
|

Stanford Artificial Intelligence Laboratory December 19 7 6
Memo AIM-294

Computer Science Department
Report No. STAN-CS- 7 6-58 6

THE EVOLUTION OF PROGRAMS:

A SYSTEM FOR AUTOMATIC PROGRAM MODIFICATION

Nachum Dershowitz and Zohar Manna

Research sponsored by

United States Air Force

and

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

Stanford Artificial Intelligence Laboratory December 19 7 6
Memo AIM-294

Computer Science Department
Report No. STAN-B-7 6-58 6

THE EVOLUTION OF PROGRAMS:

A SYSTEM FOR AUTOMATIC PROGRAM MODIFICATION

Nachum Dershowitz and Zohar Manna

ABSTRACT

An attempt is made to formulate techniques of program modification, whereby a
program that achieves one result can be transformed into a new program that uses the
same principles to achieve a different goal. For example, a program that uses the binary
search paradigm to calculate the square-root of a number may be modified to divide two
numbers in a similar manner, or vice versa.

Program debugging is considered as a special case of modification: if a program
computes wrong results, it must be modified to achieve the Intended results. The
application of abstract program schemata to concrete problems 18 also viewed from the
-perspective of modification techniques.

We have embedded this approach in a running implementation; our methods are
illustrated with several examples that have been performed by it.

T Ais research was supported in part by the Office of Scientific Research of the United States Air
Force under Contract AFOSR -76-290%9A and the Advanced Research Projects Agency of the |
Department of Defense under Contract MDA 903-76-C-0206 . The authors were also affiliated
with the Department of Applied Mathematics of the Weizmann Institute of Science during the
period of this research.

T he views and conclusions contained in this document are those of the authors and should not be

interpreted as necessarily representing the official policies, either expressed or implied, of Stanford’
University of the V. S. Government.

Reproduced in the U.S.A. Available from the National Technical information Service, Springfield,
Virginia 22161.

a

The Evolution of Programs Page 1

[. INTRODUCTION

Typically, a programmer directs more of his effort at the modification of programs that

have already been written than at the development of original programs. Even when

nominally engaged in the construction of a new program, he is constantly recycling

"used" programs and adapting basic programming principles that have already been

incorporated into other programs.

Much automatic programming research has focused on the origination of programs, but

very little of this work shows how to profit from past experience when approaching a

new problem. In this paper, we wish to emulate this latter aspect of programming in the

context of an automatic program development system. The essence of our approach lies

in the ability to formulate an analogy between two sets of specifications, those of a

program that has already been constructed and those of the program that we desire to

construct. This analogy is then used as the basis for transforming the existing program

to meet the new specifications.

We consider the debugging process as an important special case of program modification.

In our approach, the properties of an incorrect program are compared with the

specifications, and a modification (correction) sought that transforms the incorrect

program into a correct one.

Abstract program schemata are often a convenient form for incorporating programming

knowledge; they may embody basic techniques and strategies (such as the

a

Page 2 The Evolution of Programs

generate-and-test paradigm or the binary search technique). The application of these

schemata to programming tasks may also be considered within the framework of

modification. ‘A schema which achieves some abstract goal is modified (instantiated) to

achieve a concrete goal on the basis of a comparison of the abstract specifications of the

schema with the concrete specifications of the desired program.

The use of analogy in problem solving in general, and theorem proving in particular, is

discussed by Kling [197 1]. The modification of an already existing program to solve a

somewhat different task was suggested by Manna and Waldinger [1975] as part ofa

program synthesis system. Also, the STRIPS (Fikes, Hart and Nilsson[1972)) and

HACKER (Sussman[1973]) systems were to some extent capable of generalizing and

reusing the robot plans they generated.

The next section elucidates the basic aspects of our approach to program modification

with the aid of several relatively straightforward examples. More subtle facets of the

techniques are illustrated in the third section. The methods described are amenable to

automation, and have been implemented in QLISP (Wilber [1976]). All examples of

modifications that we present ran successfully on our system; a sample run may be

found in the Appendix.

The Evolution of Programs Page 3

II. OVERVIEW

Typically, program specifications are expressed in a high-level assertion language in

terms of an output specification — detailing the desired relationship between the

program variables upon termination, and an Input specification— defining the set of

“legal” inputs for which the program is expected to work. For program modification,

one is given a known correct program with its input-output specification and the

specification for a new program. Comparison of the two specifications suggests a

transformation that is then applied to the given program. Even if the transformed

program does not -exactly fulfill the specifications, it can serve as the basis for

constructing the desired new program.

1. Basic Technique: Global Transformation

In the approach to program modification presented in this paper, we stress

trapsformations in which all occurrences of a particular symbol throughout a program

are affected. Such transformations are termed "global", in contrast with “local”

transformations which are applied only to a particular segment of a program.

As a simple example, consider the following program (annotated with its output

specification) :

Page 4 The Evolution of Programs

y+ n

loop until y =0

Aly-1]«if A[2y-1]<A[2y] then A[2y~1] else 4A[2y] {1

yey-1)

repeat

assert Af 0)=min(Al n:2n]) .

Given an array A[n:2n]}, which 1s non-empty (i.e., m is non-negative), when this

program terminates, Af 0] will contain the minimum of the values of the n+1 array

elements A[n),A[n+1],.... A[2n]. This output specification is formally expressed in

the final statement: -

assert A[0}=min(Al n:2n]) .

To modify this program to compute the maximum of the array, rather than the

mipimum, we compare this specification with the desired:

assert A[0) =max(Al n:2n}))

and note that since max(A) = -min(-A) (where -A is equal to the array A with each

element negated), this is equivalent to:

- assert -Af 0) =min(-A[n:2n]}) .

Thus, the transformation " 4 becomes -A " transforms the given specification into the

desired.

Applying this transformation to the program affects only the conditional assignment:

Aly-1]«if A[2y-1]<A[2y]) then A[2y-1]) else A[2y] {1 ,

which becomes:

-A[y-1]}«if -4[2y-1]< -A[2y] then -A] 2y-1] else -A[2y] f1 .

The Evolution of Programs Page 5

It is "illegal" for the array -A to appear on the left-hand side of an assignment;

therefore, both sides of the assignment are multiplied by =1 . And since the test

-A[2y-1])<-A[2y] is equivalent to Af 2y1< A] 2y-1] | we obtain the statement:

Aly-1])eif A[2y]<A[2y-1]) then A[2y-1] else A[2y] fi ,

yielding a program that computes the maximum. Note that the array -A no longer

appears in the program; only the original A is actually used.

2. Special Case: Program Debugging

Program debugging may be considered as a special case of modification: a program which

computes wrong results must be modified to compute the desired (correct) results. If’'we

know what the “bad” program actually does, then we may compare that with the

specifications of what it should do, and modify (debug) the incorrect program

accordingly.

