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ABSTRACT

. This paper describes KRL, a Knowledge Representation Language designed for use in-
understander systems. It outlines both the general concepts which underlie our research and the
details of K RL-0, an experimental implementation of some of these concepts. KRL is an attempt
to integrate procedural knowledge with a broad base of declarative forms. These forms provide
a variety of ways to express the logical structure of the knowledge, in order to give flexibility in
associating procedures (for memory and reasoning) with specific pieces of knowledge, and to
control the relative accessibility of different facts and descriptions. The formalism for declarative
knowledge is based on structured conceptual objects with associated descriptions. These objects
form a network of memory units with several different sorts of linkages, each having well-
specified implications for the retrieval process. Procedures can be associated directly with the
internal structure of a conceptual object. This procedural attachment allows the steps for a

- particular operation to be determined by characteristics of the specific entities involved.

The control structure of KRL is based on the belief that the next generation of intelligent
programs will integrate data-directed and goal-directed processing by using multi-processing. It
provides for a priority-ordered multi-process agenda with explicit (user-provided) strategies for
scheduling and resource allocation. It provides pracedure directories which operate along with
process frameworks to allow procedural parameteritation of the fundamental system processes for
building, comparing, and retrieving memory structures. Future development of KRL will include
integrating procedure definition with the descriptive formalism.

Daniel Bobrow is affiliated with Xerox Palo Alto Research Center, Palo Alto, California. This
document is also being issued as Xerox PARC report CSL-76-4, and will appear in the journal
Cognitive Science, V. 1, No. I, 1977.
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AN OVERVIEW OF KRL 1

This paper is an introduction to xr., a Knowledge Representation Language, whose
construction is part of a long term program to build systems for language understanding,
and through these to develop theories of human language use. What we describe is a
formal computer language for representing knowledge. It has been shaped by our
understanding of what is needed to build natural language understanders, and on analogies
with human information processing, particularly in the areas of memory and attention.

Our ideas are in the course of active expansion and modification, and there will be
many changes before xr. comes close to our goals. We have implemented a subset of our
ideas in a system which we call xre.—0, and the facilities we describe here are those that
existed on May 1, 1976. We have conducted some experiments in system building in
krn—o tO test its utility and habitability. Although we have planned a number of features
which will be incorporated in its successors, we feel it useful to present our current ideas
for discussion and evaluation.

1. Why we are doing it

There is currently no-suitable base on which to build sophisticated systems and theories
of language understanding. A complete understander system demands the integration of a.
number of complex components, each resting on ones below, as illustrated in Figure 1.
Current systems, even the best ones, often resemble a house of cards. The researchers are
interested in the higher levels, and try to build up the minimum of supporting props at
the lower levels. The standardly available bases (such as risp, QLISP, connIver,
production systems, etc.) are at a low enough level that many middle layers must be built
up in an ad hoc way for each project. The result is an extremely fragile structure, which
may reach impressive heights, but collapses immediately if swayed in the slightest from
the specific domain (often even the specific examples) for which it was built.

TASK DOMAINS:
Travel Arrangements, Medical Diagnosis, Story Analysis, etc

LINGUISTIC DOMAINS:
Syntax and Parsing Strategies; Morphological and Lexical Analysis;
Discourse Structures; Semantic Structures, etc.

COMMON SENSE DOMAINS:
Time, Events and States; Plans and Motivations; Actions and Causes;
Knowledge and Belief Structures; Hypothetical Worlds

BASIC STRATEGIES:
Reasoning; Knowledge Representation; Search Strategies

UNDERLYING COMPUTER PROGRAMMING LANGUAGE AND ENVIRONMENT
Representation Language; Debugging Tools; Monitoring Tools

Figure 1. A layered view of a language understanding system
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Much of the work in Al has involved fleshing in bits and pieces of human knowledge
structures, and we would like to provide a systematic framework in which they can be
assembled. Someone who wishes to build a system for a particular task, or who wishes to
develop theories of specific linguistic phenomena should be able to build on a base which
includes well thought out structures at all levels. Jn providing a framework, we impose a
kind of uniformity (at least in style) which is based on our own intuitions about how
knowledge is organized. We state our major intuitions here as a set of aphorisms, and
provide justification and explanation in the body of the paper.

* Knowledge should be organized around conceptual entities with associated
descriptions and procedures.

* A description must be able to represent partial knowledge about an entity and
accommodate multiple descriptors which can describe the associated entity
from different viewpoints.

* An important method of description is comparison with a known entity, with
further specification of the described instance with respect to the prototype.

* Reasoning is dominated by a process of recognition in which new objects and
events are compared to stored sets of expected prototypes, and in which
specialized reasoning strategies are keyed to these prototypes.

* Intelligent programs will require multiple active processes with explicit
user-provided scheduling and resource allocation heuristics.

* Information should be clustered to reflect use in processes whose results are
affected by resource limitation and differences in information accessibility.

* A knowledge representation language must provide a flexible set of underlying
tools, rather than embody specific commitments about either processing
strategies or the representation of specific areas of knowledge.

2. Description as the basis for a declarative language

A natural organization for declarative knowledge is to center it around a set of
conceptual entities with associated descriptions. Much of the detailed syntax and data
structuring in xr. flows from a desire to explore the consequences of an object-centered
factorization of knowledge, rather than the more common factorization in which
knowledge is structured as a set of facts, each referring to one or more objects. Objects,
relations, scenes and events are all examples of conceptual entities which can be associated
with appropriate descriptions in xr.. A description is fundamentally inzensionaf, where
the structure of the description can be used in recognizing a conceptual entity and
comparing it with others. The three underlying operations in the system are augmenting a
description to incorporate new knowledge, matching two given descriptions to see if they
are compatible for the current purposes, and secking referents for entities which match a
specified description. In this section we will describe the forms of description available
in the system, the dimensions of matching as we see them, and the basic facilities for
context dependent search and retrieval.
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2a. Multiple descriptions of conceptual entities

A description is made up of one or more descriptors. For example, the description
associated with a particular object in a scene might include descriptors corresponding to
“the thing next to a table,” “something made of wood,” “something colored green,”
“something for sitting on,” and “a chair”. Some of these descriptors express facts which
might be thought of as additional propositions about the objects, while others reflect
different viewpoints for description by comparison.

The description of a complex event such as kissing involves one viewpoint from which
it is a physical event, and should be described in terms of body parts, physical motion,
contact, etc. The descriptors used from this viewpoint would have much in common with
those used to describe other acts such as eating and testing someone’s temperature with
your lips. In the same description, we want to be able to describe kissing from a second
viewpoint, as a social act involving relationships between the participants with particular
combinations of motivations and emotions. Viewing kissing in this way, it would be
described analogously to other social acts including hugging, caressing, and appropriate
verbal communications. In general we believe that the description of a complex object or
event cannot be broken- down into a single set of primitives, but must be expressed
through multiple views.*

- - - - - - - - - W e T - e - - - - - - G e e G O R - - - - - s - - -

*MERLIN (Moore and Newell, 1973) was an early attempt to use multiple viewpoints of this sort.

In addition to containing descriptors corresponding to different viewpoints, a
description can combine different modes of description. These include:

*Assigning an object to membership in a caregory (such as “is a city”);

*Stating its role in a complex object or event (the “destination” of a particular
trip);
* Providing a unique identifier (this includes using a proper name like “Boston”);

*Stating a relationship in which the object is a participant (being “to the North
- of Providence”);

*Asserting a complex logical formula which is true of the object (“Either this
person must ‘be over 65, or a widow or widower with dependent children.*);

* Describing an object in terms of membership in a set, or a set in terms of the
- objects it contains (“One of the 50 Model Cities”);

.* Combining these other descriptors into time-dependent or contingent
descriptions (“The place you are today”).

In creating a set of descriptor forms, we have been guided by our intuitions about how
they will be used in reasoning processes. They represent an alternative to the standard,
more uniform notations (such as predicate calculus) which were developed for the
purposes of formal logic and mathematics. We believe that it is more useful and
perspicuous to preserve in the notation many of the conceptual differences which are
reflected in natural language, even though they could be reduced to a smaller basis set.
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We expect this to ease the task of designing the strategies which guide the application of
declarative knowledge.

We believe that multiple descriptions containing redundant information are used in the
human representation system to trade off memory space for computation depth, and that
computer systems can take advantage of the same techniques. The choice of where to put
redundancy provides further structure for memory, and can be used to limit search and
deduction. As a simple example, an understander system might know that every plumber is
a person, and that Mary is a plumber. The memory unit for Mary would contain a
descriptor stating that she is a p/lumber, and would very likely also contain an explicit
descriptor stating that she is a person This is redundant, but without it the system would
be continually re-deducing simple facts, since personhood is a basic property often used
in reasoning about entities. Memory structure in xs. is organized in a way which makes
it possible to include redundant information for immediacy while keeping the ability to
derive information not explicitly stated.

2b. Descriptions based on comparison to other individuals and prototypes

In designing xr. we have emphasized the importance of describing an entity by
comparing it to another entity described in the memory. The object being used as a basis
for comparison (which we call the prototype) provides a perspective from which to view
the object being described. The details of the comparison can be thought of as a further
specification of the prototype. Viewed very abstractly, this is a commitment to a
wholistic as opposed to reductionistic view of representation. It is quite possible (and we
believe natural) for an object to be represented in a knowledge system only through a set
of such comparisons. There would be no simple sense in which the system contained a
“definition” of the object, or a complete description in terms of its structure. However if
the set of comparisons is large and varied enough, the system can have a functionally
complete representation, since it could find the answer to any question about the object
which was relevant to the reasoning processes. This represents a fundamental difference
in spirit between the xr. notion of representation, and standard logical representations
based on formulas built out of primitive predicates.

In describing an object by comparison, the standard for reference is often not a
specific individual, but a stereotypical individual which represents the typical member of
a class. Such a prototype has a description which may be true of no one member of the
class, but combines the default knowledge applied to members of the class in the absence
of specific information. This default knowledge can itself be in the form of intensional
description (for example, the prototypical family has “two or three” children) and can be
stated in terms of other prototypes.

A single object or event can be described with respect to several prototypes, with
further specifications from the perspective of each. The fact that last week Rusty flew to
San Francisco would be expressed by describing the event as a typical instance of Travel
with the mode specified as Airplane, destination San Francisco, etc. It might also be
described as a Visit with the actor being Rusty, the friends a particular group of people,
the interaction warm, etc.

