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Abstract.

We formalize certain rules for deriving upper bounds on the stability
number of a graph. The resulting system is powerful enough to
(i) encompass the algorithms of Tarjan's type and (ii) provide very
short proofs on graphs for which the stability number equals the
clique-covering number. However, our main result shows that for almost
all graphs with a (sufficiently large) linear number of edges, proofs

within our system must have at least exponential length.
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1. Introduction.

By a graph, we shall mean what is sometimes called a Michigan graph:
one that is finite, undirected, without loops and multiple edges. A set

S of vertices in a graph G is called independent or stable if no two

vertices in S are adjacent; the largest cardinality a(G) of a stable

set in G is called the stability number of G . Now, let G be a graph

and let t be a positive integer such that
a(G) < t (1.1)

how laborious is it to verify a proof of (1.1)? Of course, this question

has a direct bearing on the conjecture that P # NP ; in particular, the

celebrated theorem of Cook [2] suggests that it is extremely time-consuming

to verify proofs of (1.1). We shall refrain from elaborating on this

interesting point; instead, we direct the reader to [2], [14] and [1].

As for evaluating a(G) , the best available algorithm is due to Tarjan

and Trojanowski [10]: its running time on a graph of order n is O(2n/5) .
The framework of the present paper is quite modest: restricting the

intuitive notion of a proof rather drastically, we shall study the resulting

system of "recursive proofs". This system remains powerful enough to

(1) encompass a certain class of algorithms that includes the Tarjan-
Trojanowski algorithm,
(ii) provide very short proofs of (1.1) for every graph G whose set of

vertices can be covered by a(G) cliques.

Nevertheless, we shall show that there are valid inequalities (1.1) whose
proofs must be excessively long. More explicitly, for every sufficiently
large d there is a positive ¢ with the following property: for an

overwhelming majority of all graphs G with n vertices and dn edges



there are valid inequalities (1.1) whose recursive proofs must have
length at least (1+E)n (The assumption that the number of edges of
G grows linearly with n is crucial: 1in fact, the conclusion fails as
soon as d is allowed to grow beyond every bound. For details, see
Proposition k4.1.)

At this moment, it may be worth pointing out two shortcomings that
practitioners sometimes find in results on computational complexity:
the worst case criterion and the asymptotic point of view. The first of
these objections does not apply to our result at all but the second one

certainly does: the numerical values of ¢ are very small. (One could

improve on them by taking a little more care in the computations but

even then they probably would not be very impressive.)

In Section 2, we point out those properties of random graphs which
appear in the proof of the main result: looking at small subgraphs of G ,
and then extrapolating in a straightforward way, one would expect a(G) to
be much larger than it actually is. In that sense, a(G) is very much a
"global parameter". And it is precisely this global character which makes
the proofs of (1.1) so long. In Section 3, we describe a certain class of
crude algorithms for evaluating a(G) and then touch briefly upon the
more sophisticated algorithm of Tarjan and Trojanowski. That section
provides the motivation for the definition of a recursive proof presented

in Section k4. The exponential that appears in our main result originates
from an upper bound on the tail of the hypergeometric distribution; it
finds its way into the theorem via a lemma on binary trees which we set

aside in Section 5.



In the context of another NP-complete problem (namely, that of

satisfiability of Boolean expressions), there are many results similar

in spirit to ours; most of them can be found in [3]. In particular, the

proof system investigated recently by Galil [11] is very much like ours;

however, the similarity does not extend beyond the superficial level.



2. Random Graphs.

In this section, we shall deal with graphs whose vertices are labeled
as vl,v2,,,. w. Two such graphs may be distinct even if they are
isomorphic; hence their total number is 2n(n-l)/2 If P is a property
which a graph may or may not have then we shall denote by t(P,n) the
number of those graphs with n vertices which‘'do have the property,
Finally, we shall say that almost all graphs have the property P if the

n(n-1)/2 tends to one as n tends to infinity. A typical

ratio t(p,n)/2
statement of this kind appears in the following lemma. The lemma itself
seems to be a part of the graph-theoretical folklore. It appears at least
implicitly in a 1947 paper by ErdBs [5]; further refinements can be found
in works of Metula [17], Grimmett and McDiarmid [12], ErdBs and Bollobas

[8] and perhaps others.

Lemma 2.1. Almost all graphs G of order n have the property that

a(G) < 2log n/log 2

Proof. Denote 2 log n/log 2 , rounded up to the nearest integer, by
k(n) . Clearly, the number of those graphs of order n for which « >k,

divided by the number of all graphs of order n , does not exceed
(kn)e-k(k—l)/Q | (2.1)

By elementary estimations, (2.1) is at most

(93 o= (k-1)/2 )k . (2.2)
k
For all sufficiently large n , we have

% 2‘(](‘1)1/2 - egl/E/k < .99

(I

and so (2.1) tends to zero as n tends to infinity.



In the theory of random graphs developed by ErdBs and Rényi [8],
[9], [10], one investigates graphs with n vertices and m edges.

Clearly, the number of such graphs is

()
(2 ) - | (2.3)

We shall denote by t(P,n,m) the number of those graphs with n vertices
and m edges which have some property P . If m is a function of n
such that each m(n) is a nonnegative integer not exceeding n(n-1)/2

and if the ratio of t(P,n,m) to (2.3) tends to one as n tends to
infinity then we shall say that almost all graphs with n vertices and m
edges have the property P . The following lemma has been used by Erdds in

[o] and elsewhere. (Throughout the paper, log denotes the natural logarithm.)