As an example, consider a program intended to compute the integer square-root z of the

" non-negative integer ¢ , that is, ¢ should lie between the squares of the integers z and

z+1 :

assert z2<c<(2+1)%,2z¢ N ,

where N is the set of natural numbers. The given program is:

Page 6 The Evolution of’ Programs

(z,s,t)« (1,0, 3)

loop until ¢ <s

(z, s, t)e(2+1,s+t, t+2)

repeat

assert (z-1)% < c+1< 2%, zc Nt.

But rather than computing the integer square-root of c¢, this program achieves the

relation:

assert (z-1)2<c+1<2z%,z ¢c Nt

where NT is the set of positive integers. [This follows from the fact that t=2z+1 and

s =z%-1 throughout.] The cause of the bug was the inadvertent exchange of the initial

values of z and s .

Comparing the desired assertion with the actual assertion, we note that the former may

be obtained from the latter by replacing z with 2+1 and c with c-2 . Applying the

transformation “ ¢ becomes c-7 " to the program statements affects only the exit test

c <s , which becomes c-2 <s , or equivalently ¢ £ s . The transformation " z becomes

z+1" affects two other statements: the initialization z «1 becomes Z+1«1 and the

loop-body assignment z «z+1 becomes z+1«2+2. These resultant assignments,

however, are. “illegal”, inasmuch as an expression may not appear on the left hand side of

an assignment. Instead, the expression 2+1 is given the initial value 1 by assigning

z « 0, and the value of the expression 2+1 is incremented to 2+2 by the “legal”

assignment z « Z+1.

We have thus obtained the corrected program:

The Evolution of Programs Page 7

(z, s,t) « (0,0, 3)

loop until ¢c <5

(z, 8, t) «(2+1, st, 142)

repeat

assert z2sc<(z+1)%ZEN .

Note that though this program is not exactly what the programmer intended -— we

claimed that he reversed the initial values of 2 and s — it is nevertheless correct.

3. Correctness Considerations

In the above examples, the transformed programs were correct, i.e., they did in fact

. satisfy the transformed specifications. This is not necessarily the case with any

transformation. Suppose, for example, that we are given the program:

(z, y) « (4[0], 0)

loop until y =n

yeytl

repeat

i assert z =min(A[0:n))

for finding the minimum of the array Af 0:n] , and we wish to construct a program to

find the maximum of the non-empty array Af 1:n] . The given program achieves

z =min(A[O:n J , and the output specification of the desired program is

z=max(A[1:n]). Thus, the transformations " min becomes max " and " 0 becomes 1"

suggest themselves. Though in this case applying these transformations happens to yield

Page 8 The Evolution of Programs

a correct program, such transformations of a function symbol or constant do not

necessarily preserve correctness. Were the function min not explicitly used in the

program, e.g., if the conditionalstatement:))

if Alyl<z then z« Aly] fi

were substituted for the assignment:

z « min(z,Aly]) ,

then the proposed transformation " min becomes max " would clearly not work.

It can be shown that global transformations where an input variable is systematically

replaced by a function of input variables, or an output variable by a function of output

variables ~~ as in the previous examples — always yield a program satisfying the

transformed specifications. However, transformations of function, predicate or constant

symbols — as in this last example — are not guaranteed to result in a program satisfying

the specifications.

Hence, for some transformations, correctness must be verified. In order to prove the

correctness of a program, invariant assertions are commonly utilized. Assertions are

comments which express relationships between the different variables manipulated by

the program; they relate to specific points in the program, and are meant to hold for the

current values of the variables whenever control passes through the corresponding

point., When an assertion has been proved to be consistent with the code — i.e., the

assertion holds for the current values of the variables each time control passes through

the point to which the assertion is affixed — then it is said to be invariant. [All

assertions annotating our example programs are indeed invariant.] In particular, the

The Evolution of Programs Page 9

output assertfon, associated with the point of termination, is invariant if the final values

of $he variables satisfy the assertion; a loop assertion, attached to the beginning of an

iterative loop, 1s invariant if it holds when the loop 1s first entered, and remains true

each subsequent time control passes the beginning of the loop-body. The assertion is

termed an output invariant In the former case, and a loop fnvarfant in the latter. A

program, then, may be considered correct if the output invariant implies that the output

specification is true.

Recently, invariant generation techniques have been developed and implemented (see,

e.g£., German and Wegbreit [1975 J and Katz and Manna [1976 1). They allow for the

automatic discovery of Invariants which may then be used to prove the correctness or

incorrectness of the program. Invariant assertions are essential in our approach to

debugging too, as it 1s necessary to have an idea of what the program actually does before

It can be corrected.

Global transformations are applied to all assertions, as well as to the code. Using these

transformed assertions, verification conditions’ for the new program may be obtained; if

" they hold, then the new program 1s correct. Sometimes, a verification condition that

turns out not to hold may, nevertheless, suggest additional transformations which do

succeed. Alternatively, a program segment can be synthesized that will establish the

verification conditionl for example, the initialization of a loop might be synthesized if

the condition for the current initialization is false.

Returning to the above min example, the program with its loop assertion append&d, 1s:

ES

Page 10 The Evolution of Programs

(z, y) « (A[0], 0)

loop assert z=min(A[O:y])

until y =n

ye y+l

z « min(z,Aly])

repeat

assert z-min(A[O:n]).

After application of the transformations "min becomes max "“ and “0 becomes 1", we

obtain:

(2, ¥)« (A[1}, 1)

loop assert z=max(A4[1:y])

until y =n

yeytl

z « max(z,Aly])

repeat

assert z=max(4[1:n]) .

Using the new assertions, the correctness of this max program may straightforwardly

be Shown.

4. An Application: Instantiation of Program Schemata

One important application of our program modification techniques is the instantiation of

program schemata to obtain concrete programs. A program schema is a generalized

version of some programming strategy and contains abstract predicate, function and

constant symbols, in terms of which its input-output relation is specified. This abstract

specification may then be matched with a given concrete specification and an

The Evolution of Programs Page 11

instantiation found that, when applied to the schema, yields the ‘desired concrete

program. Not all instantiations yield correct programs; therefore, a schema is

accompanied by a set of preconditions =— ‘derived from the schema’s verification

conditions == which must be fulfilled before the schema may be employed. When

satisfied, these conditions will guarantee the correctness of the new program.

As an illustration, consider the following program schema:

(z, ¥) « (k, J)

loop assert P([J:¥1)z),yel

until y=n.

yeytl

if =P(y,z) then ze f(y,z) {1

repeat

assert P([j:nlz) .

