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1. Summary.

In [2] Ole-Johan Dahl and the author studied an algorithm for

priority queue maintenance, first used in the work with the language

SIMULAin the beginning of the 1960's. The strategy uses special binary

trees called p-trees, and algorithms to maintain those structures.

The main part of [2], as well as of the more detailed treatment in

[1] and[3],was devotedto a mathematical analysis of the efficiency of

the structure after n successive insertions. Each new key was supposed

to be independent of the other keys and to have equal probability of

falling in any of the intervals defined by those keys already in the queue.

This paper 1s concerned with the efficiency of the algorithm after a

large number of alternating remove-best/insert-random steps, starting

with the situation aftern successive insertions.

The famous ergodic theorem of Markov chain theory ensures us that

there exists a stationary state, called the stationary p-tree forest,

which the process approaches. We will find approximate values for properties

of the stationary p-tree forest, as an application of general methods

which will be developed for the analysis of such algorithms.

.Let F denote the normal p-tree forest and S the stationary

p-tree forest. The following table compares some of the aspects of these

two random structures:

F S

cape oH, -1 =H * 2H + 0(1)

Jrpected insertion su . = E, + 0(1) SH N : H + 0(1)

Expected recursion 2 I + 1 2 0 - 1 +0 [2]depth 3 "ml 9 35"n 6 n
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The stationary p-tree forest S is more "skinny" than the normal

p-tree forest F . Near the root, S 1s approximately equal to F ;

for example the expected right path length tends to the same limit, and

the probabilities of the value of the node next to the root are nearly the

sane. However at the end of the left path S 1s quite different from F .

The expected length of the left path of the last right subtree of the

left path 1s shown to approach 1 , while the corresponding value of F

approaches 2 . Similarly, the probability for the node next to the
left leafto be a, 1s shown to have the approximate values:

in S: 2 + L
) 3a. (arl) 2n(n-1)

| Ll <a <n-2
in F: 1 + =

a(a+1) © a(a-1)

if a =3

H
1, 2 "mn 1

: =+ = — :

and if a = 2

: "3 : 5 .

In Chapter 2, more general aspects of the queuing phenomenon are

presented. It should be pointed out that the text primarily deals with

the particular problem of finding measures of the efficiency of the

stationary p-tree forest, despite the fact that some of the methods have

obvious generalizations.



In Chapter 3 1s found a detailed definition of the stationary p-tree

forest and its prerequisites. We also discuss a function, the characteristic

left path polynomial attached to the forest, which will be essentially

useful later in the paper. By arguments in Chapter 3 the function is

defined for S .

In Chapter 4 one will find a deductive proof of the probabilities

for the value of the node next to the left leaf. The derivation involves

techniques from discrete mathematics, especially involving binomial

coefficients.

In Chapter 5 we collect the information to derive the measures

for S .



2. Models

2.1 The Queuing Phenomenon.

In the general case of the queuing phenomenon we have a Source (5)

consisting of a number of independent devices, generating units to be

served at some Service Processor (SP) . SP for some reason (for

example, 1ts capacity) will not serve the units at arrival, and therefore it

depends on some type of Queue Controller (QC) which arranges the units

in some kind of priority sequence according to key values assigned to

each unit. QC usually makes use of some predefined strategy working

with special-types of storage structures 1n the queue itself (e.g. linear

lists, binary trees, index tables). At request, the QC releases the

unit having the best key value, for service by the SC (Best-In-First-Out

(BIFO) strategy).

The process of placing a new unit in the queue is called an Insertion (I)

and-the process of taking the best unit out of the queue 1s called a Remove (R) .

= QS - Queue Storage
| M QC - Queue Controller

\v, SP — Service Processor

—_— Remove

Figure 1.
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We shall deal only with the queuing process and will assume that

the units consist of the key value only.

A very simple way of assigning key values 1s to define some kind of

time function according to the arrival at the QC . The best strategy

1s then probably to use a simple linear list in the QS . However, 1in

the general case keys emanate from the source with values according to

some distribution function; they may be adjusted by the QC prior to

insertion and even be changed during their stay in the QS . We will

use the term key pattern for the complex of rules according to which

keys are assigned.

The queulng process may be regarded as a discrete time sequence of

events. At each time t (t = 1,2,3,...) either an insertion or a

removal takes place. In general we may have a case where the event to

take place 1s subject to selection according to some distribution function.

We will use the term I/R-pattern for the complex of rules according to

which the insert/remove sequence takes place.

Maintaining a priority queue requires selection of a strategy for

the structural ordering of the keys and algorithms for insertion and

removal of keys. Linear lists, AVL-trees, and "heaps" are examples of

such strategies. Each strategy provides algorithms for insertion and removal,

as well as a mechanism for representation of the data, and we shall call it

the queue strategy.

The purpose of this paper 1s to study a specific combination of the

| three elements in the queuing phenomenon, as described in the next

sections. Some of our methods and resultshave obvious generalizations;

however, we shall not attempt such generalizations in this paper, but

concentrate on obtaining results for our special case.

| 5
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2.2 Models for Key and I/R-patterns.

We will assume that our source generates keys as an infinite sequence

of real numbers

X1sXpseeesXosoon

being independent random variables chosen according to the exponential

distribution with mean ) (0 < )), having the density distribution

function:

re ME if O<x
(2.2.1) f(x) =

| 0 otherwise.

Furthermore, we will adopt the following assumption

| Upon entry to the queue controller, each new key 1s increased

(2.2.2) | by the value of the key last removed from the queue.
To demonstrate the effect of (2.2.2) we give an example.

Example 2.2.1.

Let the first five keys from the source be

08,19, 1.1, 0.1, 2.0

and suppose the I/R-pattern is

ITIRIRRI

Key from Key to Last key
Time | I/R source the queue | The keys in the queue removed

1 I 0.8 0.8 0.8 0.0

5 I 1.1 1.1 0.8, 1.9, 1.1 0.0

L R 1.9, 1.1 0.8

5 I 0.1 0.9 1.9, 1.1, 0.9 0.8

6 R ~ 1.9, 1.1 0.9
T R 1.9 1.1

8 I 2.0 3.1 1.9, 3.1

0

6



Restricting ourselves to a source generating keys which'are independent

exponential random variables is not uncommon. Biasing

the keys as described in (2.2.2) needs some motivation. If no adjustment

were made we would run into cases where we would have smaller keys in the

queue than some of those removed on earlier stages. Not biasing keys

also means that large keys will have a tendency to be trapped in the

queue, because smaller keys keep coming in with non-vanishing probability.

The example below, quoted from [2], gives a practical example of bias

occurrence:

Example 2.2.2.

Let the source contain n (n > 1) independent exponentially

distributed event patterns, with common parameter A > O .

1 2 n

coe source

xq x, x

The n devices each deliver an event time Xs (J = 1,2,...,n) to an
initial queue. From that time on the best key, say Xp 1s executed and

the device k delivers a new key

| +
Xp Xe E

where E 1s exponentially distributed. Since x 1s the smallest of such

keys 1n the queue at the present time, we have a situation conforming

with (2.2.1) and (2.2.2). O

The key pattern described above 1s denoted Ky .

’



Suppose A 1s some fixed (i.e., not subject to probabilistic.

changes) I/R pattern, and let A(t) (1 < t) denote the t-th event

(I or R) . (In Chapter 3 we will concentrate on a few such 4A ,

at present it 1s left unspecified.)

If we at any time +t are left with an empty queue (i1.e., if the

number of I's having occurred 1s equal to the number of R's having

occurred up to and including time t ), we clearly are in a trivial

situation equivalent to the original state; previous counts have no

effect on the subsequent ones. Thus we may neglect this situation.

We will allow A to be infinite, but will assume that it 1s bounded

in the sense that the queue never will contain a number of keys larger

than some predetermined number M .

The latter two assumptions may be formulated as follows.

Let N,(t) be the difference between the number of I's
and the number of R's having occurred in A up to and

including time t . Then

(2.2.3) 0 < nN, (t) < M

for all times t = 1,25... , where M 1s some predetermined

number.

Ky and A together uniquely define the queue at all times t = 1,2,¢e4

when the initial stage (t = 0) 1s defined by the empty queue. The

content of the queue will be denoted as follows.

(t) (t)
Xq yo Ep the keys in the queue at time t , in sequence

t
according to their arrival in the queue

BD the value of the key last removed from the queue.

8



The notations apply to the situation after execution at time t- (A(t)) .

Initially

ny = 04 = 0 .

Our combination of Ky and A have the nice property of leaving

invariant the simultaneous density distribution function for the differences

between the keys and the value of the last removed key, as statedin

the following proposition.

Proposition 2.2.1. Using the notations above, let 1 <1 and define

the stochastic variables:

(t) _, (t) _ _
W, =x 5 Oy 1<j<n =n .

Then the W's have the following simultaneous density distribution function:

(Wy Hw, tet) FT O0.< WW

(2.2.4) E(WWo LW),

0 otherwise.

Proof. The proof follows from standard results and methods of

probability theory.

As A(l) = I , and the first X from the source is exponentially

distributed, we have n, = 1, 51 = 0.0 and the correct distribution

function. So the proposition is true for t = 1 .

Assume the proposition to be true for some t, 1<7%T .

If A(t+1l) = I , let the new key from the source be

Xx = W+ By

where the density function of W is given by (2.2.1). At time t+1 we

will have:

9
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Beer = Bptd

Str = OB

and the queue sequence:

[m

wp & DOERR we of)I Ph ! y) n = % 7H ) 2 n"’ " i)
t+1 t

The W's at time t+1l are therefore defined by:

(t+1) _ _(t) _
Ws = W; Jj = 1,2, 005m, 0-1

(E+)
TS

+ +

As W 1s independent of alt 1), 5 on 8 1) we obviously have the required
t

simultaneous density distribution function at time +1 .

If A(t+1) = R , let

t . t t t

Wl ) - nin(W\ ) RSS )\
t

and

y(t) y(t) oo y(t) be the remaining wt) 's, conserving
1 2 n, -1

the sequence.

By symmetry, the simultaneous density distribution function

t t t

for yl vd yoy® 1s:
t

n, =\M(v+y,+ . ..+y )
t 1 ng -1 :

n, A e if 0 < VS e¥y a
F(Vsy1s¥ps «+ 2s¥y 1) =

0 otherwise.

Removing the-smallest of the x (8) 's 1s equivalent to removing the smallest

of the (8) 'sy, leaving us with the following situation:

10



no. = “1 _ y(t) : NB
thl Bg TL 3 Rpg= VEL

and

(t+1) (t) (tt)
Ws = Te; - V J = LSseeesny 0 .

The simultaneous density distribution function for the (+1) 's is hence:

© 0, “Any (wg +, Fn)
fii o waa) = [no Ae dv

t+1 0

when O S WWos eee, W (0 otherwise) because
t+1

GCBA CO I Co Jes Ce DIR CO BR Co DRI CO
1 n,-1 1 nt+1

+

«ng, v4 wT 4 Fyn)
t+1

Simple integration yields the desired density function.

Proposition 2.2.1 has now been proved by induction. CJ

Another useful property of our (Ky A) complex is the fact that a key

to be inserted has equal probability of falling ipto any of the intervals

defined by the keys already in the queue, as 1s readily seen from the

Proposition 2.2.2. Using the notations above, assume

A(t+l) = I .

