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1. Summary.
In [2] Ole-Johan Dahl and the author studied an algorithm for

priority queue maintenance, first used in the work with the language
SIMULA in the beginning of the 1960's. The strategy uses special binary
trees called p-trees, and algorithms to maintain those structures.
The main part of [2], as well as of the more detailed treatment in
[1] and[3], was devoted to a mathematical analysis of the efficiency of
the structure after n successive insertions. Each new key was supposed
to be independent of the other keys and to have equal probability of
falling in any of the intervals defined by those keys already in the queue.
This paper is concerned with the efficiency of the algorithm after a
large number of alternating remove-best/insert-random steps, starting
with the situation after n successive insertions.
The famous ergodic theorem of Markov chain theory ensures us that
there exists a stationary state, called the stationary p-tree forest,
which the process approaches. We will find approximate values for properties
of the stationary p-tree forest, as an application of general methods
which will be developed for the analysis of such algorithms.
.Let F denote the normal p-tree forest and § the stationary

p-tree forest. The following table compares some of the aspects of these

two random structures:

F S
Expected left 3 1.2 5
path length EHn 1 3 Hn * 3 Hn t 0o
Expected insertion 1.2 10 1.2 5
time 3 Hn + 9 Hn + 0(1) 3 Hn + 3 Hn + 0(1)
Expected recursion 2 H + 1 g-H _1 +0 %2
depth 5"+l 9 2% " 6 n




The stationary p-tree forest S is more "skinny" than the normal
p-tree forest F . Near the root, S 1is approximately equal to F ;
for example the expected right path length tends to the same limit, and
the probabilities of the value of the node next to the root are nearly the
sane. However at the end of the left path S is quite different from F
The expected length of the left path of the last right subtree of the
‘left path is shown to approach 1 , while the corresponding value of F
approaches 53 . Similarly, the probability for the node next to the

left leaf to be a, 1is shown to have the approximate values:

in S: 2 + L
) a-(arl) 3n(n-1)
_ L <a <n-2

. 1 1

in F: a(a+l) |« n(n-1)
if a=3

H

1,2 1

S: 9+5 n F [
and if a =2

g, 2.2 ™ e 1

"3 3 n ) 2

In Chapter 2, more general aspects of the queuing phenomenon are
presented. It should be pointed out that the text primarily deals with
the particular problem of finding measures of the efficiency of the
stationary p-tree forest, despite the fact that some of the methods have

obvious generalizations.



In Chapter 3 is found a detailed definition of the stationary p-tree
forest and its prerequisites. We also discuss a function, the characteristic
left path polynomial attached to the forest, which will be essentially
useful later in the paper. By arguments in Chapter 3 the function is
defined for S

In Chapter 4% one will find a deductive proof of the probabilities
for the value of the node next to the left leaf. The derivation involves
techniques from discrete mathematics, especially involving binomial
coefficients.

In Chapter 5 we collect the information to derive the measures

for S



2. Models

2.1 The Queuing Phenomenon.

In the general case of the queuing phenomenon we have a Source (S)
consisting of a number of independent devices, generating units to be

served at some Service Processor (SP) . SP for some reason (for

example, its capacity) will not serve the units at arrival, and therefore it

depends on some type of Queue Controller (QC) which arranges the units

in some kind of priority sequence according to key values assigned to
each unit. QC usually makes use of some predefined strategy working
with special-types of storage structures in the queue itself (e.g. linear
lists, binary trees, index tables). At request, the QC releases the
unit having the best key value, for service by the SC (Best-In-First-Out
(BIFO) strategy).

The process of placing a new unit in the queue is called an Insertion (I)

and-the process of taking the best unit out of the queue is called a Remove (R)

S i D QC SP S - Source
QS - Queue Storage
1 ] <
| QC - Queue Controller
* SP - Service Processor
QS -——— Insertion
Remove
Figure 1.



We shall deal only with the queuing process and will assume that

the units consist of the key value only.

A very simple way of assigning key values is to define some kind of
time function according to the arrival at the QC . The best strategy
is then probably to use a simple linear list in the QS . However, in
the general case keys emanate from the source with values according to
some distribution function; they may be adjusted by the QC prior to
insertion and even be changed during their stay in the QS . We will
use the term key pattern for the complex of rules according to which
keys are assigned.

The queuing process may be regarded as a discrete time sequence of
events. At each time t (t = 1,2,3,...) either an insertion or a
removal takes place. In general we may have a case where the event to
take place is subject to selection according to some distribution function.
We will use the term I/R-pattern for the complex of rules according to
which the insert/remove sequence takes place.

Maintaining a priority queue requires selection of a strategy for
the structural ordering of the keys and algorithms for insertion and
removal of keys. Linear lists, AVL-trees, and "heaps" are examples of
such strategies. Each strategy provides algorithms for insertion and removal,
as well as a mechanism for representation of the data, and we shall call it

the queue strategy.

The purpose of this paper is to study a specific combination of the
three elements in the queuing phenomenon, as described in the next
sections. Some of our methods and resultshave obvious generalizations;
however, we shall not attempt such generalizations in this paper, but

concentrate on obtaining results for our special case.



2.2 Models for Key and I/R-patterns.

We will assume that our source generates keys as an infinite sequence
of real numbers

Xl,Xe,..-}Xs,mmm

being independent random variables chosen according to the exponential
distribution with mean ) (0 <)) , having the density distribution
function:

_Kx

Ae if O<x

(2.2.1) f(x) =
1 0 otherwise.

Furthermore, we will adopt the following assumption

[ Upon entry to the queue controller, each new key is increased

(2.2.2) | by the value of the key last removed from the queue.

To demonstrate the effect of (2.2.2) we give an example.

Example 2.2.1.

Let the first five keys from the source be
0.8, 119, 1.1,0.1, 2.0

and suppose the I/R-pattern is

ITTIRIRRI
Key from Key to Last key
Time I/R source the queue | The keys in the queue removed
1 I 0.8 0.8 0.8 0.0
2 | 1 1.9 1.9 0.8, 1.9 0.0
3 I 1.1 1.1 0.8, 1.9, 1.1 0.0
L R 1.9, 1.1 0.8
5 I 0.1 0.9 1.9, 1.1, 0.9 0.8
6 R 1.9, 1.1 0.9
T R 1.9 1.1
8 1 2.0 3.1 1.9, 3.1




Restricting ourselves to a source generating keys which'are independent
exponential random variables is not uncommon. Biasing
the keys as described in (2.2.2) needs some motivation. If no adjustment
were made we would run into cases where we would have smaller keys in the
queue than some of those removed on earlier stages. Not biasing keys
also means that large keys will have a tendency to be trapped in the
queue, because smaller keys keep coming in with non-vanishing probability.
The example below, quoted from [2], gives a practical example of bias
occurrence:

Example 2.2.2.

Let the source contain n (n > 1) independent exponentially

distributed event patterns, with common parameter A > O .

1 2 n

cee source

The n devices each deliver an event time Xj (§ = ,2,...,n) to an
initial queue. From that time on the best key, say Xk’ is executed and

the device k delivers a new key

X = Xt E

where E is exponentially distributed. Since Xk is the smallest of such
keys in the queue at the present time, we have a situation conforming

with (2.2.1) and (2.2.2). O

The key pattern described above is denoted K0 .



Suppose A is some fixed (i.e., not subject to probabilistic.
changes) I/R pattern, and let A(t) (1 < t) denote the t-th event
(I or R) . (In Chapter 3 we will concentrate on a few such A ,
at present it is left unspecified.)

If we at any time t are left with an empty queue (i.e., 1f the
number of I's having occurred is equal to the number of R's having
occurred up to and including time t ), we clearly are in a trivial
situation equivalent to the original state; previous counts have no
effect on the subsequent ones. Thus we may neglect this situation.

We will allow A to be infinite, but will assume that it is bounded
in the sense that the queue never will contain a number of keys larger
than some predetermined number M .

The latter two assumptions may be formulated as follows.

Let NA(t) be the difference between the number of I's

and the number of R's having occurred in A up to and

including time t . Then

(2.2.3) 0 < NA(‘L:) < M

for all times t = 1,2,... , where M is some predetermined

number.

K, and A together uniquely define the queue at all times t = 1,2,... ,
when the initial stage (t = 0) is defined by the empty queue. The

content of the queue will be denoted as follows.

(t) (t)

Xl yo iy the keys in the queue at time t , in sequence
t

according to their arrival in the queue

Bt the value of the key last removed from the queue.



The notations apply to the situation after execution at time t- (A(t))
Initially
n, = 50 =0
Our combination of Kb and A have the nice property of leaving
invariant the simultaneous density distribution function for the differences

between the keys and the value of the last removed key, as stated in

the following proposition.

Proposition 2.2.1. Using the notations above, let 1 <t and define

the stochastic variables:

(t) _, (%) _ . -
W3 =x p 6t 1<j§< n, =n

Then the W's have the following simultaneous density distribution function:

-X(W1+W2+ ...+Wn) if O_<_ Wl’we""’w

A e n
(2.2.4)  £(Wp,Wos L LW )
0 otherwise.
Proof. The proof follows from standard results and methods of
probability theory.
As A(l) = I, and the first X from the source is exponentially

distributed, we have n, = 1, 51 = 0.0 and the correct distribution
function. So the proposition is true for t = 1
Assume the proposition to be true for some t, 1<t .

If A(t+1) = I , let the new key from the source be

Xx = W+ bt

where the density function of W is given by (2.2.1). At time t+1 we

will have:



Dee1 t

Ber1 = B

and the queue sequence:

(X(m)x(tﬂ) @D @D ' @WBD (( @D @D
I Pee1

10)2

The W's at time t+1 are therefore defined by:

(t+1) _ (%) .
WJ. = W. j = l,2,...,nt+l-l
Wr(1t+l) _ .
t++1
+
As W is independent of W§_t+l), ' @;Wn(t 1) we obviously have the required
simultaneous density distribution function at time t+1 .
If A(t+l) =R, let
V(t) = mm(W(t) ( ) ...,W(t))
n
t
and
Y](_t),Yét), .o "Yr(lt)-l be the remaining W(t) 's, conserving
the sequence.
By symmetry, the simultaneous density distribution function
t t t .
for V( ),¥$ ),...,X(_i is:
t
n -A(v+y,+ .oty )
nthte 1 ng -1 if 0 <K V<y 5.0,
- =Y1
f(v,yl,ye,---,ynt_l) =
0 otherwise.

Removing the-smallest of the X(t) 's is equivalent to removing the smallest

of the W(t) 's, leaving us with the following situation:

10

Yy -
n_tl



=n. -1 ;5 & =_-V(J'3)+5JG ;

t+1

and
W(.t+l) _ Y(t) ) V(t )

J J j = l,2,...,nt+l .