The further specifications in a description by comparison can provide more detail to
go along with less specific properties associated with the prototype, or can contradict the
default assumptions which are assumed true in the absence of more specific information.
The default for the destination of a ‘trip simply specifies that it is some city, and in a
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particular event is further specified to be Boston. The default for a trip also includes the
fact that the traveller starts from and ends at home, which might be violated in a specific
instance. A comparison can be based on an individual rather than an abstract prototype
(“He’s like Brian, but shorter and with red hair”) again with the assumption that the
properties of the prototype individual are assumed true of the individual being described
unless explicitly counterindicated. It has been pointed out in many places how important
it is to make heavy use of typical and expected properties in contexts where the reasoner
has incomplete information about the world, and cannot prove logically that a particular
individual has a desired property.* It is important to see this analysis as an intuition
about how people structure descriptions, rather than as a specific technical device. Many
of the mechanisms proposed for in the literature on memory representation (e.g., semantic
networks, frames, etc.) can be used in a style compatible with this kind of inheritance of
properties? We emphasize perspectives as a fundamental part of the notation. Other
systems for simulation of human cognitive processing have used similar ideas** with
further specifications which must follow constraints specified in the prototype.

*The use of prototypes is the subject of much current research, in computer science (e.g., Minsky, 1975).
psychology (e.g., Rosch and Mervis, 1975), and linguistics (e.g., Fillmore, 1975).

**gee Winograd (1975) for a discussion of property inheritance, and Woods (1975) for a discussion of the
issues involved in building networks with sufficient intensional information.

® **gchank (1975a) uses conceptual dependency primitives as prototypes, with constraints on objects which can
. fill various roles; Norman and Rumelhart (1975) allow constraints on arguments of processes whose
prototypes are word definitions.

- - - ——— - - - - - - . - e = - - - - - - - - - - e e e - - - - -

2¢. The detailed structure of units and perspectives

Sections 2a and 2b present our overall notion of the structure of descriptions. In order
to better discuss the ways in which descriptions are used, we will introduce in this section
some specific notations of KRL. Through the remainder of the paper, terms such as
“unit”, “perspective”, and “description” will be used in the narrower technical sense
defined here.

The data structures of ka. are built-of descriptions, clustered together into structures
called units, which serve as unique mental referents for entities and categories. Each unit
has a unique name, is assigned to a caregory type (see below), and has one or more named
slots containing descriptions of entities associated with the conceptual entity referred to
by the unit as a whole. Slots are used among other things to describe those substructures
of a: unit which are significant for comparison. Each slot has a s/otname which is unique
within the unit, and significant only with respect to that unit. One distinguished slot in
each unit (named SELF) is used to describe the entity represented by the unit. Associated
with each slot are a set of procedures which can be activated under certain conditions of
use of the unit. The use of this procedural attachment is described further in section 3a.
Our convention is to capitalize the initial letter of unit names, but not of slot names.

Each description is a list of descriptors, each with a set of associated features (discussed
at the end of section 2d). There is a limited set of distinct descriptor types (twelve types
in the May 1 version), each with a distinct syntactic form. The descriptor type used for
description by comparison is called a perspective. An entity is further specified in a
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perspective by further describing its slots. A perspective is expressed in xr.—o notation:
(a prototype with identifier, = fillerdescription, . . . identifier, = fillerdescription,)

where prototype names a unit being used as the basis for the comparison, there are
indefinitely many pairs of the form identifier = fillerdescription, and each identifier is
either a slot-name naming a slot in the prototype unit, or a description which matches
only one of the slot descriptions in the prototype unit. Thus the descriptor (a Person)
when used to describe an object represents the fact that the object is one instance of the
general class Person A descriptor (a Person with name = “Joe”) implies that name is a
slot associated with the unit for Person, and would be used to describe a particular
individual. The descriptor:

(a Person with
name = "Joe"
(an Address) = " 1004 Main Street” )

includes both the name and address information, and assumes that there is only one slot
in the unit for Person whose description could be matched by the descriptor (an Address).
Thus a perspective combines classification with a set of bindings called fillers, which
establish the correspondence between specific descriptions (often indicating individuals)
and roles associated with the prototype unit in general, as indicated by the pairing of the
identifiers and additional descriptions.

In Figure 2 we show some simple units which describe Rusty’s trip to San Francisco.
These illustrate some xri—o notation using a simplified example. The overall syntax is
like that of rzsp, using paired delimiters as an explicit representation of the tree structure.

[Travel UNIT Abstract . .Travel is the unit name. Its category type is Abstract .
<SELF (an Event) > . ..description of the Travel unit itself.
Event, Plane, Auto and City are known units
<mode (OR Plane Auto Bus)> . ..either Plane or Auto or Bus

can fill the slot named mode.
<destination (a City)>]

- [Visit UNIT Specialization ... a specific category of Sociallnteraction
<SELF (a Socialinteraction)>
<visitor (a Person)>
<visitees (SetOf (a Person))>]

[Event 13 7 UNIT Individual .. ..a specific event described from two viewpoints
<SELF {(a Visit with
visitor = Rusty . ..The actor is the known unit Rusty
visitees = (Items Danny Terry)) . .Items indicates at least Danny and Terry are
(a Travel with set elements in this set

mode = Plane
destination=  SanFrancisco)} >] . ..@nFrancisco is a known unit describing a City

Figure 2. KRL Representation of Rusty’s Trip to San Francisco
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Brackets [...] enclose each unit, and angles <...> enclose each slot in a unit. Each complex
descriptor form is delimited by parentheses (...), and braces {..} are used to combine
multiple descriptors into a single description. As in .ise, division of text onto separate
lines and indentation are used to clarify the structure for human readers; they are not
used to convey syntax information to the system. .

Categories of units: The unit is a formal data structure in the xr. language for
descriptions. It is used for entities at a number of different levels of abstraction --
individuals, prototypes, relations, etc. It can be thought of as a mechanism for providing
a larger structure which encompasses a set of descriptions, relating them to a set of
procedures. Each unit has a category type, selected from: Basic, Abstract, Specialization,
Individual, M anifestation, Relation, and Proposition. The category types determine
certain modes of operation for the basic system procedures which manipulate descriptions.

Abstract, basic, and specialization: Units of these three types are used for categories such
as Person, Integer, MakeReservation, etc. These units are used principally as prototypes for
perspectives; the distinction between them is used primarily by the matcher.

Basic categories represent a simple non-overlapping partition of the world into
different kind of objects (such as dog bacteria, . ..). The matcher assumes that no
individual is in two distinct basic categories. Therefore, quick tests of basic category
match or conflict can be used in a many cases to decide whether a specific object fits a
description. This use of simple disjoint categories corresponds to the use of selection
restrictions as proposed in some linguistic and semantic theories* and data types in
programming.

*This includes much of the work on semantics associated with transformational grammar (e.g., Katz and
Fodor. 1964), Al formalisms such as conceptual dependency (Schank, 1975a) and most forms of case grammar
(See Bruce, 1975 for a summary).

Specializations represent further distinctions within a basic category (such as Poodle, or
E. Coli). A specialized prototype will have descriptions and procedures associated with it
which are more specific than those for a basic category. In general, they are more useful
for their procedural attachment and described properties than for any uniform treatment
by the matcher. The description of a specialized prototype can indicate a primary
perspective which describes it as a subclass of some basic category or other specialization.
The partial tree formed by these primary links* is used by the matcher in comparing
individuals from two categories which are not explicitly comparable.

*This tree corresponds to a simple generalization hierarchy, as discussed in Winograd, (1975).

An abstract category (such as action or living thing) primarily serves as a way of
chunking a set of descriptions and procedures to be inherited by any entity described by a
perspective for which the abstract unit is a prototype. Very general problem solving
information will often be attached at this level of abstraction. There is no commitment
in keL as to what sorts of concepts in the domain should be represented at what level of
categorization. The specific three types are based on psychological studies (Rosch 1975,
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Rosch & Mervis 1975) that human reasoning makes extensive use of a layered system of
categories. The choice of whether a particular prototype (such as Person or Visit) should
be basic, abstract, or a specialization depends on the way in which descriptions are built
up and used in matching. What is provided is a mechanism by which the careful use of
levels can result in achieving many of the efficiency benefits of semantic marker
mechanisms and classif ication trees.

Individuals: The xr. matcher and other primitive mechanisms for building descriptions
assumes that different individuals are different unique entities in the world being
modelled. For example, no individual can match (in a simple sense) a different
individual. An inconsistency is signalled whenever there is an attempt to use pointers to
two different individuals as descriptors in a single description. However, there are no
built-in assumptions about how individualhood should be assigned. The definition of
what should constitute an individual within a domain is relative to a particular set of
reasoning purposes. As a simple example, in the air travel domain, a particular flight
(including date) could be an individual, with the flight humber as a property (filling a
slot), or, alternatively, each flight in the schedule (by number) could be treated as an
individual, with a particular flight instance represented as a manifestation (see below).

Manifestations: Often it is useful to group together a set of descriptions which belong to
some individual. There are three main cases in which we anticipate this need, and units
with category type manifestation can be used for all of them:

. Further specified individuals: A manifestation can be used to provide a single
memory unit (for purposes of retrieval and context dependent description)
containing a set of descriptions belonging to an individual within one context. For
example, we might separate out the physical properties of an object for which we
also have functional or historical descriptions, or the description of some person as
a scientist from the description of that person as a friend.

Contingent properties:  An individual can be described using time-dependent

descriptions without creating a separate manifestation. However, it is often useful

to collect a set of descriptions which are true at some time (or in some

hypothesized world) and treat them as time-independent descriptions of a
- manifestation which represents the individual at that particular time.

Ghosts: A representation must enable us to describe entities whose unique identity
is not known. There are many cases in which we may know many properties of
some object without knowing which of the known objects in our world it is. Such
objects have at times been called “formal objects” (Sussman, 1973) and “ghosts”
(Minsky, 1975). A standard detective story plot involves knowing that one of the
people in a house is a murderer, knowing many properties of the murderer, and
not knowing which individual it is. The unit used to represent the murder is a
manifestation which has no associated individual.

Relations and propositions: An abstract relationship, such as the relative magnitude of two
numbers can be described using the ideas of slots and description we have used so far.
There is a unit, with category class relation, which represents the relationship (or
predicate) as an abstract mapping; a proposition unit represents each instantiation of the
relationship. The truth value of a proposition is specified explicitly rather than being
determined as an implicit consequence of its existence in the data base.
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2d. The family of descriptors

Each descriptor in a description is an independent characterization of the object
associated with the description. The variety of descriptor types corresponds to the notion
of natural description discussed above. Each descriptor type is intended to express a
different mode, of describing conceptual objects. The syntax of descriptors depends on
key words (such as a, the, front, which) based on analogy with simple English phrases.
They are mnemonic indicators for a set of precisely defined structures within the
formalism.