Lemma 2.2. If m(n) > 16n for all sufficiently large n then almost

all graphs G with n vertices and m edges have the property that

2
n n m
a(G) < - logr—1 . (2.4)
Proof. Denote the right-hand side of (2.4), rounded up to the nearest

-integer, by k(n) ; note that k(n) -» ®» as n - » . Clearly, the number
of those graphs with n vertices and m edges for which « > k , divided

by the number of all graphs with n vertices and m edges, does not exceed

-

)
nm (2.5)
(5)

m

(

By elementary estimations, (2.5) does not exceed



(2)(- 3B < (2 (- 23))* -

In addition, we have

m(k-
( n%nl;) nlogmn ex:p( log-—+-—-—-) :

Since the last quantity becomes smaller than .99 for all sufficiently

large n , we conclude that (2.5) tends to zero as n tends to infinity. O

Next, let us digress a little. When m,n, s are nonnegative integers
such that m < n and when t is a positive real number, we shall set

*
p=m/n , denote by £ the summation over all integers j > s(p+t) and

HOICIE

, (CHe™)
()

define

B(m:ny S’t)

]

H(m,n,s,t) b3

Thus B is the familiar "tail of the binomial distribution" and H is the
"tail of the hypergeometric distribution", The well-known interpretation

of these quantities goes as follows. Imagine a barrel containing n apples,
exactly m of which are rotten; take a random sample of s apples.
Technically, the sampling can be done in at least two ways. We might pick

- and examine the apples one by one, each time throwing the apple back into
the barrel before reaching in again: this is called sampling with
replacement. Or we might Jjust grab the s apples at the same time:

that is called sampling without replacement. Whichever method we use, we

should expect about ps rotten apples in the sample. The quantities B
and H give the probability that at least (p+t)s rotten apples will

appear in the sample with and without replacement, respectively.



An elegant argument (apparently due to S. N. Bernstein) shows that

p+t _ l—P-t S
B(m)n, s;t) < ((p_%) ( l]'.P't) ) ’

A similar bound for H seems to be far more difficult to establish.

A special case of a theorem of Hoeffding ([13], Theorem 4) states that

H(mn, s,t) < (( %)wt<ﬁ%)l-pt>s , (2.6)

It is a routine matter to convert (2.6) into weaker but more tractable

bounds; we are about to do that for t =p ,

-ms/kn

Lemma 2.3, H(m,n,s,m/n) < e
Proof. If p > 1/2 then the left-hand side vanishes. If p < 1/2 then
(2.6) implies

1 1
r log H(mn,s,p) < 2plog 5 + (1-2p) log (l + -]_—;055)

< 2p logl + p < -p/h

2

which is the desired conclusion. d

Upper bounds on H are useful in proving statements about random

graphs, such as the following one.

Lemma 2,4, Almost all graphs G with n vertices and m edges have the

following property: every subgraph of G induced by s vertices such that



4
s > =~ log & (2.7)

has fewer than 2ms2/n2 edges.

Proof. Clearly, the number of those graphs which do not have the property,

divided by the number of all graphs with n vertices and m edges, does

not exceed
2 m((3) (Doms (/D)) (2.8)

By Lemma 2.3, this quantity does not exceed

(1 (-3 < T (oK)

s n(n-1

By (2.7), we have

m(s-1 em m m
— exp( _(___z > m EXP(E - lOg 1’_1 ) < .99 .

Hence (2.8), being bounded from above by
2
> (.99)% < lOO(.99)hn log(m/n)/m
S

tends to zero as n tends to infinity. O



3., Algorithms.

In this section, we shall first describe a class of crude algorithms
for finding a largest stable set in a graph and point out that by the use
of appropriate data structures, the running time of these algorithms can
be cut down considerably. Then we shall 'briefly outline a class of more
sophisticated algorithms which we shall call Tarjan algorithms,

Let us suppose that, given a graph G = (V,E) and a subset S of V ,
we wish to find a largest stable subset A of S. We may begin by
choosing a vertex veS ; the desired set A either does not contain v
or it does contain v . In the first case, A is a largest stable subset
of the set Sl = s-(v) ; 1in the second case, A-{v} is the largest stable

subset of the set S, obtained from S by deleting v with all of its

2
neighbors in S . We shall denote Sl by S-v and 82 by S*v ; with

.this notation, we have
a(s) = max(a(s-v) , l+a(s*v))

Thus we have reduced the original problem into two similar, but smaller,
subproblems: one for S-v and the other for S*v .

Now, an algorithm for finding a largest stable set in G suggests
-itself: begin with S =V , do what we have just done and then simply
iterate away. One may visualize a binary tree with nodes labeled by
subsets of V . The root is labeled by V itself; if a node is labeled
by a nonempty set S then its left son is labeled by S-v and its right
son is labeled by S¥v for some veS . If G has n vertices altogether
and if each vertex has fewer than d neighbors then the tree will have at
least En/d nodes. Of course, that does not mean that the algorithm will

d .
create at least 2n/ subproblems: different nodes of the tree may have

10



the same label. (To take an extreme example, note that all the leaves
of the tree will be labeled by §.)

We shall describe a possible implementation of the algorithm. For
definiteness, 1let us assume that we have a fixed "choice function" f
which assigns to each nonempty subset S of V a vertex f£(S) ES
Such a function gives rise to an algorithm which we shall call the

f-driven algorithm,

In its first phase, the algorithm creates a list of certain subsets
of v, which will be called subproblems. It will be convenient to keep
the list ordered, with larger subproblems preceding the smaller ones;
within each group of subproblems of the same size, the order may be
lexicographic? At each moment, we shall have a partial list of subproblems,
with a pointer at one of them. At the very beginning, V will be the
only subproblem on the list; the first phase will terminate as soon as
the pointer gets to § . When the pointer is at a nonempty set S ,
we define §; = S—-f£(S) and 82 = S*f(S) . Then we add Sl and 82 on
the list (unless they are already present), shift the pointer to the
successor of S and iterate.