The simultaneous density distribution function for the W(tﬂ-) 's is hence:

® n.t -)\(n.tV+(wl+ooc +w )
f(Wl)WQ; ] M@@"n ) = f n‘t A e t+1 av
t+1 0
when O < Wys Wy eees W, (0 otherwise) because
t+1

V(t) +Y§t) + +Y§zzl = V(t) + (W{t-"l) +V(t) F oaee +W1(—lz:]]:) +V(t))

=n V(t) + (Wl(t+l) + . F W(t+l) )

v Mo+
Simple integration yields the desired density function.
Proposition 2.2.1 has now been proved by induction. O

Another useful property of our (KO’A) complex is the fact that a key
to be inserted has equal probability of falling into any of the intervals
defined by the keys already in the queue, as 1S readily seen from the

symmetry properties of the density distribution function of Proposition 2.2.1:

Proposition 2.2.2. Using the notations above, assume

A(t+l) = I
Let X = Wt+6t be the key to be inserted, W being distributed according
to (2.2.1).
Let Z{t),ZE(,t),...,ZIE:) be the ordering variables of S(i),xe(t),.wmxrgt)
t

Then for j = l,2,...,nt-l .

1

t nt+l

Prob(X < zJ(Lt)) = Prob(zgrt) <x< z§2) = Prob(Zr(lt) <X) =



The results in Propositions 2.2.1 and 2.2.2 enable us to replace the
continuous key pattern Kb'by a discrete key pattern DO , described
below - The replacement is easily seen to carry no loss of generality,
for-queue strategies that depend only on the relative order of keys.

The key pattern DO involves renumbering of the key values in the
queue at each step. However this will not alter the internal arrangement
of the key

equivalent to those of Kb .

Key pattern DO

-- At the end of each time t the queue contains a permutation

of the integers 1,2,...,n

L
-- If A(t+l) = I , the source generates an X from the set
_ (1 2 1
(2.2.5) %t_ {2,2,.”,1%+2}

with discrete probability distribution

Prob(X = x) = n.:!;l ’v'xeTnt

Having inserted x in the queue the keys are renumbered

according to their size.

-- If A(t) = R, the key 1 is removed and the remaining key

values are decreased by 1

Note that in D (as in Kb ) all permutations (all relative

0

orderings) are equally likely to occur, and that inserted X's (both in

DO and Kb ) have the same probability of falling in any of the nt+l

intervals defined by the queue keys.



2.3 The Queue Strategy: p-trees.

The queue strategy P studied in this paper is the use of p-trees
with algorithms for insert and remove, as described in [1]
and [2]. 1In these papers, as well as in [3] and [6], one will find
theoretical and practical results concerning P . We will assume
familiarity with p .

using P , the queue structures are postfix ordered binary trees,

being elements of a subset of the set of all binary trees. We will denote by

n
E# ) the set of all binary trees with n nodes (n > 1)

3(n) the set of all p-trees.

(We recall that a tree TesB(n) is a p-tree if and only if
each node having a right successor also has a left successor.)
We will agree to define 6‘0) and ?(O) to consist of one tree, viz.

the empty tree w

When using p-trees we will adopt some conventional notations.

Let T e%®) (2 < n)

—-- The length of the left path will be denoted T .

-- The values of the left path nodes in postfix order, from

top to bottom, will be denoted by
2.3.1 = * % —
(2.3.1) n q > q, > > q 1

-— The right subtrees of the 7-1 first left path nodes (left
leaf excluded) will be denoted by

B ..,B

1’ BE’ Tl

agreeing that node values are adjusted to range from 1

upwards (if nonempty),

13
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A p-tree forest F is defined as the pair of items:

(2.3.2) F— (5,5

where § is some probability model containing for each tree T

in ?(n) a probability F, to occur.

o r Some I/R-pattern A and P . will at

each time t leave us with a p-tree forest, denoted by

Using the key pattern D

where

Qgt) = {Pgt)('r) | T ex(®™y .

In [1] and [2] are presented theoretical results of the so-called

"normal p-tree forest", being the pair
(n) _ ,g(n)  (n))
where Agn)fII. .ol is the I/R-pattern consisting of n successive insertions.

One of the important properties of the normal p-tree forest, due to the

recursiveness of the insertion algorithm is that:

1L



(2.3.3)

The set of all right subtrees of a fixed left path node

position is composed of a set of copies of normal p-tree forests.

This property is called the basic p-tree property (BPP). Formally, the

BPP may be described as follows:

(2.3.4)

Let F = ("j(n),Q) be any p-tree forest (n > 2) with
8 = ITes )y

Let 1 < j < (n-1) be any fixed left path node position, and

define

for all trees U :

n
Ue U ?(s)
Let
AI‘;J) = Z at(lj) (0 < k < n-j-1)
Ue?(k)
and

| o)
MOIRY SON ) PN

k

=]

Then F is said to have the BPP if the forests

Ql({j) = (ﬁ(k),¢£j))

are normal p-tree forests for all j, k : 0 <k <n-j-1;

1< 3j<n-1.

n
A proof of the fact that F((J ) have the BPP is found in [1].

15



2.4 The Characteristic Left Path Polynomial.

Adopt the notations in the previous section and let T e% ) ,
(n>2) ., The polynomial
-1 q. aq,
(2.4.1) hT(Z,W) = 2 zd wdtt
j=1

is called T's left path polynomial (LPP).

n
Let F = (?( ),Q) be any p-tree forest (n > 2) . The polynomial

(2.4.2) HF(Z,W) = Z PT hT(Z:W)
Teg "

is called F's characteristic left path polynomial (CLPP).

Being a polynomial in z and w having terms of the type z&WP with

1 <b < a < n we see that we may write

(2.4.3) HF(z,w) = 2 BEF% 22 WP
l<b<a<n'” ’

where

(F)
(2.1.4) Pa,b

is the probability of a tree in F to have a and

b as values of adjacent nodes on the left path

For convenience we will adopt the conventions

hT(Z:W)

hT(z,w) = HF(z,w) = -z if n = 0

|
28]
=
~~
N
A
=
Nt
|
o
H
Hh
B
[
-

(2.4.5)

From the CLPP of a p-tree forest F , we may deduce the expected left
path length- LF . Because-each tree T has exactly one more node on its

left path than the number of terms in its LPP we find

16



T = 1+ hT(l,l)

leading to

(2.4.6) LF = 1+HF(1,1) (0 < n)

Assume that F = (.‘ﬁ(n),é) (n > 2) has the BPP, defined in the previous

section. We may then use F 's CLPP to establish the expected number of key

comparisons (SF) necessary to insert a random x €T, , being subject to the

equiprobability distribution as in D0 in the trees.
We split SF into two parts:
(2.4.7) SF = SLF + SRF

where SLF is the expected number of key comparisons involving left path
nodes, and SRF is the expected number of key comparisons involving nodes

in the right subtrees.

SLF .

Let T be any tree, and use notations as in (2.3.1):
if x <1 we use T comparisons;
if U341 <x<q.J for some j = 1,2,...,7-1 we use j+l
comparisons;

if n<x we use 1 comparison;

leading to the expected number of left path comparisons in T

Sy (a4 = a4y9) (3¥2) + l)/(n+l>

Il
-
cu. +

™

]
)
+
"t
Q

17



Now

T-1 -1 .

E q _ A Z ZqJ qu-I'l

j=1 J 0z j=1 z=w=1
so that

1 ahT(Z:WS

S = 1+

Ly o+l 3z | ,_,_1
and obviously

1 aHF(Z,WS
(2.4.8) SL_, = 1+
F ] 2 | 7ou-1
SRF-

Let the number of key comparisons necessary to insert x in the right

subtree of left path node j of the tree T be

ST(x)j)
provided qj+l <X < qj . This process is clearly equivalent with
inserting XA in B,‘_J (where node values have been adjusted),
by s (x) , because of the BPP.
J
We then find
t-1 1
SRF = Z(n)agl xzel:r il ST(X,J)
T eF n
<%+l<x<q.
n-1 n—3-1
-z 'z L s T &k
j=1 k=0 () mh v () *
UeF TeZF
B.=U
J

18
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Using the notations of (2.3.4), knowing that F has the BPP, we find

PSRN C) RO RNE)

T
Te%(n)
B, =u
J
and hence
n-1 n-j-1
k1 ()
SR, = X 2 =AY v,
F j=1 k=0 n-i-lAk Jsk
where
\% = 2 2 .t s (x) 2 S
jsk (K) xerT U U k+1 (K
Ue& k 0
because (?(k),¢é3)) is a normal p-tree forest.
AﬁJ) is the probability of finding a tree in F with right
95 9341
sub-tree 7 of size k . Each time a term z “w with
qj -qj+l -1 = x occurs in the LPP's of the trees in F we get a
contribution PT to the corresponding term in F's CLPP. Summing over all
possible j 's will correspond in the CLPP to summing the coefficients of all
possible z%}) with a-b-1 = k . Hence
n-k-1 . n-k-1
Z Al({a) =z Bgl)&l'
j=1 b=1 »D
and
n-2 n-k-1
kt1 (F)
(2.4.9) SR, = == 8 z B
Rp k=0 n+l F(gk) b1 PtErLD

Bringing (2.4.8) and (2.4.9) together we find

i JH_(z,W) n-2
. 1 Fr? + kt1
(2.4.10) S, = 1+ I: Z =3 8 P
F ml dz Zow=1 k=0 n+l F,(()k) X =z
where

19



n-k-1 (F)

= Z B
b Z1 Porkrl,b

(2.4%.11) Pic

The pk's may be found as follows:

n-2
k 1 1
The quantities S (n) are known from [1] and [2]:
Fb
1.2 , 10 1.(2)_28
SF(n) 5yt 9 1 ™3 27 (n >2)
0
(2.4.13)
S =0 ; s = 1
(0) ’ (1)
o T

Similar to the methods used above for LF and SF we may establish

formulae for the quantities

B RF the expected length of the right path in F
RLF the expected length of the left path of the last right
subtree
CF the expected recursion depth

all quantities being examined in [2]. The appropriate formulae turn out

to be
(2.4.14) R, = 1 + ni2 R (F) (n >2)
h F k=0 F,(k) Pn,n-k-1 n 2
0
- n-2 (F)
(2.4.15) RLg =k2 L (k) P2, 1 (n >2)
=0 F,

20



n-2 b1
4. = +
(2.4.16) Cp =1 _E =) C (k) Pk (n >2)
k=0 F
0
(with Py defined in (2.4.11)).
We shall demonstrate the effects of formulae (2.4.6), (2.4.10),
(2.4.14), (2.4.15) and (2.4.16) when applied to the normal p-tree forests.
We assume n_> 2 and Fgm .

Fén) has the BPP and the CLPP:

1 1
TER)(ab) T (a-Da )

(2.4.17) () = D%
2.4.17 H ZyW) = ; 2
F(gn) a=2 b

The latter formula was established in [2] on basis of considerations on
the correspondence between the set of all permuations of the numbers
1,2,...,n and F(m .

0
From (2.4.17) we deduce

418 n a-1 1 1
2.4.1 1,1) = ¢
ey 0 - B E L by i
= 2(Hn -1)

and (according to (2.4.12)):

n-2 n a-1

k 1 1 a-b-1
= b
k'zgo P® a§2 b=l((n+1-b)(n-b7 * a-T)a ) Z

(2.4.19) nep
2(n-k~-1 k
2 ) z
k=0 n

and finally

21



BHF(n) (z,w)

oz J:Z =W

I
™MB

]
'._l
Q
I
N
o
N
El
v
I
P
K
&
S|
N
©
'_l
S
®
v
®

(2.4.20)

I
B
\o
=
|
¢
N

Inserting (2.4.18) - (2.4.20) in (2.4.6), (2.4.X)) and (2.4.1L4)- (2.L4.16)

we find (n >2) :

(n) = Fpot
(n-1 o n-2
sFén) = H e(r;ﬂ)) T A IEO (n'k'l)SF(k)
(2.4.21) R =1+ n223 ( 1, 1
o Fén) k=0 Fék) n(n-1) = (kt1) (k+2))
r1 2 3 - .
T L5 ES (o7 "woms) & 4w
- 2 -

CFén) = 1+ = k%30 (n-k-l)CF(k)

These formulae confirm those of [2], Detailed treatment of (2.4.21),

may be found in [1] and [3].

