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Abstract.

We formalize certain rules for deriving upper bounds on the stability

number of a graph. The resulting system 1s powerful enough to

(i) encompass the algorithms of Tarjan's type and (ii) provide very

short proofs on graphs for which the stability number equals the

clique-covering number. However, our main result shows that for almost

all graphs with a (sufficiently large) linear number of edges, proofs

within our system must have at least exponential length.
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1. Introduction.

By a graph, we shall mean what 1s sometimes called a Michigan graph:

one that is finite, undirected, without loops and multiple edges. A set

S of vertices in a graph G is called independent or stable 1f no two

vertices in S are adjacent; the largest cardinality a(G) of a stable

set in G 1s called the stability number of G . Now, let G be a graph

and let t be a positive integer such that

a(G) < t ; (1.1)

how laborious is it to verify a proof of (1.1)? Of course, this question

has a direct bearing on the conjecture that P #£ NP ; in particular, the

celebrated theorem of Cook [2] suggests that it is extremely time-consuming

to verify proofs of (1.1). We shall refrain from elaborating on this

interesting point; instead, we direct the reader to [2], [14] and [1].

As for evaluating a(G), the best available algorithm is due to Tarjan

and Trojanowski [10]: its running time on a graph of order n is 0(2%/3) .

The framework of the present paper 1s quite modest: restricting the

intuitive notion of a proof rather drastically, we shall study the resulting

system of "recursive proofs". This system remains powerful enough to

“(1) encompass a certain class of algorithms that includes the Tarjan-

Trojanowski algorithm,

(ii) provide very short proofs of (1.1) for every graph G whose set of

vertices can be covered by a(G) cliques.

Nevertheless, we shall show that there are valid inequalities (1.1) whose

proofs must be excessively long. More explicitly, for every sufficiently i

large d there is a positive ¢ with the following property: for an

overwhelming majority of all graphs G with n vertices and dn edges

2



i

there are valid inequalities (1.1) whose recursive proofs must have

length at least (1+e)" . (The assumption that the number of edges of

G grows linearly withn is crucial: in fact, the conclusion fails as

soon as d 1s allowed to grow beyond every bound. For details, see

Proposition 4.1.)

At this moment, it may be worth pointing out two shortcomings that

practitioners sometimes find in results on computational complexity:

the worst case criterion and the asymptotic point of view. The first of

these objections does not apply to our result at all but the second one

certainly does: the numerical values of ¢ are very small. (One could

improve on them by taking a little more care in the computations but

even then they probably would not be very impressive.)

In Section 2, we point out those properties of random graphs which

appear in the proof of the main result: looking at small subgraphs of G ,

and then extrapolating 1n a straightforward way, one would expect a(G) to

be much larger than it actually is. In that sense, @(G) is very much a

"global parameter". And 1t 1s precisely this global character which makes

the proofs of (1.1) so long. In Section 3, we describe a certain class of

crude algorithms for evaluating a(G) and then touch briefly upon the

more sophisticated algorithmof Tarjan and Trojanowski. That section

provides the motivation for the definition of a recursive proof presented

in Section 4. The exponential that appears in our main result originates

from an upper bound on the tail of the hypergeometric distribution; it

finds 1ts way into the theorem via a lemma on binary trees which we set

) aside in Section 5,
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In the context of another NP-complete problem (namely, that of

satisfiability of Boolean expressions), there are many results similar

in spirit to ours; most of them can be found in [3]. In particular, the

proof system investigated recently by Galil [11] 1s very much like ours;

however, the similarity does not extend beyond the superficial level.
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2. Random Graphs.

In this section, we shall deal with graphs whose vertices are labeled

as V15Vps.. @ _. Two such graphs may be distinct even 1f they are
n{n-1)/2 :

isomorphic; hence their total number is 2 ( )/ , If P 1s a property

which a graph may or may not have then we shall denote by t(P,n) the

number of those graphs with n vertices which'do have the property,

Finally, we shall say that almost all graphs have the property P if the

ratio £(p,n) 2" (B1)/2 tends to one as n tends to infinity. A typical
statement of this kind appears in the following lemma. The lemma itself

seems to be a part of the graph-theoretical folklore. It appears at least

implicitly in a 1947 paper by ErdBs [5]; further refinements can be found

in works of Mstula [17], Grimmett and McDiarmid [12], ErdBs and Bollobas

[8] and perhaps others.

Lemma 2.1. Almost all graphs G of order n have the property that

a(G) < 2log n/log 2 .

Proof. Denote 2 log n/log 2 , rounded up to the nearest integer, by

k(n) . Clearly, the number of those graphs of order n for which « > kk,

divided by the number of all graphs of order n , does not exceed

( Pye k-1)/2 | (2.1)

By elementary estimations, (2.1) 1s at most

(2 pm (k-1)/2 ) , (2.2)k

"For all sufficiently large n , we have

en ome/20 1/2 <0 L99k

and so (2.1) tends to zero as n tends to infinity. J

p)



In the theory of random graphs developed by ErdBs and Rényi [8],

[0], [10], one investigates graphs with n vertices and m edges.

Clearly, the number of such graphs 1s

n

(5)
(2.3)

m

We shall denote by t(Pyn,m) the number of those graphs with n vertices

and m edges which have some property P . If m 1s a function of n

such that each m(n) 1s a nonnegative integer not exceeding n(n-1)/2

and if the ratio of t(Pyn,m) to (2.3) tends to one as n tends to

infinity then we shall say that almost all graphs with n vertices and m

edges have the property P . The following lemma has been used by Erdds in

[0] and elsewhere. (Throughout the paper, log denotes the natural logarithm.)