Let X = W, +o, be the key to be inserted, W being distributed according

to (2.2.1).

t t +

Let 2 ), 2 CR Hi be the ordering variables of 0,6), x)t
Then for J = 1,2, ¢00,n,-1 :

(t)y (t) (t) (t) 1Prob(X < = b . < . = En ——( Z; 7) Pro (z3 < X 2541) prob (2; < X) ES

11



The results 1n Propositions 2.2.1 and 2.2.2 enable us to replace the

continuous key pattern Ky "by a discrete key pattern Dy , described

below . The replacement 1s easily seen to carry no loss of generality,

for-queue strategies that depend only on the relative order of keys.

The key pattern Dy involves renumbering of the key values in the

queue at each step. However this will not alter the internal arrangement

of the key

equivalent to those of Ky .

Key pattern Dy

~- At the end of each time t the queue contains a permutation

of the integers 1,25 000mg .

-- If A(t+l) = I , the source generates an X from the set

(2.2.5) To, - (1.1. amr]
with discrete probability distribution

Prob(X = x) = _t_ VxeT :
n. +1 n,

Having inserted x 1n the queue the keys are renumbered

according to their size.

-- If A(t) = R, the key 1 1s removed and the remaining key

values are decreased by 1 .

Note that in Dy, (as in Ky ) all permutations (all relative
orderings) are equally likely to occur, and that inserted X's (both in

D, and Kj ) have the same probability of falling in any of the n+l

intervals defined by the queue keys.

12
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| 2.3 The Queue Strategy: p-trees.

The queue strategy P studied in this paper is the use of p-trees

| with algorithms for insert and remove, as described in [1]
and [2]. In these papers, as well as in [3] and [6], one will find

theoretical and practical results concerning P . We will assume

: familiarity with p .

| using PP , the queue structures are postfix ordered binary trees,

| being elements of a subset of the set of all binary trees. We will denote by

| 2) the set of all binary trees with n nodes (n > 1)
(1) the set of all p-trees.

| (We recall that a tree re gM 1s a p-tree if and only if
| each node having a right successor also has a left successor.)

| We will agree to define 50) and #0) to consist of one tree, viz.
| the empty tree w .

| When using p-trees we will adopt some conventional notations.

| Let Te F(1) (2 <n) .
| —-— The length of the left path will be denoted 7 .

| —— The values of the left path nodes in postfix order, from
| top to bottom, will be denoted by

(2.3.1) n=q >a, >. >q = 1

—— The right subtrees of the 1-1 first left path nodes (left

leaf excluded) will be denoted by

BysBos ..»B 4

agreeing that node values are adjusted to range from 1

| upwards (if nonempty),

|

13
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A p-tree forest F is defined as the pair of items:

where § is some probability model containing for each tree T

in (0) a probability Fr to occur.

Using the key pattern Do , some I/R-pattern A and P will at
each time t leave us with a p-tree forest, denoted by

(8) _ (a(n) _(%

where

t t6) = (Mn) | 7 es(®)yA A

In [1] and [2] are presented theoretical results of the so-called

"normal p-tree forest", being the pair

(n) (n) ,.(n)

0 (% io
where NOES ..] is the I/R-pattern consisting of n successive insertions.

One of the important properties of the normal p-tree forest, due to the

recursiveness of the insertion algorithm is that:

1k



The set of all right subtrees of a fixed left path node
(2.3.3)

position 1s composed of a set of copies of normal p-tree forests.

This property 1s called the basic p-tree property (BPP). Formally, the

BPP may be described as follows:

(n)
Let F = (%7/,8) be any p-tree forest (n > 2) with

3 — {B; IT es®)y :

Let 1 < J < (n-1) be any fixed left path node position, and

define

“4 = T
TeX

B.—U
J

for all trees U :

n

ve uy #8)
0

Let

(2.3.4) Ad = LZ ald) (0 < k < n-j-1)
ue 5K)

and

(3)
(3) _ 3) _% (x)

A
k

Then F 1s said to have the BPP 1f the forests

. | Kk .
Q{9) _ ( ),0{3))

are normal p-tree forests for all j, k : 0 <k <n-j-1;

1< j<n-1.

(n)
A proof of the fact that Fo have the BPP is found in [1].

15



2.4 The Characteristic Left Path Polynomial.

Adopt the notations in the previous section and let T Te ,

(n>2) , The polynomial

-1 q., q.

(2.4.1) hr.(2,w) = Xn zd dtd
j=1

is called T's left path polynomial (LPP).

(n)
LetF = (F » 3) be any p-tree forest (n > 2) . The polynomial

re 7?)

is called F's characteristic left path polynomial (CLPP),

Being a polynomial in z and w having terms of the type z3&P itn

1 <b < a <n we see that we may write

(2.4.3) Ho(z,w) = 2 p{F) 22 WP
l1<b<a<n” ’

where

(F) CL
= b 1s the probability of a tree in F to have a and(2.4.14) ’

b as values of adjacent nodes on the left path

For convenience we will adopt the conventions

by (z,w) = Ho (2,w) = 0 if n=1
(2.4.5)

From the CLPP of a p-tree forest F | we may deduce the expected left

path length- La . Because-each tree T has exactly one more node on its

left path than the number of terms in its LPP we find

16



leading to

(2.4.6) Lo = 1 +H, (1,1) (0< n) .

n

Assume that F = (5 ), 3) (n > 2) has the BPP, defined in the previous
section. We may then use F 's CLPP to establish the expected number of key

comparisons (s;) necessary to insert a random xeT, » being subject to the

equiprobability distribution as in Dy in the trees.

We split Sp into two parts:

(2.4.7) So = SLo + SRp

where SL 1s the expected number of key comparisons involving left path

nodes, and SR 1s the expected number of key comparisons involving nodes

in the right subtrees.

} SL.

Let T be any tree, and use notations as in (2.3.1):

if x <1 we use T comparisons;

if A541 <x<q. for some J = 1,2,...,7T-1 we use j+l
comparisons;

if n<x we use 1 comparison;

leading to the expected number of left path comparisons in T :

T-1

_ - 3 n+lSLy = |T+ Day - agp) (41) +2 / )j=1

T-~1
1

=1+— 2 aq. .
ntl. j=1 J

17



: Now

T-1 -1 gq. aq,
+

. 2, q. = 2 2 =z J wd 1

| so that

S = 1+ —

Lp ntl JZ l 7 wel

and obviously

1 OH. (25 W)
(2.4.8) SL, = 1+ —F n+l fo} A I 7 ew =1

| SRp-

Let the number of key comparisons necessary to insert x in the right

subtree of left path node j of the tree T be

provided A341 <x < a . This process is clearly equivalent with

inserting x-qs,q in B. (where node values have been adjusted), denoted

by sp (x) , because of the BPP.

| We then find

t-1 1

| T ¢% J = n

| A341 <* <9;

n-1 n--1

1 = 2 5 2 Y= os (x) 2, FP
| . n+l U T

j=1 k=0 ey Xe Ty c 71)
B, =U
J

18



Using the notations of (2.3.4), knowing that F has the BPP, we find

3) _ J) (3)

TeF

B. =u

| J

and hence

n-1 n-j-1 .
kt+1 (9)| SR, = 2 == AY,

F j=1 %k=0 n+l by Jsk
where

| Vv. = 2 2 a3) s (x) L_ S
Ue& k 0

| because (5%) a) is a normal p-tree forest.

| AY) is the probability of finding a tree in F with right
| 5 9541

sub-tree 7 of size k . Each time a term zZ “WwW with

9; "9441 -1 = k occurs in the LPP's of the trees in F we get a

| contribution Pr to the corresponding term in F's CLPP. Summing over all
| possible J 's will correspond in the CLPP to summing the coefficients of all

possible 7 BP with a-b-1 = k . Hence

| n-k-1 n-k-1
sa) Tx a! |

and

| n=2  e1 nk-l (py
| (2.4.9) SR, = 2 —= 8 2 BL

| F Kk =0 ntl pl) bo1 b+kt+1l,b

| Bringing (2.4.8) and (2.4.9) together we find

) oH_(z,w) n-21 Fr? + kt+1(2.4.10) S, = 1+ ~~ EE 2, —= 8 P (n > 2)| F ntl dz 7-w=1 k=0 n+ 1 p(®) k
where

)



n-k-1 (F)
b=1

| The Py 8 may be found as follows:

| n-2
k 1 1

(2.4.12) 2 pLZ = Lue.) .K=O k Zz °F Z

The quantities S (n) are known from [1] and [2]:
ae

1.2 10 1 .(2) 28= —- + — JR — - —

> (n) 5 Ba 9 Hl ~ 3 Hel 27 (n > 2)
0

(2.4.13)

> (0) =0 : (1) = 1 .
0) 0

Similar to the methods used above for Lo and Sp we may establish

formulae for the quantities

. By the expected length of the right path in F

RL, the expected length of the left path of the last right

subtree

Cr the expected recursion depth

all quantities being examined in [2]. The appropriate formulae turn out

to be

N.1k 5 (F) |2.4. =

(2.4.14) Rp = 1+ 2 R py Byojigeed (n >2)
k=O F

0

4.15) "5 (F)(2.4.15) RL, = 2 Ly Bp) (n > 2)
k=0 F

- 70



n-2
kt1

He. = +(2.4.16) Cp = 1+ 2 Ci (a > 2)k=0 F
0

(with Py defined in (2.4.11)).

We shall demonstrate the effects of formulae (2.4.6), (2.4.10),

(2.4.14), (2.4.15) and (2.4.16) when applied to the normal p-tree forests.

We assume n > 2 and ro .
r{™) has the BPP and the CLPP:

n a~-1 |
1 1 ab

(2.4.17) H (zw) = ZZ a - )e wooo.r{™ - SE (n-b (a=1)a

The latter formula was established in [2] on basis of considerations on

the correspondence between the set of all permuations of the numbers

1,2,...,n and { ? .
From (2.4.17) we deduce

n a-1 1 1

r(™) qo Bel n+1-b) (n-b (a-l)a )

= 2(H_ -1)

and (according to (2.4.12)):

-2 -1

TE. D = ( 1 pL abelk = 0 k a-=2 bol (n+1-b) (n-b) (a-1)a

(2.4.19) ep
2(n-k~1) k

= 4 en -
k =0 a

and finally

21



OH (z,w)
pin) n  a-l

oz Z=w=1 a=2 b=1 (n+1-b) (n-b) * (a-I)a
(2.4.20)

_ oo (m3)
= (n+1)H 5

Inserting (2.4.18) - (2.4.20) in (2.4.6), (2.4.X)) and (2.4.1k)- (2.4.16)

we find (n > 2) :

0

-2
n-1 2 §

. (n) ~ ht 2my t nlm) 2 (n-k-1)8 (k)
Fy! k =0 F0

n-2 1 1

(2.4.21) fw TT ER (son* moms)
0 B 0

-2

NE (sy bey)” BYr(™) x20 p(®) n(n-1) (k+1)(k+2)/) 2 ii n(n-1)

n-2

C = 1+ 2 2 (n-k-1)C .
r™ (n(nt+1)) ka (E)0

These formulae confirm those of [2]. Detailed treatment of (2,k4,21),

may be found in [1] and [3].

The main advantage obtained by use of the CLPP relative to [1] 1s the

establishment of the term SL from (2.4.8).
20)
0
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3. The Stationary p-tree Forest.

3.1 General Considerations.

Consider the key pattern Dy (see (2.2.5)),the queue strategy p

and any p-tree forest F = (FW 5) where n> 1 and

(3.1.1) = (q(T) T c 7%) .