The main advantage obtained by use of the CLPP relative to [1l] is the

establishment of the term SL n) from (2.4.8).

T
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3.  The Stationary p-tree Forest.

3.1 General Considerations.

Consider the key pattern Dy (see (2.2.5)), the queue strategy p

and any p-tree forest F = (y(n),é) where n > 1 and

(3.1.1) 8= (qm) | TesVy

Let A be the I/R pattern consisting of an infinite number of alternating

insertions and removals:
(3.1.2) A2s-1) = T , A(2s) = R =1,2, ...

Suppose we start at time 0 with F and apply A . At each time t = 2s ,

s = 1,2y... we are left with a p-tree forest, denoted by

RORENRCIRON

(3.1.3)
Q(s) = ®O00R=E 0 l L € g(n)} .
We also define F(O) =F .
The sequence F(O),F(:L), .o .,F(s), ... may be regarded as an infinite

Markov chain, where the possible stages are the trees of gz(n) and where
the transition matrix

m= (m; )
is an NxN matrix (N being the number of elements in f/f(n) ) whose
elements m.l’j are the probabilities of mapping tree i from gg ) to
tree j in Zz(n) in one complete insert-remove operation. (We

fix some numbering of the trees in 3( ) 2)

To demonstrate this transition, let us consider the case when n = L4 .
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Example %.1.1. The left column in the table below contains the possible trees

. L . : . .
in ?( ) » the horizontal line contains the possible x's and the table
entries are the resulting trees when inserting X and removing the left

leaves.

N

N —
he] SN
ro
[NSTEN|

D
O\O\o
>0
O\Q\O\O o] Ne)

J
Saray;
SIFaF

J

}) Q
o >f Ci\? 7 fg f{

0 O

s

O

O o o
oo
O\O\O\o

The transition matrix is therefore

3 1 1
§’§’§’0
3 1 1
5:'5‘,3)0
oM =

1 2
055 %
5,1, ., L
5 7 57 > 5

2L



and one complete insert-remove step may be described as

2(s+1) _ 3(s)

where ﬁ(s) is the row vector

@ () 0z, L0 (z,) 00 (x)))
In the general case, 1f we agree to denote

P(S) - (CP(S)(TJ_) , (P(s)(Tg) PR CP(S)(TN))

for some predetermined enumeration of the N trees in 5‘(n), we have
(3.1L) p(st1) _ 3(s) m (s >0)
and
=(s =(0 S
(3.5 3% - 30 7 (s >0)

M is a sparse matrix, the number of positive elements in each row being
at most ml , while N is very large (consult [2]). However it is easy

to see that
(3.16) n is a positive matrix.

This is deduced from the fact that DO gives a positive probability of
reaching any tree Tl in n steps, regardless of what the original tree
TO was.

To see this, we refer to [1] where it is shown that any p-tree may
be created by selecting an appropriate permutation of the numbers 1,2,...,n
and then performing n successive insertions using P. (Conversely, picking

any permutation, performing n successive insertions using P , of course

gives us a p-tree .) Let therefore (a.l,a.e,...,a.n) be a permutation of
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T A W

of the numbers 1,2,...,n corresponding to the tree Tl Select the

x 's to be inserted: Xl’XE""’xn into TO in such a manner that at
any stage the inserted nodes are larger than those from TO , maintaining
the order according to the permutation.(al,a2,..”ah) . The tree T,
will then gradually be built in the upper part of the tree while the
original nodes will be removed one by one.
Since W? is a positive matrix, M is a regular matrix in the terminology

of Markov chain theory (see for example [4]). The famous ergodic theorem

of Markov chain theory then gives the following statements:

'There exists a uniquely defined p-tree forest

S = {g(n),‘i’3
with

Y = (Y(T) | T e?(n)}

such that F(S) ———) S in the sense that

S =®
lim 2 |CP(S)(T) -¥(T)| = 0 .
(3.1.6) S““T@m

The probability vector P of Y is defined by

P=PmMm , ZP=1.

S is independent of F

Example 3.1.2. To find S for n = 4 we have to solve the equations:
P - 3R.7 B L3R
P, = 5p1+52" 55 51128



P5 _ 3P1+1§P243,P 3

2 1
P, = TP +ZP1
b 573 557,

1=P1+P2+P5+Pl|.°

The first four of these equations have a determinant equal to O , as the

column sums in M are all 1 . We find, for example,

P1+P2+P +Ph:l

3
——5gpl+§1;>2 +é’§P1+ = 0
Lp+bpalpaln - o
= Pl+-% P, - % P = 0
giving us S for n = k4 :
Y = i% Yy = %

e
]

NeJ 1\¥)
o\é;>o
=3
1]

O |+

S depends only on M, defined by A , and it is therefore characterized
hy A, Do 5 P and the number n . We will call S the stationary

p-tree forest (of degree n ).
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Since starting with F = F the normal p-tree forest, will

O 14
maintain the BPP (basic p-tree property (see (2.3.3) and (2.3.4)) for
all F($ , 1t i1s easy to see that

s — lim p(8)

S =-®
must have the BPP:

(3.1.9) The stationary p-tree forests have the basic p-tree property.

We also see that the characteristic left path polynomials (CLPP) of the
F(s)'s must approach the CLPP of the stationary forest, in the sense

that each coefficient in the CLPP of the F(s),s approaches the corresponding
coefficient in the CLPP of S . We shall later on establish a transition

matrix, corresponding to M for the coefficients of the CLPP's.

. n
3.2 Defining Sg) .

Prom now on we will assume that n > 2 . We shall be interested

only in the process of alternating insert/remove so we define:

_ A (2t-1) = I t = 1,2,...
(3.2.1) 1 7

Al(Et) = R t 1,2, e

using Do » B and the initial forest Fén) (the normal p-tree forest)
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The p-tree forest at time 2t (¢t = 0,1,2,...) will be denoted

(t) _ (g(n) (%)
(5.2.2) 1 LIRS e

and at time 2t+1 (t = 0,1,2,...)

(V) - @),y (0),

According to the results of the previous sections

Fj(_t) tends to a limit, the stationary p-tree forest, having

'(5-2-3) the BPP, and n elements, denoted by

(n)
51
It is not hard to see that the sequence GJ(_l),ngg), ... also approaches

a limit, viz. that obtained by inserting a node in S](-n) , denoted here
(n+1)
1 .

Eventually we will be interested in the average left path lengthy the

by T

number of key comparisons to insert x in Sgn)  etc. Using the methods

of Section 2.4 we will need the CLPP's of the forests. We will denote

CLPP of (Bi;‘_) by:

(3.2.14) H:(Lt)(z,w) = aﬁt% 22 WP
l<b<a<n'" ’
CLPP of (C::t\l) by:
(3.2.5) IJ(.t) (z,w) = 2 aéf.)b & WP

l1<b<a<ntl
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CLPP of siﬂ by :

(n) _ (n) a b
2.6 , =
(529 Al (2w) lezia.Sn?vb z v

and finally the CLPP of &ih by:

(3.2.7) 3™ (z,w) - D
l1<b<a<ntl

The interpretation of the Q's, g 's, N's and u's (see 2.4.4), together

with the statement (3.1.6), makes it easy to see that

(3.2.8) lim H:(Lt)(z,w) = A](_n)(z,w)
t =

and

5 Lim 1{® (z,0) = 8™ (z,w)
t -~

In the next section we will establish relations between these CLPP.

3.3 Relations Between the CLPP's.

Suppose we have any p-tree forest X with the BPP and the CLPP:

b
H(z,w) = 2 LI 2% w
l<b<a<n ?

(X having n nodes).

* *
We will establish the CLPP's of three p-tree forests Xl , X2 and
* 0
X5 as functions of H(z,w) :
* . . . , , *
-y 1S the result of one single insertion in X . Xl has
m1l nodes.
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* .
- X is the result of one single removal in X . X, has n-1

2

N xk

nodes.
* 1 . . 1 1
- X5 is the result of the combination of an insertion and a

removal in succession.

In terms of the notations in the previous section, we then will have:

—  if x is F® (£ 50 , then x;f is ¢® ang X5 is F(t+1)
- if X 1is G(t) then XZ is F(t+l)

—~ if x is s, then X) is (™D na xF is s(0)

- if X is Tf(n), then XZ is S(n-l)

* *
Having established the equations for the CLLP's for X, , X2 and X%
below we may therefore concentrate on one single relation, viz. the one

arising from the relation

(3.3.1) if ¥ is 5™ then x; is 2,

as we indeed will in Chapter 4.

Below a and b are integers satisfying 1 <b < a <n, and T is

(n)

some tree in %

*
Case 1. X1

* *
The CLPP of X; will be denoted Hl(z,w) . Let T have a and b

as values of two adjacent left path nodes:

®
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The tree T* resulting from T is then:

if x<1: .
N (+)
T new left leaf
S N
X+ -é-
if 1 <x<b
*
T no new nodes on left path
'.K +_1-__
X+ 3

if b<x<a

-

i_f a<x<n

no new nodes on left path

b
+
N —

b
+
-

no new nodes on left path
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if n<x

A

+
* X2

T a new root.

/

’

Summing over the entire forest we see:

* 1l 2 1 l ntl n
Hl(z,w) =Tz W oty '
(3.3.2)
>3 r, b( n}:]_ atl Wb+l + a:‘;)_ Za,+1 b + n+-J+.]-_a a Wb )
1<b<a<n & . .

*
Case 2. X2

* *
The CLPP o f X, will be denoted Hg(z,w) and we recall the CLPP's
of the normal p-tree forests: H(gk)(z,w) from (2.4.17).

As in the previous case we assume T to have a and b as adjacent

left path node values:

If 1 <b we get ’
’

T

If b = 1 we have

] (2)
a 5(8-2)




(a-2)

where B is the last right subtree of the left path having a-2

nodes (a >2) , As B(a-2) is appended to the left path, we will

*
have the new left path of T :

T%

left path of B(a72)

Summing over the total forest X , recalling that X has the BPP, we find

* a-1 _b-1
H, (z,w) = 2 r z W
C 2<b<a<n 2,b
(3.3.3)
+ 2o (za'_l W2 s (a-2)(z w),)
Esasna’ + }{T ’

(The latter formula being justified by the conventions made earlier:
H(O)(z,w) = -z

H(l)(z,w) = 0 .)

