE +YBSEVDINAU NV ¢y NZy Mg Ny Ag Wy MATUL,UsMATV,V,2,B,1RHS, IERR,
RV1) \
INTEGER NAUWAV N2 MeNy [IRHS 2 IEQIR, IP1, Iy JeKe IM1, IBACK
DOURLE PRECISION A(NAUN) sWIN) JUINAUN) 4 VINV,N), Z(NZ,N),
B(NAU, IRHS),RV1(N)

‘DCUBLE PRECISION XOVRPTsCsRsGsSCALE,DSIGN+DABS sDSQRT 4F4Se H

REAL FLOAT
LOGICAL MATUsMATYV

THISSUBROUTINETI SA MODIFICATIONOF THE GOLUB-REINSCHPROZEDURE
T
(})FCRCOMFUTINC THE SINGULAQ VALUE OECOMPOSITION A = UWV OF A
REAL MBYN RECTANGULARMATRIX. THE ALGORITHM IMPLEMENTED I N THIS
ROUTINE HAS A HYERIDNATURE. WHENMIS APPROXIMATELY EQUAL TO N,
H
F

THEGOLUBREINSCFALGORITHMI S USED.BUT W ENMISGREATER THAN
APPROXIMATELY 2*%Ns A MODIFIEDVERSION O THE GOLUB-RE INSCH
ALGORITHMI S USED. THISMODIFIEO ALGORITHM FIRST TRANSFORMS A

G
R

T
ORMAT IONS L
D

INTOUPPEF TIRIANGULARFORMB Y HOUSEHOLDER TRANS
oF1 I N Gu L AR

AND THEN USES THE GOLUB REINSCH ALGORITHMTT S
VALUE OECOMPOSITION OF THERESULTING UPPERTRIANGU
WHENU ISNCEDED EXPLICITLY+ AN EXTRA ARRAYZ(OFS
N BYN) T S '\EEDEC. BUTDTHERWISE Z MAY COINCIDE WIT

LAR MATRIXR.
IZE AT LEAST
H E I

A OR V ANDN OEXTRASTORAGE T S REQUIRED. THIS HYBRID

SHOULDREM CREEFFICIENTTHAN THEGOLUBRE INSCHALGOR ITHM WHEN
MISM UCHBIGGERTH AN N. FORDETAILS, SEE(2).

HYRSVO CANALSQBEUSED TOQOCOMPUTETHE MINIMAL LENGTH LEAST

SQUARES SOLUTICNT O THEOCVERDETERMIMNEDLINEARS Y S TE MA*X=B.

NOTICE THAT THE SINGULARVALUEDFCOMPASITIONOF AMATRIX

I SUNIQUE ONLYUPTO THESIGN OF THE CORRESPONDING COLUMNS

OF U AND V.

THISROUTINEHASBEENCHECKED BY THE PFORT VERIFIER(3)FOR
ADHFRENCET O A LARGEs CAREFULLY OEFI NEDy PORTAEBLE SUBSET OF
AMERICAN NATIONAL STANDARD FORTRANCALLEDPFOR T

REFERENCES @

(1)GOLLUByGe.He A N

DECCMPOSITIC
NUMER. MATH
HE SINGULAR VALYUE

(2) CHAN,T .F. (:G76
ANFORD COMPUTER

T
DECOMDDSITICP\." T 0 APPEAR AS
SCIENCE REPORTe.

=4

(2)FYDER B «Ge(1G728)"THEPFORTVERIFIER.” SOFTYARC
PRACTICE ANC EXPERIENCE, VOL ¢4+ 35937741974.

HYBSVD ASSUMESM«GE«N o I FMelTe NeTHENCOMPUTE THE
T T T T
SINGULAR VALUE CECOMPODSITIONOF Ae IF A =UWV o THENA=VWU ,

ON INPUT:
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NAUMUSTBE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
ARRAYFARANETERSAZUANOBAS DECLARED IN THE CALLING PROGRAM
CINMENS T C Nizia~o~zs o NOTE THAT NAU MUSTBE AT LEAST

AS LARGE AS M3

NV MUSTPBRESET TO THE R O WDIMENSIONOF THE TWO3-~-DIMINSIONAL
ARRAY PARAMETER V AS DECLARED IN THE CALLING PROGRAM
OIMENSICNSTATEMENT. NV MUSTBE AT LEAST AS LARGE AS N:

NZMUSTEE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETER Z AS DECLARED IN THE CALLING PROGRAM
DIMENS ION STATEMENT . NOTE THAT NZ MUSTBE ATLEAST

AS LARGE AS N:
MIS THENUMBEROF ROWS OF A (ANDU);S
N IS THE NUMBER OF COLUMNS OF A (ANDU)AMDTHE DRDEROF V:
A CONTAINSTHE RECTANGULAR INPUT MATRIX TOBEDECOMPOSED:
BCONTAINS THE IRHS RIGHT-HAND STOE S OF THEOVERDETERMINED
LINZEARSYSTEMAXX=Be | F IRHS«GT «0y

THEN ONQUTPLTs THESEIRHSCOLUMNS| NB

T
W IlLLCONTAIN U Be THUSy TO COMPUTE THE MINIVMALLENGTH LEAST

+
SQUARE S SOLUTION, ONEMUSTCOMPUTE V *wW TIMESTHE COLUMNS OF

+ +
Bs WHERE W 1S A{)IAGQNALnnA'rRl X,W (I)=01FW(I)I s
NFGLIGIRLE, CTHERWISE 1/W(l). IFIRHS=0,8M A Y COINCIDE
WITH A CR UANDWIL UTB E REFERENCED 3
IFHSITISTHENUWBEROF RIGHT HAND-SIDESOF THEOVERDETERMINED
SYSTEMA®X=Pe IRHSSHOULDBSESET TOZEROQIF ONLY THE SINGULAR
VALUEDECOMPCSITIONOF A IS DESIRED;
MATUSHOULDPRESET TOTRUE«I FTHE U MATRIX IN THE
DECOMPLOSITIONISDESIPEDe AND TOFALSE«eOTHERWISE;
MATVS HOULDBESET TO«TRUZSIFTHE VMATRI X INTHE
PECOMPCSITICNI S DESIREDAND T o.FALSE.01w1ER\NISE.
WHEN HYBSVOISUSFDTOCOMPUTE THE MINIMAL LENGTH LEAST
SQUARESSOLUTIONTO ANOVERDETERMINED SYSTEM, MATUSHOULD
RES ET T CeFALSEes AND MATV SHOULD RESET TO © T=!UE. .

ON OUTPUT
4 ISUNALTERED (UNLESSOVERIWRITTENBYUNRV) S

W CONTAINSTHEN(NONNEGATIVE) S INGULARVALUES OF A (THE
DI AGONAL ELEMENTS OF W) . THEY ARE UNORDERED . IF AN
ERROR EXITII S MADEy THE SINGULAR VALUES SHOULD BE CORRECT

FORINCICESIERR+1,IFRR+2s¢ o m sN3

U ONTAI NS THE MATRIX U(ORTHO

3 MFCSITICN I FMATUH A SRE

USED Al A TEMPORARY ARRA

I F N CRROREXITISMADEsTHE

TO INDICESCF CORRECT SINGUL

COLUMNVECTORS)OF T HE
O« TRUE. DTHERWISE
COINCIDE WITH A.

OF U COREE SPONDI NG
HOULO BZ CORRECT;

C

DECO

Uuils
A
|

m=
=
0o <

A
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alalNelialaYeYaaYake)

LUES SHOULDBE CORGEC

V CONTAINSTHEMATRIXYV (ORTHOGONAL) OF THEDECOMPOSITIONIF
MATVHASBEENSET TO.TRUE,. OTHERWISE vV IS NOT REFERENCED.
V MAY ALSO COINCIDE WITHAITIFU IS NOT NEECED. IF AN ERROR
EXIT IS MADE. HE COLUMNS OF V CORRESPONDINGTOINDICES OF

A T:

T
CORRECTS INCULAR YV
Z CONTAINSTHEMATRIX X IN THE SINGULARVALUE DECOMPOSITION

T
O F R=XS5Y, I

F THE MODIFIED ALCOFITHM IS USED. IF THE
GOLUB-FEINSCHPROCEDURE ISUSEDPs THEN |ITISNIOTREFERENCED,
IF MATU HASBEENSET TOFALSE., ZM A YCCINCIDE
WI TH AORV ANDISNOTREFERENCED;S

iERRIS SET TC
ZERO F C R NORMAL RETURN,
K IF THE K-THSINGULARVALUE HAS NOT BEEN

DETFRMINED AFTER 30 ITERATIONS:
IF IRHS .LT. 0 .

IF MelLTe N &

IF NAU oULTe M &

IF NV LT. N .