Lemma 2.2. If m(n) > 16n for all sufficiently large n then almost

all graphs G with n vertices and m edges have the property that

ne n m
a(G) < o log oc (2.14)

Proof. Denote the right-hand side of (2.4), rounded up to the nearest

—integer, by k(n) ; note that k(n) =» «® as n =» » . Clearly, the number

of those graphs with n vertices and m edges for which a > k , divided

by the number of all graphs with n vertices and m edges, does not exceed

n k

k m
(2.5)

(5)2

0

By elementary estimations, (2.5) does not exceed -
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en kf; _ k(k-1) \m en  om(k-1 kk ) ~ n(n-1 S| * P\ - alo-1 ’
In addition, we have

en m(k-1 em m, m

k xp - oT) ) = n log(m/n) exp - tog oy + = ‘
Since the last quantity becomes smaller than .99 for all sufficiently

large n , we conclude that (2.5) tends to zero as n tends to infinity.

Next, let us digress a little. When m,n, s are nonnegative integers

such that m < n and when t 1s a positive real number, we shall set
MN

p= m/n , denote by £ the summation over all integers J > s(ptt) and

define

h J s-J
S m n-m

m,, n-m

H(myn,s,t) = 3 —L—="¢ |
n

(n)

Thus B is the familiar "tail of the binomial distribution" and H is the

"tail of the hypergeometric distribution", The well-known interpretation

of these quantities goes as follows. Imagine a barrel containingn apples,

exactly m of which are rotten; take a random sample of s apples.

Technically, the sampling can be done in at least two ways. We might pick

- and examine the apples one by one, each time throwing the apple back into

the barrel before reaching in again: this is called sampling with

replacement. Or we might just grab the s apples at the same time:

that 1s called sampling without replacement. Whichever method we use, we

should expect about ps rotten apples in the sample. The quantities B

and H give the probability that at least (p+t)s rotten apples will

appear 1n the sample with and without replacement, respectively.

ff
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An elegant argument (apparently due to 5. N. Bernstein) shows that

ptt 1-p-t \s
p 1-pB(m,n, s,t) < ((&) ( ==) ) .

A similar bound for H seems to be far more difficult to establish.

A special case of a theorem of Hoeffding ([13], Theorem 4) states that

ptt 1-p-t \s
_D_ iHmm, 5,t) < (( =) (SX (2.6)

It is a routine matter to convert (2.6) into weaker but more tractable

bounds; we are about to do that for t = p ,

Lemma 2.3. H(m,n, s,m/n) < e~1s/Mn

Proof. If p > 1/2 then the left-hand side vanishes. If p < 1/2 then

(2.6) implies

1 1= = + - Pp .> log H(m,n, s,p) < 2plog 5 (1-2p) log (2 + 2)
1 }

< 2p logs + p < -p/k

which 1s the desired conclusion. 0

Upper bounds on H are useful in proving statements about random

graphs, such as the following one.

Lemma 2,4, Almost all graphs G with n vertices and m edges have the :

following property: every subgraph of G induced by s vertices such that
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s — log =~ (2.7)

2,2
has fewer than 2ms”/n~ edges.

Proof. Clearly, the number of those graphs which do not have the property,

divided by the number of all graphs with n vertices and m edges, does

not exceed

n S n Ss n

TCe((D,(Bm (9/5) (2.8)
By Lemma 2.3, this quantity does not exceed

S

7D (2) exp ( - HEH ) < (5 em(- 22)S n{n-1 S C12S S hn

By (2.7), we have

en m(s-1) em m m

s XP - 2 ) S Im Tog(m/n) OF 5 - 10g < .99hn In

Hence (2.8), being bounded from above by

n° log(m/n)2 (99) < 100(.99)"" Ioglw/n)/m
S

tends to zero as n tends to infinity. U
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3, Algorithms.

In this section, we shall first describe a class of crude algorithms

for finding a largest stable set 1n a graph and point out that by the use

of appropriate data structures, the running time of these algorithms can

be cut down considerably. Then we shall briefly outline a class of more

sophisticated algorithms which we shall call Tarjan algorithms,

Let us suppose that, given a graph G = (V,E) and a subset S of V ,

we wish to find a largest stable subset A of S. We may begin by

choosing a vertex veS ; the desired set A either does not contain v

or it does contain v. In the first case, A 1s a largest stable subset

of the set Sq = s—(v) ; 1n the second case, A-{v} 1s the largest stable

subset of the set s, obtained from S by deleting v with all of its

neighbors in S . We shall denote S51 by S-v and S, by S*v ; with

this notation, we have

a(S) = max(a(S-v) , l+a(sxv))

Thus we have reduced the original probleminto two similar, but smaller, )

subproblems: one for S-v and the other for S*v .

Now, an algorithm for finding a largest stable set in G suggests

-1tself: begin with S =V , do what we have just done and then simply

iterate away. One may visualize a binary tree with nodes labeled by

subsets of V . The root 1s labeled by V itself; 1f a node 1s labeled

by a nonempty set S then its left son 1s labeled by S-v and its right

son is labeled by S*¥v for some veS . If G has n vertices altogether

and 1f each vertex has fewer than d neighbors then the tree will have at

least 2/9 odes. Of course, that does not mean that the algorithm will

create at least n/a subproblems: different nodes of the tree may have -
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the same label. (To take an extreme example, note that all the leaves

of the tree will be labeled by 9 .)

We shall describe a possible implementation of the algorithm. For

definiteness, let us assume that we have a fixed "choice function" £f |

which assigns to each nonempty subset S of V a vertex f£(S) ES .