Here P({u:v],w) means (V1 cI)(usisv){(P(i,w)) and I is the set of integers. This

schema will achieve the relation P(i,2) for each integer I from Jto mn.

For this schema to be applicable, the following three preconditions must be satisfied by

. the predicate P , function f and constants J, k and n :

P(j,k) n jel

P([Jj:¥)z) An yel A y»n A -P(y+1,z) = P(LJ:y+1])f(y+1,z))

Jsn an nel

The first condition ensures that the loop invariant is initialized properly; the second is

: sufficient to guarantee that if the invariant held before execution of the loop-body, then

1t holds after; and the last condition secures termination.

Page 12 The Evolution of Programs

Programs for finding the position or value of the minimum/ maximum of an array (or of

other functions with integer domain, for that matter) are valid instantiations of this

schema. For example, say we wish to achieve the output specification Af O:n]<x, in

order to find the maximum x of the non-empty array Af 0:n] . Applying our

modification technique, we compare Af 0:n]J<x with the schema’s specification

P([Jj:nl,z). This suggests letting Jbe 0, z be x and P(uv) be A[ulsv. The

transformed preconditions, then, are:

A[0J<k An Oc I

A[O:y]<x A yel A yn A x<A[y+1] =» A[O:y+1]< f(y+1,x)

O<sn n necl .

The first may be achieved by letting k be A[0]}; the second by letting f(u,v) be

Alu], since A[0:y]<x<A[y+1] and A[y+1]}<A[y+1]; thelastistruebyvirtueof

A[O:n]} being non-empty.

Applying these transformations, viz.

J becomes 0,

k becomes A[0],

) Z becomes xX,

f(u,v) becomes Alu]

and = P(u,v) becomes A[{u] sv,

we obtain the guaranteed correct program:

The Evolution of Programs Page 13

(x, y)« (A4[0], 0)

loop assert A[O:y)sx, yel

until y = n

yeytl

if x<d4[y]Jthen xe 4[y] fi

repeat

assert Af 0:n]s x.

The compilation of a handbook of such schemata has recently been advocated by Gerhart

[1976]; their use in the context of program synthesis has been discussed by Dershowitz

and Manna [1975].

6. Using Extension

Sometimes, transforming a program or instantiating a schema only achieves some of the

conjuncts of the output specification. In such a case, it may be possible to extend the

program to achieve all the desired conjuncts by achieving the missing conjuncts at the

_ onset and maintaining them invariant until the end. Alternatively, code that will

achieve the additional conjuncts =— without “clobbering” what has already been

achieved by the program =— could be synthesized and appended at the end.

As an example of the need for extension, consider the case where it is desired that the

program above also find the position z , in the array, of the maximum x . We can

extend the above program to achieve Xx =A[zZ] by maintaining that relation as an

invariant throughout the execution of the program. Initially we want x =A4[0}=4[z],

a

Pagel4 The Evolution of Programs

so we set z « 0. When the then path is executed, we want x =A[y]=A[z] and assign

z«y; when that path is not taken, Xx is unchanged and the relation remains true.

Thus, when the program terminates, the desired relation x =A[2] will hold.

The extended program is:

loop assert A[O:y)sx,yel, x=A[z]

until y =n

yeytl

if x<A[ly] then (x, z) «(4[y], y) fi

repeat

assert A[0:n]}sx, x = A[z] .

EE

The Evolution of Programs Page! 16

III. EXAMPLES

In this section we demonstrate various stages in the evolution of one program. We begin

with a - program containing a logical error and then find and apply alternative

corrections. An abstract version, which represents an important search method

embedded in the program, is then applied and adapted to two other problems. Each, in

turn, is modified to apply to a new task.

The examples are outlined in Figure 1. They owe their motivation to Wensley [1959]

and Dijkstra [1976 J. Our modification system has successfully performed the

modification steps, including debugging and instantiation, in these examples (sometimes

resorting to the user’s expertise in theorem’ proving). An annotated trace of the first

example may be found in the Appendix.

Example I: Bad Real Division to Good Real Division

| .

* Consider the problem of computing the quotient Z of two real numbers a and b , where

Os<a <b, within a specified tolerance e , O0< e¢ . In other words, the input specification

is: -

O0<a<b A Oc<e,

and the output, specification is:

z< a/b A a/b< zte,

or equivalently:

b.z<a n a<b:(zte).

a

Pagel6éo The Evolution of Programs

[Bac Real Division]

. (1) | annotat ion
debugging

| Good Real Jivision

(2) | abstraction

BINARY SEARCH SCHEMA

(3) | instantiation (5) | instant iat ion

synthesis

Real Integer

Square-root SqjLeare-roott

(4) modification (6) | modification

extension

Array Hardware
Search Integer Divisio

Figure 1. The evolution of a division program.

(Outline of examples 1 through 6.)

The Evolution of Programs Page 17
{

In order for the problem to be non-trivial, we must assume that no general real division

operator is available (though division by two is permissible). The given program is:

BAD REAL DIVISION PROGRAM

assert 0 sa<b,0<e

(z, y)«(0, 1)

loop until y se

if be (zty) < a then ze 2z+y fi

yey/2

repeat.

The initial assertion contains the input specification which the input variables a, b

and e are assumed to satisfy. But, for example, a- 1,b=3, and e= 1/3, which

. satisfy the input specification, yield 2= 0 which does not satisfy the second conjunct of

the output specification. The bug is caused by the interchanging of the two statements

within the loop.

Before we can debug this program, we must know more about what it actually does. For

this purpose, we annotate the program with loop and output invariants. Recall that for a

relation to be a loop invariant, it must be true upon initial entry into the loop, and must

remain true after each execution of the loop-body.

We begin with the then path of the conditional statement and note that this path is

taken when be (zty) sa; thus, after resetting z to 2z+y we have b.z<a. Since

B.-z< a is true initially, when 2= 0% a, and is unaffected when the conditional test is

Page 18 The Evolution of Programs

false (the value of z is not changed), it remains invariant throughout loop execution.

We have derived then the loop invariant:

(1) b-z <a.)

The then path is not taken when a <b«(z+y).In that case y is divided in half and z is

left unchanged, yielding a <b-(z+2y) at the end of the current iteration. It turns out

that the then path preserves this relation (the value of z+2y is unchanged), and that it

holds upon initiglization (since a < 2b is implied by 0 €a <b). Thus we have the

additional invariant:

(2) a<b-(z+2y).

These two loop invariants along with the exit relation yre imply that upon

termination of the program the following output invariants hold:

b.z<a A a<b:(z+2e).

Note that the desired relation a <b- (zte) is not implied.