*
Case 3. X5

In this case we could use "geometric" considerations as in the two

*
previous cases. However we may establish H5 by means of (3.3.2) and

(3.3.3) . -
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Introducing the convention

r . =0 if (a,b) £{(c,d) |1 < d <c < n}
we have from (3.3,2)

* Z W
= b-1 + -] - -
(W) 1<b Z;a, cpty  OTL) ((-D)ry o, pen * (@ l)r g g+ (¥d-a)r, )

1 2.1 1l ntl n
—_ + =
+ ) z- W ) z w

Inserting this in (3.3.3) we obtain

ab 1

*
}%(Z’W) i l<b§a<n o (n_*l_ (v “a,b " (a_b_l)raybﬂ+ (n'a)ra’flfb*l))

(3.3.8) | + Za<nin+{zawa'1+H(ga'1)(z,w))((a-1)ra 1+ (a-a)r

a+l,l)

+ 1 zn Wn-l

3,4 The CLPP of s:(Ln).

From (3.3.1)and (3.3.4) we obtain the following polynomial identity

for the CLPP of the stationary p-tree forest S](_n), using the notation
(3.2.6):
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n a-1
azze b=1 “S% 2w - A§n)(z’w)
n a-1
(3.4.1) ) n—+1_1 ) a§2 b§1 zawb(bnS‘)oJ' (a-b-1) né?%+1+ (n-e) néﬁ’b*l)
L 3 (@™ (e, ) (e
e .a=2 NN )Mty 1 zZ W HO (z,w))
N E%I Zn wn—l

Here we recall

x < &l 1 1 ab
B " = a§2 bgl\ (kr1-b) (k-b)  (a-1)a ) 2w (k > 2)
(3.4.2)
Héo) =0 (k = 1)
and the convention:
a3y 1™~ o i£ (a,b) £ {(x;8) |1 <s <7 <n]

~a,b

(3.4.1) is in fact a set of M = % simultaneous linear

equations in the M variables

né?% (L<b<a<n)

The uniqueness of the solutions follows from the existence of 49 , but

we could also prove it directly from (3.k.1).

The solution of 3.4.1 for the first few n's proves to be:
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n=7j a 1 2
5
2 i
1 b}
5 I Y
\b
n =214 a \ 12 3
31
2 is
1 1
3 5 15
1 1 2 2
9 9 3
b
n=>5 a 1 2 3 4
\
2 — B
; N = 3888
3 £98 1222
N N
4 363 62k 1443
N N N
5 243 405 810 2430
N N N N

There seems to be no simple solution to (3.k.1l), except for:

(n) _ _ 1
n,l (n-l)2

For example, we may show the general formulae:
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Tlr(ln) 1 h)
-1,1 = (n-1)(n-2) (g)'l (( ?)-l)

2 8
nr(ln) 1 B 3 . 3 0l m? _en+3 |
Bl S (a2 > ((pn (CH-DCE)D) + (CH=D(CE)-D((D)-D) |

We will therefore settle for approximate solutions. Fortunately

we need not have solutions for all 'ﬂ(n)

N4 to establish the quantities
>

described in Section 2.4, it will turn out in Section 5 that in order to
establish L , S, R, RL and C for S](-n) we need only the values of
- o (k) (n) ,
the corresponding quantities for FO (k >0) and the Tla 1's and
J
(n) ,
the )b s.

In the next chapter we shall deduce from (3.4%.1) an equation for the

ﬂir% 's and find an approximate solution for them.
)
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4, Approximate Probabilities for the Next Last Node Value on Left

Paths of Siﬁ .

4.1 Summary.

In this chapter we will prove the following formulae to be true.

Proposition 4.1.1. We have
1 (n) _ 2 1 (n) | 1
(k-1.1) ,1 7 36D (oD ¢ k1 0 9\m (h<t <n)
H H
(n) 1,2 _ (8 b (@Y1,
(h.1.2) Y o= 5+3 3 730 )50l
H H
(n) 2_2 m, = n
(4.1.3) ﬂe’l -3 1 + n + 0 n2.
Hn and Hég) are the harmonic numbers:
n
- B
k=1
n
HI(IE) = —l§ .
k=1 k
The O(f(n)) notations should be interpreted as follows:

g(n) = 0(f(n))
iff there exists a constant that

lg(n)| < M|£(n)] for all n = 1,2,,..

39



During this and the following chapter we will make extensive use
of standard formulae from combinatorics and discrete mathematics, referring
for example to [5].

Please notice the difference between the né?i 's above and the

corresponding probabilities in the normal p-tree forest:

1 1
TE-D T on@meD)

4.2 Linear Equations Involving Only ng@_'s.

The goal of this section is to prove

a=2 . (n)

272 M (D)ne(e-l) = ()™

I Mo

a=2

(n-a))(n-a+1)(z+1)%2

(h,2.1) + 22 (ngi(a-l%‘ﬂgil
oz 2

n
r T () (a-1) + 1) | (mea)) & (B () + ¥(3 2y
a= 3]

where T]iglil:)l.,l =0 and
(), £ Il (5q)s-t ros-l §
(4.2.20 X r§g s§1 (Z(E+)1-s)(zk-s) (n-r+1)(nr.1rf1
() k r-1 ( +l)s-l r-s-1 )
(h.2.3) Y\ (z2) rz=:2 s§1 z (r_l)zr (n-r+1) (7701

for 1 < k- (k =

1 leaves empty sums, being 0 ).
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In(3.4.1) we multiply both sides with (m+l) and move the double
sum to the left, obtaining the equation:

n a—l

T AP 1) @e-nr e )

(h.2.4)
e (O + @01l PEE - @),

at+l ,1
a=

We introduce the new quantity:

(4.2.5) cén})? - (n-a+2)(n-a+l)(ﬁ::]2')ﬂ(n) for all a,b

The left hand side coefficients then transform to (provided 1< b < a-2 < n-3)

14

(at2-0) I = (a0-2) 1 | - (mea) ) L

(n)(n b+l) o, l(a-b-l) 0a+l,b+l(n'a)

-b
(n-a+1) (n-at+2) ( 2_::;‘) - (n-a+l) (n-a+2)( a+2) (n-a) (n-a+l) ( nr_lal )
- L (o -0 -0a )
= (n-a+1) | n-b ) a,b a,bt+l atl,b+1l

n-at+l

This transformation is easily checked to be valid for the cases a = n ,

and b = a-2 or b = a-1 with 2 < a < n also.

We use this result in (4.2.4) and multiply each term 22 with

(n- a+l)( )

n- a+l

obtaining

L1



n a-1
E E Zawb(cé?g - gnl)ﬁl i a(mi:)L,bﬂ)
(4.2.6)

= AT %z((a'l)'”gi* (n'a)néf:)L,l)((n-aﬂ)zawa‘l + 1) (5, w))

where

(n#1-) (

porrl) %

.1 =
2z %E (k+1-D) =« * (a=1)-a -

n a-1
z Z (U( ) zg,n‘t):ri-l zg,+)1,b+1)

-1 n a-1 n a=-1
a ab (n) s abl () 5 5 ,a-lb-1 (n)
b=1 ab T3 p-o2 &b -3 p=2

= (1-;-];-—1—) > za‘wbcg%+(1+3:> a% 5 4(n)

+
so that by putting w = —éL , followed by division of z+(z+l) we obtain

from (k.2.6)

a:
n . (a. l)( z+]_
+ gzyf(a-l) g i + (n- a)n( 4 ;) ﬁ-a+l)(z+l)a' N z+l)

We have from (4.2.7)
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(z+1

(k) z+1
K Y k r-1 . 1 n-
( ) RO W 75 = B (a-ll)a)(n'”l) (pep-1)

so we arrive at (4.2.1), having realized from (4.2.5):

O_(n) _ (n-a+2) (n-a.+l)( 'n(n) - ( Z:g )n(n-l)'ﬂgl])_

a, 1 na.+2)

4.3 Properties of X(k) (z) and Y(k) (z)

The complexity of (4.2.1) is primarily due to the sums involving the
functions X(k) (z) and Y(k) (z) as defined in (L4.2.2) and (k.2.3).
In this section we shall concentrate on simplifying these polynomials.

We will make use of the following differential operator:

(4.3.1) d; = {J—(Z+l) -—} 0<3J

so that dJ. applied to a function f(z) is
a.f(z) = 3 f(z) ~-(z+l) M
dJ dz

In particular we will make use of

(k.3.2) a_.(Jz+1)i = (j-1)(z+1)} (all i ).

This section contains the proof of the following three statements,

all valid for 1 < k < n-1
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k
(v.3.3)a_, x®(z) - ?___EZS-E((ISI) - (n-k) (577) -5

k
(3 @, Y@ - D 2
k-1
(4.3.5) dn_e(X(k)(z)+Y(k)(Z)) = %_1(2Y(k)(z) '__‘—ﬂz+'l)z -l>

From (4.2.2) we obtain:
X(k)( ) %i% z+1 s-1 n-s %5 Zr-s-l( n-s-1 )
z) = -%——;%z——i——jl Cao
so1 k=-8) (k-stl r =g+l r-s-1

The inner sum of this expression may be written as a polynomial in (z+l) :

k k r-s-1 e -g5-1 t ~g-t=-1
5 zr-s-l(n—_s—}l) . > (_ﬁ_:_i ) (FE) () (-1)F
r=s+l £os r=st1l t=0
k-s-1 t %5 n-s-1,, n-s-t- l)r-s-t-l
- @t B (UTHGEREC
k-s-1
t, n-s-1 n-s-t-2 k=-g-t-1
= £ 20 (Z+l) ( % ) ( k-'S-'b-l) ( 'l)

so that

. k-1 k-s-1 s+t-1 - et -g-t-
e - LT G CTH IR

Lk



Now :

n-s-1 n-s-t-2 n-s-1 n-s-t-1 k-s-t
(7t )(k—s—t— = Coglety ) k-s-t )m
( n-s-1 )(n—s—t—l _k-s-t_
n-s-t-1 n-k-1 n-s-t-1
n-s-1 k-s k-s-t
= n-k-1 )( k-s-t ) n-s-t-1
- n-s )k—s+l - k-s-1 ) k-s
- n-k-1 n-s k-s-t-1‘ n-s-t-1
so that
k-1 k-s-1 +t-1 k-s-t-1
X(k)(z) .y 5 (z+1)° -1 <78 ( B8y ksl
s=1 t=0 (n-s-t-1) n-k-1 k—-s—-t-
Applying a o to (z+l) stt-1 we obtain
an 2(Z+l)s+t-l — (n-s-‘t-l)(z+l)s+t_l
so that
k-1 k-s-1
k n-s s-1 t k-s-1-t, k-s-1
a,_y x () (z) = 2 (n__k:l)(z+l) 2 (z+1)”(-1) (7))
S =l t =O
k-1
n-s s-1 k=-s-1
= I Nkl ) (z+1) z
s=1 ==
B kil S;&l Z(k-s-l)+(s—t-l)( n-s ) ( s-1)
B s=1 £=0 n-k-1 %
-7 A-k-1 t
t =0 s =t+1
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K2 gete R n- -1 n-k ., k-1 -k, k
e 2[ 2 GRS (Gl R GRS I >-<g_k><t>]

t =0 s =t+1
kK22 w42, n k-1 Kk
t?o Z [( n-k+t ) - (n_k)( k-t"l) - ( k-t )]

Changing the summation index to k-t we obtain (4.3.3).

From (4.2.3) we see:

n-r+1 -1

o re(r-1 -1

M

Zr"s_l(z_*_l)s-l( n-s ) .