Such a function gives rise to an algorithm which we shall call the

f-driven algorithm,

In its first phase, the algorithm creates a list of certain subsets

of wv, which will be called subproblems. It will be convenient to keep

the list ordered, with larger subproblems preceding the smaller ones;

within each group of subproblems of the same size, the order may be

lexicographic. At each moment, we shall have a partial list of subproblems,

with a pointer at one of them. At the very beginning, V will be the

only subproblem on the list; the first phase will terminate as soon as

the pointer gets to § . When the pointer is at a nonempty set S ,

we define 5, = S—f (S) and ®, = S*f(S) . Then we add Sq and S, on

the list (unless they are already present), shift the pointer to the

successor of S and iterate.

In the second phase, we pass through the list in a reverse order

(from 4) to V ) and evaluate a(G) for each subproblem S . To begin

with, we have a(P) = 0 ; for each nonempty subproblem S , we have

a(s) = max(a(s;) » 1+a(s,)).

In the third phase, we shall find a largest stable set A in G .

To begin with, let us set A =f and S = V . With each iteration, the

set S will shrink; when it will become empty, A will be the desired

largest stable set in G . Each iteration is simple. If (8S)= a(sy)

then we replace S by 8; ; otherwise a(S) = L+a(8,) in which case we

add £(S) to A and replace S by Sp, .

11
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It 1s crucial to use the appropriate data structures when implementing

the first phase. Trivially, the number of subproblems on the list never

exceeds 2%. If we implement the list as a balanced tree (see [15] or [1])

then each of the look-ups and insertions can be handled within a number

of set-comparisons proportional to n . -If each f(S) can be evaluated

within a steps and 1f the total number of subproblems is Db then the

running time of the algorithm 1s 0(abn”) . For at least a few choices

of £ that come to mind, a 1s polynomial in n . In that case, Db

threatens to be the decisive factor in the upper bound.

Needless to say, the number of subproblems depends on the choice

function f ; for most functions f , that number seems difficult to

estimate. To simplify the situation, we shall restrict ourselves to

very special choice functions: when the vertices of G are ordered as

Vis Vos eeesVy the function f chooses that vertex of S which has the

smallest subscript. The resulting f-driven algorithm will be called an

order—-driven algorithm.

The following proposition and its corollaries (Propositions 3.2 -3.5)

are due to Szemerédi., In its statement, N(k) denotes the number of

stable subsets of {Vy Vp +ees vy} . Here and later on, we shall find it

—convenient to denote by S*T the subset of S resulting when all the

vertices in T and all their neighbors are deleted.

Proposition 3.1. The order-driven algorithm applied to a graph with

vertices Vis Vos ees Vy creates at most

1 + 5 min(N(k) , 2251)
k=0

subproblems.

12
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Proof. For each subproblem S , let k be the largest subscript

such that {vs Varese, } NS = §. It is not difficult to see that
0

for some stable subset B of {v;,V,...,v,} . Hence for each fixed k ,

there are at most N(k) subproblems S . In addition, if k < n then

n-k-1

there are only 2 subsets S of {ViiqseeesV,] such that v,,,€8 . O

Proposition 3.2. The order-driven algorithm applied to a graph G of

order n such that a(G) < n/2 creates at most

2 n

subproblems."

Proof. Trivially, we have

| a(G)
k .

NE) < Z (5) < nl gg)i=0

for each k ; the rest follows from Proposition 3.1, [I

Proposition 3.3. For almost all graphs G of order n , the order-

driven algorithm creates at most

) 21 + log n/log 2)

subproblems.

(The proof follows immediately from Proposition 3.2 and Lemma 2.1.)

Proposition 3.bL. If m(n)/n » « then almost all graphs G with n

vertices and m edges have the following property: for every constant

¢c >1, the order-driven algorithm on G creates o(c™) subproblems.

13
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Proof. By Lemma 2.2, we have a(G)= o(n) for almost all graphs with

n vertices and m edges; the rest follows from Proposition 3.2. u

Proposition 3.0. For every graph with n vertices, the order-driven

n-1)/2

algorithm creates at most 3.0 )/ —-1 subproblems.

Proof. We have

n-1 n-1
-k-1 . k _n-k-1 n-1)/2

> min(n(s), 225) © F mink, 2") < 5.200D/F
k=0 k=0

the rest follows from Proposition 3.1. [4

Note that the bound of Proposition 3.5 is sharp: 1t 1s attained

by the graph with vertices Vis Vr eee Vp iq and edges

V1 Vor 12 VoVor? * #2 Vi Vito . Nevertheless, 1f we can choose the ordering

of the vertices then the bound can be improved.

Proposition 3.6. Every graph with n vertices can be ordered in such

a way that the order-driven algorithm creates 0(nZ supproblems.

Proof. We shall first describe the ordering and then we shall show that

it has the desired property. Suppose that we have already constructed

"the initial segment VisVpseeesVy for some t > 0 . If the graph

H = G= {Vs Vos ee es V) 4] contains a path Wy WoW W), then we set Vgri = Ws
for 1 <i <k and iterate. Otherwise each component of H 1s a star

or a triangle. In that case, we denote bt by m and enumerate the

vertices of H as ViVi? eves Vp 100 such a way that

(1) the vertices of each component of order j are enumerated as

Vigo Vitor eee se Vit w for some 1 ,

(11) 1f that component 1s a star then Vii 1s 1ts center.

1h
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It 1s not difficult to verify that N(k) < o (3k+1)/L for each

k = 1,2,...,m . If m > Ln/7 then

i) min(N(k) , 2%51) = 0 (n23%/7) :
k=0

If m < bn /7 then we resort to another argument: note that each

subproblem has the form {Vi qs Vigor eeesV, }¥B such that 1 < k <n and

B is a stable subset of {VysVoeuesV } . Since N(m) < , (Burl) /h ,
the total number of subproblems is om) Od

It is not unlikely that the bound of Proposition 3,6 can be improved.