This set of descriptors was not designed with the goal of boiling everything down to
the smallest possible set of mechanisms. On the contrary, it is based on an attempt to
provide a simple and natural way of stating information conceptualized in different
ways. There is a great deal of overlap. For example, the notion of “bachelor” might be
represented in any of the following ways:

o There could be a prototype unit for Bachelor, with an individual described as
(a Bachelor with...)

* Bachelorhood could be represented indirectly by having a prototype for
MalePerson and A dult, and a predicate for IsMarried, and using the description:

{(a MalePerson) (an Adult) (NOT (which IsMarried))}

* There could be a unit representing a Marriage with slots for the malePartner
and femalePartner, and a description:

{(a MalePerson) (an Adult)
(NOT (the malePartner from (a Marriage)))}.

* There could be a one-place predicate, IsBachelor. The predicate definition
might (but need not) include a special procedural test for bachelorhood. An
individual would then be described using the predication

(which IsBachelor ).

These xru. forms are described in general in Figure 3. No one of these forms is
automatically primary. All of them could coexist, and be defined in terms of each other.
The system provides the necessary reasoning mechanisms to interrelate the different forms
in which essentially equivalent information could appear, and the hope is that additional
knowledge (especially procedural knowledge) which is best stated with respect to any one
form can be represented directly. Our intuition leads us to believe that prototypes and
perspectives will most often serve as the fundamental organizing representation, with the
others serving to provide secondary information.
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Some descriptor tvpes in KRL-Q

Form of .each entry

name of descriptor type:  BNF specification of its form

Informal description of what this descriptor type is used for

examples in KRL notation

- - - - - - - = - - - - e - - - - - - - - - > o= G = " - - - - G- 5 - e - . - .- - -

direct pointer: unitName | numberOrString | (QUOTE lispObject)

A pointer to units, or to data directly in the description. Provides a unique identifier (this includes using
a proper name like “Boston”)

Block1 7, PaloAlto, 356, "a string”, (QUOTE (a pIECE (oF LIST) STrRU CTURE)))

2) perspective: (a prototype with identifier, = filler, . . . identifier, = filler,)

Assigns an object to membership in a category (such as ‘city*). A comparison of the current object with the
‘prototype”, with slots further specifying this object

(a Trip with destination = Boston airline = TWA)

3) specification: (the slotSpecifier from view target Description)

Specifies the current object in terms of its role in a perspective of prototype: ‘“view”. States a role in a
complex object or event (e.g., the **destination’* of a particular trip);

(the actor from Act {Event17 (a Chase with quarry = (Car22 (a Dodge)})})

4) predication: (which predicateName . predicateArgs)

Describes a relationship in which the object is a participant (being “to the North of Providence”).
Defined in terms of a specification. A way of specifying an object in terms of a relation and arguments;
allows special procedural attachment.

[which Owns (a Dog)) (which IsBetween Block17 (a Pyramid))

5) logical boolean: (OR . booleanArgs)| (X O R . booleanArgs) | (N O T booleanArg)

Simple logical connectives. A description is an implicit AND of descriptors, thus AND is not needed

(OR (a Dog) {(a Cat)(which hasColor Brown)})
(NOT (a Pet with owner = (a Student))

continued...
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6) restriction: (theOne restrictionDesc)
Marks the enclosed description as being sufficient to refer to a unique object in context

(theOne {(a Mouse)(which Owns (a Dog))) )

7) select ion: (using sel ectionDesc
select From  selectionPattern~ selection
selectionPattern ~ selection e
otherwise defaultSelection)
This is a declarative form corresponding to CASE or SELECT statements in programming languages.
(using  (the age from Person ThisOne)
selectFfrom (which isLessThan 2 )~ Infant
(which isAtLeast12) ~ Adult
otherwise Child)

8) set specification: (SetOf setElementDescription) | (In . setDescription)
| (items . setElements) | (Notltems . setElements) | (Allltems . setElements)
| (Sequence . setElements) | (ListOf . setElements)

These descriptors allow specification of partial information about sets, sequences and lists. Describes an
object in terms of membership in a set, or a set in terms of the objects it contains

(SetOf {(an Integer)( which hasFactor 2)}) ...all elements are even numbers

(ltems 2 4) ... At least 2 and 4 are in this set
(Allitems 2 4 64 {(an Integer)( which hasFactor 3)}) ... a four element set
(Notltems 51) ... 51 is not in this set

(In {(SetOf (an Integer)) (ltems 2 5 8) (Notltems 4)})

... describes an object in a set of integers containing at least 2 5 8, and not 4

9) contingency: (during timeSpecification then contingentDescription)
Specifies a time (or hypothetical world) dependent description.

(during State24 then (the topBlock from (a Stack with height = 3)))
... part of the description of an individual block

(during (a Dream with dreamer = Jacob) then (an Angel))
.. part of the description of an individual person

Figure 3. Different descriptor types in xrin-o (a partial list)
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In order to demonstrate the different uses of these descriptors, we give here a more
extended example. It is based on a hypothetical system that acts as a travel assistant,
making reservations and computing costs of trips. As with the example above, this is
greatly oversimplified and is not intended as a careful analysis of the travel domain.
Figures 4 and 5 show a number of units with which we construct our examples. There is
a basic unit for Person, and the different things we might know about a person are further
grouped according to the ways they are used in this system. A person viewed as a
Customer has a set of properties different from a person viewed as a Traveller. These
specialized units can share information which is generally true of people. The decision of

[Person UNIT Basic
<SELF > ... There is no description for Person since it is not further
analyzed in the travel planning task
<firstName (a String)>
<lastName (a String) >
<age (an Integer)> . ..A person’s age in years; distinct from age slot in Traveller.
<hometown {(a City) PaloAlto ; DEFAULT}>

...semicolons are used to attach features to individual
descriptors. Unless otherwise specified, the hometown of a
Person will be assumed to be PaloAlto (which is in turn @ unit

described as a City).
<streetAddress (an Address)>]

[Traveller UNIT Specialization
<SELF (a Person)> . ..a specialization of the unit Person
<age { (XOR Infant Child Adult)
. ..the age for any specific Treveller will be one of these units
(using (the age from Person ThisOne)
selectFrom (which isLessThan 2) ~ Infant
(which isGreaterThan11)  ~ Adult
otherwise Child)}>
. .the selection descriptor provides a way of determining which
case this is from the age field in the view of this Traveller
viewed as a Person
<preferredAirport {(an Airport)
(In (the localAirports from City
(the hometown from Person ThisOne))); DEFAULT}>]
. .the airport is found in the set of preferred airports found
from the City in the hometown slot from a view of this
Traveller viewed as a Person

[Customer UNIT Specialization
<SELF (a Person)>
<billingAddress {(an Address)
(the streetAddress from Person ThisOne) ; DEFAULT}>
-<credit (a CreditCard)>]

Figure 4. Some units for an airline travel system
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[Airport UNIT Basic
<SELF >
<location (a City)>]

[City UNIT Basic
<SELF >
ClocalAirports {(SetOf (an Airport with location = ThisOne));DEFAULT }>]

[ PaloAl to UNIT individual
<SELF (a City with localAirports = (items SJO SFO OAK))>]
. .these airports are units t00

[SJO UNIT individual
<SELF (an Airport with location = SanJose )>]

[UniversalCharge UNIT--individual
<SELF (a CreditCompany)>]

[Magnitude UNIT Relation
<SELF (an ArithmeticRelation) TRIGGERS (ToTest some LISP code inserted here)>
<greater (a Quantity)>
<lesser (a Quantity)>]

[tsGreaterThan PREDICATE Magnitude greater lesser]
... defines the Predication IsGreaterThan with focus being the slot greater in Magnitude;

... the argument which follows the predicate is to fill the lesser slot
.. used in the form (which IsGreater Tban 2) equivalent to the form
... (the greater from Magnitude (a Magnitude with lesser = 2))

[isLessThan PREDICATE Magnitude lesser greater]
... a second predication based on Magnitude with focus on lesser

Figure 5. Some units and predicates used in travel information

how-to group the slots which make up units is up to the programmer and the purpose of
the representation. in this example, age as associated with a traveller is one of Infant,
Child, or Adult, the necessary distinctions for fare determination, while age for a Person is
an integer.

Figure 6 shows a description of an individual traveller, GOO43, described from two
perspectives using these basic units. These three figures use of a number of different
types of descriptors, including specifications, set descriptors, predications, and units
representing individuals. individuals are either use objects (such as the string “Juan” and
the integer 3) or units, such as UniversalCharge. Specifications provide a way to refer to
fillers in perspectives associated with either the unit in which they appear, or other’ units.
The descriptor (the age from Person GO043) would refer to the age of the individual
referred to by the unit named G0043 when viewed as a Person (and thus is an integer),
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while (the age from Travelfer G0043) refers to his age as a Traveller, and thus is one of
Infant, Child, or Adult. Specifications can be nested. The special unit ThisOne is
interpreted to refer to the entity being described when the description is used as a
prototype. Thus, for example the descriptor:

(the preferredAirports from City (the homeTown from Person ThisOne))

which appears in the unit for Travelfer includes a nesting of one implicit and one explicit
target. The descriptor (the hometown from Person ThisOne) is interpreted as referring to
whatever fills the hometrown slot in a perspective whose prototype is Person  The
descriptor (the localAirports from City { -}) is based on the unit for City, which has a slot
localAirports. This descriptor assumes that the object which is the hometown specified by
the embedded specification can be viewed as a Ciry.

There are a group of descriptors based on sets which have the obvious intuitive
interpretations.  In the example, the localAirports for a City are described as a set each of
whose members is an Airport. The default for preferredAirports is described as an
unspecified member of the set of local airports for the hometown. In the case where a
town had only one airport, this could be used directly to find the departure airport.

The predication (which IsLessThan 2) is a descriptor using the predicate IsLessThan
which relates pairs of numbers, and in turn is based on a unit Magnitude Predicates are
defined with respect to a unit in which the arguments to the predicate are among the
slots. Two different predicates are defined in terms of the Magnitude relation, as shown
in Figure 5. This unit includes in its SELF slot a procedure to test for the truth of the
relation.