The annotated program =—— with invariants that correctly express what the program does

do — 1s:

The Evolution of Programs Page 19

ANNOTATED BAD REAL DIVISION PROGRAM

assert 0 ca<b, 0<e

(z, y)« (0, 1)

loop assert bez <a, a<b-(z+2y)

until y se

if b.(zt+y)<a then z «z+y fi

yey/a

repeat

assert b.z<a,a<b-(z+2e).

¢ ~. |

We now have the task of finding a transformation (correction) that transforms the

actual, output assertion into the desired output assertion:

assert bez<a,a<b.(zte),

and then applying it to the whole annotated program (statements and invariant

assertions). Accordingly, we would like to modify the program in such a manner as to

transform the insufficiently strong a <b.(z+2e) into the desired a <b-(z+e):

a <b: (z+2e) becomes a<b.(zte).

_At the same time, we must preserve the correctness of the other conjunct of the

specification:

b.-z< a unchanged.

The most obvious correction is to replace all occurrences of e€ in the program (there is

only one affected statement - the exit test y £e) with e/2:

Correction 1

Replace the exit test ys e by y<e/2.

a

Page 20 The Evolution of Programs

Additional debugging modifications are possible: we may replace b with b/2 and 2

with 2z; alternatively, we might replace a with 2a and z with 2z. Doubling z and

either halving b or doubling a in the conditional test b. (zy) sa yields a test

equivalent to b-(zty/2)<a. Transforming 2 into 2z affects two additional

statements: the initialization z « 0 becomes the “illegal” assignment 2z+« 0 , but the

equivalent original assignment z « 0 may be substituted; the assignment z «z+y of.the

then branch becomes 2z«2z+y , or z «2+y/2. No other statements are affected by

either of the two modifications; thus they both yield:

Correction 2

Replace the conditional statement with

if b-(zty/2)<a then z «2z2+y/2 f1 .

Each of these possible transformations involved one of the input variables e , a and b.

One must, however, be careful when transforming input variables, since the

transformation should be applied to the input assertion as well, possibly changing the

range of legal inputs thereby. In this case, the transformations we have performed are

all permissible: The specification 0 < e is equivalent to 0 < e/2 and therefore halving e

has no effect on the input range. Since in fact the condition a <&b | rather than a <b , is

strong’ enough to imply the loop invariants, replacing b by b/2 (or a by 2a) still

yields a program correct for inputs satisfying a <b , as is desired.

¢

Our program after correction 2, annotated with appropriately modified invariant

=

The Evolution of Programs Page 21

assertions is (all b have been replaced by b/2 and all z by 2z and the resultant

expressions have been simplified) :

assert 0 ca<b, 0<e "

(z, y)« (0, 1)

loop "assert b.z<a, a <b-(z+y) |

until y se

if b-(z+y/2)< a then z «2+y/2 fi

yey/a

repeat

assert bez<a, a <b. (zte)

This program may be slightly optimized, by evaluating the subexpression y/2 before

the conditional statement, to obtain:

GOOD REAL DIVISION PROGRAM

assert 0 €a<b,0<e

(2, y)« (0, 1)

loop assert b-zsa, a<b: (zty)

until y ge

yey/a

if b.(z+y)<a then z « zty fi

repeat

assert b.z<a,a<b(z+e).

Note that this program is the same as the original bad program, with the two loop-body

statements commuted.

Page 22 The Evolution of Programs

Example 2: Good Real Division to Binary Search Schema

¢

Consider an abstract version of the correct real division program which has just been

obtained:

BINARY SEARCH SCHEMA

(z, y)« (J, k)

loop assert P(z), Q(z+y)

until R(y)

yey/e

if P(z+y) then z «z+y fi

repeat N
assert P(z), Q(zte).

This schema is an attempt to capture the technique of binary search underlying the real

division program. It is obtained from that program by abstracting predicates that appear

in the program text and/ or assertions:

b-u<a becomes P(u),

a<b-u becomes Q(u)

and use becomes R(u).

The initial values of the variables are also abstracted:

= 0 becomes J

and 1 becomes k.

The following four preconditions on the predicates P, Q and R and constants j and k

—

The Evolution of Programs Page 23

are sufficient to guarantee correctness (they correspond to the verification conditions of

(1) the initialization path, (2) the loop-body path and (3) the loop-exit path, and (4)

termination): -

PRECONDITIONS for BINARY SEARCH SCHEMA

(1) PJ) A QUIK)

(2) ~P(z+y/2) => Q(z+y/2)

(3) Q(z+y) A R(y) = Q(zte)

(4) (3m)(R(k/2™M)) .

What we have, then, is a general program schema for a binary search within a tolerance

. with an output specification:

P(z) A Q(zte).

Clearly, the predicates P and R which appear in the schema must be primitive (that is,

available in the target language), otherwise they must be replaced by equivalent

predicates for the schema to yield an executable program. Similarly, the constants j and

k must be given, or their values determined, prior to their assignment to the variables

z and vy.

Example 3: Binary Search Schema to Real Square-root

As indicated earlier, one of the applications of our modification system is the

Page 24 The Evolution of Programs

instantiation and adaptation of program schemata to specific problems. To illustrate how

the binary search schema that we have just seen may be used, we consider the

computation of square-roots.

Suppose that we are given the task of constructing a program that finds the square-root

z of the real number ¢ , 1< c¢ , within the tolerance d ,0<d. The input specification

is:

O<d A 1<c,

and the output specification is:

vcsz A z-d<Vc,

that is, the result z may only be greater than the square-root of ¢ by less than the

given d .

In order to match this output specification with that of our schema:

P(z) ~ Q(zte),

we let the constant e be the constant expression =d (viewing z-d as zt (=d)) and

obtain the transformations: :

) P(u) becomes vesu,

Q(u) becomes u<+vc

and . e becomes -d.

Condition (2) 1s satisfied:

(2) ~(VC<zty/2) = z2+y/2 < Vc,

but we must still satisfy conditions (1), (3) and (4). To satisfy condition (1), we need

J and k such that:

The Evolution of Programs Page 25

(1) JCJ A jtk< VC. |

We note that since 1<c , we have ¥Y€< ¢ and ¢+(Z-c) =1<v¢ . Thus both conjuncts

hold when we let:)

J be C

and k be l-c.

[An alternative would have been to take =-c for k, since ¢c#{(-¢c)=0<v<C.]

For condition (3) to be satisfied, we need a predicate R such that:

(3) z+ty <ven Ry) =» z-d <TC.

By transitivity it follows that R should imply z-d <z+y and we let:

R(y) be ~d < y.

. This also satisfies:

(4) (3m)(-d=(1-c)/2™),

since -d 1s negative.