Let us call a number ¢ admissible if every graph with n vertices can

be ordered in such a way that the order-driven algorithm creates O(c")

subproblems; let Co denote the infimum of all admissible c¢ . By

Proposition 3.6,we have CH < 23/7 ; on the other hand, the main result
of this paper implies that Ch > 1 . What is the exact value of Co ?

Similar questions apply to the wider class of f-driven algorithms and

to the even wider class of Tarjan algorithms which we are about to outline.

As pointed out at the beginning of this section, every f-driven

algorithm applied to a graph gives rise to a binary tree whose nodes are

labeled by subproblems: 1f a node x is labeled by a nonempty subproblem

S then the left son of x 1s labeled by S-v and the right son of x

1s labeled by S*¥v for some veS . Elimination of duplications on the

. list of subproblems amounts to pruning the tree: we simply omit nodes

whose presence would result in duplicated labels. The idea of Tarjan [19]

leads to pruning of a different kind. In an f-driven algorithm, each

subproblem S is generated in the form (V-A)*B such that B is a stable

set; eventually, such a subproblem yields a stable set of size a(s)+|B| .

If another subproblem 5; is generated in the form (V-A,)*B; such that

15
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5; Cc S and 3, | < |B| then S54 can be discarded: in a sense, S51 is

dominated by S . In terms of the binary tree, we might index each node x

by the number r of right-hand turns on the path from the root to x ;

a branch rooted at a node xq (labeled by 5; and indexed by ry )

may be pruned off whenever there is another node x (labeled by S and

indexed by r ) such that $5, €8S and ry <r.

Now we have arrived at two kinds of pruning: these might be called

"duplication pruning" and "dominance pruning", the former being (in a sense)

a special case of the latter. An f-driven algorithm with the option of

using both duplication pruning and dominance pruning to eliminate subproblems

will be called a Tarjan algorithm. Of course, systematic use of dominance

pruning may shorten.the list of subproblems quite considerably. In terms

of running time, however, the means could defeat the purpose: 1n general,

it may take a very long time to decide whether the subproblem that has

been just created 1s dominated by at least one of the subproblems already

on the list. Thus it may be wise to pass up the option of (possible)

dominance pruning in most cases, resorting to 1t only in those simple

situations where the dominating subproblem is almost staring at us. Such

a strategy led Tarjan [19] to an algorithm whose worst-case running time

—for a graph with n vertices 1s 0(1.286%) . Later on, Tarjan and

Trojanowski [20] designed an improved version of that algorithm with

running time o (2/3) . It may be worth pointing out that these upper

bounds come out of rather rudimentary applications of dominance pruning

only: the argument does not take duplication pruning into account at all.

Thus, 1t 1s not inconceivable that (with the subproblems kept in a balanced

tree, so that duplication pruning 1s easy to implement) the worst-case |

running time of the Tarjan-Trojanowski algorithm is even better than :

16
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02%) . Nevertheless, the main result of this paper implies the

existence of a constant c¢ > 1 and arbitrarily large graphs G with

n vertices such that every Tarjan algorithm applied to G must create

at least ct different subproblems;' (In fact, almost all graphs with n

vertices and dn edges have this property as long as d is sufficiently

large.)

One more comment: from the practical point of view, the Tarjan-

Trojanowski algorithm might be preferable even to (hypothetical) f-driven

algorithms creating ct subproblems for c¢ fairly close to 1 . The

point 1s that the space requirements of such algorithms would be roughly

neh whereas the space required by the Tarjan - Trojanowski algorithm is

only polynomial in n .

17



4.1 Recursive Proofs.

For the moment, let us deal with an arbitrary but fixed graph

G = (V,E) . By a statement, we shall mean an ordered pair (s,t) such |

that S 1s a subset of V and t 1s a nonnegative integer. (Such a d

statement 1s to be interpreted as the 1nequality a(S) < t which, of

course, may be true or false.) By a recursive proof of a statement

(S,t) over G , we shall mean a sequence of statements

(855%) , i = 0lyeeeym (L.1)

such that (805 tg) —- 0, (8,9 ty) = (S,t) and such that each statement

(Sys ty) with k > 1 can be derived from the previous statements (8:5 t.) ’

0 <i<k, by at least one of the following two rules.

1. The dichotomy rule: from (8-v5t.) and (8%v, 5) we can derive

(5, max(t,, +t.) .
2. The monotone rule: from (S,t) we can derive (S',t') whenever

S'c S and t' >t .

Clearly, if (4.1) is a recursive proof of (8S,t) then a(s;) < ty,

for every i ; in particular, a(s) <t . Conversely, if a(S) < t then

there is a recursive proof of (S,t) . In order to see that, consider the

family F of subproblems created by some f-driven algorithm that has

just found a largest stable subset of S . Enumerate all the ordered pairs

($,a(5")) with SF as (4.1) in such a way that |S] < [8 | for
every 1 . Clearly, the resulting sequence constitutes a recursive proof

of (S,a(S) ) ; if t > a(S) then one additional application of the

monotone rule completes a recursive proof of (S,t) .

It will be convenient to define the length of (4.1) as m . Now,

Propositions 3,1-3,6 yield direct corollaries in terms of recursive |

proofs. We shall state explicitly only one of them,

18
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Proposition 4.1. If ¢ > 1 and if m(n)/n -» = then, for almost all

graphs G = (V,E) with n vertices and m edges, there are recursive

proofs of (V,a(G)) of length o(c) .