[GO0043 UNIT individual
<SELF {(a Person with
firstName = “Juan”
lastName = {(a ForeignName)
(a String with firstCharacter = "M"})
... These descriptors give partial information. A unique string need not be specified
age = (which IsGreaterThan 2 1))
(a Traveiier with
preferredAirport = SJO
age = Adult)
(a Customer with
credit = (a CreditCard with
company = UniversalCharge
number = "G45-7923-220"))}>]

Figure 6. A unit describing a specific traveller

A predication is always used in describing one specific argument, as opposed to a
proposition relating several variables in formal logic, which states the relationship without
focusing on any one argument. Figure 7 shows another example of multiple predicates
based on a single unit. In some cases, the different predicates focus on different parts of
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the total relationship, as in the case of HusbandOf and IsMotherOf which relate different
slots in the Family unit. In other cases, they simply provide different points of view by
choosing a different argument as the implicit primary argument, as in the difference
between IsHusbandOf and IsWifeOf. Each predicate can have associated procedures for
proving and matching both for the relationship as a whole, and the particular focus of its
use. Except for this procedural attachment, and for economy of writing, predicates and
predications can be replaced in a uniform way by specifications. For example, the
following two descriptors are equivalent based on the definitions in Figure 7:

(which IsHusbandOf Mary)
(the maleParent from (a Family with femaleParent = Mary))

[Family UNIT Abstract
<SELF {}>
<femaleParent {(a Person)(a Female)}>
<{maleParent {(a Person)(a Male)}>
<children (SetOf (a Person))>]

[tswifeOf PREDICATE Family femaleParent maleParent
(TRIGGERS (ToTest some LISP code))] ..only this one has a special trigger

[IsHusbandOf PREDICATE Family maleParent femaleParent]

[ IsMotherOf PREDICATE Family femaleParent (in children)]

Figure 7.  Multiple predicates defined on the basis of one relation

Features and meta-descriptions

- Often it is important to represent knowledge about knowledge. kRrRi allows any
descriptor to have associated with it a feature (a lisp atom) or a meta-description (a
full-fledged unit characterizing the descriptor viewed as a piece of knowledge). In the
example of Figure 4, there are descriptors marked with the feature perauLT, indicating
that they can be assumed valid in the absence of other information, but should be
superseded by any other information, and should not be used in looking for
contradictions. Two other features are used in standard ways by the matching, searching,
and data adding routines: CRITERIAL, indicating the set of descriptors whose satisfaction
can be counted as proving a match, even if there are other descriptors around; and
priMARY indicating the primary perspective for inheritance of properties in a hierarchy.

The ability to associate a complete unit at this meta-level makes it possible to have
representations which include facts about facts (e.g., justifications, histories of when
things were learned or inferred, interdependencies between assumptions, etc.). We have
not yet worked out a standard notation for use at this level. As we build different domain
programs, we will develop a set of standard units for talking about descriptors and
propositions, and a set of facilities for modifying and using them when appropriate.

15
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2e. Description matching as a framework for reasoning

We believe that reasoning is dominated by a process of recognition in which new
objects and events are compared to a stored set of expected prototypes.* The key part of a
recognition process is a description matcher which serves as a framework for comparing
descriptions. We have intentionally used the term matching for a range of functions
which are broader than its standard use in Al languages.

- - " = - - - > . " = - e = = G R T W G e On

*This basic approach has been advocated as “frame theory” by Minsky (1975) and Winograd (1974 - Lecture
1), as “scripts” by Schank (1975b), and as “Beta-structures” by Moore and Newell (1973). There are many
related notions in the current Al literature.

First, we have separated the issue of indexed data base retrieval from that of matching
two descriptions. Section 2g deals separately with the processes of indexing, context
searching and retrieval. Our matcher takes two inputs: a pattern, and a specific object to
be tested. Secondly, we use the abstract concept of matching in a very general sense, to
include all sorts of reasoning processes which are used to decide whether a given entity
fits a given description: Much of what is usually thought of as “deduction” comes under
this heading, as do the notions which Moore and Newell (1973) have called “mapping”.

We think of the matching process as a framework because the user has choices along
several dimensions which determine how the matcher operates. In its simplest form, the
matcher compares the exact forms of two given representational structures: at the other
extreme it guides the overall processing of the system. The matcher may use the semantics
of descriptors as well as their syntactic form to decide whether two descriptions match.
The matcher may search for a referent of a description (in order to use its properties),
invoke special match procedures associated with a descriptor type or a specific pattern,
and invoke a general reasoning process to search for chains of implications.

In extending the notion of matching, we have adopted and extended ideas which have
been implemented in a variety of systems. Our attempt has been to integrate them into a
coherent framework which gives the user of ks.a choice of the strategies best suited to
the specific task. The choices can be viewed as representing four interacting dimensions.
" We will first list these dimensions and give examples of the choices made in well known
match systems, then describe the range of possibilities provided for each in «a..

Subtasks: In all but the most trivial matching operations, the pattern and the darum to
which it is compared are complex objects with an internal structure. The match is carried
out by setting up a series of subtasks, each of which matches one piece of the structure of
the pattern against a corresponding piece of the datum.. In the case of simple syntactic
matchers (as in the Al languages) the division into subtasks is a direct reflection of the
syntax of the structures -- if the pattern and datum are represented as lists, each subtask
involves matching one element of the pattern list against the corresponding structural
element of the datum list, using a recursive application of the same matching algorithm.
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Terminals: In applying a match process recursively to a complex structure, there is a choice
of where the recursion “bottoms out”. In matchers operating on individual data structures
(such as assertions in the Al languages, or well-formed-formulas in the unification
algorithm of a logic-based system) there is a natural set of terminals provided by the
underlying language. In a LISP-based system, pattern variables and atoms form the
terminals -- the task of matching them is not done by recursively setting up match
subtasks, but by calling the appropriate procedure for deciding the match for that kind of
object directly. Even though atoms have an internal structure, they conventionally serve
as terminals. In logic, the predicate, variable, constant, and function symbols form a set of
terminals. In simple network matchers, the individual links (and their labels) usually
serve as terminals.

Results: The simplest kind of result from a matching process is a binary answer —— marcu
orFAIL. Most matchers add to this some kind of mechanism for returning a set of
associations between variables in the pattern and constants (or other variables) in the
datum, either as an explicit output or implicitly through side effects.

Process: There are a number of control questions in deciding how the match process
should proceed. These include deciding what subtasks to carry out in what sequence, and
when the match as a whole should be stopped. In the simplest case, the subtasks are taken
serially, usually in the sequence provided by the syntactic structure of the pattern. The
process continues until ail subtasks have succeeded, at which point it returns the variable
assignments, or until any subtask fails, at which point the entire match fails.

In a multiprocess system, there are additional strategy decisions in choosing when to
carry out subtasks in serial or parallel. Further, since the match process as a whole may
be only one of several competing processes (for example several patterns being compared
for “best match”) there are choices of when the match process should be suspended or
resumed, and how it should compete for processing resources. At a still more
sophisticated level, there can be sharing of overlapping subtasks between two match
processes.

The Match framework in KR L

We provide a framework for carrying out a match process, and an appropriate set of
building blocks from which a matching strategy can be constructed within this framework
for-a specific user or domain or process. Section 3¢ describes in more detail how such
“procedural parameterization” is done. We do not believe that any one combination of
features will provide a universally applicable matcher. In the course of working with xzrw,
we plan to experiment with and develop a set of generally applicable strategies which can
be used in building a user-tailored match process. The following list of extensions is
intended to give some feeling for the scope and variety of issues we believe must be dealt
with. At the moment, what exists in xr.-o is the framework into which they will be
integrated, and a set of simple strategies which handle straightforward cases. Figure 8
contains some simple data which will be used in illustrating some problems in matching.
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Matching multiple descriptions: The pattern and datum in a . match are both
descriptions which may contain any number of individual descriptors. In order for a
match to be completed, all of the descriptors in the pattern should be satisfied in some
way by the datum. But there is no simple sense in which the sequence of descriptors in
one can be set into correspondence with the sequence of descriptors in the other. The
matcher includes a set of strategies for alignment of descriptors. If, for example, both
pattern and datum contain a descriptor which is a pointer to an individual, these two
individuals will be compared and the match will succeed or fail depending on whether
they are identical. If both pattern and datum contain perspectives with the same
prototype, the two perspectives (including all of the filler pairs) will be compared in
detail. If pattern and datum each contain a perspective whose prototype is a basic unit,
those two prototypes will be compared. If the pattern contains a logical descriptor (such
as awvor) and its argument corresponds in one of these simple ways to a descriptor in the
datum, the two will be compared.

[Cat UNIT Basic
<SELF {(an Animal)(a Pet)}>]

[Dog UNIT Basic
<SELF {(en Animal)(a Pet)}>]

[Pluto UNIT Individual
<SELF (a Dog)>]

[Mickey UNIT Individual
<SELF (which Owns Pluto)>)

[Minnie UNIT Individual
<SELF (which Owns (a DogLicense))>]

[Ownership UNIT Specialization
<SELF (a State)
TRIGGERS (ToEstablish
(AND (Match \(the possession) \(a Dog)) ...aLISP expr
(Match \( the owner) ...\ prefixes a KRL expression
\(which Owns (a DogLicense with
licensed = (the possession))))))>
<owner (a Person)>
<possession (a Thing)>]

[Owns PREDICATE Ownership owner possession]

[ DogLicense UNIT Specialization
<SELF>
<licensed (a Dog)>]

Figure 8. Sample knowledge base used in matching
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The algorithm for alignment makes decisions both about what subtasks will be
attempted, and in what order they will be done. In the default algorithm built into the
matcher, only those subtasks which can be set up simply (like those listed above) will be
tried. The order in which these simple strategies will be tried can be determined by the
user, and they can be intermixed with user defined strategies. The simple matching
strategies handle a large number of the typically occurring cases, but do not account for
all possible ways in which two descriptions might be matched. Whenever there is a
descriptor in the pattern for which no simple alignment can be found, the system looks
for a strategy program provided by the user for this specific match (either written for the
special case, or chosen from the set of building blocks). The following examples illustrate
possibilities for setting up an appropriate subtask for testing whether a pattern descriptor
is matched.

Using properties of the datum elements: Consider matching the pattern descriptor (w hich
Owns (a Dug)) against a datum which explicitly includes a descriptor (w hich Owns Pluto)
The serr description in the memory unit for Pluto contains a perspective indicating that
he is a dog. In a semantic sense, the match should succeed. It can do so only by further
reference to the information about Pluto. The KRL matcher can vary the level of what it
considers to be terminals. Faced with comparing a descriptor to an individual (which
corresponds loosely to an atom or constant in other matchers) it can set up a subtask of
matching the pattern descriptor against the description stored in the unit for that
individual. This is done only when the alignment strategies cannot find an appropriate
descriptor in the datum, but can find a pointer to an individual.

This extension is naturally recursive. In matching the descriptor (w hich Owns (a Dog))
against the unit Mickey we first need to use the description within the Mickey unit to find
(which Owns Pluto), then to use this we need to further look within the Pluto unit. The
problem of finding the correct information in a general way has been called the “symbol
mapping problem’* (Fahiman, 1975), and has been handled to some degree by matchers based
on networks rather than propositions (for example, Nash-Webber 1975. Hendrix 1975). These
matchers do not have a rigid notion of scope and terminals, since matching follows
open-endedly along links, rather than operating within a specified formula.