The instantiated schema is:

assert 0 <d, 1<c

(z, y) « (c, 1-c)

loop assert ¥v¢<z, z+y <v<

until -ds<y

yey/a

if vé< zty then z «z+y fi

repeat

assert vc< a, z-d <v¢

However, since P involves the square-root function itself, the conditional test is not

Page 26 The Evolution of Programs

primitive and must be replaced. It can be replaced by c <(z+y)? provided that c¢ and

z+y are non-negative, The relation 0< c¢ follows from the input specification. And the

relation 0 <z+y is in fact an invariant: initially 2+y =c+(Z-c) =1; for the then path,

y is first halved and then added to z , so the value of 2+¥ is unchanged; and if the then

path is not taken, y is increased by halving it, since y is always negative’ (by virtue of

the loop assertion Z+y <v¥c< z). Thus we have:

REAL SQUARE-ROOT PROGRAM
‘

assert 0 <d, 1<c¢c

(z, y) « (c, 1-c)

loop assert vcsz,zry < vC, 0 £ zty

until -d <y

yey/a

if c<(z+y)® then z«z+y fi

repeat

assert vcse, z-d <vC |

[We remark that the negative y makes this program appear somewhat unduly

complicated; replacing y with -y throughout the program would alleviate this.]

Example 4: Real Square-root to Array Search

In this example, we demonstrate how the above square-root program may be modified to

obtain a program that searches for the position z of an element b in an array A[1:n]

that 1s sorted in ascending order.

I

The Evolution of Programs Page 27

We begin by comparing the output specifications of the desired program with those of

the given program. We want z = pos(4,b) , where pos(A4,b) is the position of the

element b in the array A. The function pos is the inverse of the array indexing

function, i.e., if z = pos(A4,b), then b =A[z] . We shall allow indexing the array by real

numbers, in which case the array element intended by A[u] is found by truncating u

to an integer. It is therefore sufficient if:

pos(A,b)< 7 A 7 < pos(A,b)+1.

[For simplicity we assume that b appears exactly once in Af 1:n] . Nevertheless, the

program we derive is correct in the more general case where the number of occurrences

ofb is unspecified>- in that case, pos ‘is extended to yield the (possibly empty) set of

positions of b and z ¢ pos(A,b) is desired.]

For the square-root program we had:

vcsz n z-d< Vc.

Comparing the first con juncts suggests the transformation:

v¢ becomes pos(4,b);

to obtain this, we can use:

C becomes pos(4,b)%.

Applying this transformation to the second conjunct of the square-root specification

yields z-d < pos(A,b), while we desire z <pos(A4,b)+1 , suggesting the additional
transformation:

d becomes 1.

Page?2S8 The Evolution of Programs

Applying these transformations to the square-root program, the exit test =d <y becomes

-1 «cy. The conditional test c <(z+y)? becomes pos(4,b)° <(z+y)?, which is

equivalent to pos(A,b)sz+y (since both pos(A4,b) and z+y are non-negative). This

contains the non-primitive function pos , but we can test b £ Af z+y] instead (since A

1s sorted). Thus, we have the transformed program:

(z, y) « (pos(A,b)2, 1-pos(4,b)?)

loop assert pos(A,b)<z, z+y <pos{ Ab), 0 <z+y

until =1sy

yey/a

if b < Al z+y] then z «z+y fi

repeat _

assert pos(A,b) <z, 7 <pos(4,b)+1.

It is, however, clearly unsatisfactory, since expressions involving pos appear in the

initialization. Furthermore, applying the transformation to c¢ in the input assertion

1< cc of the square-root program yields 1< pos(4,b)? which does not hold if

pos(A,b) =1 . The loop invariant, though, can be initialized in another manner. Since

we are given that b appears within the segment A[1:n] , we can achieve the relation

pos(A,b)< z by initializing z to n , and we achieve 0s<z+y <pos(A,b) by insisting

that z+y= n+y =0, for which we initialize y to -n. [Replacing the initialization in

general requires rechecking the termination condition; in this case, for termination

(3m) (-1s-n/2M) must hold, as indeed it does.]

We have obtained the program:

I

The Evolution of Programs Page 29

¢

ARRAY SEARCH PROGRAM

assert sorted(A), b ¢ Al 1:n] :

(z, y)« (n, =n)

loop assert pos(A,b) sz, z+y< pos(A,b), 0s zty

until -1 cy

y «y/2

if b <A4[z+y] then ze«2z+y fi

repeat

assert pos(A,b) <z, 7 <pos(4d,b)+1

Example 5: Binary Search Schema to Integer Square-root

For this example we return to our binary search ‘schema:

Preconditions:

(1) P(j) n Q(j+k)

(2) -~P(z+y/2) = Q(zty/2)

(3) Q(z+y) A R(y) = Q(zte)

(4) (Im)(R(k/2™))

Schema:

loop assert P(z), Q(z+y)

until R(y)

yey/a

if P(z+y) then z «2z+y fi

repeat

assert P(z), Q(z+e),

EE

Page 30 The Evolution of Programs

and illustrate how it may be applied to the computation of integer square-roots. This

will necessitate extension and the synthesis of an initialization loop (which have not

been completely implemented in our system). “Consequently, this example is more

complex than the previous one.

We would like to construct a program that finds the integer square-root Z of a

non-negative integer ¢ . In other words, z should be the largest integer whose square is

not greater than c. Thus, the input specification is:

c ¢ N,

and the output specific&ion is:

z?<c n c<(z+1)° Aze¢ N .

Comparison of this output specification with that of our schema:

P(z) an Q(zte),

suggests letting:

P(u) be u’ < c,

Q(u) be c<u’

and e be I.

In addition, we will have to ensure that the final value of z is a non-negative integer.

Clearly, condition (2) is satisfied:

(2) ~((zty/2)%s cc) 3 c <(z+y/2)°.

To satisfy:

(3) c <(z+y)? AR (y) =» c<(2t1)?

The Evolution of Programs Page 31

we let:

Ry) be (zty)®s(2+1)2

We are left with the initialization and termination conditions:

(1) JfscA c<(j+k)?

(4) (3m) ((z+k/2™)% < (2+1)%).

In order to satisfy the initialization condition we form the goal:

achieve j%sc,c<(Jj+tk)? .

This conjunctive goal may be split into two consecutive ones:

achieve jésc

achieve c <(j+k)? .

Since c is specified to be non-negative, we can solve the first by letting:

Jj be 0.

i.e., z is initialized to 0 . For the second we need now achieve c <k?,

Our partially written program is:

Page 32 The Evolution of Programs

assert ¢ ¢ N

zZe«0

achieve c <k?

yek

loop assert zZ<c, c <(z+y)?

until (z+y)°<(z+1)%"

if (z+y)?< c then z «z+y fi

repeat

assert z°<c,c<(z+1)?

achieve z ¢ N

assert z°<c, cc (z+1)%,z¢ N .