In addition, every Tarjan algorithm applied to G = (V,E) yields

a recursive proof of (V,a(G)) . Hence for every graph G = (V,E) of

order n , there is a recursive proof of (V,a(G)) of length 0(2"/3) :

Now, we shall show that for a certain class of graphs G = (V,E) ,

there exist very short recursive proofs of (V,a(G)) . This class

consists of all those graphs G for which a(G) equals Q(G) , the

smallest number of cliques whose union 1s V . (Trivially, we have

a(G) < Q(G) for every graph G .) It may be instructive to split the

argument into three easy propositions.

Proposition 4.2. If G = (V,E) is a complete graph of order n then

there is a recursive proof of (V,1) whose length is n .

Proof. Enumerating the vertices of G as Vio Vos oo Vy define

5. = {vy v, esas v. } .  Trivially, the sequence (8,0), (8151)5 0005 (S51)
- constitutes a recursive proof. (J

Proposition 4,3. Let Gy = (Vy E,) and G, = (Vos E,) be graphs such

that v; NV, = g 5 let Gy UG, denote the graph (V; Uv, , E, UE,) . If

there are recursive proofs of (V.,(Cy)) of length m, for eachJ J

j= 1,2 then there is a recursive proof of (v UV, 5 alG)) +a(G,)) whose

length does not exceed m, +m, .

Proof. If (8,,t;) with 1 = 0,1,...,m is a recursive proof of

(V,a(G,)) then a recursive proof of (V,a(Gy)) , followed by the sequence

19



-

(Vy U 8,5 (Gy )+t,) i=1,2,...5m,

constitutes a recursive proof of (vy Uv, » a(Gy) +a(G,)). LU

Proposition L4.k, Let F be a subgraph of G and let (4.1) be a recursive

proof over FF. Then there 1s a recursive proof of (85%) over G

whose length does not exceed 2m ,

Proof. We shall create the desired proof over G from (4.1) by inserting

a new statement 1mmediately before each (85%) that has been obtained

from the previous statements by the dichotomy rule. For every such (85 ty) ,

there are subscripts 1, J and a vertex ved, such that 1 <k , Jj<k,

t, = max(t, 1+t.) and 3; = 8,"v,. S. = Sv in F . The statement to
be inserted immediately before (8,5 ty) is (Sk, t,.-1) such that

Sg = S*v in G , Clearly, (Sk, t,-1) follows from (855%) by the

monotone rule whereas (8s ty) follows from (855%) and (8) 5 ty -1)

by the dichotomy rule. Cl

Proposition k,5, For every graph G = (V,E) of order n there is a

recursive proof of (V, Q(G)) whose length does not exceed 2n .

Proof. Consider the subgraph F of G consisting of ©(G) cliques

whose union equals V . By Proposition 4.2 and by repeated applications

of Proposition 4,3, there is a recursive proof of (V, 0(G)) over F

whose length equals n . The rest follows from Proposition k.k, [J

We shall close this section with another easy observation which will

be handy later. The proof can be left to the reader.
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Proposition 4.6, If (4.1) is a recursive proof over G = (V,E) and

if WCV then

1s a recursive proof over the subgraph of G induced by W .
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Do. A Lemma on Binary Trees.

Let a,b,r, s be nonnegative integers, A binary tree whose nodes

are colored red and blue will be called (a,b,r,s) -constrained if, along

each path from the root to a leaf,

(1) exactly a nodes are followed by their left sons and exactly b

nodes are followed by their right sons,

(11) at most r nodes are red,

(111) at leasts red nodes are followed by their right sons.

If, for some choice of integers a , b , r and s , there 1s at least

one (a,b,r,s) -constrained tree then we denote by f(a,b,r,s)the largest

possible number of-leaves in such a tree; otherwise we set f(a,b,r,s)= 0 ,

Trivially, we have

atb

f(ayb, r,s) < ( b )

and

f(ayb,rys) = 0 whenever s>b or s >r ,

The purpose of this section 1s to derive the following upper bound on

f(a,b,r, 5) .

-Lemma 5.1. If s > 2br/(a+b-1) , s > r-a+tl and s > 1 then

atb, ab _~br/4(at+b

First of all, we shall establish a simple recursive bound.

Fact 5.2. f(ayb, r,s) < max

Proof. Let T be an (a,b,r,s) —-constrained tree. If its root1s blue ]

then the left sub-tree is either empty or (a-l,b,r,s) -constrained and the
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right sub-tree is either empty or (a,b-1,r, s) -constrained. If the root

is red then the left subtree of T is either empty or(a-1,b,r-1,s)

—constrained and the right sub-tree of T 1s either empty or (a, b-1,r-1, s-1)

—constrained. Hence the desired conclusion. 0

Next, for every choice of nonnegative integers a , b , r , s such that

s <b , s <r , s > r-atl

we define

7S pig atb-r-1-i
F(a,b = TTT(a, » Ty s) 2. ( gti ) ( b—s—i ) :

1 =

It 1s easy to verify that

atb

F(a,b,r,0) = ( b )

| Tr
F(a,b,r,b) = (3) ,

atb-r

F(a,b,r,r) = ( a )

a+b r
F(a,b,r,r-a+l) = ( y-(2) ,

a a

whenever the left-hand side terms are defined.

Fact 5.3. We have f(a,b,r,s) < F(a,b, r,s) whenever the right-hand side

1s defined.

This inequality can be proved by induction on atb in a straightforward

| way; we omit the tedious details. It is not unlikely that there is a

direct combinatorial proof of Fact 5.3. Furthermore, it 1s not difficult
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to show that f(a,b,r,s) = F(a,b,r,s) whenever the right-hand side is

defined; however, that 1s irrelevant for our purpose.