Let A be the I/R pattern consisting of an infinite number of alternating

insertions and removals:

(3.1.2) A(2s-1) = IT , A(28) = R s =1,2,... .

Suppose we start at time 0 with F and apply A . At each time t = 2s ,

s = 1,2... we are left with a p-tree forest, denoted by

S n S2(8) _ (gm) 4s),
(3.1.3)

n

We also define 7 (0) = F .
1 NPThe sequence p(0) p(1) . IC may be regarded as an infinite

Markov chain, where the possible stages are the trees of (1) and where

the transition matrix

= (m,m= (mg .)

is an NxN matrix (N being the number of elements in F) ) whose

elements my ; are the probabilities of mapping tree i from 4 toJ

tree J 1n 5(1) in one complete insert-remove operation. (We

ix some numbering of the trees in me) .)

] To demonstrate this transition, let us consider the case when n = 4 .

25
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Example 3.1.1. The left column 1n the table below contains the possible trees

in HH) s the horizontal line contains the possible x's and the table

entries are the resulting trees when inserting Xx and removing the left

leaves.

NG 1 pb) 2 Tl 9
2 2 2 2 2

0 O) 7 ®)d . [
1 0 O ]

oO

/) 0

7 | 4 iTs 1 G | O hil: s J d ;

J /O O 0

oN | |
/

0 d A d

The transition matrix 1s therefore

3 01 1
5 2 5 2 5 7

5 01 1
5 2 §5 2 §5 2?

om=

1 2 2

v505 03

ER
5 7 57° > 5

ol



and one complete insert-remove step may be described as

={( a+ -

s(st1) _ 5s)

where 5(s) 1s the row vector

(s) (s) S S
@ x) 0) ol),0)

In the general case, 1f we agree to denote

(S) (8) T s (s)PRY) omy, Le (Ty)

for some predetermined enumeration of the N trees in Fn) we have

-(s+1 -

(3.1h) 3( ) = (5) v//l (s >0)

and

-(8 =(0) S
(3.15) p(s) = P Y (s >0) .

M is a sparse matrix, the number of positive elements in each row being

at most ml , while N is very large (consult [2]). However it is easy

to see that

(3.16) nm is a positive matrix.

This 1s deduced from the fact that Dy gives a positive probability of

reaching any tree I; in n steps, regardless of what the original tree

Ts was.

To see this, we refer to [1] where it is shown that any p-tree may

be created by selecting an appropriate permutation of the numbers 1,2,...,n

and then performing n successive insertions using fP. (Conversely, picking

any permutation, performing n successive insertions using f , of course

gives us a p=tree .) Let therefore (815805 +0058) be a permutation of

25



of the numbers 1,2,...,n corresponding to the tree Ty Select the

: x 's to be 1nserted: SEE VERRFE.N into To in such a manner that at

any stage the inserted nodes are larger than those from To , maintaining

the order according to the permutation (35855 +4058) The tree T,
| will then gradually be built in the upper part of the tree while the

original nodes will be removed one by one.

| Since nt 1s a positive matrix, NM1s a regular matrix in the terminology

of Markov chain theory (see for example [4]). The famous ergodic theorem

| of Markov chain theory then gives the following statements:

| 'There exists a uniquely defined p-tree forest

| with

Y = (Y(T) | T c51

| such that p(s) $ S in the sense that
| Sg =

; lim 2 0(®) (m) -¥(T)| = 0 .ol. S —

The probability vector P of Y is defined by

S 1s 1ndependent of F .

Example 3.1.2. To findS forn = 4 we have to solve the equations:

P, -= 35H 13 Fo + 55

= + = =

P, = 5pl+52'55%511z20

26
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P = = 2
5 = 3152p 3

2 1
Py, = —P,+=P1

! 5375; 0,

The first four of these equations have a determinant equal to O , as the

column sums in NM are all 1 . We find, for example,

Pht PF +P; +P =1

2 b 3. _
Pt 5 Pp tog bh) = 0

1 L 1 1
= + = + = + = = 0
51TS5 RTs BTR,

1 1 5
=P, +P -% = 0
5175 % 75

giving us S for n = 4 :

If 1
Y = == Y = =

J* y = = 7 ¥ ==9 9

S depends only on NM, defined by A , and 1t 1s therefore characterized

by A, Dy » P and the number n . We will call S the stationary

p-tree forest (of degree n ).
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Since starting with F = Fy , The normal p-tree forest, will |
maintainthe BPP (basic p-tree property (see (2.3.3) and (2.3.4)) for

all i 5) , 1t 1s easy to see that

s = lim pS)
S =®

must have the BPP:

(3.1.9) The stationary p-tree forests have the basic p-tree property.

We also see that the characteristic left path polynomials (CLPP) of the

p(s) 's must approach the CLPP of the stationary forest, in the sense

that each coefficient in the CLPP of the (8) 's approaches the corresponding

coefficient in the CLPP of S . We shall later on establish a transition

matrix, corresponding to M for the coefficients of the CLPP's.

-

5.2 Defining gn) .

Prom now on we Will assume that n > 2 . We shall be interested

only in the process of alternating insert/remove so we define:

(3.2.1) *

A, (2%) = R t = 1,2,.0.. .

using Dy s BB and the initial forest 7") (the normal p-tree forest)

28



The p-tree forest at time 2t (t+ = 0,1,2,...) will be denoted

(3.2.2) 1

and at time 2t+1 (t = 0,1,2,...)

According to the results of the previous sections

r{®) tends to a limit, the stationary p-tree forest, having
(3.2.3) | the BPP, and n elements, denoted by

(n)
S1

It 1s not hard to see that the sequence M,6l®, also approaches
a limit, viz. that obtained by inserting a node in s{™ / denoted here
by p(t) .

I

| Eventually we will be interested in the average left path lengthy the

number of key comparisons to insert x 1n 5 , etc. Using the methods
| of Section 2.4 we will need the CLPP's of the forests. We will denote

| CLPP of # by:

l<b<a<n'™ ’

i CLPP of ey by:

| (5.2.5) i w= zeta
| l<b<a<ml

}



CLPP of st by:

(3.2.6) CRO BEE I CO
1<b<a<n

( (h
and finally the CLPP of I; by:

(nt+1) (n+l) a _b(3.2.7) By (z,w) = 2 hop | EW
l<b<a<ntl

The interpretation of the Q's, 8's, N's and p's (see 2.4.4), together

with the statement (3.1.6), makes it easy to see that

(3.2.8) Lim 758) (2,0) = a) (2%)

and

50 2) Lim 18 (zm) = 3% (gu)1 1
LT =»

In the next section we will establish relations between these CLPP.

5.5 Relations Between the CLPP's.

Suppose we have any p-tree forest X with the BPP and the CLPP:

H(z,w) = 2 roy 22 Ww
l<b<a<n ’

(X having n nodes).

We ¥
We will establish the CLPP's of three p-tree forests Xq , xX, and

* ]

Xs as functions of H(z,w):
* | | | | W

-— 1s the result of one single insertion in X . X-. has
X1 1

m1 nodes.
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* | | L*

-- Xs 1s the result of one single removal in X . Xn has n—-1

nodes.

* 1 1 1 1 1

— Xs 1s the result of the combination of an 1nsertion and a
removal 1n succession.

In terms of the notations in the previous section, we then will have:

* +

~ if X 1s p(t) (t> 0) , then xq is 5(t) and x3 is p(T)
* +

— if X is o(t) then x 1s p(t 1)
* *

— if X is 5 (0) , then xq is p (+1) and Xs is g(n)
% 1

— if Xx is T®), then X, is s(n-1)
* ¥

| Having established the equations for the CLLP's for Xq , x5 and Xx

below we may therefore concentrate on one single relation, viz. the one

| arising from the relation

*

(3.3.1) if X is s (0) then Xs is { h ;

as we indeed will in Chapter 4.

Below a and b are integers satisfying L<b <a <n, and T is

some tree 1n (1)

*

| Case 1. xq

* | *

The CLPP of X; will be denoted H, (2,W) . Let T have a and b
as values of two adjacent left path nodes:

| T: |

| 31



The tree T* resulting from T 1s then:

1f x <1: a

. @
T new left leaf

] + —-

| a

| if 1<x<b

T (b+ no new nodes on left path
a 1

: + =

x 2

| if b<x<a

| *

T oF 1 no new nodes on left path2

1f a<x<n

| T no new nodes on left path

32
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1f n<x

new root.

/
’

Summing over the entire forest we see:

* 1 2 1 l n+l n

H, (2, w) =z Wot ST W

(3.3.2)

‘bb atl btl a=b atl Db + n+tl-a a b

Z NE Yoram vw mmr )1<b<a<n

*

Case 2. Xs

* *

The CLPP o f X, will be denoted H,(2,w) and we recall the CLPP's

of the normal p-tree forests: B® (2,w) from (2.4.17).
As 1n the previous case we assume T to have a and b as adjacent

left path node values:

If 1 <b we get /
/

4

/

If b = 1 we have

: NO

® p=?
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i where p(2-2) 1s the last right subtree of the left path having a-2

5 nodes (a >2) , As B is appended to the left path, we will
! *

have the new left path of T :

| (@ left path of B (a2)
Summing over the total forest X , recalling that X has the BPP, we find

* - -

] H,(z,w) = 2 Tt BL yp-l
2<b<a<n

; (3.3.3)

. 2 r Can A + 17) (zw) ]
2<a<n

(The latter formula being justified by the conventions made earlier:

: 11) (2,3) = 0 .)

*

Case J. Xz

In this case we could use "geometric" considerations as in the two

¥

| previous cases. However we may establish Hy by means of (3.3.2) and

(3.2.3) . -

| 3)



Introducing the convention

r = 0 if (a,b) £{(c,d)|1 < d <c< n]}, =

we have from (3.3,2)

H,(2, w) 2 Ea i ((b-1) + (a-1-b) (n+1-a)r .)ZyW = -L)T a=-1=-0D 1 + (n+l-g)r

1 1<b<a<ntl n+l a=-L,b-1 a-1,b asb

1 2.1 1 ntl _n

+ =T2 ¥ + —T 2 wo

Inserting this in (3.3.3) we obtain

* b 1

(z,w) = 2 7 (2 (b r . + (a-b-1)r + (n-a)r ))i 1<b<a<n n+l a,b a, btl atl, b+l

1 a _a-1, .(a~1) |
(3.3.4) | + ZZ — (2% +H (z,w))((a-1)r + (n-a)r )2<a<n nt] 0 a ,1 atl, 1

+_1_.n pal
n+l

3.4 The CLPP of sin)

From (3.3.1)and (3.3.4) we obtain the following polynomial identity

for the CLPP of the stationary p-tree forest st), using the notation
(3.2.6):
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n a-1

2 2 nr) 22° = al? (2,0)
a=2 b=1 7

n a-1

: ab, n(n) (n) (n)= =. 2 2, zw (bm + (a=b-1)7 + (n-a) MV )n+.L — ~ a,b a,btl atl, b+l
(3.14.1) azz b=l ’

n

1 (n) a_a-1 a-1

CET 2 (EDI rafEen gu)

1 n n-1

+ ml Zz Ww \

Here we recall

k a-1

(k) ( 1 1 ) abH = 2 2 + ZW k > 20 = LZ (weet wos (x > 2)
(3.4.2)

(0)
Hy = 0 (k = 1)

and the convention:

(n) :
(3.4.3) Mast = 0 if (a,b) £{(r;s) |1<s <r <n} .

(3.4.1) is in fact a set of M = ar(p-l) simultaneous linear
equations in the M variables

(n)
Mab (L<b<a<mn) .