Y(k) (z) = n-r+l

r

The inner sum may be transformed as follows:

ril Zr-s-l(z+l)s—l( n-s )

s=1 n-r+l
~ r=l 5 S(_ls-l)zs-t-l Zr-s-l( n-s )
- t n-r+l
s=1 t=0
r-2 r-t-2 Z\ ( s-1 ( n=s )
= t ) n-r+1l
t =0 s =t+1
r-2
r-t-2 n
= t2=o ( n 1+t+2)
r-2
= 2 zt( n)
t
t =0

Using this transformation, and applying dn we obtain:

k r-2

7,v@ - 2 B )

(3)(nz" - (241) s =
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_ 3 msml o (n-lyored
- r—/2 r-(r-1) -2
k
-2
-2 (D)
r=2 r

and (4.3.4) is proven.

From (4.3.3) and (4.3.4) we find:

k
dn_e(X(k)(Z)+Y(k)(Z)) B 52225’2( rsl) -(n- L li 2° ) 52D -2( Isi)

v (@ Y® @)+ 2 Y ()

k-1 K o,
= E(dnY(k)(z)) 9 Y(k)(z) - (n-k) z+1 -1 (z+1) Z2 kz—-1
Now :
@, 1) -¥®(z) - 4, 1@
and |
z+1)5 -1 z+1)5 L _1 (k-1) ()52 (z)F o1
a._, = (n-1) - - (z+1) > X

(n-k) (z+1Lk'l-1 (+l) - kz -1
Z
Z

proving (%.3.5).

4.4 Revision of Egquation (4.2.1).
In this section we will obtain a simplified version of (4.2.1),

using the results of Section 4.3, We will use a new notation for the

)
unknown quantities ﬂ;n,i :
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)
- a, l

(4.4.1) oy

The main result of this section is:

-2
T @) - r ) D (e ()
r=90 s=0

n-1 1
(k.h.2) | = 2( 2 zr)—(n-(n—l)pn_2)zn-

r=0

-2
LT (25 (r+2) - 25 (1)) (p_(m-r-1) +p ) .
r=0

As before we use the convention

p. =0 if a<0 or n<a.
a

We will split (4.2.1) into three sums

S a-2 . (n) ,n-2
(4.4.3) s =a2=2z T]a.l,(a_g)n(n—l)

(4.4.4) s, = (z+1)°

(4.4.5) S3 = %2 ('ng?:z(a-l) + 'ngi,l(n-a))((n-a.+l)(z+1)a-2 + ngil)(z) + Y(a-l) (z))
s; that
(4.4.6) Sl = 32*" S3

We also introduce the notation

n
n-a-2 n s-a-2
(4.4.7) K, = 2 (aas) né’i(-l)
S = at2

In (%.3.1) we defined the differential operator aj . The corresponding

integration operator will be denoted 'Bj . We have
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(4.4.8) @, 14 £(z) = £(z)

(k.4.9) Tj 0 = C(z+l)j (C constant)
(4,4.10) '_rj(z+1)i = tj-J_-'-i—y(zﬁL)fL + C(z+l)j (C constant and i #£ j) .

We will apply the operator

2
(4.4.11) W=z a b a, o

to (k.2.1), and then rearrange the polynomials using (z+l) as variable.

For 82 we find

bs, =c 22(z+l)n'l

(k.h.12)
= c((z#1)™ - 2(2+1)"+ (1))

where the constant C is assumed to represent the integration constant
for the entire equation.

For Sl we find

n a-2
B b, a-2 a-2-b, n-2\.4n)
8, = a§2 béo (z+1)°(, ) (DT T (0IN) no-)
n-2 n
- T (2+1)° o S )n(n-1) (B3R (BB ngi
= n}:JZ +1)2( 2 1
= TN )n D,
and
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-2
b - n? ZE( (n-(an-_Ea?_(B-a) ) (z+l)a‘( n;e )n(n-l)Ka

leading to

(b.4.13) w s, = T ()2 -2(z+1)% 1 (2+1)%) (n-a-2) (n=2) ("2 )n K, .
a=0

For S3 we will have to involve ourselves in more complicated

calculations, (see (4.3.4) and (4.3.5)).

W (n-a+1) (2+1) *F +X__ (2)+7,_(2))

_ ., [(n-a+l) (n- (a:z(*n{a) (z+1)a'2]+ ze(an(e Y, ,(2) - S‘il& ))

- (n-a+2) (n-a) (z+1)®7% 2° + > 2°(2)
=2

n ¢ +l) — . (z+l<_£a'22$Z+l)a_5 _ _31) ae =1 ))22
) : z 2
2z
=2 Z z ( )+ (n-a) (n-a+2) (z+1) 2~ 2 22 . (n—a.+2)(z.|.]_)""'2 y - (Z+l)a.-l

=0

+ nz+(z+l) -2nz-2 .

Hence we may write

llJS5 = utvtw
where
n
(4.4.14) U = 2 x u
a a
a=2
n
(4.4.15) v = 2 xa V‘a
a=2
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(b.bh.16) W =
a=2
where
RN URICIE R JRES
-1
5, -2 220
S =0

Now

V. = (n-a)(n-a+2) (2+1)%

n z+ (Z+l) -enz-2

‘w -
a
a-1 s, n
U =2 2 z( ) =2
S =0
a-1 5
_ L0 (z+1)t(1,2)
t =o
a-1
- 22 (1P
t=0
a-1
t, n-1
- 2 Z (Z+l) (
t =o =
a-1
= 211( )
a-1 t =
so that

1 -1 -t-1
oD I e gy

® - (nar2) (2+1)%F 2 - (21

S

-1
D (z+l)t(-1)s-t( rsl)(

s=o t=0
-1

\ -t -t
Z (B
s=t

n-t-1 a-t-1
ast=1) (1)

L) g (a7

1
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= -2, ,a-1 a-t-
z tz-on“)(g_g)(at ) (1)) s

a,l

Il
no
B
—~
3
—
o

n a-2
+ D (n)( 2:2)( a-e)(_l)a-t-2(z+l)t 1 J

n a-1
= -2 -t-1, a-2 t 1
en(n-:[ Z TG ED et

- “éﬁ(zn_f) (252)(-1)2‘0‘2<z+1)° _1 n_fa

I

n a=2
(n) -t-2 1 -2y, a-
en<n-1[ 2 DRSO g QD @™ 2,

n-2 n
_ 2n<n-1>[txjo =" N oy D en* G }2@-1)“.‘1
= a=t+2 4
And hence
-2
L L R G LT,

For the sum W we find
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—

(-nz+z-1) i 18 (a-1) + Z n(n)<n a+1)1

(-nz+z-1)

L

1" n - ﬂéﬁ’l(n-l)“

n
Knowing that 2 'ﬂ; 5_) 1 we obtain
a=2

(4.4.18) w = (= (0-1)7, ) ((0-2) - (n-1)(2+1)) .

Applying W to (4.4.6), inserting (4.4.12), (k.k.13), (4.4.17) and
(4.4.18) we obtain equality between two polynomials where the maximum
exponent of (z+l) is (n+l)' , occurring only in WS, (4.4.12). Hence
the integration constant C = 0 and we have transformed (4.2.1) to the

equivalent identity:

n-2
a%o( (z+1) a2 2(z+1)a+l+ (z+1) a) (n-a-2) (n-a) ( n;l ) n K,

n-2
(4.4,19) | = 2o (=z+1
a=0

il G

n—
2nk, -2(n- l)T]2 + ZZ XV,
a=0

¢ (= @D M) (a-2) - (-1) (242))

where
o= () + 1) (nea))
and
v = (n-a)(n-a+2) (z+1)%2 22 | (n-at2) (2+1)*2 z - (241)27L

= (n-a)(n-a+2) (z+1)® - 2(n-a+l)2(z+l) a-l, (n-a) (n-a+2) (z+1) a-2

- (n-a+1) (z+1)® L+ (n-aro) (2+1)2°
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In (4.4.19) the first sum on the right hand side is moved to the
left hand side, and we use ﬁh throughout the identity to simplify

the terms:

5 1((2+1)%2 —2(2+1)* 1 | (2+1)%) (n-a-2) (n-a) - 2(z+1)*]

l(n-a-l)2+ (z+l)a(n-a-2)(n-a)]

Tn[(Z+l)a+2(n—a—2)(n—a) -2(z+l)a'+

[(2+1)*2(n-a) '2(Z+l)a+l(n—a—l)+ (z+1)*(n-a-2) ]+ C (2+1)"

2[(z+1) ™7 (1a) - (2+1)*(n-a-2)] +C(2+1)"

for some constant C .

Furthermore

b v

na

]

(n-a+2) (2+1)® - 2(n-a+1) (z+1)* 1+ (n-a) (2+1) %72 - (241)2 L4 (241)22

2((n-8a+2) (2¢1)%1 = (n-a+1) (z+1)®79)

* (neglecting the integration constant).

Application of j% to (k.4.19) hence yields

n-2
2 z[ (z+l)a'+l(n-a) - (z+l)a(n-a.-2) In( n-l) K
a=0 a a

(4.4.20) | - £ 2(n-1) (flg, Y (o - (n-l)néfi)(n%i ; (z+l))

(T]glz(a-l) i T]g“ll)-: l(n-a))((n'a+2)(2+l)a-l - (n-a+l)(z+l)(a-2))z

Mo

+
a

2
+ c(z+1)"
The coefficients of zn are seen to be

(n-(@2) 8(23)K, 5 = (T(0-1) - (n-m2) +

54



Now, following (4.4.7)

( n-(n-2)-2 ).ﬂlg:lg-<_l)n-(n-2)—2 _ n(n)

n-2 n-(n-2)-2 s1

SO

¢ = T[n,l[En(n-l) -2(n-1)] = 2(n-l)2 (:11)

Going back to (L4.2.1) easily gives us T]r&n:)L .
2
n -2
nﬁ,i(g-e)n(n‘l) =1+ Tl( )(n-l) (n-n+1)

(n) 1
M =
n,1l (n—l)2

and hence C =2 in (4.4.20).

We insert this last result in (4.4.20), divide by z , and then

change our variable from (z+1) to 2 obtaining
4

n-l +1< a n-1
z n-3) - z (n-a~2) ] n( o ) K
a=0 a
(h.4.21 > (v (n)
-4.21) = 2 (M a(eD+ Ny (n-0)) ((n-2#2) 2™ - (noas1)%?)
+ 2 z" -1 - (n- (n-l)T]? l)

Recalling the definition of the Py 's in (k.h.1) we find from (Lk.k.2)
n-2

> (za'+l(n—a) ) za(n-a-e)) n ( n;l) Ka
a=0
n-2 at+l, l =
= 2 (z (n-a) - =z (n-a-2)) n ( - ) 2 (n a-e) ( 1) s-a-2
a=0 s =a+2 574 2
~ ni)Z ( a+:|_( n-1 , B&2 a0 n~s-a-2
-z n-a) - z%(n-a-2)) n( notea) 3230 (7, Yo (1)
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and

2 (0 + 18 (0ma) (neae2)e® - (22"

a a+l:l
%i? n-a-1 n-a-2 (n) (n) )
- -a-1 _ -a- n n a
a’=(O(a+2)z (a+l)z ) (Tln_a,l(n-a.-l) + Mpas1,1
b n-a-1 n-a-2
= Z ((a+2)z - (atl)z ) (o, (n-a-1)+ o . @)
a=0
Inserting the two last results in (k.k.21), dividing by "1 g

finally changing the variable to 1/z we obtain (k.k.2).