In the second phase, we pass through the list in a reverse order
(from ¢ to V ) and evaluate a(G) for each subproblem S . To begin
with, we have a(¢)= 0 ; for each nonempty subproblem S , we have
a(s) = max(a(Sl): l'Fa(Se)).

In the third phase, we shall find a largest stable set A in G
To begin with, let us set A =@ and S = V . With each iteration, the
set S will shrink; when it will become empty, A will be the desired
largest stable set in G . ©Fach iteration is simple. If a(S) = a(Sl)
then we replace S by Sl ; otherwise a(S) = l+a(82) in which case we

add f£(S) to A and replace S by 82

11



It is crucial to use the appropriate data structures when implementing
the first phase. Trivially, the number of subproblems on the list never

exceeds 27 . If we implement the list as a balanced tree (see [15] or [1])

then each of the look-ups and insertions can be handled within a number
of set-comparisons proportional to n . -If each f(8) can be evaluated
within a steps and if the total number of subproblems is b then the
running time of the algorithm is O(abng) . For at least a few choices
of f that come to mind, a is polynomial in n . In that case, b
threatens to be the decisive factor in the upper bound.

Needless to say, the number of subproblems depends on the choice
function f j; for most functions f , that number seems difficult to
estimate. To simplify the situation, we shall restrict ourselves to
very special choice functions: when the vertices of G are ordered as

V1sVps eeesV. the function f chooses that vertex of S which has the

n )
smallest subscript. The resulting f-driven algorithm will be called an

order-driven algorithm.

The following proposition and its corollaries (Propositions 3.2 -3.5)
are due to Szemerédi, In its statement, N(k) denotes the number of

stable subsets of {Vl’vé""’vk} .  Here and later on, we shall find it

convenient to denote by S*T the subset of S resulting when all the

vertices in T and all their neighbors are deleted.

Proposition 3.1. The order-driven algorithm applied to a graph with

vertices Vi’ve”“’vn creates at most

n-1
1 + 2 min(N(k), 2
k=0

n-k-1
)

subproblems.




Proof. For each subproblem S , let k be the largest subscript

such that {v ,ve,...,vk} NS = p, It is not difficult to see that
‘
= [Vk+l’vk+2’ . mM@’o’I$M&

for some stable subset B of {vi,v?,...,vk} . Hence for each fixed k ,
there are at most N(k) subproblems S . In addition, if k < n then

there are only on-k-1 subsets S of {vk

+13---,Vn} such that w €S

k+1

Proposition 3.2, The order-driven algorithm applied to a graph G of

order n such that a(G) < n/2 creates at most

2 n
subproblems."
Proof. Trivially, we have
a(G)

k n
Nk) < 2 (3)<nmn
() £ 2 () < nC o))
for each k ; the rest follows from Proposition 3.ls 0O

Proposition 3.3. For almost all graphs G of order n , the order-

driven algorithm creates at most

n2(1 + log n/log 2)

subproblems.
(The proof follows immediately from Proposition 3.2 and Lemma 2.1.)

Proposition 3.k,  If m(n)/n - o then almost all graphs G with n

vertices and m edges have the following property: for every constant

¢c >1, the order-driven algorithm on G creates o(cn) subproblems.

13



Proof. By Lemma 2.2, we have &(G) = o(n) for almost all graphs with

n vertices and m edges; the rest follows from Proposition 3.2. O

Proposition 3.5. For every graph with n vertices, the order-driven
n-1)/2

algorithm creates at most 5-2( )/ -1 subproblems.

Proof. We have
n-1 n-1
-K- -k-1 -1)/2
D min(u(x), 2" ) < ¥ min(e",2") < 3.2(0"1)/2 5 ;
k=0 T k=0
the rest follows from Proposition 3.1. O

Note that the bound of Proposition 3.5 is sharp: it is attained
by the graph with vertices Vi Vpreees Vo and edges
V1 Vo1’ VoVom? ¢ ¢ ¢ Vi Vmke - Nevertheless, 1f we can choose the ordering

of the vertices then the bound can be improved.

Proposition 3.6. Every graph with n vertices can be ordered in such

n
a way that the order-driven algorithm creates O(n25 /7) subproblems.

Proof. We shall first describe the ordering and then we shall show that
it has the desired property. Suppose that we have already constructed
the initial segment Vvy,Vpye..;Vyy for some t > 0 . If the graph

H= G-{vy,VyseesV)4} contains a path Wy Wy Ws W), then we set Vy,. = W
for 1 < i <l and iterate. Otherwise each component of H is a star

or a triangle. In that case, we denote 4t by m and enumerate the

Vit 12 Vimo? + + 0« Vy in such a way that

vertices of H as
(1) the vertices of each component of order j are enumerated as

Vip1r Vigpr e oo e Vit o for some 1i ,

(ii) if that component is a star then \A is its center.

+1

1h



) < o (3k+1)/h

It is not difficult to verify that N(k for each
k =1,2,...,m . If m > Un/7 then

n-1

¥ min(m(x), 2" F 1y o 0(n23n/7)

k=0

If m < hn/7 then we resort to another argument: note that each
subproblem has the fornl{vk*l,vk+2,...,vn}*B such that 1 < k < n and
B is a stable subset of'{vi,ve,...,vm} . Since N(m) < 2(3m+l)/h s

the total number of subproblems is O(n25n/7) . O

It is not unlikely that the bound of Proposition 3.6 can be improved.

Let us call a number ¢ admissible if every graph with n vertices can
be ordered in such a way that the order-driven algorithm creates O(cn)
subproblems;%let o denote the infimum of all admissible ¢ . By

< 23/

Proposition 3.6, we have o ; on the other hand, the main result
of this paper implies that co > 1l . What is the exact value of o ?
Similar questions apply to the wider class of f-driven algorithms and

to the even wider class of Tarjan algorithms which we are about to outline.