The uniqueness of the solutions follows from the existence of {9 , but

we could also prove it directly from (3.k.1).

The solution of 3.4.1 for the first few n's proves to be:

b

n =2 a 1

2 1
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| b
n= j a 1 2

| 1 3

| RE

n = 4 a \ 12 3

| ) 31
| 15

EE
5 15

| . 1 2 2
| 5 9 3

| b

\

2 — DH _

| q N = 3888

; 3 698 1555
N N

4 363 624 1443

| N N N

| 5 243 405 810 2430
N N N N

There seems to be no simple solution to (3.4.1), except for:

| nm) _ 1

For example, we may show the general formulae:
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E ks

ue) 1 ( OL 2) a 2 * n : nn-.1, = I=- n=- - _ -
(3)-1 (( D)-D(( 2)-1)

2 8

n(n) 1 i, _3 3 nl on’ -on+3-2,1 = 5 5 n n n n n

(n-1)2 (Cp-1) (CHD) + (CHD) D)-)

We will therefore settle for approximate solutions. Fortunately

we need not have solutions for all ni) to establish the quantities>

described in Section 2.4, it will turn out in Section 5 that in order to

establish L , S , R , RL and C for s{™) we need only the values of
L (k) (n) |

the corresponding quantities for IN (k >0) and the IN 1 8S and2

(n)
the 5 S.

In the next chapter we shall deduce from (3.4.1) an equation for the

nin) 's and find an approximate solution for them.J
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4, Approximate Probabilities for the Next Last Node Value on Left

Paths of s(n

4.1 Summary.

| In this chapter we will prove the following formulae to be true.

Proposition 4.1.1. We have

1. I n cof = h <
CID Te) = RED) teen) k,1 On) (h<t <n)

H H
(n) ll. 2 "n 8 4h (2) 1 I

1. = =4+ = = =| =+ = = + —

(h.1.2) M33 = 5+3 3 27 "3H Jat © 2 |
H H |

(n) 2 2 “nn , 20 n |
.1l. = = = — + — + —_ .

Ho and (2) are the harmonic numbers:
n

k=1

n

7(2) = XZ = :
k=1 Kk

| The O(f(n)) notations should be interpreted as follows:

| g(n) = 0(f(n))

| 1ff there exists a constant that

|g(n) | < M|f(n)] for alln = 1,2,,.. .
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During this and the following chapter we will make extensive use

of standard formulae from combinatorics and discrete mathematics, referring

for example to [5].

Please notice the difference between the n{®) 's above and thebj

corresponding probabilities in the normal p-tree forest:

1 + 1
t(t-1) n(n-1) |

4.2 Linear Equations Involving Only 7 's.
EE——————————

The goal of this section 1s to prove

2 a-2 .(n) ,n-? n-2
2 ozo 0 My (Lo )ne(n-1) = (z+l)
_ a,l ‘a-=2

a=2

(h2.1) 4% (1%) (a-1) + 12) (n-a)) (n-a+1) (2+1)272| I Ma, 1 Nat1,1

FE)(a1) + 1®) (mea) (xD) (2) + x81) ay)
4= ? a, l atl, 1 ¢

where nt) =0 and1,1

kK r-1 s=1 r-s-1
(k) _ z+] z n-s

(4.2.2) X(2) = ZT ios) (kos) TH) (pe)
r=2 s=1

k r-l s-1 r-s-1
k) z+1 Z Nn-sh.o. ( - -(k.2.3) ¥7 (2) ZL a +1) (pe)r=2 s=1

for 1 < k- (k = 1 leaves empty sums, being 0 ).
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In (3.4.1) we multiply both sides with (ml) and move the double

sum to the left, obtaining the equation:

n a-1 r AA \
ab (n)) (\n) (n)

a=2> b=1

(4.2.4)
n

n n-1 (n) (n) a_a-1 (a-1)

= ZW + 2 (a NINES + (n a)N, 1 1) (2 W + Hy (z,w)).

We introduce the new quantity:

(4.2.5) o) = (n-a+2) (n-a+1) ( 221 yp(n) for all a,b .Te ash n-a+2 ‘’ ‘a,b ?

The left hand side coefficients then transform to (provided 1 <b < a-2 < n-3) ,

ntl-b (n) _ “b-1 (0) _ (n-a

ne (n-b+1l) o (a-b-1) o (n-a)
= nori. n-b n-b

(n-a+1) (n-a+2) ( 27017) — (n-a+l) (n-a+2)( °70,) (1-8) (n-at1) (72) )

I— (o -0 - 0 )
nd n-a+l

This transformation 1s easily checked to be valid for the cases a =n ,

and b = a-2 or b = a-1 with 2 < a <n also.

We use this result 1n (4.2.4) and multiply each term 28® with

| n-b

obtaining

bl



RE SRT)NE CON CB
a=? bel 2 a,b = Ta, bt+l Oatl,b+l

(4.2.6)

- 2 (n) - ]

E> ((a-1)n) + (1-2)T311)((m-av1)z®* + x87 (0)a=2

where

k r-1
(k) 3 1 1 n-s r S

(h.2.7) KV (z,w) ~ 2 2 eID) ~o— + aa - (n+1l-r) ( ny ZW

Now,

2 bal 22 (1) - om) - oe )
2=> bol a,b a,btl atl,btl

n a-1 n a-1 n a=-1

_ 3 > , 2 P a?) _ 2 > 8. 0-1 (2) _ >> > ,a=L b-1 0)
a=2 b=1 BP g=23 p=0 'P g=3 Dp=0 4

1 1 a b (n) 1) < (n)
= (1-3-%) 2 Ao + (142) $2 of)“4 J 1<b<a<n ’ a=2 ‘

so that by putting w = , followed by division of z:(z+l) we obtain
from (4.2.6)

n

> ge 0, 1 = (z+1)P2
a=2 ’

- z+1

+ 5 ((a-1)7 ™) + ( ym) ) (-a+1) (z+1) 3° + a i Cz
S— a.l, =8) a+] 51 ' z(z+1l

We have from (k4.2.7)

Lo
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(9 2, 22) : Sl 1 1 pes s-1 r-s-1) = ___ + - - = oT; z(z+l roo EA (kt+1-Db) (kb) ye +1) (per-1’ (2+1)" "2

| = xB (200) + vB) (2,00)

| so we arrive at (4.2.1), having realized from (4.2.5):

| (n) | n (n) n-2 (n)
%a, 1 (n-a+2) (n-a+l)( n-a+?2 M1 = ( goo n(n-1)1m, .

4.3 Properties of % (K) (z) and v (k) (z) .

The complexity of (4.2.1) is primarily due to the sums involving the

| functions x { ) (z) and ¢ (%) (z) as defined in (4.2.2) and (4.2.3).

In this section we shall concentrate on simplifying these polynomials.

We will make use of the following differential operator:

| (4.3.1) a.= { j-(zt1) = . 0<]
° ° J az 4 —

| so that a. applied to a function f(z) is

] a.f(z) = J f(z) -(z+l) aflz)
| J 12

[ In particular we will make use of

(k.3.2) a.(z+1)" = (5-1) (z+1)* (all i).
This section contains the proof of the following three statements,

all valid for 1 < k < n-1 :
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(k) k s=2,,1n k=-1 k
(4:33) dy, x02) = T_T) - (R(T) = (ED)

(k) ‘sz
(b3.8) a, v2) = ZTSTC 7)

ol

k k (k) zl)” “-11)(1.3.5) qx (2) +31 (2) = ger (z) -—Z=2L |
From (4.2.2) we obtain:

k-1 s=1 k

(k) 2 EE 5 presi nes-lyX = Z _(2) <TC k-s) (k-stl) _ “iq r-s-1

The inner sum of this expression may be written as a polynomial in (z+l) :

k 1 n-s-1 Er pesel resel t, .\T-s-t-l
ro ZTE) =D DT) OF) Cal) (A)

r =stl ros r=s+1l t=0

k-s-1 k - -lmt - PmQ TS om

- LT (THREE
t=0  =t+s+l

k-s-1
t, n-s-1 1-5-1 -2 k=g=t-l

] Zs (=+1) ("7% ) kes 6-1) (-1)
so that

(k), k=l k-s-1 (,1)8*®-L 5)  n-s-1 n-s-t-2 1)k-s-t-1X (2) = 2 > ks) (k-5+1 ( t ) (gat -1 (= *
s=1 t=0

Lh



|

Now :

n-s-1 n-s-t-2 n-s-1 n-s-t-1 k-s-t

Cr 00sec? = Cooelen) Ole) nose

a n-s-1 ) ( n-s-t-1 _k-s-t_~ ‘n-s-t-1 n-k-1 n-s-t-1

| 3 n-s—1 k-s k-s-t
| = (100s) net

| = n-s K-stl ( k-s-1 k-sB n-k-1/ n-s k-s-t-1’ n—-s-t-1

so that

k-1 k-s-1 s+t-1 k—-s—t-1

| s=1 +£=0 (n-s-t-1) n-k-1 k—s—t—7 .

| . +t - :
| Applying @ _, to (z+1)° t-l we obtain
: + - -—

| a (z1)% o (nest-1) (201) FH
| so that

| k-1 k-s-1
(k) _ n-s s-1 t, \k-s-1-t, k-s-1

| a, 9 X (z) = 2 ( p-k-1) (71) 2 (z+1) (-1) ( : )
s=1 t=0

| k-1

| _ 5 ( n-s ) (z+1) s-1 SX=s-1
| s—1 nd

| } SF = (k=s=1)#(s=t-1)  n=s ) ( 5-1)

EA HE hed- ~ A-k~-1 t
t =o s =t+1
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r —c Ss — t+] n-k-1% t n-k-1 t n-k’*t

TERR (I) (5)2 L( n-k+t / = k-t-1 k=t y
t =0

Changing the summation index to k-t we obtain (4.3.3).

From (4.2.3) we see:

k r-1

(k) oo n-r+l r-s-1 s-1, n-s
vi(z) = 2 re (r-1 Zz (z+2)" pert)

r =2 s=1

The inner sum may be transformed as follows:

r-1
r-s-1 s-1, n-s

s=1

r-1 s—1
- -t-1 -s=1 —

_ Yn ( 57h) STS ( nS
s=1 t=0

r-2 r-1

_ > J r-t-2 5) ( “4 ( al )
t =0 s =t+1 .

~ I asd n- n r+t+2
t =o

r-2

- ZT (3)
t =o

Using this transformation, and applying a, we obtain:

k r-2
k n-r+l n S s~1

2,7 = DT EES (Dd) s FT
r=2 Ss =0

k r-2 r-2
-r+1 n-1y _s n=uly s—1- = T = 2. nn Yz©o = 2 ne ) 2

oo ron T (r-1) «Zo S s =o s-1
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k

os n-r+l no. (Bly re
B rp r-(r-1) r-2

k

I S ny r=e
r=2 T

and (4.3.4) is proven.

From (4.3.3) and (4.3.4) we find:

(k) (k) LN 2 kA X z)+Y Z — ) n, } s=-2, k-1 s=2, k

k

+ (a, y )(2)) +2 y(8) (2)

k-1 k
+1 -1  (z+l) —kz-1

= 2a, Y®(2)) 2 YF (2) - (nx) (2) -1 =Z

Now :

k kK
(@, y( ) (2) -y{) (2) = ay. y ) (2)

and

k-1 k-1 k-2 k-1- - 1) (z+1 ( +1) -1a (al) 1 = (n-1) HL) =1 on 2 Z sn-1 % v4
I

_ (n-k) (z+) 51-1 _ (z+l) k_ kz -1
Z 2

z

proving (4.3.5).