IF N2z LT. N &

o Lo —

FV1IlS ATCMFQORARPY STORAGE ARRAY.

PROGRAMMED EYITONYCHANsCOMPsSCI « DEPT o,
STANFORDUNI V. s CA 94305
LASTMODIFIEC: 1 2 SEPTEMRBER. 1 9 7 6

- - ———s e e meowr - T T e BT e @ N M MY e W e e B MY d e SR e W v e e W e O b e e e G mme ey dr T

IERR=0
|l F(IRHS.GE«C)YG O T O 2
IEFR= 1

RQETURN

I F(MeGESs N} GO TO 3
IEFRR= 2

RETURN

IF (NAUGE« M) GO TO 4
I1ERR=-3

RETURN

IF (NV.GE«N)GC TO 5
1EFS= -4

FETURN

IF (NZ.GE«N) CcO TO 6
IEFRR= §

RETURN

COMTYI NUE

SETVALLEFCRCe THE VALUEF
EFFICIENCYC F FLCATINGPOINT
ACDITIONSANDTMCDIMENSIONAL
COMPUTER WHERZ THIS SUBROUTINE I
USUALLY BE EETWEEN 2 A .

(2). THE ALGORITHM |
ACTUALLYUSEDA SLCN

C DEPENDSON THE REL I
ALTIPLICATIONSsFLOATINGP OINT
RRAY INDEXINGS O H

T OBER UN

ETAILS ON
E T HE

N

>0

C = 4.000
DETFRMI NE CRCSS~CVER POINT
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30
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IF (MATU cANDe MATV) X O VR P T =(C+5.D00/3.D0)/C

I F(MATU «ARDe oNOT «MATV ) XOVRPT = (C#+5.00/3.D0)/C
I

I

F («NOTeMATU. A N D .MATV) XOVRPT = 5.00/3.D0
F(eNOTeMATU e ANDe e NOTeMATV) X O VR PT =5.D0/3.D0

ETERMINE WHETHER TO USE GOLUB-REINSCHORTHE MODIFIED
LGORITHM,

R = FLOAT(M)/FLCAT(N)
Il F(R.GE. XCVFPT)GO TO 8

USE GOLUBREINSCE PROCEDURE

CALL GRSVD(NAU SNV ;M Ny As WsMATU,UsMATVeVsByIRHSSIERR,RV1)
FETURN

USE MODIFIED ALGCRITHM

0O !0 I=1,M

D C10J=1N
U(Y »Jd) =A(T,J)
TRI ANGULARIZE U BYHOUSEHNDLDER TRANSFORMATIONS sUSING
W ANDRVS A STEMFORARY STORAGE.
DO ?2CI=1,N
G=0.0D0
S:OOODO
SCALE=".00D0
PERFORM SCALING OF COLUMNS TO AVOID UNNECSSARY OVERFLOW

O RUNDERFLOW

DC3 0K=1I4M

SCALE= SCALE +DABS(U(K,I))
IF (SCALE ECe 0Q.0DC)IG O T 020
0 04 0K=I,M
U(KsI) =U(KsI1)/SCALE
S =3 + U{KoT)%%x2
CONTINUE
THE VECTOR EQF THE HOUSEHOLDER TRANSFORMATIONI + EE'/H
WILLBESTORED INCOLUMNI OF U. THE TRANSFORMED ELEMENT
U(ILI)YILLBES TORED | NW(IANCT H ESCALARHI N
RVI(1).
F = U(I'I)
G = «“DSIGN(DSQRT(S),F)
H = F¥G ~ S
U(IL1) = F - G
RV1(I) = H
W(I) - SCALEZXG