At this point we have a choice: in order to achieve z ¢ N , either we first execute the

loop and then adjust z to satisfy the additional goal z ¢ N while preserving the

relationships z?< c and c¢ <(z+1)? achieved by the loop, or we achieve z ¢ N first and

then preserve it throughout the loop computation.

The extension technique suggests preserving z ¢ N throughout loop computation. [This

is, in fact, the more efficient of the two choices.] Initially z = 0 ¢ N , but since z is

sometimes incremented by y , the latter should also be a non-negative integer.

Assuming that z and y are non-negative, the exit test (z+y)2=<(2z+1)? can be replaced

by y £1 . Furthermore, y is non-zero (since at the start of the loop 0 <v¢C<k =y and

the only operator applied to y is halving), so, under the assumption that y is an

integer, we need only test for y =7.

Finally, in order for y to remain in N while it is repeatedly halved until it equals 1,

we must have y 2’. So initially, when y =k, we insist that k ¢2V , and accordingly

ES

The Evolution of Programs Page 33

add the conjunct k ¢2V¥ to the initialization subgoal ¢ <k?. Note that now, with

k ¢2N, the termination condition:

(4) (3Im)((z+k/2M)%<(2+41)?)

clearly holds.

Thus far, we have the partially written program:

assert ¢ ¢N

Ze 0

achieve c¢ <k2,k¢2N

ye«k

2 2 N
loop assert 2°sc,c<(zty)5, ze N, ye

until y = 1

yey/2

if (z+y)2<c then ze z+y fi

repeat

assert z2sc,c<(z+1)%,z¢ N .

The unachieved subgoal:

achieve c¢ <k% k¢2V

must now be synthesized. We would first attempt to achieve this goal one conjunct at a

time. The first conjunct might be achieved by letting kK =¢+1 , while the second could

easily be achieved by letting kK =1 . However, though each conjunct is achievable by

itsélf in this manner, achieving both together is more difficult, since these two solutions

in general conflict with each other.

Page 34 The Evolution of Programs

So, we transform this conjunctive goal into an iterative loop, choosing first to achieve

k ¢ 2” by letting k = 2%= 1, and then to keep it true while executing the loop until the

remaining conjunct, c <k?, is also satisfied. ‘Within the loop, doubling k with each

iteration will preserve the invariant k e2¥ while making progress towards the exit test

c < k?. [The reasoning is as follows: We know that k should be increasing, since

initially k =1 and ultimately we want 0 sv€<k. Since we wish k= 2' for some

natural number n to remain invariant while £ increases, it follows that the exponent

n also increases. Doubling k increments the exponent by 1.]

We have obtained the following initialization:

assert ¢ ¢ N

loop assert k 2

until ¢ <x?

ke2k

repeat

y«k

Note that the last assignment y « kis superfluous; it may be eliminated if we replace

all occurrences of k in the code with y . With this change, we have the integer

square-root program:

The Evolution of Programs Page 35

INTEGER SQUARE-ROOT PROGRAM

assert ¢ ¢ N :

loop assert y ¢2V

until c <y?

yay

repeat

loop assert z°sc,c<(z+y)5,ze¢N, y e2V
until y =1

y«y/a

if (z+y)2< c then z «z#y fi

repeat

assert z° < Cc, C< (z+1)%, ze N .

Example 6: Integer Square-root to Hardware Integer Division

We wish to construct a program to compute the quotient ¢ and remainder r of two

- natural numbers a and b . Such a program could be developed from our binary search

schema in the same manner as we constructed the integer square-root program. But,

instead, we will demonstrate how to transform the just constructed integer square-root

program directly into the desired integer division program.

The program must satisfy the output specification:

O<sr A r<b A qe¢N A a=b-q+tr,

or equivalently:

(*) g<a/b A a/b<q+tl n qeN A r=a-b.q,

Page 36 The Evolution of Programs

given the input specification:

acN n beN?

(Nt is the set of positive integers). [Rephrasing specifications =— so that their

similarity with the specifications of another program or schema can be brought out — is

a non-trivial problem in its own right. Our system only finds some close variations.]

We’compare the output specification (*) with that of the square-root program:

zc c n’c<(z+1)? nze N |,

or:

zZ<vC A vC<2z+l A zc¢N,

and obtain the transformations:

Z becomes q

and v¢C becomes a/b.

To obtain the latter, we can use:

C becomes (a/b)?

(since a/b is non-negative). In addition we will have to achieve r=a-b-gq.

Applying these transformations, the exit test of the first loop, c <y? , becomes

(a/b)? <y?. Since both a/b and y are non-negative, this is the same as a/bcy or

a<b.y. Similarly the conditional fest (z+y)? < c becomes (q+y)2<(a/b)?, or

equivalently b:.(g+y)=< a.

Thus, we have the program:

The Evolution of Programs Page 37

(q, yy)+ (0, 1)

loop assert y ¢ 2N

until a <b-y

yay

repeat

loop assert qs a/b, a/b <qty,qc¢N,y c2¥
until y =1

, Yevy/2a
if be(g+y)<a then qegqgty fi

repeat

assert gq<a/b,a/b<qg+l,qgeN.

Special attention must be paid to the input specification: By applying the transformation

“ ¢ becomes (a/b)?" to the input assertion of the integer square-root program, the

. input condition for this program is obtained. We note, however, that the only fact

needed for the construction of the square-root program was 0 £c; its input

specification ¢ € N was unnecessarily restrictive. Applying the transformation to 0 <c

yields 0 s(a/b)?. Now, since this is implied by the input specification a ¢e N nb ¢ N*,

the above program is correct for any legal values of @ and b.

To achieve the additional output specification r =a-b-q , we extend the above program

to keep that relation invariantly true. So whenever ¢ is updated, it is necessary to

update r accordingly: when gq is initialized to O,r=a=b+ 0 =a; when q is

incremented to g+y, r becomes a-b:(q+y)=r-b.y,

So far we have:

Page 38 The Evolution of Programs

assert a ¢ N, b e Nt

(q, yy, r)« (0,1, a)

loop assert y ¢2¥,r-a-b. gq
until a <b.y

ye2y |

repeat

loop assert gq <a/b, afb <q+y, q <N,y¢2V,r= a-b. g
until y =1

if b. (qg+y) ca then (gq, r) «(qty, r-d.y)fi

repeat

assert g<a/b,a’/’b<qtl,qe N, r=a-b.q.