4.5 Series Expansion of the 6, 's-

The polynomial equation (4.4.2) contains n equations and the (n-1)
variables (pO’°"’pn-2) . However, by putting z = 1 we will see that
the equations are dependent. Furthermore, it is not hard to see that the
equation obtained from the coefficients of zn_l may be ruled out,
leaving an independent set of linear equations.

In this section we shall obtain series expansions for the pa'S,
making it possible for us to obtain approximate solutions.

The following facts are trivial.
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0 < Py, <1 0 <a<n-2
Py = 0 a<0 or n<a
(4.5.1) n-2
2 Py = 1
a=0
o 1

We shall prove the following proposition:

Proposition 4.5.1. Define for 1 <t < n-2

(4.5.2) O‘JEO) = 5(1211.11) tze
(o)
t k

(4.5.3) o™ . L 2 L 5ew)al® (0 < 1)

8(t+1) () k=1 j=1 Y J -

t (%)
(k.5.4) S_Er) = Jél Ja(r()ﬁ—ey(sm (OST)
Then

l [ee]
(k.5.5) by = (n-l)2 +r=20 51(_‘1“) 1 <t < n-2
(495.6) 0 < a,gr) < st.(o)(% )r l1<r 1 <t < n-4

The constant (%) is uniform for 1 <t < n-4 , and is not very

well optimized. As we shall see later, (4.5.6) does not hold for

t = (n-2) or (n-3)
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Proposition (%.5.2) below gives, for each t = 0,1,2y...,0-2 ,

py @s a linear function of P12Pps =3P 1
Proposition Lk.5.2.
(op) t-1
1
(3.5.7) o = —2=—— 2 op. B 0 <t < n-2
() r\E eyt T -
where
_1 2 1 1
% T 3 Tty @t ' n(e-D) 0 <t <n2
and
t t
(w1)  (gep)(0u-2)
(m+2) t ()
- (u+l) (u+2) 2 L

n r =utl r-(ﬁl)(ﬁe)(nﬁ-i)

(0 <u <t-1, 1 <t <__(n—2))

Solutions of equations like (4.4.2) often involve one or more cleverly

selected substitutions. 1In our case, the following sequence of

substitutions are not unnatural choices:

Ct = (n-’t-l)pt""t Py,

(4.5.8) ‘ a, = (t+2)ct't 1

o
e

ytedt

J
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The direct correspondence between the e 's and the Fr 's is seen

t
to be:
\;% t=j by, 5 _qyb=d £y,
e't = ]=0(_l) (J)(J+2)CJ -j =0(-) (J dJ cj 1
L t=3,, . LN
= j2=0 (=170 ) (3+2) + (3 ) (3¥1))ey
L2 t t
= (+2) D (-1 T Y)e,
Pt 3’73
- > (I (aege) > (0t ;
= (t+2) o (-1)" (i) (n=3-1)py + 7 5)de5.1
= @w2) T (D o () ((me3D) - (59))
j =0
SO
(4:5.9) o = (D@1 T (D7)

From (4.5.9) we easily deduce

t
: ()
(4.5.10) ey 3720 9 () D) Ostsnmz

Inserting (4.5.8) into (4.h.2) we obtain

n-2
T (25 (r+2) - 2T (e) (o (n-b-1) + o o 1)
r=0 r rl
-2
_ 5 (2" (x+2) -2 H(2+1))e,
r=0
n-2 n-1
= I z((x2)e -rc__)-z (n-le_,
r=0
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= z 4, -z (n-l)cn o
r=0
n-2 r
= Lz D t)e -0 l(n-l)c
r’r n 2
r=0 t =
and from (4.5.9)
-1
{; (n-l)(r) (_l)r-s _ (:I;i-l)n e
s 2, Trl’ts neg = (wr2)(n-r=1 T
leading to
n-2
T, T r+1 n+l 1
(z7(x+2) =277 1) (o) 71 er
r=0
n-1 n-2 r
= 2 z5 + zn_l((n--l)pn 5 ~B - (n-l)cn_2)+ > 2 D (i)et
r=0 r=0 t=0
From which we obtain
n r-1 ,n z r
(4.5.11) (r‘_l)er—;i-(r)erl=2:=zo>(t)et 0 <r<n-2

when neglecting the terms 2"
Multiplying each equation (L4.5.11) with r.(r+l) and summing from

3 through s (0 < s < n-2) we obtain
r

s s
2 ( Ij_ll)r(r+l)er - (;i ( n)er-l r(r+l) = ( Sf_ll)s(s+l)er
r=0 r=0

s s r
= 2 2 r(rtl) + 2T Z 113‘)61: r(r+l)
r=0 r=0 t=0
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The first sum being %s(s+l)(s+2) we see

e =% 812 L - Es Er ( i‘)r(ﬁl)et
<s+l) s(s#1) (g41 ) T=0 =0

(4.5.12)

if (1 <s < n-2)

As (4.5.9) gives

we see that (4.5.12) leads to

s r
(4.5.13) ¢ = 2B e, = > 2 (F)r(r+le
s = 30D (M) s(er)( B) rel to1 K

From the definitions (4.5.2) and (4.5.3) we see that if we define

T
Ugr) = X aga‘) (0 <r)
a=0
we find
(r+1) =)
ug = Q)+ aZf,:las
t k
S . L D Hx(e) % ofe
s+(s+1)( 7 ) k=1 j=1 3 a=0 Y
SO
t t
es-ugr‘-l) = ;n 2 2 (%)k(k&l)(e. 'U-Sr)) .
s(st1)( 1) k=1 =1 J JJ
As -
(0) 2 s+2
s Ys = es-B(nI-ll) ( n )>O
s+1-7
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induction shows

(4.5.14) Uér) < e, (0 < 1) (1 <s<n-2)

uéo) ) ugl) P is hence an increasing bounded sequence and therefore

converges for all s = 1,2,...,n=-2 . The fact that
(k.5.15) lim uir) = e (1 <s < n-2)
r =

follows from the fact that ugw) satisfies (4.5.12):

(=) _ f o
S r=0 S

@®
a + T
0 s
r=0
1 s r

> E r 1 (m)
e s(s+l)(sfl) r=1 t=1 (t)r(r‘- )us

From (4.5.10) we find for 1 <_t < n-2

i ()
S N T CES N
t
t (3) o

2 1

n-1 2-(n-1) © < , (3+8) (31-;1 -I) a:% O"Ea)

S B SN
(n-l)2 a=0 b

proving (4.5.5) of Proposition 4.5.1.

Now assume: 1 <t < n-2, we find from (4.5.3)
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t t
R — 2 ol T (e (ke
= k

_ L 5 a5 (5) (542) (5r2)3(3+2))
t(t+1) (1) J~1aa FSRACIAS +2 /9

e ()
- ot

1 t-1 1 t-1
e 513(3)+J‘+2(J‘-l)>

n N
(gr1) 9=

hence

(4.5.16) aéﬁl) < —(t—;z—)— Z ozgr) g’) L (1 <t <n-2;0<71) .
=1
t¢1) 3

Now, from (4.5.4) we easily deduce

{ .
(4.5.17) of?) = (t+2) (n-t-1) Z ( Byt 5@
i

SO

& t t . :
(r),ty 1 _ tye dy (G+2)(n-j-1)  .yi-k (r)
j%l % () 5z - k§1 322 R 1) (D7 5
t t-k .
S S AN N G [GALICR IR
k=1 j=o0 J
% t-k .
- o (T i)[ T (n-k-1)( *7%)(-1)?
k=1 j =0

tx tek-1 j
-j2=o (e J-1 ) 1
= 5,((:1”) (n-t-1) + s 6,(01_’3‘

provided 1 <t .
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rrom (4.5.4) we easily see

(2 . (T)
51 < Y

so r'or 2 < t < n-" we find from (k.5.16):

(4.5.18) o™ < B2 5[F) ) (1<t < n2)

R e

(the latter formula easily being checked for validity when t =1 ).

*From (4.5.2) and (4.5.4) we find

b
L) _ & _en jre i)
T LT BT (5+2) (n-5-1)
=1 (n ) (jfi) J n-j
w1 L |y CPHGEREN
3(n-1) n(n-1) ( n;2 y | 5=1 ( n32 ) ]

1 L -2=3 i+ 1 -2
= 5(1?1?1) n(nl-l) ( n-2 [JZ:; Ca J)(J?L ) - (nt )

-2-%
g ) o *
2n 1 (?)
“ Z(n-1) n(n-1) n-2 1
7

and hence

0 2 - L
(4.5.19) 5é) = 5(nr.11) ((n-t)(n-t-l) ) n(n-I)> '

Using (4.5.18) in (4.5.4) we get, when 1 <t < n-4 :
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5{1)

Hence

(4.5.20)

(4.5.20)

r =X .

(SRR

w | Do

WO

[SSTT)V)

t
2 5(0) ()
1 TJn_) %5 (1) TRy (aD)
J+1
~ t: t,
£ (3) ) 1& (3)

0 (-3-1) (0-3) (0=3-1) ( gp1) 3 =0 (58 (n3-Dn(n-1)

[~ (%) , ) ]
Z) -
j=0 ( jfl ) (n-3-1) (n-3-2) (n=3-3) 5(n-1) [(n-t-l) (n-%)

e (I ThHOM
>

l
’ “M)5 =0 n(n-1) (n1-2) (n-3) ( nj‘ n‘ 1) (n-t- 1)(n-’°)

("

(")
t _ 1 1
n(n-l) (1-2) (0-3) ( n;h) 3(n-1) (n-t-1) (n-t)

2 1 1
3(n-1) [(n-t—})(n-t-2) - (n-t-l)(n-t)_]

we find

aél) < %n?(o)

We will use this as a starting point in an inductive proof of (4.5.6).

shows (4.5.6) to be true for r = 1 . Suppose it is true for

Then, from (4.5.4) and (4.5.18) we find
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t . < ()
" s 321%2:) -1 55 Tyt

x t . (52 (0)
+2
5 (3*3)  (n-1) _’—WL—HE 1y &

‘ n

(& - ()7

as in the proof of (4.5.20).

AN
S

This is (4.5.6) and hence Proposition 4.5.1

is proven.

We proceed to prove Proposition 4.5.2.

Inserting (4.5.12) in (4.5.10), using'(h-5-9)=

e (L)
Pa = 2(n915 + r§1 €y (r+2) (n-r-1)
o = () 2 2
= 2(n-1) * 1 (r+2)(n-r-1) 3> ( n )
r+l
a r s t (%) 1 <
T T & I F— ( 5 )s(st1)
' r=1 520 t—0 u-o0 ()@ 1) (pr1)x( If:l) b
- (£42) (n=6-2) (-1) (e,

From (4.5.10) we see

o 1
Po = 2(n-1) = (n-l)2

and from the proof of (4.5.19) we have:
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r=t C ) (ha) (na1) M0
r+l1
so we obtain:
2 1 1 1
(4.5.21) p. = -—( — v - )+ L T
a 3 \ (n-a)(n-a-1) n(n-1) (n-l)2 a
where Ta is the last sum in the previous formula for p, - As Ta =

(4.5.21) is valid for a =

when a = 0 (sum being empty), we see that

also.