Using deduced properties: The example above assumes that the desired properties are
explicit in the data base, but are not local to the datum being matched. The matcher sets
up a subtask which is a recursive call to the same matching process, with an expanded
datum to work on. A further generalization of recursive subtasks in the matcher allows it
to set up subtasks which are not primitive match operations or recursive calls to the match
functions, but which require that a needed property be derived from known facts about
the elements. This is the province of a theorem prover.

As a simple example, we might want to match (which Owns aDog)) against Minnie
having as our description of - Minnie (which Owns (a DoglLicense)), and having other
information asserting that only dog owners own dog licenses. The appropriate subtask to
set up is not one which can be done as a simple match operation, but one corresponding
to the goal of proving that a dog license owner is a dog owner. This kind of subtask
requires general capacities for reasoning and deduction. There is a search problem in
deciding what alignments should be tried (which of the conclusions the system should try
to prove on the basis of which parts of the available description). The «s. matching
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framework does not include any automatic mechanisms for making these decisions, but it
does provide a natural superstructure in which specific deductive goals arise and, in the
overall flow of control, it is typical that deduction tasks arise as subtasks called by the
matcher.

In our example of Figure 8 we have associated a’ specialized procedure with the general
unit for Ownership. In a realistic system, it would be associated with the combination of
the concepts Ownership and Dog, using the index mechanism described in section 2g.

Specialized procedures for subtasks: The previous example involves setting up subtasks
which are not simple recursive applications of the matcher. The match framework
provides for a general capability for calling arbitrary procedures as subtasks of a match.
This can including setting up non-serial control regimes for running subtasks in parallel.

We believe that the most important weapon for attacking the combinatorial problems
which arise in matching and deduction is the ability to attach specialized matching
procedures to descriptions and units. When the matcher is faced with a pattern and
datum which cannot be simply matched, it looks in several places for specific procedural
information telling what to do to decide what the result of the match should be:

* There can be procedures associated with general types of alignment -- for example,
the user can provide a special procedure to be used when a perspective with its
prototype in some specified set can be matched against another perspective with a
prototype in that set.

* Procedures can be associated with a unit, to be used whenever a perspective having
that unit as its prototype appears as a pattern descriptor. These procedures can
either be general (to match the perspective as a whole) or associated with specific
slots.” The ToEstablish procedure associated with Ownership in Figure 8 is an
example of such a procedure.

*This is a generalization of the notion of active elements in patterns, as in the elements originally called
actors by Hewitt (1972).

Interleaving a match with ongoing processes: In the standard notions of matching, a match
is a unitary process with respect to the rest of the system. The matcher is called as a
subroutine, and other processing continue’s when it is done. In using a matcher as the
basis for a general process of reasoning by recognition, this is not an acceptable strategy.
The attempted match of a “frame” or “script” or “schema” begins when its presence is first
conjectured, but may continue through a series of further inputs and other processing by
the system. This is a natural extension of the ability for specific match situations to set
up arbitrary subtasks as described above. Rather than " calling a specific subtask and
waiting for its answer, the specialized procedures can start up tasks (in a co-routine
fashion) which will direct the processing of the system, while the match process remains
in the background, waiting for the appropriate information to be found.



AN OVERVIEW OF KRL 21

There are a number of ways the processing can be organized. In a simple case, the
matcher can set up a demon waiting for each piece of information it needs (for example,
a demon for each slot to be filled in a perspective) and simply resume the normal
processing, waiting for the information to come in. In other cases, the specialized match
procedures might start up information-seeking processes (such as asking a question of a
user in a natural language system, or doing a visual scan in a vision system) in addition to
the demons, so that the attempt to match. the pattern serves as a driving force for deriving
new possibly relevant information.”

Admission of ignorance and partial results: The xs. matcher is designed to distinguish
among four possible results, both in reporting the result of the match as a whole and
using the results of subtasks. In addition to a result of success, it separates two kinds of
failures -- where the pattern demonstrably does not match the datum; and where there is
insufficient evidence. The case of insufficient evidence is further distinguished according
to whether the matcher has been limited by resources it has used in the match, or the
matcher failed to decide after trying every strategy it knew.

The general multi-process capabilities of ke can be used to suspend a match process
. and return a partial result. Thus, a match can be started, and after some amount of
processing (using the resource limitation mechanisms described in section 3b) if no
definite success or failure has occurred, it can return a result of “don’t know yet”. The
process using the match can decide whether to accept this as sufficient for an assumed
“yes”, or to consider it a “no”, or to abandon whatever it was doing for lack of sufficient
information, or to resume the match process, giving it more resources.

Resource limitation and pinpointing of further problems: In a case where the processing so
far has not produced a definite answer, the matcher should be able to return specific
details in addition to the result of “don’t know yet”. Given the problem of matching
(which Owns (a Pet)) against Mickey, with sufficient resources (and the data of Figure 8), it
could answer “Yes”. With less resources, it could answer “Yes, if (a Dog) matches (a Pet),
and with still less, “Yes, if Pluto matches (a Pet)'. In general we want to limit the depth
of the reasoning, and have the matcher return a list of yet unsolved problems if no
definite answer has been found within the limitation.* We hope to integrate this
mechanism with the means of returning bindings relating specific elements in the pattern
and those which matched them in the datum. As of the current version, only the “hooks”
for calling these mechanisms exist, and no details have been filled in.

o This is similar to the idea of residues proposed by Srinivasin (1976) in MDS. a language with many
similarities to KRL in both goals and mechanisms.
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Evaluation of the quality of a match: Many uses of the matching paradigm are not simple
cases of matching a single pattern against a single datum, but involve finding the best
match among a set of patterns. An example is the matching of a set of disease patterns
against a specific symptom set in doing medical diagnosis. The matcher should have some
way of assigning values on some scale to the individual parts of a match’ and combining
these to return a “goodness measure” chosen along a scale of values, rather than just “yes”,
“no”, or "l don’t know”.

Along with a value for how good the match seems to be, there should be a separate
value for how reliable the information is, depending on how much work has been done,
and perhaps on reliability measures stored with the information used. This can be
combined with progressive deepening’ such that each time a match process is resumed, it
can further evaluate the match, updating its factor for the goodness of fit, and increasing
the factor for reliability of the knowledge.* As with the binding of specific elements, we
have so far only provided a place in the framework where such measures could be used.

*A simple version of goodness evaluation is implemented in MYCIN (Shortliffe, 1976), and Rubin (1975).
There has been some work (e.g., Colby, 1973) on the evaluation of reliability.

Interaction of multiple matching processes: In looking for a best match, it is useful not to
think of the separate matching operations as independent, but to allow interactions
between them. A simple level of interaction occurs in operating them in a progressive
deepening mode, and using some sort of heuristic strategy (e.g., best first generation) to
decide which alternative to pursue at each step. At a deeper level, there can be additional
information associated with specific ways in which a pattern fails to match (an error
pointer ), which indicates a specific alternative or provides direct information on the
goodness of other matches being simultaneously attempted.* This capability should
include the potential of triggering new patterns as candidates for a match, on the basis of
new data turned up in the match process.**

*See Minsky (1975) and Kuipers (1975) for an extended discussion of the ways in which systems of patterns
can be linked into a network.
**See Rubin (1975) for a discussion of this kind of triggering in medical diagnosis.

Forced match: A matcher can be operated in a mode in which the question instead of
“Does this match?” is “What would you have to believe in order to make this match?“.* If
asked to match (which Owns (a Cat)) against Mickey, instead of responding with failure, it
should return “You have to view a Dog as a Caf'. This is a natural extension for the kL
matcher, since there is a general facility by which the user can provide procedures for
alignment and the treatment of types of match (i.e. what to do when you try to match two
different individuals).
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Using individuals as patterns: Given the ability to do forced match and to return an
indication of the differences, the matcher can be used in a mode where the pattern is an
actual individual’ rather than a general prototype. The result of matching two individuals
would be a specification of the ways in which they differ. This needs to be combined
with a further mechanism (associated with resource limitation) which heuristically guides
the choice of which properties to follow up and which to ignore. We hope that this style
of matching, together with a basic commitment to description by comparison will provide
us with a strong base for doing more interesting sorts of reasoning by analogy.

2f. Chunking of knowledge, accessibility and redundancy

One of the fundamental problems in artificial intelligence is the “combinatorial
explosion*. A large knowledge base provides an exponentially expanding set of possible
reasoning chains for finding desired information. We believe that the solution to this
problem must be found by dealing with it directly through explicit concern with the
accessibility of information. The representation language must provide the user with a
set of facilities for controlling the way in which memory structures are stored, so that
there will be a correspondence between “salience” or “relevance” and the information
accessed by procedures for search and reasoning operating under processing resource
limitations.

Much of the current research on memory structures in artificial intelligence deals with
ways of organizing knowledge into chunks or clusters which are larger than single nodes
‘or links in a semantic net or formulas in a logic-based system. This is particularly
important in reasoning based on prototypes’ using description by comparison, in which
typical properties are assumed true of an object unless more specific information is
immediately available. It is also necessary in recognition, where identification of an
object is based on recognizing some set of salient properties, and in analogies, where only
the relevant properties of one object are inherited by the other.*

*For a general discussion of these issues, see Bobrow and Norman (1975). A system which tries to distinguish
the salience of different descriptors is described in Carbonell and Collins (1974).

The «kn. data structures were designed to be used in processes which are subject to
resource limitation and differences in accessibility. Two forms which are equivalent in a
strict logical sense are not at all equivalent if used by a processor which takes different
numbers of steps to come to the conclusion, and which may well be stopped or suspended
before reaching completion. In ks the unit is treated as a basic memory chunk, and
processes such as the matcher operate differently when using information within a unit’
and when retrieving information from a unit being pointed to or referenced by it. By
making explicit decisions about how to divide information up between units, the user has .
structural dimension of control over the matching and reasoning processes.

Figures 9 and 10 illustrate the use of redundant information in building up
descriptions to be used in matching. Figure 9 gives an example of a set of facts
representing a particular event, presenting several different forms which are equivalent in
abstract logical content, but different in their behavior with respect to memory chunking
and accessibility. Figure 10 gives the units which are referred to by these alternatives.
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The unit named Event234 represents a specific event which is being remembered by a
KRL program. In all of the versions, the recipient is represented by a pointer to the unit
for the individual Personl, corresponding to a situation in which the identity of that
individual was the salient fact. Also in every version, the object is represented only by a
description (a Pen), indicating that the specific identity of the pen is not remembered. Of
course, these are arbitrary choices representing the way one particular program (or person)
would remember the event. Someone else remembering the same event might store a
description containing the identity of the pen (for example’ if it were a special memento)
and only a description of the person who received it.