4.4 Revision of Equation (4.2.1).

© In this section we will obtain a simplified version of (4.2.1),

using the results of Section 4.3. We will use a new notation for the
hn)LL (ny)

unknown quantities No.1 :
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Any
(4.4.1) Pa = Mh-a,1 )

The main result of this section is:

n-2 Tr
+1 r n-1 r-s

3 (25 (x2) - 2 ry) 2 (I)(Z 7) np (-1)S r+1 S
r=_ s=0

n-1 r n-1

(L. 4.2) | = o( 2 z -(n = (n-1)p, _,)zr=0

n-2

+ 2 (25 (x2) = 25H (2+1)) ( (n-r-1) +p r) |Tr r-1
r=0_

As before we use the convention

p. = 0 if a<0 or n<a.
a

We will split (4.2.1) into three sums

(4.4.3) s _ 3 48 (n) (B72 ~1© 1 ~ Ma. 1, a-2 / D(n71)
a=2,

(4.4.4) 5, = (2+¢1)"7°
n

(n) (n) a-2  .(a-1) la=1)

(4.4.5) > = RA (M,,1(8-1) + Mpg 1 (0-2) ((n-a+1)(z+1) +X, (z)+Y (z))
s; that

(4.4.6) 5, = S,+ 8,

We also introduce the notation

n
n-g-2 n S=a=-2

(4.4.7) K. = 2 (goo) nt J(-1) :
S = at’ ”

In (4.3.1) we defined the differential operator a. . The corresponding

integration operator will be denoted vf . We have
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(4.4.8) a. T. £(z) = f(z)
J J

| (k.4.9) 7. 0 = C(z+1)Y (C constant)

| (4.4.10) 7 (z+1) 7 = El (z+1)* + C(z+1)° (C constant and 1 #£ j) .J (3-1)

We will apply the operator

2

| (4.4.11) Ww =z a bq a, _o

to (4.2.1), and then rearrange the polynomials using (z+l) as variable.

For So we find

bs, =cC 2° (241) 1
(h.h.12)

= C((z+1)™7 - 2(z+1)"+ (21)

where the constant C is assumed to represent the integration constant

| for the entire equation.

| For Sq we find

| na b, a-2 a-2-b, n-2y4n)
S, = 2 2 (z1) (7 7)(-1) (2 _5)T7 n(n-1)
1 _ b a-2’ a,1a=2 b=0

ng b - n-2 2-b a-2-b o(n)
| b=0 a=bt?2 )

| n=? a, n-2
= 2 (z+1)7( Yn-(n-1)K

_ a=0 a a

| and
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n-2
2 n-a-2)(n-a a, n=2

bs, = T 2 (pine ) (2+1)%( "2 )n(n-1)k,a=0

leading to

n-2 at 2 atl a n-1
(k.4.13) w S, = 2, (z+1) -2(z+1) "T+ (2z+1)7) (n-a-2) (n-a)( a )n K_ .

a=0

For S, we will have to involve ourselves 1n more complicated

calculations, (see (4.3.4) and (4.3.5)).

( (n-a+1)(21) #2 +x (2) +7, (2)a-1 a-1

= 2° | (nea) n-atz)(n-a (z+1)%C rg (2x (z) - (2+1)57° 1n-a+l n a-1 Z

a-1

- (n-a*2)(n-a) (z+#1)*7 2° + 2 I 25(T)
Ss =2

+1)272 _1 6-0) (z+1)%70 a1) ¥° 2
z Z

J a-2 _2 2 -1
=2 Zz (+ (n-a) (n-a+2) (z+1) z= = (n-at+2) (z+1)27° ; - (z+1)%"

Ss =0

+n z+ (z2+l) -2nz-2

Hence we may write

Ww Ss =  u+v+tw
where

n

(4.4.14) U = 2 Xx u
a a

a=2

n

(4.4.15) vo o= Lx Vv,
a=2
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n

(4.4.16) WwW = 2 x Ww
a_p a 8

| where

f= (ED) + 1)(nea)

a-1l sn
u, = 2 Z (¢)

Vv, = (n-a) (n-a+2) (z+1) 2° 2° - (n-a+2) (z+1) 22 z - (z+1)%°1

wo = nz+t(zl)-2nz-2

Now

a-l a= IS
s, n }

ame zoey) =e = Zo EDIT)
a-1 a-1 _ _

- 2 Z (=D%D) ZT (2D) ns
t =o s=t

_ Ly t, ny, n-t-1 a-t-12" (1) (PE(a
t=0 =b=

a-1

- 2 ZY) a Cal enT
t =o

_ 2n (271) bal (31) (c1)2 Tp) 1ES (n-t)

so that

:



n

= Down

B 5 (n) 1)2 n-1 2 a=-1 1 a-t-1 +1 t 1
ICEL Sa ICRa CON =

5 (n) (n-a)2n( n-1 ) = a-1 1 a=t-1 t 12 or1,1 (0 a)en( , 7 Zo ( & ) (-1) (z+1) at)
n a-1

_ (n) , n-2, a-1 ~t-1 t 1

— =|Ra 2 Ty aIG )(-1)* (z+1) (n-t)
n a-2

(n), n-2,, a= ~£=2 t 1

-  on(n-1 5 = (n)  n-2y, _jya-t-1, a-2 t 1— ni{n- Ls Aoo) (= ) (£_7)(z+1) n-t

~2 2-2 2=-0=2 0) 1

- 12) (7p )(-1) (z+1) 1 0
— 222 420 a. n-t— (on) t ) (z+1) -2(n-1)7,

n-2 n

-=z (z+1) (P77) EeDIC IR Ces Fea?)
And hence

n-2

(4.4.17) u = zn T (z+1) + L( "0K, -2(a-1) TE)
For the sum W we find

n

wo = x, Ww
—a=2

n

= 2 x (-nz+z-1)
a=2 2
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Hl

SEE RL (n)= (-nz+z-1)] 2 MN 4(a-l)+ 2 M7 (n-atl) |
| 3=2 a,l a=3 a,l

| Sm) on)
| = (-nztz-1) | ZL M9 n= Ty (n-1)
: a=2

| Knowing that 2 nt )) = 1 we obtain
3=2 a.

| (4.4.18) w= (n= (0-1)T, 1) ((n-2) - (n-1)(2+1))

Applying Ww to (4.4.6), inserting (L.k.12), (4.4.13), (4.4.17) and

| (4.4.18) we obtain equality between two polynomials where the maximum

exponentof (z+1) is (n+l) , occurring only in bS, (4.Lk.12). Hence
| the integration constant C = 0 and we have transformed (4.2.1) to the

| equivalent identity:

n-2 at 2 atl a n-1
2. ((z+1) -2(z+1) + (z+1)7) (n-a-2) (n-a)( . ) nk
a=0

n-2 n=2

(4.4.19) | = = (21) (*7H) en, -2(0-1)7{") tL XV,
a=>0 a=(

Fn = (ae) TEM) (0-2) = (3-1) (241)
where

_ (n(n) (n)
xq = (m, 1(a~1) + Mos 1,1(n"2))

| and

| v, = (n-a) (n-a+2) (z+1)2~= 2° - (n-a+2) (z+1)%° Z = (z+1)87t

| ~ (n-a) (n-a+2) (2+1)® = 2(n-8+1) %(2+1)* + (n-a) (n-a+2) (2+1)2°
|

- (n-a+1) (z+1)%" 1+ (n-a+2) (z+1) 2% ]



-

In (4.4.19) the first sum on the right hand side is moved to the

left hand side, and we use b, throughout the identity to simplify

the terms:

2

51 ((z+1)* -2(z+1)¥ (z+1)*) (n-a=2) (n-a) —~ 2(z+1)%

+2 |

= T [(z+1)” (n-a-2) (n-a) -2(2+1)* (n-a-1)% + (2+1)%(n-a-2) (n-a) ]
2

= [(z+1)® (n-a) -2(z+1)*(n_a-1)+ (z+1)*(n-a=2) J+ C(z+1)"

= 2[(z1)¥ oy) - (z+1)*(n-a-2)1+ C(z+1)"

for some constant C .

Furthermore

bv = (n-a+2)(z+1)%- 2(n-a+1) (2+1)*"1+ (n-a) (+1)%2 = (242)T+ (241)22

a=-1 a=-2= z((n-a+2) (z+1) - (n-a+l) (z+1)™ 7)

* (neglecting the integration constant).

Application of 4 to (h.k.19) hence yields

2 atl a | n-1
Zi z[(z+1)" “(n-a) - (z+1)"(n-a-2)In ("7") K

a =0 a a

(bh20) b= 2 2-1)n®) + (nn - (m-a)p{m)y(R2 | (241) )te n Te. 1, Te, 1 n

> (a) (n) a-1 (a-2)| - a-

fT)en) (ene)(em)(20) - (nad) (241) (2)

+ c(z+1)t

The coefficients of 7" are seen to be

(n-(2-2)) n( 2k = (®)(n-1))- (n-nr2) +n-2‘ n-2 Mh, 1
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Now, following (4.4.7)

_ n-(n-2)-2,,.(n) n-(n-2)-2 n
i fn-2 Ch-(n-0)-p Ty, 1(-1) = ni"

SO

|

| C = M,,1len(n-1) -2(n-1)] = 2(n-1) (NG :
| Going back to (4.2.1) easily gives us Tn) :: 2

: n) , n-2

| 1 (272 )n(n-1) = 1 + 1 (n-1) (n-n+1)

n,l (n-1)°

| and hence C = 2 in (4.4.20).

| We insert this last result in (4.4.20), divide by z , and then

| change our variable from (z+1) to z , obtaining

| lan
2 lz (ni) - z%(n-a=2)] n ( n=l, K

| (4.4.21) > m(n) (n)
) Ra (Mg, 1(a=1) + Ta, 1 (n-8)) ((n-a+2) ®t - (n-a+1)%?)

z= 1

| Recalling the definition of the Py 's in (4.4.1) we find from (4.4.2)
| 0-2 gel a n-1

| 2 (z7 "(n-a) - z (n-a-2)) n( ) K
a =0 : *

D2 orl; a n-1, < , n-a-2
| = 2 (2 "(n-a) - 2z*(n-a-2)) n( ) (22) 1ys-a-2

a=0 2 = 242 3-3-2 n-s{- )
n-2

— atl _ a. n-1 n-a-2 gD mSmg aD

Z(27 (nea) - 2(n-a2)) n( PTT) z (77 de(-1)TEE
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ne n~a-1 2 2 a
= D(a)- Pa) (Mh) DO (3) p(n)a=0 a Ss =

and

5 (n(®) (n) 1 a2a-1 -

z (My,5(a-1) + No1 (0-2) ((n-a+2)z*™" - (n-atl)z” ©)

Ae n-a-1 2, n(n) (n) |— -a- n-a- n n a
= + - | ~g-

© (a 2)z (at+1)z ) (Mpa, 1(® a-1) + Mplas1,1

no? n-a-1 2
= 2 ((a+2)z - (a+1)z"7%) (po, (nma-l)+ pa)

a=0

Inserting the two last results in (4.4.21), dividing by 221 and

finally changing the variable to 1/z we obtain (4.4.2).

