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‘ABSTRACT

The m-chromatic number xm(G) of a graph G = (V,E)
is the least integer k such that there exists a mapping
£:Vv + {S c {1,2,...,k}:|S|= m} having the property that
f(u)Nf(v) = ¢ whenever {u,v} ¢ E. This is a generalization
of the standard notion of chromatic number and arises 1in
connection with mobile telephone frequency assignments.
Answering a question of Lovdsz, our first result shows that
for any m > 1 and any ¢ > 0, there exists a graph G for which
xm+1(0)/xm(0) > 2-€¢. This shows that the known bound of 2
for all m and G is essentially best possible. Our second

result shows that the least integer mj for which x, (G)/my =
. 0

1im x_(6)/m can be asymptotically as large as o’ (nlogn)/2
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I. INTRODUCTION

The following generalizatlion of the standard notion
-of graph coloring has been of recent interest [1,3,4,6,7,8]. A

multicoloring of a graph G = (V,E) 1s a functicn f defined on

V whose values are sets (of "colors") sat;g}ying f{u)Nflv) = ¢

whenever {u,v} ¢ E. For positive integers k,m, a (k,m)-coloring

of @ = (V,E) 15 a multicoloring f of G such that |f(v)| = m

for each v ¢ V and | U f(v)| = k. The m-chromatic number x_(G)
veV

is the least integer k such that there exists a (k,m)-coloring

of G. (This last definition differs from that of [6,7] by a
factor of m.) Notice that for m = 1 these definitions corres-
pond to the usual graph coloring notions. The purpose of
this note 1s to resolve two qhestions about multicoloring con-
veyed to us by P. Erddés [2].

The first question deals with the relatlonship

between xm(G) and x_,.(G). It is not difficult to see that

m+1
?
Xge1(0) < x5(0) + x,(G) < 2-%,(G) I!i ! G‘E
‘,________,.s
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with equality possible in the right-hand inequality only
form = 1, Lov4sz asked [2] whether, for’each value of m,
there exist graphs G such that xm+1(G) > (2-e)xm(G). We
shall answer this question in the affirmative.

The graphs we shall use are defined as follows: for posi-
tive integers n > 2m, the graph G; has vertex set consisting
of all m-element suﬁEeQS of {1,2,...,n} and has an edge between
twd such vertices exactly when their intersection 1s empty.
It 1s easy to see that xm(G;) < n merely by considering the
multicoloring provided by the definition of G; and, in fact,
it 4s proved in [7,8] that xm(G:) = n. Thus, to answer the

question of Lovdsz, it suffices to prove the following theorem:

Theorem 1. For each m > 2, there exists a constant ¢ such

that for all sufficiently large n

Xns1(Gn) 2 20 - c.

In order to prove Theorem 1, we require the following

lemma, which is an immediate consequence of a special case of

“heorem 3 in (5].

Lemma 1. For fixed m > 2 and n sufficiently large, there
exists a constant a, such that the number of m-element subsets
of {1,2,...,n} which can be chosen so that no two are disjoint

but there is no <element common to all is at most aonm'z.



Proof of Theorem 1. Fix m. We merely need to show that,

for all sufficiently large n,

n n-1
Xm+1(Cp) = Xme1 (G m) 22

and the result will follow by induction. So suppose we have
- n n
a (k,m+l)-coloring of G such that k = xm+1(bm) , where n is

any integer sufficiently large that the conclusion of Lemma 1

n-1 m-2

m-1
of Lemma 1. We first claim that there must be at least n+l
nm-2

holds and such that( )> ma,n » Where a, is the constant

colors which each appear on more than a, vertices.

Suppose there are n or fewer colors which each appear

on more than aonm°2 vertices. By Lemma 1, each such color can

appear on at most (;:i) > aonm'2 vertices since they must all

n

m) vertices

share a common element. Thus, since each of the (

recelves exactly m+l colors, we must have

(m+1) (3) <n (;:i) + (k-n)aonm'2
<m (:) + (k-n)aonm'2

or, rewriting,

m-2
< (k-n)agyn

——
= Jb=
N
A

Since

K = Xms1 (G:) S Xy (G:) X @:)

2xm @;) = 2n

iAa
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it 1ollows that we must have
n m-1 -
(n) < 2on

However this is a contradiction, since n was chosen sufficiently
n) _n (n—l

m m=1

large that ( o ) > % ma yn aonm'l, and the claim

foilows.

Thus there are at least n+l colors which each appear
on more than aonm"2 vertices . The set of vertices on which
any color 1 appears must form a collection of pairwise-inter-
secting m-element subsets of {1,2,...,n}, by definition of G;.
Thus, by Lemma 1, whenever color i appears on more than acnm.2
vertices, all those vertices must contain some common element
ey Since there are more than n such colors, we must have
e, = ej for some 1 and J. If we delete from G; all the vertices

n-1

containing e; = eJ, we obtain a copy of Gm and a (k-2,m+l)-

coloring of it, since colors i1 and j have disappeared. Therefore

Xm+1 (Gx:-l) < k-2 = xp. (6p) - 2

and the theorem 1is proved.!
The second question involves what we call the

ultimate multichromatic number x'(G) defined by

x"(@) = inf x_(G)/m.
m
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It is proved in [1,7] that the value of x¥(G) 1s always achleved
for some finite m. One easy vay to see this 1s to formulate

the problem of determining x*(G) as a linear programming
problem. (as done in [4]): Let v,,V5,...,V, be an ordering

of the vertices of G and let Sl,Sz,...,S2 be an ordering of

the independent sets'of_G. Define xiJ to be 1 whenever vy € SJ

and 0 otherwise. Then the value of x'(G) is given by

L
M - N
x (G) = min > ry
J=1
subject to: rJ 20, 1<J < 2%
L
:z xier =1, l1<1i<n.
J=1

One can show easily, using Hadamard's Theorem, that no basis
matrix for this problem can have determinant exceeding nn/2
and this is an upper bound on the value of n required.

This upper bound however seems ridiculously large.
Erdos asked [2] (as did the authors, independently) whether
x*(G) could always be achieved for an m not exceeding the
number of vertices of G. We answer this in the negative,

constructing graphs for which extremely large values of u are

necessary to achieve x"(G).
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Let Cp denote the graph which ic a cycle on p
vertices. The Join G,+G, of two graphs G, and G,, having
disjoint vertex sets, consists of all edges and vertices in
the tworgiven graphs along with all edges Joining a vertex
from G1 to a vertex from G2' We use the followlng two lemmas

in our construction:

Lemma 2. [4,7] For all integers p > 1,

#* =
Lemma 3. [7] For all graphs Gl and Gz’
x'(Gl+62) = x'(Gl) + x'(GZ).

Let Py denote the 1th prime and define the graph
G(1) tc be C2p1+1 + c2p2+l +o00t 02p1+1' The number of
vertices n of G(i) is given by
i

n=1+2 ;Z; pJ .

Applying Lemmas 2 and 3, we obtain
i

(A(G(1)) = 21 + 2 (1/p)) -
J-

Since xm(G(i)) must always be an integer, it follows that the

least value of m for which x*(G(1)) = xm(G(i))/m can be no less
i

that JT' Py (and in fact that value of m will work). Using
=1

the Prime Number Theorem and expressing this lower bound in



terms of n, we obtain the asymptotic lower bound of

e#lnlognS??

Thus, though this is still quite far from the upper bound of

/2 o g(nlogn)/2

we see that extremely large values of m can be required in

order to achieve x¥*(G).
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