The four versions differ in how much detail about the other person is considered
salient to the specific event. In Version 1, the giver’s identity is all that is included. In
version 2, the identity of his wife is included as well, and in version 3, so is her
occupation. Version 4 differs from the others in omitting the specific identities
altogether. It corresponds to the kind of incomplete memory which might be expressed as
“Let’s see, David got the pen from some guy who was married to a lawyer.”

[Event234 UNIT Individual Version 1
<SELF (a Give with
object = (a Pen)
giver = Person2
recipient = Personi)>]

[Event234 UNIT Individual Version 2
<SELF (a Give with
object = (a Pen)
giver = {Person2 (which IsHusbandOf Person3)}
recipient = Person1 )>]

[Event 2 3 4 UNIT Individual Version 3
<SELF (a Give with
object = (a Pen)
giver = {Person2 (which IsHusbandOf {Person3 (a Lawyer)})}
recipient = Personi)>]

[Event234 UNIT Individual Version 4
<SELF (a Give with
object = (a Pen)
giver = (which IsHusbandOf (a Lawyer))
recipient = Personi )>]

Figure 9. Alternative memory structures showing different choices of
redundancy
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[Give UNIT Specialization
<SELF (an Event)>
<object (a Thing)>
<giver (a Person)>
<recipient (a Person>]

[Lawyer UNIT Specialization
<SELF {(a Person))>]

[Pen UNIT Basic
<SELF {(a PhysicalObject)>]

[Person 1 UNIT Individual
<SELF (a Person with firstName = “David”)>]

[ Person2 UNIT Individual
<SELF {(a Person with firstName = “Jonathan”)
(which IsHusbandOf Person3)}>]

[Person3 UNIT Individual
<SELF {(a Person with firstName = “Ellen”)
(a Lawyer))>]

Figure 10. Units used in the alternative formulations shown in Figure 9

If we try to match Event234 with the pattern (a Give with giver = (which Is HusbandOf

(a Lawyer))), the amount of processing needed to determine the answer differs for the

different versions. The matcher must look into the contents of the units for Person2 and

° Person3 in the cases where there is less redundant information. The results for the

various versions could differ as well. Matching (a Give with giver = Person2) against

version 4, all we could say is that it is potentially compatible, while the other versions all

provide a definite “Yes”. In a system with competing parallel processes, these differences
can have a significant effect on the results of reasoning.

It should be apparent that the kind of knowledge structuring involved in chunking
facts into units is very different from the structuring of facts into truth conrexts, as
provided by the Al languages such as cosnzver and QLISP. In those systems, each context
contains a set of objects and assertions whose connection derives from being present and
true within a particular state representing a hypothetical world, or time. This grouping is
orthogonal to xri's object-oriented chunking based on grouping a set of facts (or
properties) about a particular conceptual object. In xr. there are descriptors (the
contingency form) that are applicable only in some worlds, and facts that are true in some
worlds, but this mechanism is separate from the clustering of relevant facts into a memory
structure.



AN OVERVIEW OF KRL 26

2g. Indexing and Retrieval

One of the fundamental problems in the use of memory is the retrieval of appropriate
knowledge from a large data base. As mentioned in section 2e, xr. makes a distinction
between the process of retrieval and the process of matching. In finding a desired object
in memory, there are two steps. The first is a rough retrieval step, designed to produce a
small set of units which potentially fit the specification for what is being sought. This is
followed by a more thorough matching process in which each candidate is matched against
the retrieval pattern, using the mechanisms discussed above.

This separation between retrieval and matching is carried over in the form of the
memory. In most existing Al systems (and models of human memory) there is an
underlying assumption that there is a single set of data linkages, used both for retrieval
and for matching or deduction. The data structures must contain all of the logical form
of what is being stored, and be usable in some uniform way for memory search. Many
researchers have explored the problems which arise in trying to create structures which
have desirable properties for retrieval processes while also being an adequate
representation of the logical structure; for example, see Anderson and Bower (1973).
Woods (1975), and Hendrix (1975). Many human memory experiments (beginning with
Collins and Quillian (1968)) have been based on the same assumption that a single set of
links must handle both tasks. The uniformity of logical and retrieval structure is also
basic in systems which use complete indexing (as in cosniver, QLISP, etc.), and those
which retrieve through a complex search process (as in the derivatives of Quillian’s
. original network representation (Quillian, 1968)).

We believe that the presence of associative links for retrieval is an additional
dimension of memory structure which is not derivable from the logical structure of the
knowledge being associated. xri. has a separate independent mechanism for creating
associative links between arbitrary combinations of units, and for retrieving those units on
the basis of the associations. These associations would be closely related to the rest of the
knowledge structure, but in a way determined by specific memory strategies. One of the
major topics for research is the development of strategies for deciding when to put in
associative links and when to look for them in retrieval.

krL—o has a simple indexing mechanism which allows the user to catalog any unit
-under an list-structured pattern of keys. There is a primitive to retrieve all units
matching a key combination and another for matching ail units indexed under any subset
of a given key pattern. For most of what has been typically stored in Al language data
bases, no indexing at all is needed in xr.—0, since the way in which descriptions are
combined into units explicitly gathers together the information which would be retrieved
by a data base mechanism. In the future, we hope to explore other retrieval mechanisms,
perhaps involving spreading activation models, and parallel computation structures.
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In addition to the internal structure of units, and the associations represented by the
index, there is a third type of structuring in which a set of units are collected in a context
or focus list.* These focus lists are primitive building blocks for use in experimenting
with notions of attention and differential access to data at different “levels of
consciousness”. There are primitives for adding anddeleting items, and for finding all (or
the most recent) units in a given focus list matching a given description. A focus list
provides one mechanism by which to implement and test models of short-term memory.

---------- e o o > = - - " - Se - - - . - - - - -

*The use of focus lists in solving anaphora problems in English dialogs has been explored by Deutsch (1974).
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One aspect of memory structure which we plan to explore in «ks. is the use of
context-dependent description.* The results of human reasoning are context dependent,
the structure of memory includes not only the long-term storage organization (what do |
know?) but also a current context (what is in focus at the moment?). We believe that this
is an important feature of human thought, not an inconvenient limitation. It allows great
simplifications in the form of descriptions by allowing them to be context dependent. A
descriptor which is going to be interpreted in a context with other descriptions and objects
around can implicitly describe its connections to them, rather than needing to make all of
the links explicit. The descriptor form (theOne ..) is used to specify a unit by giving a
description which will pick it out uniquely in a context. This context might be a stored
focus list, or one dynamically created as part of a current process.

o 8 o - A T R - - - - - o - o . - - . - - - . o - - -

3. Extended control structures

In designing «r.-c we chose to concentrate our efforts on the declarative side of the
language. The control mechanisms and procedure specification formalism makes use of
-usp @as much as possible, extending what was already there, rather than building from the
ground up. There is no such thing in kKrRL-oas a “KRL-procedure”. When a procedure is
to be specified, it is done as a user function which makes use of a set of primitives (use
functions) provided for manipulating the kr.-o data structures. Arguments and values are
passed in the normal use way, and subroutine calling obeys the usual stack discipline
rules, as provided by wrteruspe. This includes the use of generators and other coroutines
made possible by the spaghetti stack.

The’ underlying control structure has been extended in several directions:
object-oriented process specification (procedural attachment); a general signal mechanism
for error handling, notification, and dynamic procedural parameterization; organization of
the basic system functions around process frameworks; and a multi-process executive,
based on a multi-level scheduling agenda with resource and priority management
facilities.
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3a. Procedural attachnent

One of the major current directions in programming language research involves
factoring procedural knowledge orthogonally to the traditional programming formalisms.
Each primitive program step can be viewed as applying some operation to one or more
data objects each of which belongs to some class. The traditional way of organizing
programs is to have a procedure keyed to each operation. The internal structure of this
procedure takes into account the alternatives for the data objects on which it will
operate. Languages such as swairraix (Learning Research Group, 1976) and SIMULA
(Dahl and Nygaard, 1966) and the various acror formalisms (Hewitt, Bishop, and Steiger,
1973, Hewitt and Smith, 1974) group together the different procedures to be carried out
on objects of a single class. The programmer defines classes of objects, and associates
with each class a procedure whose internal structure takes into account the different
operations which will be done. The to-fill and w hen-filled triggers discussed in the context
of frame representations (Winograd, 1975, and Bobrow et al., 1976) are further examples
of this procedural attachment. Al languages such as ouise and the eramver family
represent a different method of factoring the procedures, according ro configurations
defined in terms of patterns which are to be matched against goals and assertions. These
configurations represent potentially arbitrarily overlapping classes, which is quite
different from the use of classes in swaiiraix and SIMULA.

We have extended the notion of object-oriented procedure definition in two important
directions. The first is an integration of the ideas of object-associated procedures with
those of frame structure and multiple description. In associating procedures with a class
represented by a unit in xr1, procedures can be linked to the slots of a unit, and
specifically associated with several different descriptor types. This makes the clustering of
the procedures correspond better to the conceptual structuring of the domain. In addition,
ket provides through its use of perspectives a notion of subclass which allows objects to
inherit procedural as well as declarative properties. Since each unit can contain multiple
perspectives it can be a member of a number of subclasses.

krL—o provides facilities for procedural attachment which can be divided along two
dimensions. The first is based on when the procedure is intended to be used -- whether it
is a servant which provides the method to carry out some operation, or a demon which
causes a secondary effect of some event. The second dimension corresponds to whether
the procedure is associated with an individual data element or with a class (prototype).

A servant is invoked when the system has the goal of applying some specific operation
to a data object (or set of objects), and needs a procedure for accomplishing the specified
task-. The interpreter looks for servant procedures associated with the data object or its
class, and if it finds one, executes it to carry out the operation. If there is more than one,
a strategy procedure is called (using the signal mechanism described below) to choose. A
typical use of servants is to attach a procedure describing how to match a descriptor
involving a particular relation or prototype. In Figure 8, there is a ToEstablish servant,
associated with the unit for Ownership, which uses the rise function ano and the xr:u
function Match. It provides a specific procedure for determining ownership in a special
case.
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A demon is invoked as a side effect of actions taken by the system. All of the
primitive data-manipulating operations check for demons, whenever they use or add
information. A demon can be associated with a description of the operation to be done,
and the object it is done to. A unique object can be specified, or a demon can be invoked
for any object of a specified class. The antecedent theorems or if-added methods of the
Al languages are examples of demon-like mechanisms, in which the invoking events are
asserting and erasing, and the classes of data objects are specified by patterns. Demons
can be awakened when something is about to be done or has just been done (there are
both types). A demon typically might be invoked when a u-nit representing an individual
is filled in as part of the description in an instance. This could trigger further processing
which requires knowing the individual.