To evaluate Ta we shall consider the sums

- DD (5)(s(s4)) (442) (net tuct
byr T2 () (s(s+1)) (t+2) (n=t-1) (-1) "77( )
so that
£ 0% ()
T =
a r=1 u=0 r(r+l) (r+2)n( :i) Pa Pu,r
Now
S
D (42 (nt2) (1) 7 90
=u

D (52) (net-2) (570 (-1)°
t =u

s, S0 s-u t
= () Z ((n-u-1)(w2) +t(n-2u-b) -t(t-1))( ¢ )(-1)
t=0
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S S=u Siu 1 t-1
()] (n-u-1)(w2) tZ (58 (-1° - (n-zu-h)<s-u>t_6 (Top ) (-D)

S=-u
- (smu) (s—u-l) o ;uég)(-l)t-e]

t=0
(n-u-1) (u+2) if s =u
- < -(n-2u-4) (u+rl) if s = uwtl
-(ur2) (utl) if s = w2
and hence
a ()
= 2 r
fa TLT) P r(z+1) (r2)n( 277 ) bz, r
a ()
+ Pr-1 n-1, MPr-1,r
r=1 -7 r(r+l) (r+2)n( ol )
a
r-2
+ > (x) 2 p. W
r=2 r(r+l)(z+2)n( > l) u=0 Fa Mu,r
a (2
= 2 9 r T r(r+l) (n-r-1) (r+2)
r=1 7 r(r+l) (rt2)n( o]
> (&) ) (:42) (x) )
. 1 2 1
t Y Prog H(o+D) (z+2)m( ;;_L) ((r+1) (r+2) (x+1) (r
a _
+ 21 (r+l)(r+2)( )[ Z Py [u(u+l) (n-u-1) (u+2)
r= r n =0

- (wl) (ur2) (n-2u-4) (utl) - (w+2) (u+3) (u+2)(u+l)]1
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a

oz (), 2 (3) ()

) r=1 Pr (I:_ll) r=1 Pr-1 ( I‘f_ll)(n-r-l)
a-1 a ( 2 )
- T p (wl)(we)(m2) T d
u=o

r=uwtl  r(r+l) (x+2)( ;‘;l )n

Inserting this in (4.5.21)

yields
2 1 1 1 1 1
pa = 5 Zn_a_l) n—a) - n(n-l} + (n_l)Q + pa, ( n ) - n(n-l)2
at+l
asl (%) a-l (o ) (x+2
T r+1
+ E T p_n+ pr n
r=0 (pe1 ) r=0 (g (n7r-2)
a-1 n+2 a ( i‘ )
- pu('l.'I."'l) (u+2) L)-n z
u=o

r =uwtl r(r+l) (I"'Q)(II:JJ:)

and we easily see that we have proven Proposition 4.5.2.

4.6 Proof of Proposition 4.1.1.

From (4.5.6) we find

0 < 51(30) < 115__351&0) 1 <t <n-4

So, bringing in (4.5.19) together with (4.5.5) we find

__on 1 1
" Pt T F(n-1I) (n-t)(n-t-1)

(1 <t < n-4)
5(n-l)2 + &

where
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on 1 1
0 < g < 5(n_1)((n-t)(n-t-l) "~ n(n-1) ) (n-5)

(n)

so, as pp o= My p o p We find
(n) _ __2 1 (n) L,y Gt <ng . 0<u <
,1 7 3t(t+l) + Zn(n-1) + ,1 n + 4<t<n-2, Mf M

where M is some uniform positive constant (at least less than 26 ).
This proves the first statement of Proposition 4.1.1, as the
formula for t = n-2 is trivial.
(4.5.6) is not valid for t = n-3 or t = n-2 , so we have to treat
these two cases separately.

We introduce the notations:

(r) % ()
(4.6.1) S, 0 _ 2 B (0<r) 1<t<n-2
t=1
and shall concentrate on ng; first.
We have
t
n-2 | (.)
S(r) = z x o(¥) —
n-2 t=1j3=1 4 (3*2)(n-3-1)
n-1
) niz NED) (547)
;2% R
-2
(r) = (r) , ml, 1
(4.6.2) Sn_,.2 —Z(j:la.j ("j+2) m
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We find from (k4.5.3)

o+l ‘
S %P () 5 ol [e(er1) (72 4 (1) (r2) (32
s( . (ml)nj(jﬂ)(jfl) R [k(kr1) (3,00 + (k1) (42) (,5)
n=2 1 n-2 -1 1 1=
i Z=2 Eal({r)[k+2j§k(i'l)+m ) x ):]
(x)
n-2 o

(4.6.3) sr(:;l) ak‘él—kﬁ— [k+2 (n;f) * 5 (Eﬁ)]

Inserting (4.5.2) in (4.6.3) we find

(1) nZzog kt2 1 n-2 -
Spp = 131 n B(nr-ll) ( n ) [(k+2) ( k )+ (15%55 (§+12L):]
k+1 -

_ 2 niz (e+1) (n-k-1) . (kt2) (n-k-1) (n-k-2)
STy | 2, - a(@eD (&3 (a-1

and eventually

(1) 2@nm2)]| 1 = 2 b (n-2
(h.6.4) 875 = 3 " (n~L)n 2 a1l nI| 9n(@a)

Similarly, as

(1) 1 L S 2n K2
™ ———— T D ()i o=
K 8(t+1) () =1 k=1 5(n-1) Cry)
n-k-1,,, k2
_ 2n % Q§J+lg n J-l) ( - ) _2 (n-l)>
- 5(n'1)t(t+l)( t_::_ll) J =1 ( n J
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t

(L) S 2 0
- 3(n-1) t(t+1) ( tfl ) =1 (n-j) (n-j+1) (n-j+2) 2n t 4

we find from (4.6.3)

-2
(2) _ h(nrl) (n+2) n 1 n-2 1 n-2 1
Sn—2 - 3(n-1)n t§1 t+2 ( t )+ t+3 (t+1)

£ (t+1) (417 )

t
. 3(3+1) 2 (1)
J'Z=>1 (n-3) (n-j+1) (n-j+l)) " 3n Sneo
_ Mo (me) [ BF 2 3(3+1)
T sme1)ln \t21 o1 D E-FDE-I)

,((n-t-l) + (n-t-1) (n-t-2) ) _Q_S(]_)
t(t+2) t(t+1) (t+3) " Zn Pn-2

After tedious computations we find

(2) _ 17 1 (.8 55 2 16 88
(4-6-5) 8y ' ( -G T 3w ¢ 9

H
n 2 2 4 1 32 1€
(3n+§n+§'+§ﬁ+ 9Zrﬁ5‘5'5ﬂ)
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(2
In order to find approximations for(%}1 5 and 61‘1 )2 we will use

the following formula

(r) , 2n-1 (r+l)

b oD o) - a2 ol
From (4.5.4%) we have
n-2 (n-'a)
), n-1 1
- 2 et J?l 57 FEED

and similar to the proof of (4.6.3) we find

g(r+l) _ 1 Z oz(r) (n-1) + 1 (n-2) + ktl (n-1) +_1 (n-2 )
n-2 = n(n-1) k+2 ktl  kt+2 k kt>  kt+2 kt+3  kt+l
Now
( n-l) 1 __n ( ntl ) 1 2n-1 1 ( ( )
k / (k2)(n-1) (n-1) ‘k+2 n(n-ﬁ) (n-1) n k+2 k+5 k+l

. n-2 k+1 n-2
n(n-lT [k—i-2 (k+l) ﬁ ( k ) * 1;-5 (kq.g) 13 ( ):]

n-1

2n-1 n-k-1 k(n-k-1) (n-k-1)
(T

) [ 1 n N } )
(k+2) | (n-1) (n-1)(k+l) n(n-1) (n-1) (k+1l)n(n-1) n(n-l)2

2n-1 n-1 kt+l 1
(1) %5 | GaeDa ~ ) (e ~ #(aD) |

-1, 1 -k-1) (n-k-2 -2 1
(nk ) k+2 (r;(n-:g)((nkﬂ)) B (§+1) n(k+2)

il
O

So, according-to (4.6.2),(%.6.3) and the two formulae above for Br(lr)

and 55121) we have (4.6.8).
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From (4.5.19) we have

S0

(4.6.9) ( fg;)
6(16; - =B+ ié% n-

and also
H
h.6.10) s = 5 - ( n)
n-2 3 ,£+ 03n\ 2
n
From (4.6.6) - (4.6.8) we then find
(1) (0) n (0) _ 2n-1 (1)
6n—2 - %—2 - n—ﬁ h;E n-1 %&2
giving
Ly H
(1) _ 2 _ "= 3k _n
(k.6.11) 6n-2 = 3 = + on +0 n2
and similarly
(2) (1) _n (1), 2n-1 ((2)
6n—2 = 8n—2 - A- n—g n-1 %—2
giving
H H
() 2 ™m 17 n
(4.6.12) B, =3 — - 5L+ 0|

From the above formulae (4.6.6), (4.6.7), (4.6.9) =-(4.6.11) we easily

obtain
(o) _ 1._1
(4.6.13) Sn_3 = 3 n
H H
(1) _ 2 n_2X _n
(4.6.14) Sn—3 3 on + 0 n2

74



H
(@) _ ol
(4.6.15) 55 =0 -

We already know 5&?% from (4.5.19)
(4.6.16) 50) 1,1, [
U n-3 9 o n°

and (4.6.15) implies

H
(2) _ _n
(4.6.17) Bn—B = 0 n2

(
To find 55%2 we inspect Sﬁji . We use (L.6.1), (4.5.4) and the

formula for a(l) established below (4.6.4) above to obtain:

t
() _ Mal)(me)n % (5:2) & 5(5+1)
n-k S(a-l) Tl (442) (n-t-1)b(tr1) ( ) §=1 (n-J) (n-3+1) (n-3+2)
2 870 (t+l)
w % (D)E = 1)
So
(1) 2 L(0) _ Mpa)(m2) B & 3(3+1) (n-t-3) (n-t-2)
Sn-4 + 3n Rd = 3n(n-1) (n-2) t21 51 (n~3) (n-j+1) (n-j+2) t(t+1) (t+2)

0 &
- 3"n _2n+ o O ;5

Now, (%.6.13) and (4.6.14) give

0 _2_10, [
(4.6.18) 5 - 2 9n+o(112

we find
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H
(4.6.19) 3511_24 _ %H(z) ) %1+ O(_g)

Together with (4.6.14) we arrive at
H H
1 2 n, bo(2) n
(4.6.20) s, -2 2. (.27 P2y ) 1 0(—5)
From (4.5.1) and (4.5.5) we see

@
L- e B
r=0

so that from (%.6.10), (4.6.6) and (4.6.7) we see

m H
(r) 1 0 1 2 -
(L.6.21) r§55n._9 = l-53- 31(1-% ) Sr(x-% I(l-% B 0(112)
proving
) ) 1) , 5(2) %
(4.6.22) bp = —(n-1)2 + a£_2+ NI N o(ne)

leading to the wvalue for stated in Proposition 4.1.1.