As pointed out at the beginning of this section, every f-driven
algorithm applied to a graph gives rise to a binary tree whose nodes are
labeled by subproblems: if a node x is labeled by a nonempty subproblem
S then the left son of x is labeled by S-v and the right son of x
is labeled by S*v for some veS . Elimination of duplications‘on the
list of subproblems amounts to pruning the tree: we simply omit nodes
whose presence would result in duplicated labels. The idea of Tarjan [19]
leads to pruning of a different kind. 1In an f-driven algorithm, each
subproblem S is generated in the form (V-A)*B such that B is a stable
set; eventually, such a subproblem yields a stable set of size a(S)+|B| .

If another subproblem Sl is generated in the form(V—A.l)*Bl such that

15



5, < s and |Bj| < |B| then §; can be discarded: in a sense, 8; is
dominated by S . In terms of the binary tree, we might index each node x
by the number r of right-hand turns on the path from the root to x ;
a branch rooted at a node Xy (labeled by Sl and indexed by Ty )
may be pruned off whenever there is another node x (labeled by S and
indexed by r ) such that Sy €8 and ry <r.

Now we have arrived at two kinds of pruning: these might be called
"duplication pruning" and "dominance pruning", the former being (in a sense)
a special case of the latter. An f-driven algorithm with the option of

using both duplication pruning and dominance pruning to eliminate subproblems

will be called a Tarjan algorithm. Of course, systematic use of dominance

pruning may shorten.the list of subproblems quite considerably. 1In terms
of running time, however, the means could defeat the purpose: in general,
it may take a very long time to decide whether the subproblem that has
been just created is dominated by at least one of the subproblems already
on the list. Thus it may be wise to pass up the option of (possible)
dominance pruning in most cases, resorting to it only in those simple
situations where the dominating subproblem is almost staring at us. Such
a strategy led Tarjan [19] to an algorithm whose worst-case running time
—-for a graph with n vertices is O(l.286n) . Later on, Tarjan and
Trojanowski [20] designed an improved version of that algorithm with
running time o(fn/a) . It may be worth pointing out that these upper
bounds come out of rather rudimentary applications of dominance pruning
only: the argument does not take duplication pruning into account at all.
Thus, it is not inconceivable that (with the subproblems kept in a balanced
tree, so that duplication pruning is easy to implement) the worst-case

running time of the Tarjan-Trojanowski algorithm is even better than

16



O(En/B) . Nevertheless, the main result of this paper implies the
existence of a constant ¢ > 1 and arbitrarily large graphs G with

n vertices such that every Tarjan algorithm applied to G must create
at least cn different subproblems;' (In fact, almost all graphs with n
vertices and dn edges have this property as long as d is sufficiently
large.)

One more comment: from the practical point of view, the Tarjan -
Trojanowski algorithm might be preferable even to (hypothetical) f-driven
algorithms creating Mt subproblems for ¢ fairly close to 1 . The
point is that the space requirements of such algorithms would be roughly
ncn whereas the space required by the Tarjan - Trojanowski algorithm is

only polynomial in n

L7



4.1 Recursive Proofs.

For the moment, let us deal with an arbitrary but fixed graph

G = (V,E) . By a statement, we shall mean an ordered pair (S,t) such
that S is a subset of V and t is a nonnegative integer. (Such a

statement is to be interpreted as the inequality a(S) < t which, of

course, may be true or false.) By a recursive proof of a statement

(S,t) over G , we shall mean a sequence of statements
(Si,ti) > i = O’l,ooo’m ()‘l"ol)

such that (So,to) = P, (Sm,tm) = (S,t) and such that each statement
(Sk’ t,) with k > 1 can be derived from the previous statements (Si’ ti) ,

0 <i<k, by atleast one of the following two rules.

1. The dichotomy rule: from (S-v,ti) and (S*v,tj) we can derive
(S,max(ti,l+tj)) .
2. The monotone rule: from (S,t) we can derive (8',t') whenever

S'c S and t' >t

Clearly, if (4.1) is a recursive proof of (S,t) then oc(Si) <ty
for every i ; in particular, a(s) <t . Conversely, 1if a(S) <t then
there is a recursive proof of (S,t) . In order to see that, consider the
family F of subproblems created by some f-driven algorithm that has
just found a largest stable subset of S . ©Enumerate all the ordered pairs
(s,2(s")) with §"¢F as (4.1) in such a way that |§;| < |8;,,| for
every 1 . Clearly, the resulting sequence constitutes a recursive proof
of (S,a(8) ) ; if t >a(S) then one additional application of the
monotone rule completes a recursive proof of (S,t) .

It will be convenient to define the _length of (4.1) as m . Now,

Propositions 3.1-3.6 yield direct corollaries in terms of recursive

proofs. We shall state explicitly only one of them,

18



Proposition 4.1. If ¢ > 1 and if m(n)/n - « then, for almost all

graphs G = (V,E) with n vertices and m edges, there are recursive
proofs of (V,a(G)) of length o(cn)

In addition, every Tarjan aléorithm applied to G = (V,E) yields
a recursive proof of (V,a(G)) . Hence for every graph G = (V,E) of

order n , there is a recursive proof of (V,a(G)) of length O(En/i) .

Now, we shall show that for a certain class of graphs G = (V,E) ,
there exist very short recursive proofs of (V,a(G)) . This class
consists of all those graphs G for which a(G) equals Q(G) , the
smallest number of cliques whose union is V . (Trivially, we have
a(G) < Q(G) for every graph G .) It may be instructive to split the

argument into three easy propositions.