4.5 Series Expansion of the c's.

The polynomial equation (4.4.2) contains n equations and the (n-1)

variables (pgs .+s0,_5) . However, by putting z = 1 we will see that

the equations are dependent. Furthermore, it is not hard to see that the

equation obtained from the coefficients of 11 may be ruled out,

leaving an independent set of linear equations.

In this section we shall obtain series expansions for the p, "Ss

making 1t possible for us to obtain approximate solutions.

The following facts are trivial.
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0 <p, <1 0 < a < n-2

| oy = 0 a <0 or n<a

| (4.5.1) n-2

a=0 ©

0 (n-1)°

: We shall prove the following proposition:

Proposition 4.5.1. Define for 1 <t <n-2

(1.5.2) (0) 2n £42
t = 3(n-1) ( n

| t+1

t k
: r+1 1 oo

| (h5.3) oT) 1 __ 5 2 (5) (er)al™) (0 <r)

| t (5)
(r) _ + (r)__ J

(4.5.4) CHEE p2 5 @ (372) (n=3-1 (0 <r)
J=1

Then

| . ©
| (k.5.5) pp = ——F5+ Z 3 1 <t < n-2

(n-1) r=0

r

(495.6) 0 < 5%) < EY l1<r 1 <t < n-4 .n — — —

The constant (2) 1s uniform for 1 <t <n-4 , and is not very
well optimized. As we shall see later, (4.5.6) does not hold for

t = (n-2) or (n-3) .
|
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Proposition (4.5.2) below gives, for each t = 0,1,2y e.yn=2 ,

py as a linear function of P12Pps “+ *3PL_ 7

Proposition 4.5.2.

«5.7 py = (ny n . Py, Ba, u 0 <t < n-2at+l u=0

where

a 1 2 1 + 1
t 3 (n-t) (n-t+1) = n(n-1) 0 <t <n-2

and

t t

CW) Gwe)
t,u n n

(1) (arp) (neum2)

t
{ (.)

- gs (url) (u+2) 2 oT
- r =utl re(r+l) (+2) ( 7)

(0<u<t-1, 1 <t < (n-2)) .

Solutions of equations like (4.4.2) often involve one or more cleverly

selected substitutions. In our case, the following sequence of

substitutions are not unnatural choices:

Ct = (n-t-1)p +t oF

I [ ] —_— -

(4.5.8) | d, (t+2) ey te
t .

e, _ Da (-D°I(L)
Jj=0
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The direct correspondence between the e 's and the cr 's 1s seen

to be:

t t

_ Ed ty } EN TARY
ep = I (-DVI()R)ey = B (DTI ey

7 =0 7 =0

L t-3,, t

= TETHER) Ee
t t-j, t

= (t+2) 2 (-1) 7 Y(J)e.
_ Jd’ J
7 =0

t t=, ty, E a
= @w2)| © (DID @De, + (DTA dey,LC _ J oo J J

7 =0 J =0

_ | / y= t : :
= (#2) B (<1) 0, )((a=-1)- (8-3)

7 =0

SO

= t-3, t
(4.5.9) e = (#2)(n-t-1) T  (-1)7()oy

From (4.5.9) we easily deduce

L

> _9) 0 <t 2

Inserting (4.5.8) into (4.4.2) we obtain

n-Z r+1

RA (27 (r+2) = 27 7(r+1))(op, (n-b-1) + op | 1)
n-2

= (ZF (r+2) - 2 (241) e
r=0

n-e n-1

= RA 2 ((r+2)e-r c _)) -z “(n-l)c_ ,

:s



n-e r n-~1l
= Lz ad, - (n-L)e 5

r =0

n-2 r

= Lz XT “ye - 2 n-1)c
i r’ r n 2

r=0 t =o

and from (4.5.9)

-1

5 n=ly ry (-1)*S B (pe1)m .] * Lr s’/ MPs = (r+2) (n-r=1 r

leading to

n-2

2s (z (+2) =z r)( yo) Hr Sp
r=0

n-1 _1 n-2 r Tr
= 2 2 zt+ 2" (n-D)p -n-(n-l)ec_ + 2 z 2 (3 )e,n 2 n-2 tt

From which we obtain

(4.5.11) ( 2 Ye - EL (Pye C243 (Te 0 << n-2
"TT +1’ r rl ‘r’ rl fo vt -

n-1
when neglecting the terms z

Multiplying each equation (4.5.11) with r-(r+1l) and summing from

3 through s (0 <s < n-2) we obtain

- n S r-1 n n
- — }2 app T(t)ee 2 ( »)Cp1 r(r+l) ( EDLC le,

r=0 r=0

S S r "
= 2 2 r(rl)+ 2 2 +) 8 r(r+tl) .

r=0 r=0 t=0
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The first sum being = s(s+1) (s+2) we see

s r
2 +

+1) s(s+1) (gq) r=0 t=0
(4.5.12)

if (1 <s < n-2) .

As (4.5.9) gives

Lo 2
0  n-1

we see that (4.5.12) leads to

p) s+2 1 = > r
(L.5.13) e = 1 — tt— 20 (LL )r(r+l)e

S 3(n-1) n n t t
(orp) s(s+1)( s+) r=1 t=1

From the definitions (4.5.2) and (4.5.3) we see that if we define

r

s S -
a=0

we find

rl

L(+) = Of. + >, 2G)
S 0 S

a=1

t k r

= Oy + — >, 27 yg (1e+1) 2 ol?
se (s+) ( 1) k=1 j=1 J a=0

SO

TC tT

e_ -ulTt) " — 2 2 (5x1) (e. -ul?) :
s(s+1)( 1) k=1 j=1

As -

“ss ~ %s ~ 3(n-1) ( n
s+1-7

ol



induction shows

| (4.5.14) o (7) < €, (0 < r) (1 < s < n-2)

a0) p ult gy see 1s hence an increasing bounded sequence and therefore
converges for all s = 1,2,...,n-2 . The fact that

(4.5.15) lim ne = eg (1 <s < n-2)
Ir —<®

follows from the fact that u{) satisfies (4.5.12):
eo]

2? x 7)
S Ss

r=0

co

=a. + 2 T+)
0 S

r=0

S r

= oy + RE 2. p> (I )r(r+1)ul® :
s(s+1) ( 1) r=1 t=1

From (4.5.10) we find for 1 <t <n-2 :

t
(3)

= A ©; (+2) (n-j-1)
7] =0

t
t (4) -

2 1 J ~ (a)

n-1 2.(n-1) 2 F) (o3 -1) x %,
so)

= ry +z 2)
(n-1) a=0

proving (4.5.5) of Proposition 4.5.1.

Now assume: 1 <t < n-2 , we find from (4.5.3)
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ou

(r+1) 1 ¢ (r) 4 k-1 k-1
ay = —— 2 ©, 2 (( i) (5.3) k(eD)

| 861) (pq) 371 k=3

| t
1 (r),, t+2,,. tH2 ys= ———— Lay (5,7) (3+0) (+2) | (1,5)3(3+1))

: 6(6+1) (yy) 3=2 / 2 Jre

| E 1 t-1 1, t-1

| - 5 T os” (55 (5 pz (5D)(441) J=1

hence

| .
1 +2 | t, 1

(4.5.16) oF ) < RE) 2 od) 5) To (1 <t <n-230 <r) .t+1

| Now, from (4.5.4) we easily deduce

(4.5.17) ol ¥) _ (442) (n-t-1) Z (U)(-1)¥ 5(T)
j=1" /

SO

| : tt a
(r), ty 1 _ ty, J +2) (n-j-1) , \J-k (x)

ATR Z (0 REE "x
| £ t-k
| 2 sy T(E ()Imk19)
| K=1 x j=0 9
| t t-k .

| - © 8{7s 4] ZL (a-k-1)( TF) (1)| k=1 5 =0

| tx f-k-1 3

= oi (N-t-l) + ¢o{7)

| provided 1 <t .
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Irom (4.5.4) we easily see

AY . ‘pr

o! 2 <b} ) t = 2,3,...,0-2

so tor 2 < t < n-o we find from (4.5.16):

(4.5.28) ol) <2 pF) (1<t <n?)
(41)

(the latter formula easily being checked for validity when t = 1).

*From (4.5.2) and (4.5.4) we find

t (%)
(0) 2n j+e ]

TX 3D Cry FRED)
J = F+1

n-2 n—-2-7j , j+1

Cam as [a CHamhen
~ 3(n-1) n(n-1) n-2 CC n-2

(7.7) L3=2 (7)J 3

~ 3(n-1) n(n-I) (BZ 520 n-2-t/% 1 7  t

® T(n-1) n(n-1) (5-7) - 1
t

and hence

he t Z(n-1) (n-t)(n-t-1) n(n-1)

Using (4.5.18) in (4.5.4) we get, when 1 <t < n-4 :

an



i

t (%)
(1) _d*2 <0), _ j

°f < Zz ( n ) 5 (n-1) (+2) (n-3-1)J = jl

t t

3 20 (0-9-1) (1-9) (0-3-1)( 47) 3 =0 (2% )(n-j-1)n(n-1)J] = J n-7j) {n—J +1 J] = +1 J

t

I © DAN I [ 1| IN . . S(n-1 -t- -

S50 (PB) (eg) (aegeR) (megs) | 00) [(aEet (aE)
- il —4— 3 i+]

> 1 J. (YC) | 1_ =n -_ - = on TN (FY

n-2

2 n ( t ) 1 1
- 3 EO - (n-t-1) (n-t)5 pl) 02) (oy) (BF) 3D) (net-1) (nt

_ 2 1 1
~ 3-1) | (n-t-3)(n-t-2) ~ (n-t-1)(n-t)

Hence we find

(1) <« 5 (0)
(4.5.20) Sh id :

We will use this as a starting point in an inductive proof of (4.5.6).

(4.5.20) shows (4.5.6) to be true for r = 1 . Suppose it 1s true for

r =X . Then, from (4.5.4) and (4.5.18) we find
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(%)t . .

(x+1) (j+2) _ 0) hy° =< Zz n (n=1) Bs (j+2) (n=j=1J =1 ( 54 )
J' +

5 * 5 (#2) (n-1) — 50)
< £ SIRI #2) (n-j-1) JJ = (541

x+1

1S proven.

We proceed to prove Proposition 4.5.2.

Inserting (4.5.12) in (4.5.10), using (4.5.9):

, ty

0a = BaD) TZ, or mR) (mr-l

a

__% _, 5 (yr) 2 _r+e
~ 2(n-1) rol (r+2)(n-r-1) 3 ( n )

B r+l

a

a Tr S t (2) 1 S |
EDIE DED DV 5 arT) ————(, )s(s+l)r=1 s=0 t=0 u=0 Gi ar (r+1)x( rl)

t-u,t

.(t+2) (n-t-1) (-1) (Py

(0 <a << n-2)

From (4.5.10) we see

. “0 1

and from the proof of (4.5.19) we have:
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a, _

| 2 ()(nr-1)() 1 (+2)n = JI 1 1
- ( ) (n-a) (n-a-1) n(n-1)

+1

| so we obtain:

| . 1 1 1

(4.5.21) Pg = BE (t= a an). (n-1)° + La
| where IT, 1s the last sum in the previous formula for py As T, = 0
| when a = 0 (sum being empty), we see that (4.5.21) 1s valid for a = 0

also.