Proof of Lemma 5.1. Wemayassume s <b and s <r for otherwise

the left-hand side vanishes. Then, by Fact 5.3,

f(a,b,r,s) < F(ayb,r,s) ,

Since r > s > 2br/(atb-1) , we have 2b/(a+b-1) < 1 and

r+i

stl > 2b bol

for every nonnegative i , Hence, with the notation of Section 2,

r+i,, atb-r-1-1i : _1y).s atb-1
( pA b—s—1 ) < H(r+i, atb-1,b, (r+i)/(atb 1)) ( b ) .

By Lemma 2.3, we hé&e

b~s
atb _a -br/L(atb)

flab, s) <2 (Tp) Sp
1=10

which implies the desired result.
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6. The Main Result.

A graph G of order n will be called (d,e) -sparse if

(1) every vertex of G has degree less than d ,

(ii) every subgraph of G induced by m vertices such that m > en

has fewer than dn” /n edges.

Theorem 6.1. Let n, t be positive integers and let d, ¢ be positive

reals such that

n < 10td ,

n > s500t2/3 a

n > 1006/* SM

n > 2000t ,

e < n°/1810t° @° ;

letG = (V,E) be a (d,¢) -sparse graph of order n , Then every recursive

proof of (V,t) has length at least

Od n

24 exp —5 (6.1)
20d

Proof, We shall set

a= Lno/45000t%4°|] , b = |n°/900td|

. and show that every recursive proof of (V,t) has length at least

atb b’

The reader may easily verify that a > b > 200 and so

Loo 200 ow oo 200 n°J Ar YP TTT .

201 45 000t?d? OL g00td®

Then it follows that (6.2) is at least (6.1).
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Let us outline our strategy. With each recursive proof of (V,t) ,

we shall associate a binary tree T whose nodes will be labeled by

statements from the proof, The assignment of labels to nodes will not

be one-to-one (to take an extreme example, all the leaves of T will be

labeled by 0 ) and so the number of nodes of T may be much greater

than the length of the proof. We shall find a node z with a certain

convenient property and then we shall construct a new binary tree T"

Even though T will not be a subtree of T in a strict sense, its nodes

will come fromT ; in particular, z will be the root of T* . Finally,

we shall show that within the set N of leaves of T* , no label is

repeated too often. _ More precisely, for each subset S of V we shall

define

N(S) = {xeN: x is labeled by (S,t') for some t'}

and prove that

ab be

IN(S)| < |u| Tan ex - =) . (6.3)
Since N will be nonempty, (6.3) will imply the desired result: indeed,

the number of those sets S for which N(S) #£ § must be at least (6.2).

Before going into the details, the reader may welcome a preview

of the idea behind the proof of (6,3), however vague such a preview may

have to be. Let (W,t*) be the statement that labels z . In the

absence of the monotone rule, the tree T° is constructed in such a

way that every subproblem S labeling a leaf of T* is obtained from

W by simply deleting a vertices and by deleting b vertices with

their neighbors. If we had our way, the subgraph H induced by W-S

would consist of a isolated vertices and b disjoint stars: in that
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case, we could reconstruct the two sets of vertices, proving that

|N(8)| = 1 . Actually, we shall be content even 1f things are not all

that clear-cut, as long as we can approximately reconstruct the two sets.

That will be the case as long as H 1s reasonably large. (If H is

large then most of the b vertices must have large degrees. At the same

time, the second defining property of a (d,€) -sparse graph implies

that the average degree in H 1s rather small. Hence the vertices of

large degrees are quite conspicuous.) In order to guarantee thatH will

be large, we have to choose z appropriately. In general, the rules

for constructing T* are designed to neutralize the desultory effects

of the monotone rule. Now that the poor reader 1s properly confused,

we can proceed to the details.

Constructing T , we shall find it convenient to call certain statements

in the proof eligible: a statement will be called eligible if it is (©,0)

or 1f it follows from some two earlier statements by the dichotomy rule.

Only the eligible statements, with a possible exception of (V,t) , will be

used to label the nodes of T . The construction of T is recursive; the

root of T is labeled by (V,t) . Suppose that we have constructed a node

x labeled by a statement (845 ty) and having no sons at this moment.

If (8s ty) = (§,0) then x will be a leaf of T . Otherwise there are

. eligible statements (855%5) 5 (8555) and a vertex veS,_ such that
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L,i<k , 8 28-v, 4 2 Sv, ty > max (t; , +t) :

In that case, we shall create both sons of x , label the left one by

(8:,%5) and label the right one by (855%5) . For further reference,

we shall set S(x) = Spe , T(x) = ty and“ v(x) = v . It will be useful

to note that

t. < t. and ts < tl (6.54)

Next, we shall find the special node z . A node y will be called

a descendant of a node x 1f there 1s a path YES ERERER SH such that

X=Xy, Y = Xp and each X:41 1s a son of X. . If, 1n addition,

exactly b nodes Xx; are followed by their right sons Xi then v

will be called a b-descendant of x . Repeated applications of (6.4) show

that

if y is a b-descendant of x then t(y) < t(x)-b . (6.5)

We claim that

there 1s a node =z such that S(z) > n/2 and such that

(6.6)
|8(y)| < |s(z)| on/2t for every b-descendant y of z ,

A node with this property can be found by constructing a certain sequence

Yr Vqs eee of nodes of T such that Yo 1s the root of T , If the most

recently constructed Ys has a b-descendant y such that

|s(¥)| > |S(v;) | -bn/2t then set Yi;7 = Y i otherwise stop. By (6.5)and

by the construction of the sequence, we have

|s(y;)| > n(1-pi/2t) , t(y;) < t-bi

for every 1 . Since t(y;) > 0 , we must have i < t/b and so

|5(v,)] > n/2 for every i . In particular, the very last Yq in the

sequence has the properties required of z . We shall denote S(z) by W .
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With each descendant x of z , we shall associate two subsets

A(x), B(x) of" V : considering the path Xr Xs esX, from x, = z
to X, =X we shall define

A(x) ={v(x;): 0 <i < k and x,, is the left son of x,} 7

B(x) = {v(x,): 0 <i < k and X.,7 1s the right son of x, } :

Clearly, we have

8G) nw| > |w| - |[(A(x) -B(x)) nW| - Z  (1+d(v)) (6.7)
veB(x)

for every descendant x of z , In particular,

if | (A(x) -B(x)) NW|< a and |B(x)| < b then s(x) # 9 : (6.8)

just observe that

atb (1+d) < 2a+bd < 3bd <n/2 .