The second dimension of procedural attachment is the distinction between procedures
associated with individual data objects (7rraps) and those associated with classes
(triggers). Triggers are class- based -- they apply to operations and events which take
place on objects whose description includes a perspective whose prototype is the unit to
which the trigger is attached. Traps are instance-based -- they apply to operations and
events directly involving the unit to which they are attached. A list of triggers and a list
of traps can be associated with each slot within a unit. Both triggers and traps can be
either servants or demons.

In addition to the servants explicitly sought by the system (in the frameworks for the
matching and searching processes described below), and the demons explicitly triggered
(by the data manipulating functions) the user can also provide arbitrary demons and
servants and check for them explicitly. The user can independently define a set of trap
and trigger names, and use them for organizing a computation. There is a primitive used
to probe for attached procedures, and if multiple traps or triggers are applicable, they can
set up multiple processes (see below).

3b. Multiprocessing and variable depth of processing

The overall control structure of xru is based on our belief that the next generation of
intelligent programs will be built using multi-processing with explicit (user-provided)
scheduling heuristics and resource allocation. This view is based partly on looking at

- current multi-process oriented systems*, and partly on looking at properties of human
processing, such as partial output based on variable processing depth** We want to
provide ways to build a system whose components can run for varying amounts of effort,
producing some initial results with a small effort, and improving the quality of their
results (either in amount of data, or certainty) as the effort is increased. We also want to
explore issues of artention or focus in choosing which of competing procedures to run.***
By beginning with a multi-process system whose control structure is explicit and visible,
we hope to have a base from which to experiment with a variety of control and resource
allocation strategies.

*Such as in syntactic analysis (Kaplan, 1973b) and in speech understanding systems, as described in Reddy
and Erman (1975).

**See Norman and Bobrow, (1975) for a discussion of human processes which are limited by resources.

***See Hayes-Roth and Lesser, (1976) and Paxton and Robinson, (1975).
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We expect one of the major research areas to be the integration of data-directed and
goal-directed processing. In the course of running, there will be an explicit goal structure
for the program as a whole, while new processes will continually be triggered through
procedural attachment and data from external sources. Resource manipulation and
priorities will be used to provide a global direction to the processing yet keeping
flexibility to deal with unanticipated combinations.

Many of the specific facilities in xrz., such as procedural attachment and the extended
notion of matching discussed earlier, presuppose some sort of multiple process system, in
which a set of procedures can be set up and control can be passed between them in a
systematic way. The central executive of xru is based on an agenda™® of runnable
processes, and a scheduler for running them in a systematic order. The agenda is a
priority ordered list of queues, with all processes on a higher priority queue run before
any on lower priority queues.

*See Kaplan, (1975) for the use of an agenda in a system for parsing natural language.

All scheduling is done by cooperation, not preemption. A process runs until it
explicitly returns control to the scheduler. It can add any number of other calls to the
agenda before it gives up control, including a call to continue itself. @~ Whenever the
scheduler runs, it scans down a series of priority levels on the agenda, and runs the first
process in the highest priority non-empty queue. It removes that process from the agenda
and starts it (if it is new) or resumes it (if it has been suspended).

The agenda levels can be used to achieve a variety of standard control disciplines. As
one example, new inputs can be checked for periodically, and can put actions on the
agenda at a high priority level, which will then be done before ongoing processing at
lower levels, and may even remove such processes from the agenda. This makes it possible
to write procedures (e.g., story understanders) whose depth of processing varies with the
rate of the inputs. As another example, a part of the computation can be made relatively
. continuous* (Fisher, 1970) with respect to another by causing all of its processes to be
scheduled at a higher priority level. A higher priority process is relatively continuous
with respect to a lower priority process in that it is guaranteed to run to completion
between any successive actions in the lower priority process. Use of relatively continuous
processes is especially useful for coordinating processes with intermediate steps which
leave data in states which would be inconsistent for use in other parts of the
computation.

‘Part of the information associated with each process includes a pointer to a resource
pool, which can be shared between any number of processes. There is no automatic
assignment or checking of resources, but any process can check and increment or
decrement its resource pool, and invoke a user-provided procedure if resources have run
out. The agenda itself is an accessible data structure, and the scheduler looks for
specialized strategy procedures (using the signal mechanism described below) in all of the
places where resource and scheduling decisions are made. The user can design
combinations of strategy procedures (called a control idiom) suited to the particular
program or component. This will be described further below in discussing process
frameworks.

30
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3e. Procedure directories, modules, and process franeworks

For dealing with complex descriptions and matching processes, it is critical that the
user be able to build up different mechanisms and strategies at a high conceptual level
which do not demand detailed concern with all the ways different descriptor types may
appear. There need to be processes built into the system which do the necessary
bookkeeping and basic alignment for carrying out matching, description building, and
searching operations. At the same time, there is no one way that things should be done.
The strategy for carrying out a particular matching task can be selected along many
dimensions, and detailed decisions at each step depend on the particular design choices.

Our solution to the desire for both generality and automatic handling of detail is to
provide process frameworks for all of the basic operations, and a procedure directory
which provides a mapping from a set of hames (designating the procedure to be done) to
proced u res. For example, rather than having a semantically complete definition of what
happens in a match, the system provides a matching framework which contains processes
for setting up the structures to compare two descriptions, doing the alignment of
comparable descriptors, looking for procedures attached to specific patterns, and handling
all of those cases where a simple syntactic match will work.

Whenever there is a “hard case” of any sort (i.e., something which cannot be resolved
by simple syntactic properties), the system looks in the procedure directory for an entry
corresponding to the unique name associated with that case. The directory is dynamically
maintained -- entries can be added and removed either singly or in groups called
directory modules. The user can specify with each call to the matcher a directory
module which has entries to take the appropriate actions for all of the hard cases he
wants to handle. There is a set of initial default entries in the directory which take some
action (the best that can be done without further information) in the absence of a
user-supplied entry. Typically, a program will include a set of alternative modules, with
one of them being “plugged in” to the directory for each call to the matcher.

In some sense, this can be thought of as defining the system’s basic functions (such as
Match) using calls to sub-procedures which are to be provided by the user. The additional
directory mechanisms make it possible for the user to provide alternative definitions in a
much more flexible way than with the static lexical procedure-naming conventions used
by most programming languages. The use of directory modules makes it easy for the user
to bind and unbind clusters of “functional arguments” in a single operation.

As an example within the matcher, the user could provide a module with an entry
telling what to do when matching two perspectives whose prototypes represent abstract
categories such as (a PhysicalObject) and (an Animal). One possible entry would indicate
that the match should be abandoned without further work, while a different one might
call on a complex procedure which uses a classification hierarchy. We expect to build up
a vocabulary of standard modules (which we call march idioms) which represent different
combinations of the features described above. One module (used for quick checking to
see if there is an easy match) returns “don’t know” if the built-in syntactic checks don’t
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give an immediate yes or no answer. A module for quick disconfirmation checks only for
those kinds of descriptors which give definite negative evidence easily (e.g., conflicting
individuals or conflicting basic categories). One for forced match would do a complete
mapping process when faced with two conflicting individuals, returning the places where
their descriptions differ. The standard modules can be augmented with specialized
individual entries for specific situations. The user can also control the way in which new
entries take precedence over pre-existing ones.

Briefly summarizing, a process framework provides a basic structure which sets up an
environment and divides the process up into a set of cases (subtasks) to be handled. Each
case is given a unique name (as part of defining the framework).  For each such name,
there are three three different places to look for a detailed procedure:

* in the built-in mechanisms of the framework (e.g., the simple syntactic cases
of matching);

* in procedures attached to the data on which it is working (e.g., To-Match
triggers associated with a pattern);

* in the current procedure directory (e.g., an entry stating that when two
conflicting individuals are to be matched, a given mapping process should be
called).

There are several places other than matching where process frameworks are used in
krr—o. The primitive process for adding a new description to an already existing unit is
a framework which allows for event-triggered side effects of each of its actions. The

scheduler described in the previous section is a framework which allows for modules
specifying different control strategies. As an example, a simple program has been written
to search an anp—or tree, along with two different modules which cause the search to be
breadth-first or depth-first respectively. Other modules could specify a heuristically
guided search according to different strategies. We expect to build up a vocabulary of
generally useful control idioms, including complex ones involving resource allocation.

The mechanism used in xr.—o t0 implement procedure directories is based on a notion
of signals*. The system maintains a signal path associated with each independent process,
which is a linked list of signal tables, each of which is an association list pairing signal
names with actions. There is a primitive which, given a signal name, looks on the signal
path for the first place where that signal name is found, then executes the action
associated with it. In addition, there are a range of primitives for putting actions into a
signal table, pushing one onto or popping one off of the signal path, resetting the current
signal path, etc.

*The concept of signals has been adapted from MESA (Lampson, Mitchell and Satterthwaite, 1974).
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The signal mechanism is used for two other purposes in addition to providing
procedure directories for process frameworks.

Errors:  Whenever an error condition arises, a signal is generated whose name
specifies the error condition. The default action is to stop and interact with the
user on line, but the user can specify in the current signal path any action
whatsoever to be taken to handle the error. This could include patching things
up so the computation can go on, or could involve aborting the process in which
it occurred, or any complex computation which might be built in as part of a
debugging system.

Notification: Whenever any one of a specified set of system operations occurs (e.g.,
adding a new process to the agenda) a signal is generated. The default is to do
nothing, but the user can specify any action, which typically would include
printing out monitoring or debugging information, taking special actions, or
keeping statistics. This makes it easier to provide debugging and monitoring
tools for use in a multi-process environment, which by its essential nature makes
it difficult to keep track of just what is going on when. These notif ication
signals can also be used directly to trigger event-driven processes. For example,
a data base indexing mechanism might operate by catching the signal generated
by the primitive which augments a description with a new descriptor and taking
the appropriate indexing actions.

Communication between the procedure assigned to the signal (according to the current
signal path) and the context in which it is invoked is handled through the use of free
variables.

4. Where we are headed

4a. Experimental implementation and recycling

Our approach in building xr. has been guided by a philosophy of working from actual
domains and problems towards a habitable representation system, rather than starting with
an abstractly designed representation and trying to force the world into it. To some

- degree we have drawn on our collective experience with designing language understanders.
However, we believe that complex systems are “Whorfian” in that the underlying structure
and style of a representation language can have a strong effect on what people attempt to
do with it. Therefore, we see a need for a feedback loop in which systems are built, used,
and then redesigned on the basis of experience.

Our current research strategy includes a cycle of three steps, with a step time on the
order of 6 months to a year:

1) Designh a system based on our current understanding and experience.

2) Build an experimental implementation which captures as much of this as feasible.