Proposition 4.2. If G = (V,E) 1is a complete graph of order n then

there is a recursive proof of (V,1) whose length is n

Proof. Enumerating the vertices of G as Vi Vps ,vn , define
8 = {v 3V s enes Vi} . Trivially, the sequence (¢,O),(Sl,l),...,(sn,l)

constitutes a recursive proof. (O

Proposition 4,3, Let G, = (Vl’ E,) and G, = (Vg, E2) be graphs such

that v; NV, = P 5 let Gy UG, denote the graph (VlUVE’ E, UE,)) . If
there are recursive proofs of (Vq"a(Gj)) of length m, for each

Jd - J
j = 1,2 then there is a recursive proof of (V]_UVQ’O‘(Gl)*O‘(GQ)) whose

length does not exceed ml+m2 .

Proof. If (Sﬂ;_’tﬂ;_) with i = 0,1,...,m is a recursive proof of

(Ve,a(Gg)) then a recursive proof of (Vl:O‘(Gl)) , followed by the sequence

19



(Vv Usys aG)+t,) i=1,2,...5m,

constitutes a recursive proof of (VlUV2 ,oc(Gl)+oz(G2)). O

Proposition 4.k,  Let F be a subgraph of G and let (4.1) be a recursive

proof over F . Then there is a recursive proof of (Sm,tm) over G

whose length does not exceed 2m ,

Proof. We shall create the desired proof over G from (4.1) by inserting

a new statement immediately before each (S ,t. ) that has been obtained

k’ k)
from the previous statements by the dichotomy rule. For every such (Sk,tk) ,
there are subscripts i, j and a vertex veSk such that i <k, gj<k,
tk = 1rna.x(‘ci s l+tJ.) and Si = Sk-v 5. S. 5= Sk*v in F . The statement to
be inserted immediately before (Sk,tk) is (Sk, tk-l) such that

Sl'{ = Sk*v in G , Clearly, (Sk, tk-l) follows from (Sj,tj) by the
monotone rule whereas (Sk,tk) follows from (Si,ti) and ( 1’{,tk-l)

by the dichotomy rule. Cl

Proposition 4.5, For every graph G = (V,E) of order n there is a

recursive proof of (V, Q(G)) whose length does not exceed 2n

Proof. Consider the subgraph F of G consisting of ©(G) cliques
whose union equals V . By Proposition 4.2 and by repeated applications
of Proposition k.3, there is a recursive proof of (V, 0(G)) over F

whose length equals n . The rest follows from Proposition k.4, O

We shall close this section with another easy observation which will

be handy later. The proof can be left to the reader.

20



Proposition 4.6, If (4.1) is a recursive proof over G = (V,E) and

if WCV then
(sinw’ ti) ) i = O,l).o., m

is a recursive proof over the subg“raph of G induced by W .
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5. A Lemma on Binary Trees.

Let a,b, r, s be nonnegative integers, A binary tree whose nodes

are colored red and blue will be called |(a,b,r,s) -constrained if, along

each path from the root to a leaf,

(1) exactly a nodes are followed by their left sons and exactly b
nodes are followed by their right sons,
(ii) at most r nodes are red,

(iii) at least s red nodes are followed by their right sons.

If, for some choice of integers a , b , r and s , there is at least
one (a,b,r, s) -constrained tree then we denote by f(a,b,r,s) the largest
possible number of-leaves in such a tree; otherwise we set f(a,b,r,s) =0 ,

Trivially, we have

atb )

f(ayb,1,5) < ( b

and

f(ayb,rys) = 0 whenever s>b or s >r .

The purpose of this section is to derive the following upper bound on

f(a,b,r, s) .

-Lemma 5.1. If s > 2br/(atb-1) , s > r-atl and s > 1 then

atb, ab _-br/Lk(atb)
First of all, we shall establish a simple recursive bound.

f(a-1,b,r,s) + f(a,b-1,1,5)
Fact 5.2. f(ayb,r,s) < max
f(a-1,b,r-1,s) + f(a,b-1,r-1, s-1)

Proof. Let T be an (a,b,r,s) —constrained tree. If its root is blue

then the left sub-tree is either empty or (a-l,b,r,s) —-constrained and the
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right sub-tree is either empty or (a,b-1,r, s) -constrained. If the root
is red then the left subtree of T is either empty or (aéhb,r-l,s)
—constrained and the right sub-tree of T is either empty or (a,b-1,7-1,s-1)

-constrained. Hence the desired conclusion. O

Next, for every choice of nonnegative integers a , b , r , s such that

s<b , s<r , s > r-atl
we define
b-s r+i atb-r-1-i
F b = T
(ayb,r, s) Zi;—(o s+i ) ( b i )

It is easy to verify that

atb )
J

F(a,b,7,0) = ( b

F(a,b,7,0) = (1)

+b-
F(a:b)r:r) = (aar) )
a+b r
F(a,b,r,r-a+l) = ( a )'(a) P)

F(a-l,b,r’ S) +F(a’b-l,r, S) = F(a"b,r,s) 4
F(a-1,b,r-1,5) + F(a,b-1,r-1,s-1) = F(a,b,r,s)
whenever the left-hand side terms are defined.

Fact 5.3. We have f(a,b,r,s) < F(a,b,r,s) whenever the right-hand side

is defined.

This inequality can be proved by induction on a+b in a straightforward

way; we omit the tedious details. It is not unlikely that there is a

direct combinatorial proof of Fact 5.3, Furthermore, it is not difficult
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to show that f(a,b,r,s) = F(a,b,r,s) whenever the right-hand side is

defined; however, that is irrelevant for our purpose.