Before proceeding to construct TT , we shall associate a node x*

with each descendant x of Zz such that

| (A(x) -e(x)) NW| < a and |B(x)| < b .

Consider the path Xp Xps wees Xp such that x . - Xe is a leaf of T

and each x.,, 1s the left son of x, Note that B(x, ) = B(x) for
every 1 . There must be at least one i such that 0 < i < k and

v(x;) eW, v(x, ) ¢ A(x) U B(x) (6.9)
for otherwise

(A(x) -B(x) ) NW = (A(x) - B(x)) NW and B(x) = B(x)

but S(x,) = § contradicting (6.8). We shall denote the first x,
satisfying (6.9) by x ; note that

(A(x") -B(x))NW = (A(x) -BX) NW .

At last, we are ready to construct T* Each of its nodes x will

come from T and satisfy
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v(x) eW , v(x) £A(x) UB(x) ,

| (A(x) - B(x))nW| <a, |B(x)| <b, B(x) ©W,

The construction of T is recursive; therootof T* 1s =z. Suppose

that we have already constructed some node x of T* j let Xr denote

the left son of x in T and let Xn denote the right son of x in T .

If |(A(x)-B(x))NW|= a then x will have no left son in T* ; otherwise

we shall make xt the left son of x in T* . If | B(x) | = b then x

will have no right son in T* ; otherwise we shall make x the right son
of x in T* . It will be useful to make note of the following property

of TV

along each path. from the root to a leaf,

exactly a nodes are followed by their left sons,
(6.10)

exactly b nodes are followed by their right sons,

and these a+b nodes x give rise to distinct vertices v(x) .

Finally, we shall prove the inequality (6.3). Without loss of

generality, we may assume that N(S) # § and so S = S(y) for some yeN .

Denote by H the subgraph of G induced by W-S(y) and denote by m the

order of H . Since y is a b-descendant of z in T , (6.6) implies that

m > bn/2t .

On the other hand, (6.7) implies that

m < atb(l+d) < 2a+bd < 3bd .

Enumerate the vertices of H as Uys Uys 0 mes Uy in such a way

du) > duu) > «oe > dun)

Since bn/2t > n’ /1809t°d" and since G is (&,e) —-sparse, the graph H

has fewer than an’ /n edges. That is,
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m !

2 dy, (u,) < 2dm™/n
1=1

Itis now easy to see that, for every positive integer =r , we have

dr (u;) < 2dm” /nr whenever 1 > r . (6.11)

We shall use (6.11) with

Let us note at once that r > 200 and so

rs 200 am
201 ° Lbd :

It will be also useful to note that

2rbd

TE ’

dnb _ 201 Son: (2 4mnr = 200= an _ 200 ICC

2br br 5
atb-1 >= = 1 (6.1%)

Ad while we are at 1t, let us also verify that

0 < 201 = bn < 201 mm
200 50t 200 25 7

1 bn m

P<1500 . 23 © Too

"So much for high-school algebra. Now, we shall set R= {u,Uy...ou.]

and prove that

2rb

B(x) NR| > 53 (6.14)

for every xeN(S) . To begin with,(6.7),(6.11)and B(x) C W imply

m < a+b +d|B(x) AR| + 2dm°b /nr .
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If (6.14) failed then we would have

m < a+b +2rbd/a + 2an°b/nr :

However, the right-hand side of this inequality 1s at most

201 1 1 1 201 \2 }
—re min ——— — mem * =(2% 25 © T1000 TZ 7 (5) :) sme

Hence (6.14) must hold.

The rest is easy, Consider the subtree of T* consisting of all

the paths from the root z to leaves in N(S) ; color each of its nodes

x red if v(x) eR and blue otherwise. By (6.10) and (6.14), this tree

is (a,b,r,2br/(atb-1)) -constrained. Because of (6.12) and (6.13),

Lemma 5.1 applies and shows that

ms) 1 (20) LR ef. 2~ b * a+b T a+b ’

By virtue of (6.10), this is the desired inequality (6.3).

Theorem 6.2. Let m be a function of n such that m(n) = o((n/log n)°)

but m(n) > 101%, for all sufficiently large n , Then, for almost all

graphs G = (V,E) with n vertices and m edges, every recursive proof

of (V,a(G)) has length at least

2

260m exp n
- n n| 350 log 5)
Proof. By Lemma 2.2 and by Lemma 2.4, almost all graphs with n vertices

and: m edges have the following two properties:

n° m *
Pl 0 < = p—(P1) (G) — log=

(P2) every subgraph induced by S vertices such that

hn’ m
s > — log —

m n

2, 2
has at most 2ms“/n” edges.
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We shall show that all sufficiently large graphs with these +o

properties satisfy the conclusion of Theorem 6.2. Let us define

k(n) = E (50 log — ’ |Tl m 2 ) ’
a(n) = Lkm/n®

in’ m
e(n) = Tr 109 3

Firstly, we shall show that every graph with n vertices and m > 10-0

edges satisfying (P2) contains an induced (d,e¢) -sparse subgraph of

order k . To begin with, 2k(n) <n . Next, an easy averaging argument

shows that G contains an induced subgraph Hy with 2k vertices and

at most bmi /n° edges. Beginning with Hy we shall construct a sequence
Hy Hise of induced subgraphs of Hy as follows: if the last constructed

Hy has a vertex v of degree at least d then set Hep = H.-v , Otherwise

stop. Clearly, 1f an H. gets constructed then H, had at least di

cdges and so i <k . In particular, the very last H in the sequence

has at least k vertices; 1in f. , we shall choose an induced subgraphH
of order k . Let W denote the set of vertices of H . py (P2), every

subgraph of H with s > ek> kn®1og(m/n) /m vertices has at most

2ms® n° < as /k edges. Hence H is (d,e¢) -sparse.