Note that the conditional test b.-(g+y)< a is equivalent to bey <a=b.q or b.y <r. The

expression b-y involves multiplication and appears three times, so a new variable u is

introduced to always equal b.-y. Substituting u for all occurrences of b.y and

updating u whenever the value of y is changed, we obtain:

The Evolution of Programs Page 39

HARDWARE INTEGER DIVISION

assert a ¢N, b ¢ Nt i
(q, y, r, u) « (0, 1, a, b)

loop assert y ¢2V, r = a-b. qg, u =by
until a <u

¢ repeat

loop assert qs a/b, a/b < qty, q ¢N, y ¢2V,

| r=a-b-q,u=by
until y =1

if usrthen (gq, r) « (qty, r-u) fi

r e peat

assert gsa/b,a/b<qg+l,qe N, r=a-b-q.

This then is the desired hardware integer division program. Its only operations are

addition, subtraction, comparison and shifting, all of which are hardware instructions

on binary computers.

Note the similarity between the extension and optimization steps in this example. In

both cases a relation was added and kept invariantly true at all points of the program.

Most of the previous examples would have profited from similar optimizations.

Page 40 The Evolution of Programs

ACKNOWLEDGEMENT

We thank Richard Waldinger for many fruitful discussions and constructive comments.

Computer time was provided by the Artificial Intelligence Center of Stanford Research

Institute.

REFERENCES

Dershowitz, N. and Z. Manna [July 1975 J, On automating structured programming,
Proc. Symp. on Proving and Improving Programs, Arc-et-Senans, France, pp.167- 193.

Dijkstra, EXW. [1976], A discipline of programming, Prentice Hall, Englewood Cliffs,
N.J.

Fikes R.E., P.E. Hart and N.J.Nilsson [Winter 1972], Learning and executing
. generalized robot plans, Artificial Intelligence, V. 3, No. 4, pp. 251-288.

Gerhart, S.L. [Apr. 1975], Knowledge about programs: a model and case study, Proc,
Intl. Conf. on Reliable Software, Los Angeles, Ca., pp. 88-95.

German, SM. and B. Wegbreit [Mar. 1975], A synthesizer of inductive assertions,
IEEE Trans. on Software Engineering, V. SE- 1, No. 1, pp. 68-73.

Katz, S.M. and Z. Manna [Apr. 1976], Logical analysis of programs, CACM, V. 19, No.
4, pp. 188-206,

Kling, R.E. [Aug. 197 1], Reasoning by analogy with applications to heuristic problem
solving: a case study, Ph.D. thesis, Stanford U., Stanford, Ca.

Manna, Z. and R.J. Waldinger [Summer 1975], Knowledge and reasoning in ,
‘program synthesis, Artificial Intelligence, V. 6, No. 2, pp. 175-208.

Sussman, G.J. [Aug. 1973], A computational model of skill acquisition, Ph.D. thesis,
MIT, Cambridge, Mass.; also published as A computer model of skill acquisition,
Anierican Elsevier, New York, N.Y.(1975).

Wensley, J.H. [Jan. 1959 }, A class of non-analytical iterative processes, Computer J.,
V.1, No. 4, pp. 163-167.

Wilber, B.M. [Mar. 19761,A QLISP reference manual, Tech. note 118, Artificial
Intelligence Center, Stanford Research Institute, Menlo Park, Ca.

The Evolution of Programs Page 41

APPENDIX

The following 1s a QLISP trace of Example 1 (the debugging of the real division

program), as executed by our modification system. The steps and expressions differ

somewhat from the example as presented in the previous section. The trace has been

edited and annotated to enhance its understandability. False leads that the system

followed are also included.

The procedure MODIFY nodifies a programto achieve a new goal. Here it 1s used to debug a

real division program

MODI FY:

This 1s the annotated-given bad program:

((Assert (AND (LTQ 0 a) (LTa (TiMEs 2 B)) (Lt 0 E)))
(SETQ Z 0) (SETQ Y 1)
{LOOP (ASSERT (AN@ (LTQ (TIMES B 2) A) (LT A (TIMES B (ADD Z (TIMES 2 Y))))))

(UNTIL (LTQ Y E))

(IF (LTQ (TIMES B (ADD Z Y)) A THEN (SETQ Z (ADD Z Y)) FI)
(SETQ Y (DIV2 Y))

REPEAT)

(ASSERT (AND (LTQ Z (DIV A B)) (LT (DIV A (TIMES 2 B)) (ADD (DIV Z 2) E)))))

prefaced by an input assertion, containing the conditions under which the invariants hold,
and followed by output invariants. W desire that the program achieve the output
specification: |

(assert (aD (LTQ z (piva B)) (Lt (DIV AB) (abD z E))))

with the legal inputs defined by the following input specification:

) (ASSERT(AND (LTQ 0 A) (LTA B) (LT0 E)))

Note that this specification differs from the input assertion of the program

The system begins by applying the function MATCHto conpare the output invariant with the
desired output specification:

MATCH: (AND (LTQ Z (DIV A B)) (LT (DIV A (TIMES 2 B)) (ADD (DIV Z 2) E)))
| "(AND (LTQ Z (BIV A B)) (LT (DIVA B) (ADD Z E)))

The first conjuncts of both are the same, and the system conpares the second conjuncts. It
, notices that if the expression (TIMES 2 B) could be transforned into B and (DIVZ 2) into

Z. then the whole conjunct would transform as desired. So it calls the function INVERT,
which suggests the transformation "B becomes (DIV B 2)" for (TIMES 2 B):

INVERT: (TRANSFORM (TIMES 2 B) B)

result= (TRANSFORMB (DIV B 2))

a

Page 42 The Evolution of Programs

and simlarly for (DIV Z 2):

INVERT: (TRANSFORM (DIV Z 2) 7)

result= (TRANSFORMZ (TIMES 2 7)) :

Thus, the system has found transformation 1:

((TRANSFORMB (DIV B 2)) (TRANSFORMZ (TIMES 2 Z)))

But first, the system must apply this transformation to the first conjunct:

TRANSFORM EXPRS: (LTQ Z (DIV A B))

result= (LTQ (TIMES 2 Z) (DIV A (DIV B 2)))

and prove that the conjunct remains true, i.e.,

(IMPLIES (LTQ (TIMES 2 Z) (DIV A (DIV B 2)))

(LTQZ (DIVA B)))

Before proceeding, the system looks for additional possible transformations. Since ADD is
commutative, an attenpt is also made to match (ADD (DIVZ 2) E) with (ADD E 7). This,
together with (TRANSFORMB (DIV B 2)), yields transformation 2:

((TRANSFORMB (DIV B 2)) (TRANSFORME Z) (TRANSFORMZ (TIMES 2 E)))

However, this set of transformmtions is disqualified, since there is no way to transform
the vari able Z into the constant expression (TIMES 2 E).