Proof of Lemma 5.1, Wemayassume s <b and s <r for otherwise

the left-hand side vanishes. Then, by Fact 5.3,
f(ayb,r,s8) < F(ayb,r,s) .
Since r > s > 2br/(atb-1) , we have 2b/(a+b-1) < 1 and

. r+i
s+i > 2b P

for every nonnegative i , Hence, with the notation of Section Z,

( r+i )( atb-r-1-1i

a.+b"l )
sti b-s-1i

) < H(r+i,atb-1,b, (r+i)/(ato-1)). (7

By Lemma 2.3, we hé&e
b8 a4b a -br/L4(a+b)

f(a)b)r’ S) S . ZO ( b ) %E
1=

which implies the desired result.
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6. The Main Result.

A graph G of order n will be called (d,¢) -sparse if

(i)  every vertex of G has degree less than d ,
(ii) every subgraph of G induced by m vertices such that m > en

has fewer than dme/n edges.

Theorem 6.1, Let n, t be positive integers and let d, ¢ be positive
reals such that

n < 10td ,

n > 500273 4

100t/ /4

5
Y

n > 2000t ,

e < n°/1810t° & ;

let G = (V,E) be a (d,€) -sparse graph of order n , Then every recursive

proof of (V,t) has length at least

n &XP —5 : (6.1)

Proof, We shall set
a= Lno/45000t%4° ] , b = |n°/900td” |

and show that every recursive proof of (V,t) has length at least

2
atb b
b P - (6-2)

The reader may easily verify that a > b > 200 and so

200 ) n5 b 200 n2
201 > 201 * ) .

a > 5o
45 000t°d 900td

Then it follows that (6.2) is at least (6.1).
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Let us outline our strategy. With each recursive proof of (V,t) ,
we shall associate a binary tree T whose nodes will be labeled by
statements from the proof, The assignment of labels to nodes will not
be one-to-one (to take an extreme example, all the leaves of T will be
labeled by ¢ ) and so the number of nodes of T may be much greater
than the length of the proof. We shall find a node z with a certain
convenient property and then we shall construct a new binary tree ™ .
Even though T* will not be a subtree of T in a strict sense, its nodes
will come from T j in particular, z will be the root of T* . Finally,
we shall show that within the set N of leaves of T* , no label is
repeated too often.  More precisely, for each subset S of V we shall
define

N(S) = {xeN: x is labeled by (S,t') for some t'}

2
ab b
o;_-g exp(- ﬁ) . (6'5)

Since N will be nonempty, (6.3) will imply the desired result: indeed,

‘and prove that

[¥(s)| < |m

the number of those sets S for which N(S) # f§ must be at least (6.2).
Before going into the details, the reader may welcome a preview

of the idea behind the proof of (6,3), however vague such a preview may

have to be. Let (W,t*) be the statement that labels z . 1In the

absence of the monotone rule, the tree T is constructed in such a

way that every subproblem S labeling a leaf of T* is obtained from

W by simply deleting a vertices and by deleting b vertices with

their neighbors. If we had our way, the subgraph H induced by W-S

would consist of a isolated vertices and b disjoint stars: in that
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case, we could reconstruct the two sets of vertices, proving that
|N(s)| = 1 . Actually, we shall be content even if things are not all

that clear-cut, as long as we can approximately reconstruct the two sets.

That will be the case as long as ﬁ is reasonably large. (If H is
large then most of the b vertices must have large degrees. At the same
time, the second defining property of a (d,€) -sparse graph implies

that the average degree in H is rather small. Hence the vertices of
large degrees are quite conspicuous.) In order to guarantee that H will
be large, we have to choose z appropriately. 1In general, the rules

for constructing T* are designed to neutralize the desultory effects

of the monotone rule. Now that the poor reader is properly confused,

we can proceed to the details.

Constructing T , we shall find it convenient to call certain statements
in the proof eligible: a statement will be called eligible if it is (¢,o)
or if it follows from some two earlier statements by the dichotomy rule.
Only the eligible statements, with a possible exception of (V,t) , will be
used to label the nodes of T . The construction of T i1s recursive; the
root‘of T is labeled by (V,t) . Suppose that we have constructed a node
x labeled by a statement (Sk,tk) and having no sons at this moment.
If(Sk,tk)==(¢,O) then x will be a leaf of T . Otherwise there are

. eligible statements (Si,ti) ,(Sj,tj) end a vertex veS, such that
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- _ %
LI<k , 8 28-v, SJ.;Skv, tkzmax(ti,l+tj)

In that case, we shall create both sons of x , label the left one by
(Si,ti) and label the right one by (Sj,tj) . For further reference,
we shall set S(x) = Sk , t(x) = tk and“™ v(x) = v . It will be useful

to note that

t, <t

i k

x and tj < ot -1, (6.L4)

Next, we shall find the special node z . A node y will be called
a descendant of a node x if there is a path R FRCKER W such that

X=Xq, Y =X and each X;,1 1s a son of X, - If, in addition,

+

are followed by their right sons x, then v

exactly b nodes x. 141

1

will be called a b-descendant of x . Repeated applications of (6.4) show

that

if y is a b-descendant of x then t(y) < t(x)-b . (6.5)
We claim that

there is a node =z such that S(z) > n/2 and such that
(6.6)

|s(y)| < |s(z)| on/2t for every b-descendant y of z ,

A node with this property can be found by constructing a certain sequence
Y ¥yree- of nodes of T such that Yo is the root of T , If the most
recently constructed i has a b-descendant y such that

|s(¥) | > |S(yi)| -bn/2t then set Yi47 = ¥ i otherwise stop. By (6.5)and

by the construction of the sequence, we have

|s(y;)] > n(1-bif2t) , t(y;) < t-bi

for every i . Since t(yi) > 0 , we must have i < t/b and so
|S(yi)|2 n/2 for every i . In particular, the very last ¥y in the

sequence has the properties required of z . We shall denote S(z) by W .
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With each descendant x of z , we shall associate two subsets

A(x) , B(x) of' V : considering the path Xy X1seees X, from xg = z

to X = X we shall define

A(x) = {v(x;): 0 <i < k and x,,, is the left son of y 3}
- i

+1

B(x) = {v(x;): 0<1i<kand x is the right son of x,} .