{n)
,1

From (4.6.15) we see that

2 _ [
2 - (3)

and from (4.6.21) we see

so that

jus]

|

Referring to (4.6.16) and (4.6.20) we have then proven the value of |

I\D'J

pn-§ (n-l) 2 n-3

B

= ;+ 6(0) + 8(1) + O(

(n)

1
in Proposition L.1.1.
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(n)

5. Measures of Efficiency in Sl

5.1 General Formulae for Basic Probabilities.

In order to obtain the measures for ékﬂ :

]

=5

If' = L -— the expected left path length
o (n)
1
s* = 8 -- the expected number of key comparisons
5(0)
1l
R% =R -— the expected right path length
5(m)
1
RLf = RL (n) -- the expected length of the last right subtree
S1
C*- =C --— the expected recursion depth
5(0)
1
/
(see Section 2.4) we need knowledge of some properties of the CLPP of s\
1
n a-1
ab
A§n)(z,w) - nén%zw
a=2 b=1 "

/
Formula (3.4.1), together with the approximate values for ﬂ;?% proven
rA '
in Chapter U could give us values of’ﬂ;né for general 1 <b <a <n .
However, it turns out that we may express all the quantities needed in

)
terms of ﬂgn) 's, without knowing the ni@é's in general.
» P4

To establish the measures above we need formulae for

n_l_r (n)
(5.1.1) A, = b}gl ﬂ1+b+l,b 0 <r <n-2
1.2) = aZ-Dl n(n) 2<a<n
(5' . p‘a - 'b=l a,b —_ —_—

T



(5.1.3) T, = (ig 1<b <n-1

Knowing that

(5.1.1) AWy - % .- 3
) 1 ? r=0 r .-a=2 p‘a
1 ,.(n) 1 ?i? n T
(5.1.5) Z A (z,-z-)‘z 2 r 2
[a AJ('n)(Z’W):l ;11
-lc6 —TT———— = 2
© ) oz Z=w=1 a=2 T e

we see that we then will have the sufficient knowledge to establish the
measures needed (see Section 2.4).

We will use the notation

(5.1.7) Ba=(*3ﬂ3*‘@ﬂmgil l1<a<n.

First we prove

1 o5 3k-2r-5 )
(5.1.8) N _= — B - 2(H H ) 0 <r<n-2
r r+l o k k-1 k-1 r+l
Using w = 1/z in (3.4.1) we obtain
-1
% aZ‘ T](n) 227P
a=2 b=1 P
n a~1
1 ‘ a=b , n(n) (n) _ayn(m)
= i a=22’ szl Z (b 'ﬂa"b + (a-b_l)na,b+l + (n a’)‘na_‘,l’b_’_l)

1 n -1 1 z
+ ) 22 Ba( Z+Héa )( . a _Z-)) © I -
a =
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We have

(5.1.9) H(ga_l)(z , EZL-) = z raéi (;21 - a_?I)Zr (2 < a)

Rearranging the general equation we find

n-2 . o
o e = ameane B[ 1 (e 1)),

From this we see

n
. . 2 2 .
(J+2))\j+l - (J+l)>\'J = _Bj+2+ Z; ( j—+-2— - 'a—"_E )Ba (O _<_ J S n_2)
. - 1 n-1 . .
when regarding the coefficients of z,27,...,z . Summing these equations

from j =r to J =n-2 eventually proves (5.1.8).

For the p_ 's we will find

n
1 k-r
(5.1.10) by = Tori-r [l+kzzr;+l Bk<Hk-r+Hk-l-Hr-l T k-1 )] 2<rzn.

Putting w =1 in (3.k.1) we have

% a_ Ll on, 1 5 e ail.b (n)  (ap-yn(® (n)

~ _ Wa? T mI % YT 2 & Mo, + (a-b- Mo, b+l (n_a)na+l,b+l
a=2 a=2=2 b=1

P L5 (2®+ 13 (5, 1))
wl 7, Pa 0 ’
where
(a-1) &b o, rol 1 1
] Hy - rz=:2 z s§l (a-1-s) (a-s) * (r-1)r
i a-1
- F(E-a) P
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giving

I
N
+
I ™Ms

(p,a(n-l-l-a.) - “‘a+l(n-a) )z n

L

a
As for Xr above we obtain for 2 < r < n
n-1 n
(wl-r)u, = 1+ 2 2 aa(i-i+%)
k=r a=k+1

leading to (5.1.10).

The Tb 's turn out to be

(5.1.11) ™ = (D) (ar1) (3 D) 1<bsnmd

as proven by isolating the terms in (3.4.1l) having z to the power (n-1)

n-1 n-l n-1
b 1 b 1 n-1, . W
bz?l W= T b?l w (b1 + (n-1-b)r ) + g ¥ (n-1)7, + 57
yielding
21,9 =1+ (n-l)'rl
and
Tb(n+l-b) -(n-l-b)1b+l =0 1<b<n-2.

1
(n-1)

_ p(n) _ . . .
As 19 = T]n,l = 5 is found earlier we easily see (5.1.11).

We will also prove the useful relation

(5.1.12) 1 - i} n(®) 1)

Lt ml Y, TaiWae -

This is seen from (5 .1.10) and the fact that

bp = (ni



We find

@) = 14 2 (=D el (2w, -2)

2
v 2 aenn® (2w e T), B (n-kr 1)) (2, - 2)

= k k-1
2
n (n
= 1+ 2nk=Z; M, 1(Hg p =1 +2(1-M3 1)

from which 5.1.12) follows easily.

5.2 The Expected Left Path Length.

The p, 's defined in statement (5.1.7) are approximated from

Proposition 4.1.1 by

H
(5.2.1) Bo =1§n+%Hn+ﬁ_%H§12)+o('hE)

Inserting (5.1.10) in (5.1.4) gives

n n k-1
2 1 1 1 1
l+ E; B E — o  —
a2 n+l-a K = atl k toa t-a+l 1t k-1

(5.2.2) A£n)(l,l)

where, according to (5.2.1)
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n-1 n k-1 y
- > 1 ,1i_ .1 1 g (ntl) 1 .
Nos | oz = 2 (t-a.+l Tz k-l) mia \ 3 K1) F3m ) |tV

a=2 k=atl t=a

Straightforward calculations lead to

2

H

_ig2e2y Jy® 1 &

(5.2.3) N = SH +ZH -H 5+ 0\ 5
and hence from (2.4.6)

H2

* 1.2 5. _n(2) b _n

(5.2.k4) L —5Hn+5Hn H 3+ 0\ 4

The expected length of the left path has increased from

2H -1
n

in the normal p-tree forest to the value given in (5.2.4).

5.3 The Average Number of Key Comparisons.

The formula for the expected number of key comparisons in the

stationary p-tree forest is found from (2.4.10), (5.1.6) and (5.1.1) to be

n n=-2
* 1 k+1
(5.3.1) S =1l+=% X ap + 2 == 8 N
ntl roo 8 o ntl F(()k) k

where S (k) is the corresponding value for the normal p-tree forest,
F
0

defined in (2.4.13).

To establish a formula for

1 n
T =1+ 2 T
Zn+l§r=2 T

we see
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ro ntl
where
n n
1 k-r
(5.3.2) K ==5| Z (1" z Bk(Hk-r+Hk—l Hoa E) :’
r=2 k=r+l
_n-1 1 1
T ontl  ntl EBk(ke) He1 -3 -
Defining

-

n_2k&
(5-3-5) U = k2=on+—l S f‘.g) )\.k

we have from (5.3.1) and (2.k4.6)
(5.3.4) s* = 1" - K + U

To evaluate U we use (5.1.8) and (2.4.13):

2
U= N

n

+ 2

( 5k-2r 3k-2r-5
k=Ll n+l Bk

The latter inner sum simplifies nicely and we obtain eventually

ju]

- 2 2 1 4
Vemiht 2 mlBk(ka-l-Qk's"'E:_]:)
Z x| (en 1 b, Zk-T
Tl w1 1T BT ET R T Bl tH)

from (5.1.8) with r =1 .
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Rearranging the terms yields

n p
k 1
u= kg ) <k-2>(Hk-1 '5)

Referring to (5.3.2), we see that

n-1
(5.3.5) U= k-2=

and hence, by insertion in (5.3.4)

* * n-1
(5.3.6) S =1L - L

*
Using the approximate value of L  from the previous section gives us

H2

_ 1 5 _(2)7+(_n
(5-3.7) § = % Hy, ¥ 3 Hy = Hy 3 o\ &

The expected number of key comparisons is hence slightly less than the
expected left path length, and has the same dominating term as the

corresponding quantity of the normal p-tree forest, being

2 = 1 —
Ho + st " 3h(Q 5

w2
]
W

Formula (5.3.6) is surprisingly simple, indicating that there should be

an easier way to prove it than the one we have been using here.

5.4 The Expected Length of the Right Path.

From (2.4.14) and (5.1.11) we find the expected length of the right

path to be
R n-2 n
(5.4.1) R 1+ kzzo Rok) (D) (B D) (42) .
B 0
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In [2] is quoted the recursion formula for R (n) being
F
0
n-2

1
(5.4.2) RF(()n) = 1+ }Eo RFék)((k+l)1(k+2) + n(n-1) ) )

From these two equations we find

* 1 1
(5.4.3) R = RFC()n) t o (RF(n) - 1) -_—_—5 2 RF(gk) .

0
From (5.4.1) we find

* 1
(5.4.1) B Ry = %

R (n) is known to be a nondecreasing sequence of positive real numbers,
F
0

- approaching the limit

® J
R- B B iea..
3 =0 ((3+1)*)

*
(5.4.2) and (5.4.4) show that the R, have the same properties as R (n)
F
0

5.5 The Expected Length of the Left Path of the Last Right Subtree.

From (2.4.15) and (2.4.21) we find the expected length of the left

path of the last right subtree in the stationary p-tree forest to be:

_l ,
(5..%) AR > nff” (2H, -1)
k=1 +3 1 k

Referring to (5.1.12) we find
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RL* = 2 2 nﬁl(ﬂk_z- 1)

&

(5.5.2)

Inserting the approximate value for ﬂe 1 in Proposition 4.1.1 we
)

3

find

(5.5.3)

=
*
i
}_l
|~
o
™
=]

[n]

5.6 The Expected Recursion Depth.

Inserting the values of the expected recursion depth in the normal

p—tree forest:

(5.6.1) cF(n) = %Hml + % (n >2)

C(0) T )

in (2.4.16), yields

n-2
* 1
(5.6.2) ¢’ = 1+ —<>\. SR ?2 (k+1)A (5 i1 -9->>

using (5.1.8) the latter sum becomes:
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k=2
n k-2
3k-2r-5 o 1
) ka‘ Bk(réz ( 51 " P 'Hr+l,)) (3 Fre ™ 5) )
n
= 6
= Z=> Bk(th-l+k'12+k?>

Again using (5.1.8) for r = 0 and 1 we see

6 3k~

* 1 1 = 5
?5 Bk<)+ Hk_l+k-12 + E + ——k—l -2 Hk-l+ 2H1

By + =
n+l "2 n+l Kk

k-7
RSN R )

and eventually

* 1
(5.6.3) C =1+=5

n Ms

B, (k-1)
k-2 &

Inserting the values from (5.2.1) we find:

H
Hy - %+ O(?n)

Q
I
W[ O
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