To evaluate Ty we shall consider the sums

| SN ss t-u, t
poo= LI (0) (s(s+1))(3+2) (n=t-1) (<1) THD)
U, T — — t u

s=u t=u

so that

SR
Ta = n-1, Pa MPu,r °°

r=1 u=0 r(r+l) (r+2)n( )| +1

Now

| S t-u, t S
2 (+2) (n=t-1)(-1) "( ,)(¢)

| t =u

| s S s-u t-u
= (3) ZT (#R)(n-t-1) (50) (-1)

! t =u

i gs, U4 s-u £
| = (5) ZT ((n-u-1)(u+2)+ t(n-2u-b) -$(t-1))( “¢ )(-1)
| t=0
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| s =u

C(smu) (s-u-l) D0 ETRE y (a w= || RRRepIC

(n-u-1) (u+2) if s =u

= -(n-2u-4) (u+l) if s = utl

-(ut2) (ut+l) if s = ut?

| and hence

| 2 (2)
a r=1 Pr r(r+l) (r+2)n( el ) “r, 7

| : (3)
| Hr r(r+l) (r+2)n( - ) fr-1,x
| a (2) r-2
| +L : n-1 2 Pa Mu, r

r=2 1r{r+l)(r+2)n( rl) u=0 ?

| a ( 2 )
= 2 pp TT plo r(r+l) (n-r-1) (r+2)

| . r=1 r(r+l) (r+2)n( +1 )

| : (2)
| pT op, mT(+1) (2) (+1) (2) )
| r=1 "—= r(r+tl) (r+2)n( ol )

a (%) r-1

| + 2 — 2p [u(url)(n-u-1) (ut+2)| r=1 r(e+1)(e+2)n( 7)Lu=0 "

— (ul) (u+2) (n-2u-4) (wl) - (w+2) (ut+3) (ut+2) (ul) ]
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| a a

a (L) & r ) (r+l)
3 i = r ( i ) ! r Zp rd ( ) (n-r-1)t= r+1 B r+l

a-1 a ( >)
| - 2 p (wl) (ute) (nt2) XZ _u n-1

| u=o0 r=utl r(r+l) (r+2) (7 )n :

Inserting this in (4.5.21) yields

o 2 ( : 1 ) SE SSE 1a ~ 3\ (n-a-1) n-a) - n(n-1/+ 2 + Fag n — 2
| /~ (n-1) NY n(n-1)

| a a

| a-1 (4 ) a-1 (pr1 ) (r+2
+ >, p——+ Lp. ———————

| r=0 * (2 ) r=0 YR) (n-r-2)
Bh r+l B +2

| a

a-1 a ( 7)

| - Tp, (ul) (ure) (22) ry —
u=o r =utl r(r+l) (+2) (1)

| and we easily see that we have proven Proposition 4.5.2.

| 4.0 Proof of Proposition 4.1.1.

| From (4.5.6) we find

0.0]
| (0) 5 (0)
| 0 < XZ op © < nob Ot 1 <t <n-4 .

T= 1

So, bringing in (4.5.19) together with (4.5.5) we find

| 2n 1 1

© Pt T Fm) (n-t) (n-t-1) - 5(0-1)2 LE (1 <t < n-4)

| where
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| 0 < &5, < —B_ L — 2
| t 3(n-1) \ (n-t) (n-t-1) ~ n(n-1) (n-5)

| (n)
50, as p= Mact-2,1 we find

(n) _ 2 1 (n) 1, un 4 <t<n2, 0<M<
Me, 1 T 3t(t+1) i 3n(n-1) i Me 1 n t stn, t M

where M is some uniform positive constant (at least less than 26 ).

This proves the first statement of Proposition 4.1.1, as the

formula for t = n-2 1s trivial.

(4.5.6) 1s not valid for t = n-3 or t = n-2 , so we have to treat

these two cases separately.

We introduce the notations:

n-2

(4.6.1) s(t) 5 5(T) (0<r) 1<t< n-2 ]t = t — - =
t=1

and shall concentrate on 5 (7) first. |
We have

n-2 {
moo zl og)

S’_5 = 2s Ql. (342) (0-3-1t=13=1 J WU J

n-1
n-2 .

n-2

(r) (r) , ntl 1
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We find from (4.5.3)

1) | %F (37 ) L(x) +o "ws5(=* _ 3 , 5 or” [k(kr1) (7,5) + (kD) (+2) (5,5)
; j=1 (m1) ng(3*1)( 4) k=1

n-2 n-2 . n-2 .

_. 1 OZ ZL ({) ves IT (3 |NRE te: En REIL

(r)-2

(r+l) & k 1 n-2 1 n-2 |
(4.6.3) Sp Sa we Cx) 7 ws (gr)

Inserting (4.5.2) in (4.6.3) we find

o(1) _ " 1 _©2n ket 2 1 (n=2y+ 1 (n-2,n-2 n 3(n-1) n (kt2) k (kt3) k+l

n-2

2 2 ktl)(n-k-1) _ (kt2)(n-k-1)(n-k-2~ 3(n-1) gy n(n-1) jet) (n

and eventually

o
(1) _2ml)(m2)| 1 "n 1 4 (n-2)

(4.6.4) Sp-2 3 n-l)n ZR vei 9 n(n-1 )

Similarly, as

(1) 1 = JG. on oh
a —— Ln (3)3(+) ———t = . k -1

6(641) (,%) J=1 k=1 Sa=1) (ny
. n-k-1 k+2

_ Zn > we (4 Cogn) 2 (22)© 3(n-1)b(t+1) (0) J =1 ("7h k=O n noo
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- |

in (el) (me) ll 2 (0)~ 3(n-1) n To (0-3) (n-j+1) (n-j+2 nt’
t(t+1) ( +1 ) J=1

we find from (4.6.3)

(2) _ W(ntl) (nt2) Eo (2 (02) 1 (32) 12 = - t+2 t t+1

EAA CI 2H eer) (J)

. ll) 2 (0)521 (n-3) (n-j+1) (n-j+1 n “n-2

Mw) [5 2 SR [f-2) HEBb 2 — : (n-j) (n-j+1) (n-j+1
3(n-1)"n \t=1 j=1

of (n-t-1) _ (n-t-1)(n-t-2 2 (1)
T(t+1) (63) "3m Shep

After tedious computations we find

(2)_ _ _17T 1 [_8& , _55_2 __16 88
(4.6.5) Spo S(n-1)~) + PY: 7 n 5 57m 3h)— + IE)

, om CENCE SS Je -
n(n-1)2 \.3 3773 Tom” 9(w3) Tw)

We shall, however use approximations and write

1 _ 1.2%, 1, f(t
(k.6.6) Spr = 3°73 7° TR 2

H H

q(®) _ 2 ™m_17 _n
(4.6.7) S._5 =3 7 om + 0 2 .
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a

| oo (3) @
In order to find approximations for no and MN , WE will use

the following formula

(r+1) _ 5(7) n__ (r) , 2n-1 (r+1)
(4.6.8) ®n-2 ®n-2 ~ (n-1) Sp-2 * TT Sn-o )

From (4.5.4) we have

n-2

5(r) ba) oT) SI: = 5a) oT) (Bh —n-—2 521 J j+2) (n-j-1 521 j J (§+2) (n-1)

and similar to the proof of (4.6.3) we find

5 (+l) 1 5 oT) k (n-1) + 1 (n-2) + kl (n-1) + _1 (n=2
n-2 n(n-1) 521 J k+2 k+l  kt+2 k kt3  k+2 k+3 k+l :

Now

k / (x2)(n-1) = (n-1) ‘k+2’ n(n+tl) (n-1) n\ k+2 k kt3 ‘k+l

1 k n-1 1 n-2 k+l ,n-1 1 n-2

n(n-1) E (1) Ym Cx) ts (ee) * 03 (pt) |

BN (2-1 1 1 n 4 en-1  n-k-1 = k(n-k-1 _ (n-k-1)
- k / (2) | (n-1) (n-1)(k+1) n(n-1) (n-1) = (+1)n(n-1) n(n-1)°

s(n2y L [2nl | onl kMktl/ k+3 | (n-I)n ~ (+2) n(n-1) ~ n(n-1)

N (2d 1 (n-k-1)(n-k-2) (2-2) 1- k / k+2 n(n-1) (k+l k+l’ n(kt+2)

= 0 .

So, according-to (4.6.2),(4.6.3) and the two formulae above for (x)
and (7+ 1) we have (4.6.8).
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From (4.5.19) we have

1 2

| 0) = mE Dag) - — 2 1 <t <n-2

| 50

: (4.6.9) 7)
and also

| 6.10) sO = 5 - J |n-2 524030 \3

| From (4.6.6) - (4.6.8) we then find

| (1) (0) n (0) , 2n-1 (1)
®h_7 - 55 = n4 _- n—1 55

giving

| LH H
(1) _ 1 _ "mn _ 2k n

(4.6.11) 8 5 = 3 sm toon tO >

| and similarly

| (2) (1) n L(1), 20-1 (2)
®h-2 - Sh-72 — 5-9 n-a n-—1 SA

giving

H H

| (2) _2 mn 17 n

From the above formulae (4.6.6), (4.6.7), (4.6.9) - (4.6.11) we easily

obtain

| (0) _ 1_1
| (4.6.13) 5.3 = 3 n

H H

(1) _ 2 n_20 _n
(4.6.14) 527 5% “ant0 2
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H

(4.6.15) (8) _ o 22) :n-3 n°

We already now 8%) from (4.5.19)

(4.6.16) 50) 1,1, “n
tT n—3 9 On n©

and (4.6.15) implies

H

(2) _ _n
(4.06.17) On-% = 0 2 .

To find 51) we inspect 542) . We use (4.6.1), (4.5.4) and the

formula for of) established below (4.6.4) above to obtain:
n-=3%

(1) h(t) (m+2)n n-k (£41) t (5+ |
Snob = 5(n-1 2 n 2 (n-j) (n-j+1) (n=-j+2
He a t =1 (t+2) (n-t-1)8(t+1)( .,) J =1 J/ AH J

n-3

_ 2 2 (0) | (41)
nT _7b (t+2)(n t= 4)

SO

n-4 t Ce |

°n-4 + 3n B-4 7 3n(n-1)(n-2) , i771 (3) (a+) (mga) B(EF1) (E42

343) fn
=3n _2m+ny0 2

Now, (4.6.13) and (4.6.14) give

(4.6.18) $0 2.10,Tr n-4 = 9 On n°

we find

15



| » (he_ 1, [Mf
(4.6.19) n-4 = 3 27 2

Together with (4.6.14) we arrive at

| . .

| (1) _2 1 bul?) 1 n| (4.6.20) os = 3 m3 la”? = Hy ~+ 0 i :

From (4.5.1) and (4.5.5) we see

| IE SR JYLC)
; n-1 n-2

r=0

so that from (4.6.10), (4.6.6) and (4.6.7) we see

SIG 1 (0) 1) 42 i:| h.6.21 Dost) = 1.- gl0) gl) 4(2 o| =
| ( ) 2552 GT” Spon - Sip ~ Sah = 2

proving

| 6.00 C1, 50, 5, 5@) of FnPn-2 = 2 "n-2 n-2 n-2 2
| (n-1) n

leading to the value for 2) stated in Proposition 4.1.1.
| From (4.6.15) we see that

| (2) (%)| = 0 =
n-3 n

| and from (4.6.21) we see
© H
— (r) n

| Zz °n-3 = 0 2
| r=2 n

so that

| H
1 0 1 n

(n-1) n

n

: Referring to (4.6.16) and (4.6.20) we have then proven the value of n )by

in Proposition 4.1.1.
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(n)
5. Measures of Efficiency 1in 5)

5.1 General Formulae for Basic Probabilities.

In order to obtain the measures for {uw :

*

L = L (n) —— the expected left path length
51

*

S = 0S (n) —— the expected number of key comparisons
51

*

R =R (n) —-— the expected right path length
51

*

RI. = RL (n) -- the expected length of the last right subtree
S1

*

C =2¢ (n) —-— the expected recursion depth
S1

ar
(see Section 2.4) we need knowledge of some properties of the CLPP of 5) :

n a-1
n) ab

al (z,w) = 2 2 nt) ZW :
a=2 b=1

(n)
Formula (3.4.1), together with the approximate values for UNS] proven

/ \ |

in Chapter 4% could give us values of Tot for general 1 <b <a <n.
However, 1t turns out that we may express all the quantities needed in

/ / \
terms of nin) 's, without knowing the nt 's in general.

asl ash

To establish the measures above we need formulae for

n-l-r (n)
(5.1.1) N= 2 Trtbt, b 0 <r <n-2b=1

(5.1.2) py, = 2 Moy 2 <a<n
pb=1 7
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(5.1.3) T. = i" 1 <b <n-1 .
Knowing that

(n) t= o
(5.1.4) Aq (1,1) = 2 a = 7% "

r=0 T a=2 a

-2

| 1 (n) 1} © r
(5.1.5) = Ay (2.3) - 2 NZr=0

3 al?) (z,w) n
(5.1.6) —_—— = Yay

oz z=W=21 a =2 a

we see that we then will have the sufficient knowledge to establish the

measures needed (see Section 2.4).