<L

141
L7

Clearly, we have
|s(x) nw| > |w| - |(A(x) -B(x)) NW| - Z  (1+d(v)) (6.7)
veB(x)

for every descendant x of z , In particular,

if [(A(x) -B(x)) NW|.< a and |B(x)| < b then s(x) # § : (6.8)

just observe that

atb (1+d) < 2a+bd < 3bd <n/2
Before proceeding to construct ™, we shall associate a node x*
with each descendant x of z suych that
|(A(x) -s(x)) NW| < a and |B(x)| < b

Consider the path Xy Xys cnes Xy such that x . . . Xy is a leaf of T

=}

and each x.., 1is the left son of X,  Note that B(xi) = B(x) for

every 1 . There must be at least one 1 such that 0 < i < k and
v(xi) ew, V(Xi) ¢ A(x) U B(x) (6.9)
for otherwise
(A(x) -B(x) ) NW = (A(x) - B(x)) "W and B(x,) = B(x)
but S(xk) = § contradicting (6.8). We shall denote the first X,
satisfying (6.9) by x* ; note that
(A(x") -B(x))NW = (A(x) -Bx) NW
At last, we are ready to construct T . Each of its nodes x will

come from T and satisfy
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v(x) eWw , v(x) ¢A(x) UB(x) ,

| (A(x) - B(x)) nW|<a, [B(x)|<b, Bx cW,

The construction of T* is recursive; therootof T* 1is z. Suppose
that we have already constructed some node x of T* ; let XL denote

the left son of x in T and let Xp denote the right son of x in T

If |(A(x)-B(x))NW|= a then x will have no left son in T 3 otherwise
we shall make x}i the left son of x in T* . If |B(x)| = b then x
will have no right son in T* ; otherwise we shall make x; the right son
of x in T* . It will be useful to make note of the following property

of T*

along each path.from the root to a leaf,
exactly a nodes are followed by their left sons,

(6.10)
exactly b nodes are followed by their right sons,

and these a+b nodes x give rise to distinct vertices v(x) .

Finally, we shall prove the inequality (6.3). Without loss of
generality, we may assume that N(S) # § and so S = S(y) for some yeN .
Denote by H the subgraph of G induced by W-S(y) and denote by m the
order of H . Since y is a b-descendant of z in T , (6.6) implies that
) m > bn/2t
On the other hand, (6.7) implies that

m < a+b(l+d) < 2a+bd < 3bd

Enumerate the vertices of H as ul,ug, o oes U in such a way
dg(uy) > dpuy) > oo > dg(u) o

_ 2.2 . .
Since bn/2t > I15/l809t d” and since G is (d,e) -sparse, the graph H

2 .
has fewer than dm /n  edges. That is,
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dH(ui) < Qd.ma/n

Mg

i=1

Itis now easy to see that, for every positive integer

dH(ui) < 2dm?/nr whenever i > r .

r , we have

(6.11)
We shall use (6.11) with

r = [am/bbd |

Let us note at once that r > 200 and so

;> 200 am
201 ° Ipbq

It will be also useful to note that

2rbd
a7 ’
2dm°b _ 201 8b°3° L < (201)2 4m
nr — 200 an - 200 | ’
T S a , (612)
2br br o
atb-1 27 2 L (6.13)
ind while we are at it, let us also verify that
< 201 , bn < KH. mm
200 50t 200 25 ’
1 bn m
< 1506 . 3% ~ To00
" So much for high-school algebra. Now, we shall set R = ﬁufug,..,ur}
and prove that
2rb
|B(x) nR| > T (6.14)

for every xeN(8) . To begin with,(6.7),(6.11) and B(x) © W imply

m < a+b+d|B(x) NR| +2dn b/nr
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If (6.14) failed then we would have
m < a+b+2rbd/a + 2d.m2b/nr

!

However, the right-hand side of this inequality is at most

201 1 1 1 201 \2 4
m(eoo 25+'1‘6%+2*+(§65) "9')““’

Hence (6.14) must hold.

The rest is easy, Consider the subtree of T* consisting of all
the paths from the root z to leaves in N(S) ; color each of its nodes
x red if v(x) eR and blue otherwise. By (6.10) and (6.14), this tree
is (a,b,r,2br/(at+b-1)) —-constrained. Because of (6.12) and (6.13),

Lemma 5.1 applies and shows that

- 2
atb ab b
O B O ) e*f(m) :

By virtue of (6.10), this is the desired inequality (6.3).

Theorem 6.2. Let m be a function of n such that m(n) = o((n/log n)e)

but m(n) > 1010n for all sufficiently large n , Then, for almost all

graphs G = (V,E) with n vertices and m edges, every recursive proof

of (V,a(G)) has length at least

2
36gm exp n
- n m(BSO log %)3

.

Proof. By Lemma 2.2 and by Lemma 2.4, almost all graphs with n vertices

and: m edges have the following two properties:

2
n m ‘
(P1) a(G) < - log o
(P2) every subgraph induced by s vertices such that
2
s > b log =
m n

has at most 2msz/n2 edges.
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We shall show that all sufficiently large graphs with these +tyo

properties satisfy the conclusion of Theorem 6.2. TLet us define

n® m\3
k(n) = —5(501ogﬁ)--‘) ,

a(n) = bkm/n®
4n2 m
E(n) = H log E

Firstly, we shall show that every graph with n vertices and m > lOlOn
edges satisfying (P2) contains an induced (d,¢) —-sparse subgraph of

order k . To begin with, 2k(n) <n . Next, an easy averaging argument
shows that G contains an induced subgraph Hy with 2k vertices and

at most hka/ng edges. Beginning with H, , we shall construct a sequence
HO’Hl"" of induced subgraphs of HO as follows: if the last constructed
Hi has a vertex v of degree at least d then set Hi+l = Hi-v , otherwise
stop. Clearly, if an H, gets constructed then HO had at least di

cdges and so i <k . 1In particular, the very last HJ. in the sequence

has at least k vertices; in H-J » we shall choose an induced subgraphH
of order k . Let W denote the set of vertices of H . py (P2), every
subgraph of H with s > ek > hnglog(m/n)/m vertices has at most

2m52/n2 < dse/k edges. Hence H is (d,e¢) -sparse.