Continuing in its search for alternative transformations, the system also finds equivalent

formulations of the specifications, e.g.:

(AND (LTQ (TIMES BZ) A (LT A (ADD (TIMES B 7Z) (TIMES 2 B E))))

(AND (LTQ (TIMES BZ) A) (LT A (ADD (TIMES B Z) (TIMES B E))))

Comparing them yields transformation 3:

((TRANSFORME (DIV E 2)))

The system now calls the function TRANSFORM PROGRAM for each of the two eligible
transformations (1 and 3) in turn:

TRANSFORM PROGRAM

{ (ASSERT (aD (r1tQ0 A) (LT a (mines 2 B)) (LT 0 E)))
(SETQ Z 0) (SETQ Y 1)

(LOOP (ASSERT (AND (LTQ (TIMES B Z) A) (LT A (TIMES B (ADD Z (TIMES 2 Y))))))

(UNTIL (LTQY E))
(IF (LTQ (TIMES B (ADD Z Y)) A THEN (SETQ Z (ADD Z Y)) FI)
(SETQ Y (DIV2 V))
REPEAT)

(ASSERT (AND (LTQ Z (DIV A B)) (LT (DIV A (TIMES 2 B)) (ADD (DIV Z 2) E)))))
((TRANSFORMB (DIV B 2)) (TRANSFORMZ (TIMES 2 7)))

TRANSFORM CONST- EXPR, which transforms constants, is now called, and B is replaced by (DIV

|

The Evolution of Programs Page 43

B 2) throughout:

TRANSFORM CONST- EXPR: (TRANSFORM B (DIV B 2))

TRANSFORMVAR- EXPR transforms a variable, in this-case the variable Z becomes (TIMES 2 7):

TRANSFORM VAR- EXPR: (TRANSFORM Z (TIMES 2 7Z))

This may entail elimnating expressions from the left-hand side of assignnents. The
function TRANSFORM SETQ is used to apply (TRANSFORMZ (TIMES 2 1)) to all assignments to Z:

(SETQ 2 0)
result= (SETQ z (DIV 0 2))

and:

(SETQZ (ADDZ Y))
result= (SETQ Z (DIV (ADD (TIMES 2 7) Y) 2))

The transformed program is:

((ASSERT (AND (LQ 0 A) (LT A (TIMES 2 (DIV B 2))) (LT 0 E)))
(SETQZ (DIV 0 2)) (SETQY 1) |
(LOOP (ASSERT (AND (LTQ (TIMES (DIV B 2) (TIMES 2 Z)) A

(LT A (TIMES (DIV B 2) (ADD (TIMES 2 Z) (TIMES 2 Y))))))
(UNTIL (LTQY E))

‘ (IF (LTQ (TIMES (DIV B 2) (ADD (TIMES 2 Z) Y)) A)
THEN (SETQ Z (DIV (ADD (TIMES 2 2) Y) 2)) Fi)

(SETQY (DiV2 Y))

REPEAT)

(ASSERT (AND (LTQ (TIMES 2 Z) (DIV A (DIV B 2)))
(LT (DIV A (TIMES 2 (DIV 8 2))) (ADD (DIV (TIMES 2 Z) 2) E)))))

Non-executable statements (involving DIV) are now replaced by executable ones (DIV2) as
part of a sinplification step. The sinplified expressions have been underscored; they
include replacing TIMES by TIMES2, where possible. Thus the system obtains 1ts first

corrected program

((ASSERT (AND (LTQ'0 A) (LT A (TIMES 2 (DIV B 2))) (LT 0 E)))
. (SETQ Z 0) (SETQ Y 1)

(LOOP (ASSERT (AND (LTQ (TIMES (DIV B 2) (TIMES 2 1)) A
(LT A (TIMES (DIV B 2) (ADD (TIMES 2 Z) (TIMES 2 Y))))))

(unmie (LTO Y E))
(IF (LTQ (TIMES (DIV2 B) (ADD (TIMES2 7) Y)) A

THEN (SETQ Z (DIV2 (ADD (TIMES2 2) Y))) FI)
(SETQ Y (DIV2 V))
REPEAT)

(ASSERT (AND (LTQ (TIMES 2 Z) (DIV A (DIV 3B 2)))
(LY (piva (TIMES 2 (DIVB 2))) (app (DIV (Times 2 2) 2) EX))))

Lastly, 1t nust be proved that the transformed input assertion is inplied by the given
input specification, 1i.e.:

(IMPLIES (AND (LTQ 0 A) (LT A B) (LT 0 E))
(AND (LTQ 0 A) (LT A (TIMES 2 (DIV B 2))) (LT 0 E)))

| —

Page 44 The Evolution of Programs

and it does, since (TIMES 2 (DIVB 2)) is equal to B.

The second possible transformation, transformation 3.. is now applied:

TRANSFORM PROGRAM

((ASSERT (AND (LTQ 0 A) (LT A (TIMES 2 B)) (LT 0 E)))

(SETQ Z 0) (SETQ Y 1)

(LOOP (ASSERT (AND (LTQ (TIMES BZ) A (LT A (TIMES B (ADD Z (TIMES 2 Y))))))

(UNTIL (LTQY E))

(IF (LTQ (TIMES B (ADD Z Y)) A) THEN (SETQ Z (ADD Z Y)) FI)

(SETQY (DIV2 Y))

REPEAT)

(ASSERT (AND (LTQ Z (DIV A B)) (LT (DIV A (TIMES 2 B)) (ADD (DIV Z 2) E)))))
((TRANSFORME (DIV E 2)))

obtaining (after sinplification) a second corrected program

((ASSERT (AND (LTQ 0 A) (LT A (TIMES 2 B)) (LT 0 (DIVE 2))))
(SETQ Z 0) (SETQ Y 1)

(LOOP (ASSERT (AND~(LTQ (TIMES B Z) A) (LT A (TIMES B (ADD Z (TIMES 2 Y))))))
(UNTIL (LTO Y (DIV2 E)))
(IF (LTQ (TIMES B (ADD Z Y)) A THEN (SETQ Z (ADD Z Y)) FI)
(SETQ Y (DIV2 V))
REPEAT)

(ASSERT (AN@ (LTQ Z (DIV A B)) (LT (DIV A (TIMES 2 B)) (ADD (DIV Z 2) (DIV E 2))))))

Again it must be shown that the transformed input assertion is inplied by the input
specification:

(IMPLIES (AN@ (LTQ 0 A) (LT AB) (LT 0 E))

(AND (LTQ 0 A) (LT A (TIMES 2 B)) (LT 0 (DIVE 2))))

which is indeed true, since A<2B is inplied by A<B and 0<E/2 is equivalent to O<E.

