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ABSTRACT

~The m-chromatic number Xp (G) of a graph G = (V,E)

is the least integer k such that there exists a mapping

£:V +» {S C {1,2,...,k}:|S|= m} having the property that
f(u)Nf(v) = ¢ whenever {u,v} €¢ E. This is a generallzation

of the standard notion of chromatic number and arises in

connection with mobile telephone frequency assignments.

Answering a question of Lovész, our first result shows that

for any m > 1 and any € > 0, there exists a graph G for which

Xm+1 (6)/Xp(G) > 2-€¢. This shows that the known bound of 2
for all m and G is essentially best possible. Our second

result shows that the least integer m, for which x (G)/m, =
0

lim x _(G)/m can be asymptotically as large as e”(nlogn)72
mre

for some n vertex graphs, though it can never exceed e(nlogn)/2
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I. INTRODUCTION

| The following generalization of the standard notion

-of graph coloring has been of recent interest [1,3,4,6,7,8]. A

multlicoloring of a graph G = (V,E) 1s a functicn f defined on

V whose values are sets (of "colors”) sat fying f{u)N flv) = ¢
whenever {u,v} ¢ E. For positive integers k,m, a (k,m)-coloring

of @ = (V,E) is a multicoloring f of G such that |f(v)| =m

| for each v € V and | 0 1) = k. The m-chromatic number Xp (G)
is the least integer k such that there exists a (k,m)=-coloring

of G. (This last definition differs from that of [6,7] by a

factor of m.) Notice that for m = 1 these definitions corres-

nond to the usual graph coloring notions. The purpose of

this note is to resolve two questions about multicoloring con-

veyed to us by P. Erdds [2].

The first question deals with the relationship

between Xp (G) and Xpe1 (GD It is not difficult to see that |

lid
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with equality possible in the right-hand inequality only

for m= 1. Lov4sz asked [2] whether, for each value of m,

there exist graphs G such that Xp (CG) > (2-€)x (CG). We
shall answer this question in the affirmative.

The graphs we shall use are defined as follows: for posi-

tive integers n > 2m, the graph G_ has vertex set consisting

of all m-element subsets of {1,2,...,n} and has an edge between

twd such vertices exactly when their intersection 1s empty.

It 1s easy to see that x (cP) < n merely by considering the
multicoloring provided by the definition of G_ and, in fact,

it is proved in [7,8] that a (ch = n. Thus, to answer the
question of Lovdsz, it suffices to prove the following theorem:

Theorem 1. For each m > 2, there exists a constant ¢ such

that for all sufficiently large n

n

In order to prove Theorem 1, we require the following

lemma, which 1s an immediate consequence of a special case of

~Taeorem 3 in [5].

Lemma 1. For fixed m > 2 and n sufficiently large, there

exlsts a constant a, such that the number of m-element subsets
of {1,2,...,n} which can be chosen so that no two are disjoint

but there is no clement common to all is at most ag“.
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Proof of Theorem 1. Fix m. We merely need to show that,

for all sufficiently large n,

n n-1

| Xm+1 (Gp) = Xm+l ( 4 2c

and the result will follow by induction. So suppose we have

- n n

a (k,m+l)-coloring of G_ such that k = Xm+1 (Cm) , where n is
any integer sufficiently large that the conclusion of Lemma 1

holds and such that (R77) > ma n™°, where a, ls the constant
of Lemma 1. We first claim that there must be at least n+l

colors which each appear on more than a n° vertices.
Suppose there are n or fewer colors which each appear

on more than a,n""2 vertices. By Lemma 1, each such color can
appear on at most ay, > an"? vertices since they must all
share a common element. Thus, since each of the (7) vertices
receives exactly m+l colors, we must have

n n-1 Me=2

(m#1) (7) <n (077) + (k-n)agn

<m (2) + (k-n)agn™

or, rewriting,

n m=-2

(2) < (k-n)agyn

Since

- n n nK = Xml (On) 2 Xp G2) xX er)
n

< 2Xm Cn) = 2n
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it tollows that we must have

n m-=1 -

(m) < aon

However this is a contradiction, since n was chosen sufficiently

ny _ n (n=l n m-2 _ m-1 _large that (*) * I ay > = mann ayn , and the claim
foLlows.

Thus there are at least n+l colors which each appear

on nore than an™% vertices. The set of vertices on which
any color i appears must form a collection of pairwise-inter-

secting m-element subsets of {1,2,...,n}, by definition of Gp.

Thus, by Lemma 1, whenever color 1 appears on more than an"?
vertices, all those vertices must contain some common element

ey. Since there are more than n such colors, we must have

e, = e for some 1 and Jj. If we delete from Gr all the vertices
containing e, = ey we obtain a copy of cht and a (k-2,m+l)-
coloring of it, since colors 1 and J have disappeared. Therefore

n-1 - nXm+1 (Cn )< K=2 = Xmas) (a) -2

and the theorem is proved. B

The second question involves what we call the
a

ultimate multichromatic number x (G) defined by

a

x (G) = inf Xp (G)/m.
m :
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It is proved in [1,7] that the value of x¥(G) 1s always achieved

for some finite m. One easy vay to see this 1s to formulate

the problem of determining x*(G) as a linear programming

problem. (as done in [4]): Let vy,V5,...,V, be an ordering

of the vertices of G and let S355 +35y be an ordering of

the independent sets of G. Define X43 to be 1 whenever vy E S
and 0 otherwise. Then the value of x*(G) is given by

2

x"(G) = min > ry
j=1

subject to: ry >0, 1<J < 4;

L

> XT = 1, l <1<n.
J=]

One can show easily, using Hadamard's Theorem, that no basis

matrix for this problem can have determinant exceeding nh/ 2
and this is an upper bound on the value of m required.

This upper bound however seems ridiculously large.

Erdds asked [2] (as did the authors, independently) whether

x*(G) could always be achieved for an mnot exceeding the

number of vertices of G. We answer this in the negative,

constructing graphs for which extremely large values of um are

necessary to achieve x* (a).
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Let Ch denote the graph which ic a cycle on p
vertices. The join G,+G, of two graphs G, and Gy, having

disjoint vertex sets, consists of all edges and vertices in

the two given graphs along with all edges jolning a vertex

from G, to a vertex from G,. We use the following two lemmas
in our construction:

Lemma 2. [4,7] For all integers p >1,

# =

X (Copsey) 2 + (1/p).

Lemma 3. [7] For all graphs Gy and G,,

x*(G,+G,) a x* (Gq) + x*i6,).

Let Py denote the yh prime and define the graph

G(1) tc be Cop +1 + Cop +1 +ooeth Cap, 41° The number of
vertices n of G(i) is given by

i

ns=1+2 .

Applying Lemmas 2 and 3, we obtain

i

(9 (G(1)) = 21 + 2, (1/p,)i= J

Since Xp (G(1)) must always be an integer, it follows that the
least value of m for which x*(G(1)) = x,(G(i))/m can be no less

| i

that JI p, (and in fact that value of m will work). Using=]

the Prime Number Theorem and expressing this lower bound in
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terms of n, we obtain the asymptotic lower bound of

/IcenI72

Thus, though this is still quite far from the upper bound of

n/2 _ o(nlogn)/2

we see that extremely large values of m can be required in

order to achieve x¥*(G).
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