I F(I.EQe N) GO TO 85
APPLY TRANSFCRMATIONS TO REMAINING COLUMNS OF A

IPY =1 4+ 1
00 50J=IP1,sN
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S = C.0DC
DO €0 K=1I,M
63 S =8 + U(Ke I)*U(K,LJ)
F = S/H
DO7 0K=1I.M
U(KsJ) = U(KsJ) + FRU(K, I)
70 CONTINUE
sQ C ONTINUE
C
C APPLY TRANSFCRMATIONS T O COLUMNS O F BIF ITRHS «GTW0
Cc
]5 ] F{(IFHSEGC«0)G O T O 20
D O 80J=1,1RHS
S = 0000
DO SO0 K=1,.M
90 S = € + UIK,IY%B(K,J)
F = S/H
D O :00K=IM
B(KsJ) = B(KyJ) ¢« FAU(K,LT)
+ 03 CONT INUE
20 CONTINUE
20 CONT | NUE
C
c CCPY RINTOZI F MATU =TRUE,
~
I F (eNOT.MATU)G O T O 300
DO 110 I=1 »
D 0110J=1,N
| F(J «CEe I) GO TO 112
Z(I1,J) = 0.900
GAOT O1:0
12 I F (J«EQe I) GO TO 114
Z(1,d) = U(TI,J)
G OTC1l110
A Z(I.1) = W(I)
10 CONTINUE
C
C- ACCUMULATE HOUSEHOLDER TRANSFORMATIONS IN U
C
D O i20IBACK=1,N
I = N - IBACK 4+ |
IPY =1 + 1
G = W(1)
H = RV1(1)
IF (1 .EQeN) GO TO 130
C
D C *40 J=IP1eN
140 U(T,.J) =10.300
C
*30 | F(H «fEQe C.0ODO)G O TO1S0
I F(IeEQe NGO TO 160
C
D O770 J=1P1sN
S = 0.CDC
DO "8 0 K=IP1sM
189 S = S + UK, I)*U(KeJ)
F = S/H
D O J70K=I,M
LCIKyJ) = UKy J) + FXU(K, I)
70 CONTINUE
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60 S = U(l.1Y/ H
DO 90 J=1 e %

90 ult &1 = U(J, 1)x%S
GO TOZ2¢CQO

50 D 02iC J=1.M

21¢C U(J.I) = 0.CDO

20C UCILI) = UlILId+ 1.000

’
20 CONTINUE

COMPUTE SVD OFF (WHICH 1S STORED INZ)

CALL GRSVDINZ gNV NN Z Wy MATU4Z4MATV,V,Bs IRHS,,IERR,RV1)

T
FORMULUXXTO OBTAI U ( WHERE R=XWY ).
BY GKSVDe. TFHEMATR]
USINGRVIA S SCRATCH SPACE,
D 022G 1=1,VWN
PO 230 J=1,4N
S = 0.000
P O 240K=1eN
240 S -8 +U(I:sK)I*XZ(K,yJ)
<30 RVI(J)- = S .
DO 2 5 0J=1+N
250G L(T,Jd) = RVIC(D)
220 CAONT | NUE
RETURN

X IS RETURNED IN Z

N
XMULTIPLYI SDONEONEROW AT ATIME,
C

FOFMRIN U BY ZEROINGTHELOWERTRIANGULARPART OF R IN U

F0C IF (N JEQ.

) GC TO 280
D Oz6CI=2sN

M1 I - 1
P 0 270 J=1,IM
270 U(l,J) = 0,000
UCI,LI) = w(I)
260 CONTINUE
20 UCil.l) = w(!)

CALL GRSVD(NAUNV,MN,N,Us ¥y MATU;U,MATV,VsBsIRHSIIERR,+RV1)

RETURN
THE BODY OF SUPROUTINE GRSVDSHOULD BE

o, . ABOLNONMANEEE LAST CARD OF HYBSVD
END
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SUBROUTINE GRSVD(NAUNV MiNy A WoMATU, U MATV,V B IRHS,IZPR,RV]1)

INTEGER ToJ oKX oL aMaNJTI sT1KKeKloLL L1 +MNJNAUJNVL,ITS,IERR,IRHS
DOJBLE PRECISION A(NAUSN) WINIZU(NAUSNISVINV,N)sB(NAU,IR4S) ,RV1(N)
DOUBLE PRECISION CosF3sGosHsSsXsY sZEPSSCALEsMACHEP

DOUSLE PRECISION DSQRT,DMAX] »DABS,DSIGN

LOGICAL MATU .MATV

THIS SUBROUTINEIS A TRANSLATIONOF THEALGOL PROCEDURESVD-
NUM. MATH.18, 3403-420(1970) BYGOLUBA N DREI CH.
HAND3OOK FORAUTODLCCMP ., VO LIf-LINE AR ALGEB A,134-151(1971).