We will use the notation

(5.1.7) B= (a-1) 72) + (n-a) N\2) l1<a<n.

First we prove

1 5 3k=-2r-5
r r+l yo k k-1 k-1 r+1

Using w = 1/z in (3.4.1) we obtain

n a-1

2 2. nim) 287P
a=2 b=1 2b

— 5, 55) 227 (p n(n) + (a-p-1) 7%) + (na) n™) )ntl 8h a,btl atl,bt+l
a=2 b=1

n

1 (a-1) 1 Z_fm 0 (#0 (- 3) Contda =2
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We have

8-2

| (2-2) ( 1\ | 2 2 \ r(5.1.9) Hy Z 5 7 = z RA =T ~ ao1 JZ (2 <a) .

: Rearranging the general equation we find

ne j (m) . & (n) a-1 . 1 _(a-1) 1
20 (3+)A, 29 (1-2) = 1-(n-1)My7) + 2B l-z + = Hy (=, 2) .

From this we see :

< 2 2

. . 1 n-1 . i
when regarding the coefficients of 2,2 ,...,2 . Summing these equations

from j =r to Jj = n-2 eventually proves (5.1.8).

For the p_ 's we will find |
a

- 1 = kK-r

(5120) wy = my | 1+ 2 (HetE Eo EE) | essa.

| Putting w =1 in (3.4.1) we have |

| 5° z> _ 1 71 + 1 5 8 ol n(n) + (a-b-1)7(™) + (n-a)n\™)ap a whl loa po1 WP a, bl a+l,bt+l
n

1 a a-1

+ Bp (+n (5,1)
a=2

Where

-1 r-1
(a1)  & r 1 1 |

3 2 ) Ra Z Ra (a-1-8)(a-5) + (r-1)r

) a-1
: Tr 1 1 1

. = 2) FE -drt) (2 < a) .r=2
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giving

n N n (8-1)a) - - _ nh -Zi (py(ntl-a) yo (n-a))z” = 2" + ZB, Hy (21) .
a=2 a=2

As for nN, above we obtain for 2 <r <n

n-1 n
1 1 1

Tr kK=r aok+¢l BN 3TK a-1k

leading to (5.1.10).

The Ty 's turn out to be

n
1. = n=-1

(5.1.11) o (n-1) (n+1-b) (n-b Lsbs

as proven by isolating the terms in (3.4.1) having z to the power (n-1) :

n-1 n-1 n-1
b 1 b 1 n-1, . Ww

2 WWo= oT 2, WwW (br + (n-1-b)7,  ;) tog W (n-1)7, tT
b=1 b=1

yielding

21,4 = 1% (n-1)7q

and

7, (+ 1-b) ~ (n-1-b)7._ 4 = 0 1 <b <n-2.

(n) 1
As 1, = T = ——— is found earlier we easily see (5.1.11).

1 n,l 2
(n-1)

We will also prove the useful relation

(5.1.12) pm J 2,2 3 am) gy
2,1 = ntl ntl a =3% a. a2 }

This is seen from (5 .1.10) and the fact that

_ n(n)
ho = Th
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We find

1D a1) = 1+ 2 (EDT, @n® yen . -2)2,1 kK =3 Me, 1 + k+l, k -1

2 (n) , 5), 2 (n)= 1+  (k=1)T (: H 24+ — T/ + (n-k+1) (2H - 2)K=3 ky 1 k k-1 at The,10 2p

3 (n)
= 1+ 2n 2 Ne, 1p =D) +2(1-M377)

k=3

from which 5.1.12) follows easily.

5.2 The Expected Left Path Length.

The B, 's defined in statement (5.1.7) are approximated from

Proposition 4.1.1 by

H
2 2 1h n8) = zn-3zH+ EY

(5.2.1) B I PRL SL (=) RS Tn
2 9 5 n 27 3m n

2 n+l 1 1 n

Inserting (5.1.10) in (5.1.4) gives

n n k-1
1 1 1 1

5.22) AME = 3 (1+ © sg 2 Losi. 1
1 0 =D ntl-a Ko atl k FR t-a+l tt k-1

B Hoa +N

where, according to (5.2.1)
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»

n-1 n k-1

POS, 11)1 fe mn, 1), )N | = LA teat: wa )mie 3 xen th) [TVs )a=2 k=atl t=ahd ’ Nn \ / 74] \ 7

Straightforward calculations lead to

He
1.2 2 (2) 7 n |2 = = + = - - = + _

(5.2.3) N= rs -H 7 -3+0 3

and hence from (2.4.6)

HO |
* lg, 2 (2) _k n

(5.2.4) L = 3H + $H) H z+ 0 = .

The expected length of the left path has increased from

2H =-1
n

in the normal p-tree forest to the value given in (5.2.4).

5.5 The Average Number of Key Comparisons.

The formula for the expected number of key comparisons in the

stationary p-tree forest is found from (2.4.10), (5.1.6) and (5.1.1) to be

n n=-2
* 1 k+1

(5.3.1) S =1+== 2 au + 2 ==8 A
n+l PR ntl r{¥) k

where S (k) 1s the corresponding value for the normal p-tree forest,
0

defined in(2.4.13).

To establish a formula for

1 n

T= ltm 2, ru.

we see
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L n+1l-r (n)T = 1+ 2 (1-22), = 1+A; (L,1) - Kr=2

where

n n
1 kK=-1r

(5.3.2) K = ey 2 (> 2 NEE - ez) |r=2 k=r+l

n

_ nl, 1 1
= ol owl 2 Bp(k-2) LH, - 3.

k=3

Defining

n-2
a k+1

0

we have from (5.3.1) and (2.4.6)

*

| (5.3.4) S* = L ~- K + U .

To evaluate U we use (5.1.8) and (2.4.13):

2

“Em

| n k-2
1 Sk-2r-5 1,2 (2) 10 28+ . ——— —— - — -— —— -— —t—Ra m1 Px z ( EE CINE NE Hoy "Hp 1) YT Hg = 57 ).

The latter inner sum simplifies nicely and we obtain eventually

2 a | 1 lL

Umit 2, 21 Pl Xe FE
~ Px (kH 1 L 3k-7= 2 =. - lk eI Sell -

p35 mL k-1" BETO pa term 2H mH)

= from (5.1.8) with r = 1 |
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Rearranging the terms yields

n =
k 1

u= = 2) (Hy -2)k= 3 n+l k-1 2

Referring to (5.3.2), we see that

n-1

(5.3.5) U = K-57

and hence, by insertion in (5.3.4)

* * n-1

*

Using the approximate value of L from the previous section gives us

He
* 1.2 5 (2)17 + nos _J oe - = + Z - Lal — .(5.3.7) s =3H t$H -H SC

The expected number of key comparisons 1s hence slightly less than the

expected left path length, and has the same dominating term as the

corresponding quantity of the normal p-tree forest, being

1 2 = 1
_ Ze. =H - zo ==

S = SH + 9mu "3 n(®)_ 27

Formula (5.3.6) is surprisingly simple, indicating that there should be

an easier way to prove 1t than the one we have been using here.

5.4 The Expected Length of the Right Path.

From (2.4.14) and (5.1.11) we find the expected length of the right

path to be

Tx n-2 N
5.4.1 R 1+

) 1+ 2 Ra) (=D) (50)k=O F
0)
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» In [2] is quoted the recursion formula for R (n) being

n-2 | 1
(5.%.2) R (n) 1+ 2 R oo ( EE + n(n-1) ) :: F k=0 F

0 0

4 From these two equations we find

n-2
| * 1 1

| (5.4.3) R =R + — (R - 1) ———— 2 R :
(n) © 1 ‘R (n) z 2 R(x)

IN Fy (n-1)- k=0 IN

From (5.4.1) we find

* * 1 *
] . A - = ee— -

| (5.4.4) Ro. -R, 5 (R (n) +1 R,) :
] n F

0

R (n) 1s known to be a nondecreasing sequence of positive real numbers,

. approaching the limit

| ® od
R = 2. —5— = 1.6261... .
© : 2

| j =0 ((3+1)*)

| *

] (5.4.3) and (5.4.4) show that the R, have the same properties as R (n)
F
0

: 5.5 The Expected Length of the Left Path of the Last Right Subtree.

| From (2.4.15) and (2.4.21) we find the expected length of the left

| path of the last right subtree in the stationary p-tree forest to be:

¥* n-1 “(A| : - (n) -

~k=1

Referring to (5.1.12) we find
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n n

RLF = 2 2 1™ aw, - 1) + 2 nim)
k=3% 7’ k=3 7’

ntl 3
on 1 “nT (1-7, 4)

* 1

(5.5.2) RL = 1-70-74) .

Inserting the approximate value for 1, 1 in Proposition 4.1.1 weJ

find

H
xo L _n(5.5.3) RL = Lhe of 3n

5.6 The Expected Recursion Depth.

Inserting the values of the expected recursion depth in the normal

p-tree forest:

2 1
6. = = + = n>?2

(5.6.1) Cm) T3Emts (n > 2)
0)

C = C = 1

J0) TC)
0 0

in (2.4.16), yields

6.0 CH NUP wa (2m +=(5.6.2) =r mI Mortar 2 UNF Hg tS

using (5.1.8) the latter sum becomes:
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n-2
. 2 1

2 (k+1)N (2x =ap k\ 2 "k1 9

- n k-2
k-21-5 > 1

= 2 B 2 (220 os -H )) (5 +5)ng Tr WO NR 1 k-1 "Perl! JA 3H Tg

| n
N 6= 2 (bE, rx-12 to ) .k=3

Again using (5.1.8) for r = 0 and 1 we see

* 1 1 2 6  3k-5C = 1 + — + — ~ —_— — a.ntl Pe Trl 2 p(X Hyaptk-let 3+ 5 - 2H _+2H
ok-7

TRC 2H, y+ 2H, )
and eventually

6 * lL 5« (5.6.3) C= 1+ =x 2 B, (k-1)
k=2

| Inserting the values from (5.2.1) we find:

H

* 245 1,© = 3H of 2)
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