Next, by (Pl), we have

a(G) < n” log z
m n °°

On the other hand, we have

a(G) > a(H) > k/(a+1) .

For all sufficiently large n , Theorem 6.1 asserts that every proof of

(W,a(G)) has length at least
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2

90d k 360m n
g XP 3 7 To m\5

204 n ( 350 log 2)
By Proposition 4.6, this is also a lower bound on the length of every

recursive proof of (V,a(g)) . O

Let us state a special case of Theorem 6.2 in a compact form.

Theorem 6.3. For every sufficiently large integer d there 1s a

constant ¢ > 1 with the following property: for almost all graphs

G = (V,E) with n vertices and dn edges, every recursive proof of

(V,a(G)) has length at least ct

In closing, two remarks may be in order. Firstly, it would be interesting

to construct an infinite class @ of graphs for which there 1s a constant

c > 1 with the following property: for every graph G = (V,E) in ¢ and

with n vertices, every recursive proof of (V,a(G)) has length at

least ct. Secondly, it is somewhat frustrating that Theorem 6.2 does

not apply to graphs with en” edges. Perhaps the following 1s true.

Conjecture 6.4. There 1s a positive constant c¢ with the following

property: for almost all graphs G = (V,E) with n vertices, every

¢ log n
recursive proof of (V,a(G)) has length at least n .
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7. Concluding Remarks.

. There are many "natural" proof systems which extend our system of

) recursive proofs; we shall mention just a few. Tt would be interesting

to strengthen our results by proving their analogues for the extended

proof systems.

To begin with, one might adjoin the following inference rule:

from (515t7) and (855 t,) we can deduce (8, US,» ty +1t,) :

Proposition 4.3 shows that, to some extent, this rule 1s implicit in the

system of recursive proofs. Nevertheless, its addition just might make

the system considerably more powerful. Along this line, further extensions

lead to the system of cutting plane proofs which we are about to describe

briefly. Let us consider a graph G = (V,E) with vertices V)75.. 0 Orl
none of which 1s isolated. A cutting plane proof of (V,t) is a sequence

of inequalities

n

RRS EFS (i = 1,2,...,m)
such that

(1) all the numbers Ay and b, are nonnegative integers,
(11) for every k = 1,2,...,m , either the k-th inequality reads

x4x, < 1 for some edge vv or else there are nonnegative

multipliers Y1o¥ps ees Vi 1 such that

k-1 k-1

2 T1%3 = kJ ’ = vo | = ’k ’
(111) the last inequality reads > x. <t

j=1 97

It is not difficult to see that a(G)< t whenever there is a cutting plane

proofof (V,t) . The converse is easy as well: in fact, every recursive
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proof of (V,t) can be converted into a cutting plane proof of (V,t) ,

(The details are left to the reader.)

An inference rule which strengthens the monotone rule and 1s not

subsumed in the notion of a cutting plane-proof goes as follows. Let us

write S51 < Sp 1f there 1s a one-to-one mapping f: 5 - Sy such that

f(u) and f£(v) are adjacent only if u and v are. Clearly,

from (S,t) we can derive (8',t') whenever §'<§ and t' >t .

Again, it would be interesting to find out whether the addition of this

inference rule makes the system of recursive proofs considerably stronger.

Colin McDiarmid [18] investigated a proof system, similar to our system

of recursive proofs, for deriving lower bomds on the chromatic number of

graphs. We shall describe his system very briefly. Let G be a graph

whose vertices are labeled by nonempty and pairwise disjoint subsets of

{1,2,...5n} 3 let u and v be two vertices of G . We shall denote by

G' the graph obtained from G by adding the edge uv ; we shall denote by

G" the graph obtained from G by identifying u with v (in which case

the label of the new vertex is the union of the labels of u and v ).

As usual, w(G) denotes the order of the largest clique in ¢ . py a

recursive proof of [Gt] , we shall mean a sequence

[Gt] » 1 = L,2,...,m

such that, for each k , either ty < w(Gy) or else there are subscripts

i, J < k such that G; = Gp <y = Gy and t, = min(t;,t) . Clearly,

if there is a recursive proof of [G,t] then x(G) >t, . McDiarmid

has proved that, for almost all graphs with n vertices, every recursive

proof of [(x(G)] has length at least

exp(.157 n (log n) 2/2) |
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His result implies that the average running time of the Corneil-Graham

algorithm for finding the chromatic number of a graph [4] grows faster

than every exponential. On the other hand, Lawler [16] has designed an

algorithm for finding the chromatic number of a graph of order n within

0(2.45™m) steps. (Of course, these facts are of an asymptotic nature and

imply nothing about the relative merits of the two algorithms applied to

graphs with, say, 200 vertices.)

Finally, I wish to thank several friends for their help with my work

on this paper. To Colin MeDiarmid and Endre Szemerédi I am indebted for

many stimulating conversations. Persi Diaconis told me about Hoeffding's

paper [13]. David Avis, Don Knuth, Ivo Rosenberg, and Bob Tarjan read

various versions of the manuscript and made many helpful suggestions to

improve the presentation.
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