THIS SUBROUTINEDE TERMINES THE SINGULAR VALUE DECOMPOSITION
T
A=UWYV OF AREALMBY N RECTANGULARMATRIX. HOUSEHOLDER
3IDIAGONALIZATIONAYDA VARIANT OF THE OR ALGORITHM ARE USED.
GRSEVDASSUMESMeGEeN . IFM oLTeN, THENCOMPUTE THE SI’JGULA?
T T T T
VALUEDECOMPOSITIONOF A . IF A =UWV » THEN A=VWU

GRSVDCANALS OBEUSEDT O COMPUTETHE MINIMALLENGTH LEAST SQUARES
SOLUTION TO THE JVERDETERMINZDLINEAR SYSTEM AX=Be

ON INPUT:

NAU MUSTBESET TOTFEROSADIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETERS AsU AND 8 AS DECLAREDIN THECALLING PROGRAM
DIMENSION ST ATEMENT. NOTETHAT NAUMUST BEATLEAST
AS LARGE AS M;

NV MUSTBESET TOTHFERCW DIMENSION OF THE TWO-DIMENSIONAL
ARRAY PARAMETER V ASDECLAREDINTHECALLING PROGRAM
DIMENS ION STATEMENT. N VMUSTBE AT LEAST ASLARGE ASN;3S

MIS THENUMBERO FRCWSO FA (ANDU)S
N IS THE NUMBERODOF COLUMNS OF A (ANDU)AND THE ORDEROFV;
A COJTAINS THE RECTANGULARINPUTMATRIX TO BEDECOM?®ISED;

BCONTAINS THE IRHSRIGHT-HAND~SIDESOF THE OVERDETERMINED
LINEARS Y STEMA*X=Be | F IRHSeGT«2,
THEN ON JUT2UT, THESEIRHSCOLUMNS

T

WILL CONTAINU Be¢THUS»TO COMPUTE THE MINI MAC LENGTH LEAST

+

SQUARES SOCUTI ON. ONEMUSTCOMPUTE V*w TIMES THE COLUMNS OF
+ *

8, WHERE W I SADIAGCNAL MATRIX, W (1 ) ‘I F w(I)I S
NEGLIGIBLEs OTHERWISE IS 1/W(I)eIF IRHS=0,BMAY COINCIDE
WITH A OR U ANDWILLNOTBE REFERENCED:

IPHSTS THENUMBER O FRIGHT-HAND~-SIDESOF THE OVERDETERMINED
SYSTEM A*X=Be |IRHSSHOULDBESET TOZERPOIFONLYTHZS| NGULA?
VALUEDECOMPOSITIONO F AISDESIRED;
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LDBE SET TC «TRUE«IFTHE UMATRIX

IN THE
SITION IS DESIREDyANDTIOFALSEe OTHERWISE:
THE
RWISE.

DBESET TO«TRUEIFTHE YV MATRIX IN
IONI E E

S DESIREFDs AND TO eFALSE« OTH

A TSUNALTERZD (UNLESS OVERWRITTENBY UO RV)3

W CONTAINSTHE N{NIN-NEGATIVE)SINGULAR VALUES OF A (THE
DIAGDONMAFIEMENTS OF W)e THEY ARE UNORDERED. IF AN
ERROF EXITI S WYADEs THE SXNGULAR VALUES SHOU_DBECORRECT
F O RINDICESIERR+1+JERR+2,4060¢ N3

U CONTAINS THE MATRIX U (ORTHOGONAL COLUMN VECTORS1 OF THE
DECOMPOSITIONIF MATU HAS3ZENSET TO e TRUE. OTHERWI SE
U KS USED AS ATEMPORARY ARRAY. U MAY COINCIDE WITH A.
IF AN ERRO?EXIT IS MADEs THE COL NS OF U CORRESFONDING

UM
‘T O IMDICES OF CORRECT SINGULAR LUES SHOULDBRBECORRECT;

VA
V CONTAINS THE MATRIX V (ORTHOGONA
TH
IS

L)YOF THE DECOMPOSITIONIF
MATV HASBEENSET TO «TRUE,. o} ERWISE VISNOTREFERENCED
V MAYALSOCOINCIDEWITH A IF U NOT NEEDED. IF ANERROR
EXITIS MADE, THE COLUM’JS OF V CORRESPONDING TO INDICES OF
CORRECT SINGULAR VALUES SHOULDBE CORRECT;
IERRIS SET TO
ZER O FOR NDRFAL RETURN,
K IF THE K-TH SINGULAR VALUE HAS NOTBEEN
DETERMINED AFTER 3C ITERATIONS
-1 IF IRHS oL Tee: & o
-2 IF M olT. N .
-3 I FNAU «LTeM
® g IF NV eLTe N .

RV1IS A TEMPORARY STORAGEA RR A Y .