3) Use the system in a number of test domains to understand its capabilities and push
its limits.

We are currently entering the third step on our first major round of design on xr. as
embodied in krL-o. For our experiments with xr.—0, we have chosen the strategy of
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implementing a set of already existing Al programs, each of which we hope will exercise
different subsets of its facilities, and raise additional representation issues. Our current
plan is for the Xerox understander group and several Stanford students to work on 5 to 10
programs®. Each of these benchmark programs makes use of well-understood Al
-techniques, which push the current facilities of Al languages and systems, but which are
clearly formulated in the already existing programs (or extended program descriptions
which take the place of programs in several of the M.L.T. dissertations). In some cases
(such as MmyciN) much of the actual program deals with issues of smooth user interface,
and the accumulation of large bodies of knowledge. We will not try to imitate these
aspects, but only try to duplicate the basic modes of operation and reasoning. For most of
the systems, however, it seems quite feasible to duplicate the complete published
performance.

*Candidates being considered (some in progress) are: a simple cryptarithmetic problem solver (See Newell and
Simon, 1972 for a description of the task); SAM, the Yale story understander (Schank et al., (1975). and
Lehnert, 1975): a learning program for recognizing a simple kind of ARCH (Winston, 1975); the Blocks world
planning programs HACKER (Sussman. 1973) and NOAH (Sacerdoti, 1975); the Rutgers action understander.
BELIEVER (Schmidt, 1975); MYCIN (Shortliffe, 1976), a simple medical advice system; a more complex
medical reasoner, perhaps CASNET (Kulikowski, 1974) or a diagnosis program sketched at MIT (Rubin,
1975); a legal reasoner based on a recent MIT dissertation (Meldman, 1975); GSP, a general syntactic processor
(Kaplan, 1973a): and travel assistant programs which are part of the series of GUS programs at Xerox PARC
(Bobrow et al., 1976). We will not do all of the programs on this list, but include them as examples of the
kinds of programs we would like to do.

By beginning with systems whose behavior and general outline are well defined, we can
concentrate on the ways in which the «s. representation can be used to full advantage,
and the places in which it does not meet the needs. We expect each of these systems to
take on the order of I-2 person-months of work, and to provide part of the feedback
cycle for the design of «sL.

4b. Goals for future versions of KRL

Although we cannot predict all the changes which our experience will force on us, we
are aware of several major issues which we consciously avoided in designing «r.-o. Major
areas of expansion in our future designs will include: a Lisp-independent specification of
the. primitive data objects; a descriptive formalism for specifying procedures; integration
of -the different procedure-calling facilities and indexes; development of an integrated
system for programming and debugging; and development of a more convenient syntax.

Procedure specification: We need a way to specify procedures other than by giving a LISP
function or expression. We believe that a representation system should make it possible
to describe processes with the same generality and flexibility as any other objects. We
want to take the ideas of multiple perspective, process frameworks, signals, and
multi-processing and integrate them directly into the ways procedures and arguments are
specified, data is passed back and forth, etc. In particular we will be developing a notion
of factored description in which a procedure is defined through a description based on
multiple perspectives. This description may combine high level statements about the
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structure of the process, its results, conditions on various parts, etc. along with detailed
statements about the individual steps. The system should be able to look at and
understand descriptions of its procedures as well as run them.

In most current formalisms there are completely different representations for the
declarative statements (networks, or assertions, or clause sets) and the procedures. In those
systems where there is a uniform base*, the declarative form is used primarily as a
notation for writing programs as a sequence of steps to be executed. We want to greatly
expand the conceptual tools for describing and talking about procedures from multiple
perspectives.** We believe that this is necessary for two complementary reasons.

- - - - - - - - - - - S Y Y R = - - e e W - - - . -

*As in MEMOD (Norman, Rumelhart and LNR Group, 1975). or for that matter, simple LISP structures.
**Systems like HACKER (Sussman, 1973) and MYCROFT (Goldstein, 1974) are first steps in this direction.

- - - - - - - - - - - - . - - - - - - e . - - - - - -

First, the ability to describe and reason about procedures is useful for making
programs easier to write, and necessary for the kinds of self-conscious strategy choosing,
debugging, explanation. and self-modification which are increasingly becoming a part of
complex computer systems. One of the major beauties of usris the fact that programs
are themselves built from the language’s data structures (atoms and lists), making it easy
to write editors, debuggers, program analyzers and programming assistants. We would like
to apply this kind of self-analytic power at a higher level, using the reasoning, matching,
and problem solving powers of ks.as a fundamental element in our tools for designing,
building and working with «s. programs.

Second, as we explore the kinds of asynchronous, factored multi-process styles of
program organization which are coming into existence, we will move away from the
notion of a program as a sequence of steps (or simple control structures), and will explore
alternative views of a process description in the language itself. In addition to being able
to describe procedure definitions statically, we also need ways of describing and
manipulating descriptions of dynamic states of processes. Even in systems such as usrin
which programs can be represented in the data structures of the language, the state of a

_ process is represented in a totally separate set of data structures (stacks, registers, etc.).

One advantage of production systems* is that all control information is explicitly
represented in the data structures. We hope to retain this property of uniformity and
visibility, while providing a more structured set of mechanisms for building and
manipulating control structures. These include primitives for building a priority ordered
agenda of things to be done, assigning descriptions (in the declarative forms of the
language) to processes on the agenda or currently being run, and assigning and consuming
shared resource measures.

»
See Davis and King (1975) for a discussion of control structures used in production systems.

This extension of the way in which programs can be written is the largest part of what
needs to be done. We hope it will be one of the major advances achieved by «r.as a
programming language. It will involve a good deal of further research into how programs
for a multi-process environment are naturally conceptualized, and how people can best
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use the power of signals, procedural attachment, and other mechanisms which extend
normal definition and control structures. We also need to find ways of implementing
interpreters and compilers which operate from complex descriptions of a desired
procedure rather than a step-by-step program.

Data objects: We need to formally specify the semantics of those data objects we are
currently borrowing from use (atoms, strings, numbers, lists, arrays) and provide the
necessary primitives. We will add some new data types more oriented towards a
multi-processing approach, such as streams, partially specified lists and sets. There are
currently some mechanisms for working with sets within «rL-o, but they need to be
integrated much better with the procedures and the primitive use of lists. Along with the
primitive data objects, there will be a corresponding set of descriptions (in the KRL
formalism) for use in programs which explicitly manipulate data and do reasoning about
its form.

A more uniform approach to indexing: krL-o cOntains a number of different mechanisms
which can be viewed as carrying out a common task of using some kind of indexing
mechanism to associate data objects (units or procedures) with names. Signal tables, the
attachment of procedures to slots of units, and the associative index are very similar in
structure. Other mechanisms (such as the retrieval of descriptions from fillerpairs in
perspectives, and the use of variable names in a program context) can be put into the same
mold. In future versions, we hope to provide a better-structured, more uniform
mechanism for all of these, in order to reduce the diversity in the current system.

Integrated System: All of the interfaces between programs and the world (user
interactions, file systems, etc.) are currently done using use and will have to be defined
independently. This includes the obvious sorts of input-output, and also the
user-interaction facilities for writing, filing, editing, compiling, running, and debugging
programs. We believe that the expanded reasoning powers of xs. programs will make it
possible to write systems which are more flexible and useful than those existing in rise.
One of our research goals will be to develop intelligent programming apprentices* within
an integrated «r. system. In the area of input-output, we want to deal explicitly with
different types of output device (random access, stream, formatted page) and input device
(streams, pointing devices, asynchronous event devices (such as keysets)) in a style which
makes it easy to apply the general tools of xs. to programs demanding sophisticated user
interaction.

- - - - - - - - - - - - - - . - = - - - e - - - - . - - - . - -

® 1&e Hewitt and Smith (1975). Winograd (1975a) for some ideas in this direction.

Syntax: The current syntax for kri-ois quite clumsy, since it was designed to operate in a
use based system with a minimum of intermediate parsing. Except for the use of
multiple bracket types, it is essentially usr syntax. This results in-an inordinately large
number of bracketing characters in complex descriptions, and sequences such as ")} )D}>]1"
are not uncommon. We need to work out a more natural syntax. This will become even
more important when we design the forms for describing programs and integrate them
with the existing description forms.
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4c. Building a layered system

Throughout this paper we have described ways in which xr. provides a flexible set of
underlying tools, rather than embodying specific commitments about processing strategies,
or the representation of specific areas of knowledge. In terms of Figure 1, all we have
described is the bottom layer. One of our major goals will be to build a set of strategy
and knowledge modules on top of it. This will be done in the context of designing one
or more specific systems for language understanding in a limited domain, with an
emphasis on clean, well defined interfaces.

The construction of an integrated system will demand building many components. As
we construct each one, we want to do it in a style which does not limit its usefulness to
the specific context for which it was written. There is no one solution to the problems at
a given level which will be satisfactory for all systems. But we believe that it is possible
to develop a set of alternative modules at each level which are sufficiently broad and
flexible that someone interested in working at the next higher level could choose between
them, rather than building all the way down.

Over the course of several years and the design of several different systems, we hope to
develop a large inventory of modules, each containing a substantial body of knowledge,
and all expressed in a compatible formalism. If we are successful at finding the
appropriate lines along which to decompose the knowledge which goes into language
understanding (and thought processes in general),” it will be possible to construct from
them programs of much greater size and complexity than those now feasible.

4d. Summary

We are in the process of developing a knowledge representation language which will
integrate procedural knowledge with a richly structured declarative representation designed
to combine logical adequacy with a concern for issues of memory structure and
recognition-based  reasoning processes. The representation provides for several
independent dimensions of structuring which deal with the logical content, the relative
accessibility of different pieces of knowledge, and the association of specialized processes
with data at various levels of specificity.

The system provides a basic orientation towards a recognition process based on a
procedural framework for matching. The control structure is based on multi-processing
with explicit (user-provided) scheduling and resource control. Process frameworks and
procedure directories are used to give the user detailed control over the semantics of the
fundamental system operations. These include: adding new descriptions to memory;
searching for a memory unit matching a given description; matching a given pattern
against a specific description; and scheduling processes, based on resource allocation.

The system is complex, and will continue to get more so in the near future. We are
intentionally trying to be eclectic rather than reductive, in order to maximize what we can
learn from our experiments with early implementations. As continuing experience
indicates to us which of the facilities are most important, and points out ways in which
they can be simplified, we will refine the language. However, we do not expect that it will
ever be reduced to a very small set of mechanisms. Human thought, we believe, is the
product of the interaction of a fairly large set of interdependent processes. Any
representation language which is to be used in modelling thought or achieving “intelligent”
performance will have to have an extensive and varied repertoire of mechanisms.
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