Next, by (Pl), we have

2

n m
a(g) < = log a

On the other hand, we have
a(G) > a(H) > k/(a+l1)
For all sufficiently large n , Theorem 6.1 asserts that every proof of

(W,a(G)) has length at least
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2
90d k §60m n
€xp > exp
k 20d2 n2 m( 350 log E )3

By Proposition 4.6, this is also a lower bound on the length of every

recursive proof of (V,a(g)) . O
Let us state a special case of Theorem 6.2 in a compact form.

Theorem 6.3. For every sufficiently large integer d there is a
constant ¢ > 1 with the following property: for almost all graphs
G = (V,E) with n vertices and dn edges, every recursive proof of

(Vv,a(G)) has length at least et

In closing, two remarks may be in order. Firstly, it would be interesting
to construct an infinite class ¢ of graphs for which there is a constant
c > 1 with the following property: for every graph G = (V,E) in ¢ and
with n vertices, every recursive proof of (V,a(G)) has length at
least cn. Secondly, it is somewhat frustrating that Theorem 6.2 does

not apply to graphs with cn2 edges. Perhaps the following is true.

Conjecture 6.4. There is a positive constant c¢ with the following

property: for almost all graphs G = (V,E) with n vertices, every

1
recursive proof of (V,a(G)) has length at least n® 090,
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7. Concluding Remarks.

There are many "natural" proof systems which extend our system of
recursive proofs; we shall mention just a few. Tt would be interesting
to strengthen our results by proving their analogues for the extended
proof systems.

To begin with, one might adjoin the following inference rule:

from (8;,t;) and (SQ’tQ) we can deduce (SlUSE’t1+t2)

Proposition 4.3 shows that, to some extent, this rule is implicit in the
system of recursive proofs. Nevertheless, its addition just might make
the system considerably more powerful. Along this line, further extensions

lead to the system of cutting plane proofs which we are about to describe

briefly. Let us consider a graph G = (V,E) with vertices ﬁj%h~. i |
none of which is isolated. A cutting plane proof of (V,t) is a sequence

of inequalities

n
_Z‘ a.l.Jx.J<_b.l (i =1,2,...,m)
J=l
such that
(1) all the numbers %b' and b, are nonnegative integers,
(i1) for every k = 1,2,...,m , either the k-th inequality reads

Xr+Xs < 1 for some edge VeV or else there are nonnegative

multipliers yi’yé""’yk-l such that

k-1 k-1
2 V.a.. > . 2 y.b. < b
i i%*13 2 %3 PR ! = "k’

(iii) the last inequality reads ﬁ) Xx. <t .
: J =
J=1

It is not difficult to see that (G) < t whenever there is a cutting plane

proof of (V,t) . The converse is easy as well: in fact, every recursive
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proof of (V,t) can be converted into a cutting plane proof of (V,t) ,

(The details are left to the reader.)

An inference rule which strengthens the monotone rule and is not
subsumed in the notion of a cutting plane-proof goes as follows. TIet us
write Sl < 82 if there is a one-to-one mapping f: Sl - 82 such that

f(u) and f(v) are adjacent only if u and v are. C(Clearly,
from (S,t) we can derive (S',t') whenever §'< S and t' >t

Again, it would be interesting to find out whether the addition of this
inference rule makes the system of recursive proofs considerably stronger.

Colin McDiarmid [18] investigated a proof system, similar to our system

of recursive proofs, for deriving lower baunds on the chromatic number of
graphs. We shall describe his system very briefly. Let G be a graph
whose vertices are labeled by nonempty and pairwise disjoint subsets of
{1,2,..4,n} 5 let u and v be two vertices of G . We shall denote by
G'" the graph obtained from G by adding the edge uv ; we shall denote by
G" the graph obtained from G by identifying u with v (in which case
the label of the new vertex is the union of the labels of u and v ).

As usual, w(G) denotes the order of the largest clique in G . By &

recursive proof of [Gm,tm] » we shall mean a sequence
[Gi)ti] ) i = l,2,...,m

such that, for each k , either tk <—°’(Gk) or else there are subscripts

. . - ] — 1" — el
i, j < k such that G; = Gy » GJ. = G and t = m1n(ti,tj) . Clearly,
if there is a recursive proof of [G,t ] then x(G ) >t . McDiarmid

has proved that, for almost all graphs with n vertices, every recursive
proof of [Gx(G)] has length at least

exp(.157 n (log n)l/e)
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His result implies that the average running time of the Corneil-Graham
algorithm for finding the chromatic number of a graph [4] grows faster
than every exponential. On the other hand, Lawler [16] has designed an
algorithm for finding the chromatic number of a graph of order n within
O(2.h5n) steps. (Of course, these facts are of an asymptotic nature and
imply nothing about the relative merits of the two algorithms applied to
graphs with, say, 200 vertices.)

Finally, I wish to thank several friends for their help with my work
on this paper. To Colin McDiarmid and Endre Szemerédi I am indebted for
many stimulating conversations. Persi Diaconis told me about Hoeffding's
paper [13].  David Avis, Don Knuth, Ivo Rosenberg, and Bob Tarjan read
various versions of the manuscript and made many helpful suggestions to

improve the presentation.
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