THIS SUBROUTINE HAS BEEN CHECKED BY THE PFORT VERIFIER
(RYDER+BeGe “THE PFORT VERIFIER”, SOFTWARE -PRACTICE AND
EXPERIENCE,s VOLe4s 359-377+ 1974)FORADHERENCE TO A LARGE,
CAREFUL-Y DEFINED, PORTABLE SUBSETOF AMERICAN NATIONAL. STANDARD

FORTRAN CALLED PFORT.

ORIGINAL VERSIONOF THTS CODEI S SUBROUTINESVDI N RELEASE 2 OF

ET SP ACKe
MODIFIEDBY TONYCHAN. C(OMPeSCIl. DEPT.STANFORDUNIV.,CAQ43(S,.

I
L AS TMNOIFIED: 2 SEPTEMBER, 1976.

VIS S Y MACHE® IS A MACHINE DEPENDENT PARAMETER SPECIFY ING
THE RELATIVEPRECISIONO FFLOATINGPOINTARITAHAMETIC.
MACHEP = 16¢GDG*=(-13)FOR LONGF OR M ARITHMETIC
ON 5369 Tessse

DATAMACHER/2.,22D-15K/

TERR = 3
IF (IRHS ¢eGEe () GC TO 2
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100

120

139

140

IERR=~-1

RETURN
IF (M .GEe N )GI TO 3
IZRR=-2
RETURN
IF (NAU «GEq M) GO TO 4
I ERR=- 3
RETURN
IF (NV «GEeN) GO TOS
IZRR=~-4
RETURN
CONTI NUE
DO 1651 = 1, M
DO 190 J = 1+ N
U(TLJ) = A(T,0)
CINTINUZ
SIS lSSS HOUSEHOLDFRREODUCTIONTOBIDIAGONAL FOR e sss2222:2
G = 0.0DO
SCALE = 0.CDO
X = 0«0DD
DO 303 I = 14 N
L =1 + 1
QRV1I(I) = SCALE * G
G = 0.0600
S = 0+000
SCALE = 0.CD9

COMPUTE LEFTTRANSFIRMATIONS THAT ZEROS THE SUBDTAGONALELEMENTS
OF THE IITH COLUMN.

DN 120 K = TeM
SCALE = SCALE+DABS(U(K,I))

IF (SCALE+EQeD0DO)GO TO 210

DO 130K = 1I.M
U(KyI) =U(K9!) SCALE
S = S+U(K, I )*%x2
CONTINUE

(I,1)
DS1I GN(DSQRT(S).F)
* G S

F

= F
(I.1) = G
F (1.E N‘ GO TO 155
APPLY LEFTTRANSFORYATTONS TO REMAINING COLUMNS OF A
DO 150 J = Ls N
s = G.0DC
DO 14C K = I+ M
s = S + U(KsTI) * U(K,L,J)
F = s /H
00 150 K = IsM
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UK sJ) = U(KeJ) + F = U(K,LI)
150 CONTINUE

APPLY LEFT TRANSFORMATIONS TO THE COLUMNS OF B IF TRHS «GTe O

55 I FCIRHS ¢EQ.0)G O T 0190
D31 6 0J=1, IRHS
S=0.0D9
DO 170K=1,M
170 S = S + UIK,I1)4B(K,J)
F = S/H
DO 180K=1I,M
180 B(K+JS) = B(KeJ) + FRXU(K.I)
160 CONTINUE
COMPUTE RIGHT TRANSFORMATIONS »
190 DO 200 K = T+M
200 U(KsI) = SCALEZ*®U{K,I)
210 W(I) = SCALE* G
G = 04000
S = 0.9200
SCALE = 0.,0D0
IF (I eGT e M «0DRe | eEQe N} GO TO 290
DO 220 K = Ls N
220 SCALE = SCALE+ DABS(U(TI,K))
IF (SCALEeEQe QeCDO)GO TO 290
DO 23C K = Ls N
U(IsK) = U(IWK)/SCALE
S =S +U(l,K)¥%2
230 CONT INUE
F = U(l,L)
G = —DSIGN(DSQRT(S),F)
H = F | G - S
uctr,L)= F -G
DO 240 K = Ly N
240 PVI(K) = U(l.,K) /7 H
| F{I «EQe M) GO TC 270
00 260 J = LM
S = C.9200
DO 250 K = LN
250 s = S + UCJsK)* UT ,K)
DO 26C K = Ls N
UCJ XK ) = U(JeK) + S *x RV1(K)
260 CONTI NUE
2790 DO 280 K = Ly N
280 U(T sK) = SCALE*®U(]I,K)
29c X = DMAXI(X,DA3S(W(I))+DABS(RVI(I)))
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300

320

340

350

360

380

390

400

41c

420

430

440

CONT INUE
%% s 2222 ACCUMULATION OF RIGHT-HAND TRANSFORYATIONS 22222222
| FCeNOTe MATV)GO TO 410
2222222222 FOR I=N STEP-1UNTILI DO --%%%%cecscene
DO &40C 1 1 =15 N
I =N ¢+ 1 -11
IF (I <EQe N) GC TO 39
Il FIG «£QeCe0DN)G O TO 360
30 320 J =Ls N
® . -%z-*.:: DOUBLEDIVISION AVOIDS POSSIBLE UNDERFLOW *%*%**2ee
VIJ,1) = (U(T,J) 7 U(CT,L)) 7/ G
30 353 J =Ls N
S =Cr.000
DO 340 K = ULUse N
s = S + U(I,K) * V(K,J)
DO 353 K = Le N
VIKsJd) = VI(KeJ)+ S ¥ VIK,1)
CONT I NUE
DN 380 J = Ls N
V(I«Jd) = 0.000
V(JeI) = 0.0D0
CON TI NUE
V(Is1) = 1.0D9
G = RVI(1)
L =1
CONTI NUE
232282 ACCUMULATION OF LEFT-HAND TRANSFORMATIMNNG® **.° %= %
IF («NOTe MATU)GOT 0510 . .
SIS IFORI=MIN(M N)ISTEP=-ITUNTILI1 DO -- L
MN = N
IST(M+LTaN) MN = NV
DO 56&T1 =1, MN
I = MN + 1 - 11
L = 1 + 1
G = w(1)
IF (1 «EQe N) GO TO 430
DO 420 J = Ly N
Ul +J) = NaCDO0
| F(G «eEQe 0.000) GO TO 475
I F(leEQe MN )PGO TO 460
DO 450 J = Le N
S = 0.CDC
DO 440 K = v+ M
3 = S + UKy I) ®* UK, J)
ity DOUBLEDIVISICNAVOIDS POSSIBLE UNDERFLOW 23 s3ssssose
F = (S /7 U(I,1)) 7 G
DOASG K = | o« M
UIKeJ) = U(KeJI) + F* U(KeI)
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450 CONTI NUE

460 DO 470 J=1,M
470 UtJes1) = UlJIY/ G

G O0TO490

47S DC 480 T = YoM
480 U{JsI) = 0.000
490 UCTI) = U(l,I) + 1.00C
500 CONTINUE
Doty DIAGONALIZATIONOF THEBIDIAGONAL FORM . o000
510 EPS = MACHEP % X
022l ITF O RXK=NS T EP- 1TUNTIL 1 DO --323223¢¢3s3¢
0N 700 KK = 1, N
K1 = N = KK
K = K1 + 1
ITs = €
e.e9e.00ee TEST FOR SPLITTINC.
FOR L=K STEP =1 UNTIL 1 DO - - 2232l z232
520 DO S3ALL =1, K
L1 = K - L
L = L + 1
IF (DABS(RVI (L)) oLEEPS)GO TO 565
it it .ist RIVILI)ISALWAYSZERO, SO THEREISNOEXIT
THPOUGHTHE BCTTOMOF THE LOOP2222222222
I F(DABS(W(LI1))LE«EPS)G O T 0540
530 CONTINUE
i 2s%%vwie CANCELLATION OFRVI(LYIFLGREATER THANZ1ZS223232222
540 c = 0 GDO
S = 10D0
DOS6K0 | = Ly K
F = S =RV1(I)
RV1(1) = C*RV1I(1)
IF (DABS(F) eLEeE P S)G OTQS65
G = W(I1)
ti = DSQRT(F ¥F+G%G)
w(l) = H
c =6 / H
s = =F / H
APPLYL E F TTRANSEFORMATIONS T o alF IRHS «GTe Co
I F(IRHS.ENsN)G O T 0542
DO 545J=1,IRHS
Yy=8(L1,J)
Z=8B(1,J)
B(L1,J) = Y*C + Z*S
B(l,4J) - -Y%XS +2z * ¢
545 CONT INUE
54% CONTI NUF

I F(eNDTe MATU)G OTC56 0

DO 5% J = 1, M
Y = U(J.L1)
zZ = U(J'I)
U(JsL1) = Y %X C + Z * S
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B(l,J) = —-YkS . 7Z%_C
585 CONT :NUE
582 CONTI1 NUE
I F(.NOTe MATU)GCT O 600
DO 590 J =1+ M
Y = U(J,11)
Z = U(J,1)
U(JeI1) = ¥ *x C + Z * S
U(Jel) = =Y x5 4+ z * ¢
590 CONT IYUE
600 CONTI NUE
RVI(L) = 2.0D0
RV1(K) = F
wi{K) = X
GO TO s20
11 CONVERGEYCE z3:3::2232333
650 I F (Z ¢GEe 0.IDQ)GO T O 700
crriirrir: W(K) ISMADE NON-NE
wikK) = -2
IF ( e NOTe MATVYIGO TO 7CO
DO 590 J = 1+ N
690 V(Je<) = =V(J,sK)
7 00 CONTINUE
GO TO 1001
ittt SET ERROR -- NO CONVERGENC
SINGJLARVALUEAFTER3ZITE
1CO00 I=RR = K
100 1 RETURN
sttt L AST CARD O FGRSVD ¢ - -0 =i

5k

O
T

A
o)

N S

-
M

.
-

-
.

-
-

-
-

3
e

-
-

-
.

-
-



ACKNOWLEDGEMENT.

The author would like to thank Prof. John Gregg Lewis for his
initial interest in this work and for providing the ALGOL W SVD
procedure that was used 1in the experiments. Special thanks are also
due Prof. Gene Golub, Prof. Charles Van Loan and Mr. W.Coughran for
their helpful discussions. The following persons also helped at one
time or another: Dr. C.Lawson, Prof. R-Hanson, Prof. M.Gentleman,
Prof. J.Oliger, Dr. P.Gill, Prof. J-Dennis, Mr. J.Bolstad and Dr.
J.S.Pang. Finally, the author thanks SLAC for providing the computing

time that was used.

25






(1]

(2]

(3]

(4]

(5]

(6]

REFERENCES

Golub,G,H. and Reinsch,C. (1971) "Singular Vaiue Decomposition
and Least Squares Solutions" in Handbook for Automatic Computation,
11, Linear Algebra, by J.H.Wilkinson and C.Reinsch,

Springer-Verlag, New York.

Golub,G.H. and Kahan,W. (1965) "Calculating the Singular
Values and Pseudoinverse of a Matrix,' SIAM J. Numer. Anal.,

'2, No.3, 205-224,

Lawson,C.L. and Hanson,R.J. (1974) "Solving Least Squares

Problems," Prentice-Hall, New Jersey.

Golub,G.H. and Wilkinson,J.H. (1975) "Ill-conditioned
Eigensystema and the Computation of the Jordan Canonical

Form," To appear in SIAM Review, 1976.

Hanson,R.J. (1971) "A Numerical Method for Solving Fredholm
Integral Equations of the First Kind Using Singular Values,"

SIAM J. Numer. Anal., 8, No.3, 616-626.

Andrews,H.C. and Patterson,C.L. (1976) "Singular Value
Decompositions and Digital Image Processing," IEEE
Transactions on Acoustics, Speech, and Signal Processing,

Vol. ASSP - 24, No.l, Feb. 1976.

56



(7] Bartels,R.H., Golub,G.H., and Saunders,M.A. (1970)

"Numerical Techniques in Mathematical Programming," in

Nonlinear Programming. Academic Press, New York, 123-176.
(8] Gentleman, W.M. (1972) 'Least Squares Computations by Givens

Transformations without Square Roots,' Univ. of Waterloo

Report CSRR-2062, Waterloo, Ontario, Canada.

[9] Golub,G.H. and Businger,P.A. (1965) "Linear Least Squares Solution
by Householder Transformations,' Numer. Math., 7, Handbook series

Linear Algebra, 269-276.

[10)] Stewart.G.W. (1973) 'Introduction to Matrix Computations,'

Academic Press, New York.

{11) Parlett,B.N. and Wang,Y. (1975) "The influence of the Compiler
on the Cost of Mathematical Software,' ACM TOMS, Vol.l, No.l,

March 1975, pp.35-46.

(12]) Smith,B.T. et al (1976) "Matrix Eigensystem Routines =

EISPACK Guide,' Second Edition, Springer Verlag, Lecture

Notes in Computer Science Series.

57



