
Stanford Artificial Intelligence Laboratory September 1976
Memo AIM-288

Computer Science Department
Report No. STAN-CS-7 6-57 2

An FOL Primer

oY

Robert E. Filman

and

Richard W. Weyhrauch .

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

>

ti

&

F

bi

i

ro STANFORD ARTIFICIAL INTELLIGENCE LABORATORY September 2, 1976
MEMO AIM-288

STANFORD COMPUTER SCIENCE DEPARTMENT

REPORT NO. STAN-GS-76-572

- An FOL Primer

by
Robert E. Filman

and

Richard W. Weyhrauch

Abstract:

This primer is an introduction to FOL, an interact&e proof checker for first order logic. Its
examples can be used to learn the FOL system, or read independently for a flavor of our
style of interactive proof checking. Several example proofs are presented, successively

| increasing in the complexity of the FOL commands employed.
FOL runs on the computer at the Stanford Artificial Intelligence Laboratory. It can be used
over the ARPA net after arrangements have been made with Richard Weyhrauch (network
address R W W eSU-AI).

The research described here was rupportrd by the Advanced Research Projects Agency of the Office of the Secretary of Defense
under contract MDA903-76-C-0206.

The views rnd conclurionr contained in this document are those of the authors and should not be interpreted as necessarily
representingthe official pokier, either @ xprorsod or implied, of the Advanced Research Projects Agency or the US. Government.

Reproduced in the USA Available from the National Technical Information Service, Springfield, Virginia 22161.

|

| AN’FOL PRIMER

CONTENTS

I Inthe beginning.. cori iteissrsreessasissntsasonsssnssssscesonannnss |

2 Another Simple Proof « - « «covvee 3

3.1 Individual Constants iii eeeee

: 3.2 Predicate declarations «coieee
| 3.3 Operator declarations « « «+ «cvovr 9
| 3.4 Other declarations. . . «otttteee 10

| 4 TERMS 8nd WEFS «vest este eeeeeeeee een eanaenennenannenenaneneneneeneenee. 10

I NP I< J 11 TFJ

| 8 THE FOL Proof « «eve sense enee settee eee e eae e eee eee eaareenananass 12

6.1 Introdudiothe Twoplwo Colored Grid World «ovo vvvvvvvenenevennnees 13

| 6.2 Sample Proof in the Grids World...ooiia... 10
- 7 Simplification MEeChANISMS . «+ + «eeeeee. 18

| 8 Administrative commmandseee 2
: 81 Theshowecommmandiii. 27

| 8.2, The Backup File «++ - «cooiees 29
| 8.3 Erasing Proof StEPS.. . . «ovo e eeeee. 29

| 8.4 ReadinginFOLCommandFiles,.............c.iiiiiiiiiiiiiiirnnnneernnaa. 29

| 8.5 Using FOL from non-Stanford terminals.cin. 30

| 8.6 Saving the state of the proof ««.svevieiiiiiiiiiitsiiiitreiiiiinneeieneeees 30°
9 Pointers to additional information. iia. 3

Bibliography . .cc ee. 32

: 00 [=CE 33

- a

: ! so I

~ AN FOL PRIMER

An FOL Primer

FOL, a checker for first order predicate calculus proofs, has been written by the Stanford formal
reasoning group under John McCarthy and Richard Weyhrauch. FOL checks proofs using the
formalism of natural deduction described in Prawitz[1965). This paper is an introductory
explanation of how to use FOL. Detailed expositions of predicate calculus can be found in most
introductory logic texts, for example, Kleene[19681, Mendelson[19641, and Mann a 1974].

The first section contains some very simple examples to help a new user get started playing with
FOL. The later chapters are more difficult and explain additional features of FOL. A detailed
description of the language can be found in the users manual, Weyhrauch and Glassmire[1976).

section 1 In the beginning

In this section we demonstrate the use of FOL to generate a simple proof. Any reader with with
access to the FOL proof checker is urged to actually run the program using the example commands.
FOL 1s invoked on the SAIL operating system with the monitor command, R FOL.

: We will begin with what 1s perhaps the most classical proof in logic, and study its expression in
FOL. Even a person who has never had a course in formal logic understands the syllogism:

: Socrates is a man

All men are mortal

therefore
Socrates is mortal

First we have to express the assertions -as a well formed formula (WFF) of first order logic. For this
purpose we need an individual constant (INDCONST) Socrates, two predicate constants
(PREDCONSTs), MAN and MORTAL, each of one argument, and an individual variable (INDVAR), x, to
express the all men part of the second line. The exact rules for forming WFFs can be found in the
FOL users manual. The three parts above are represented as

MAN (Socrates)

Vx. (MAN (x) >MORTAL(x))

MORTAL (Socrates)

: The upside down A, "¥ is called a universal quantifier and is read for all, i.e. for all x if MAN (x)
then MORTAL (x). Our goal is to prove

(MAN (Socrates) A¥x. (MAN (x) MORTAL (x))) >SMORTAL (Socrates)

FOL expects that all identifiers used in a proof be declared, much as a programming language like
ALGOL expects identifiers to be declared. Later we will go into greater detail on the syntax and
options of declarations. For our present proof, the following declarations will suffice.

2 AN FOL PRIMER

***x*% DECLARE INOCONST Socrates:

** xxDECLARE PREDCONST MORTAL MAN 1;
+++2+DECLARE INDVAR x;

FOL prompts you for input by typing five stars. Note that all FOL commands except comments end

with a semicolon (;). In this paper we will use:

THIS FONT for things typed by auser to FOL,
THIS FONT for things typed by FOL,

FOL knows many commands for generating steps of a proof. These are called rules of inference.
An easy one to use 1s the ASSUME command. One can assume any WFF. FOL permits the resulting
proof step to be used elsewhere in the proof, and remembers which new lines depend on which
assumptions. A good way to start to prove an implication 1S to assume its hypothesis, that is, its first
half. The FOL command looks like:

+x xxx ASSUME MAN (Socrates)a¥x. (MAN (x) oMORTAL (x});

1 MAN(Socrates)aVx.(MAN(x)>MORTAL(x)) (1)

FOL types out the proof step generated by the command, preceded by its line number (one in this
case), and followed by a list of the lines in the proof it depends on. Assumptions depend on
themselves.

We want to instantiate the second half of line one (thefor all part) to the particular MAN, Socrates.
First we must get this WFF onto a line of its own. The FOL commandTAUT is used for deciding
t au tological consequences of proof steps. Tautologies are WFFs which are the theorems of
propositional calculus. We type TAUT followed by the WFF we want, and then the line numbers of
those lines from which we think it follows.

txx+x TAUT Vx. (MAN (x) oMORTAL(x)) 1 ;

2 Vx.(MAN(x)>MORTAL(x)) (1)

Note that this line also depends on line one. Proof step two has as its main connective (major
symbol), a for all sign. The FOL command for specializing statements that are true of all
individuals to a specific dividual is called forall elimination. To use this command one types the
word VE followed by the number of the line on which the elimination is to take place, and a list of
individuals to replace the variables in the expression. We want to instantiate line two to the
individual Socrates, so we say,

+%x%YE 2 Socrates:

3 MAN(Socrates)>MORTAL(Socrates) (1)

It now follows, tautologically, from lines one and three, that Socrates must be MORTAL. Using the
TAUT command again gets this result. Note that more than one line can be given in the reason
part of the TAUT command.

AN FOL PRIMER 3

sx+x2 TAUT MORTAL (Socrates) 1,3;

4 MORTAL(Socrates) (1)

To some extent, this 1s the desired result. But we're not home free yet; this line still depends upon
the original assumption. We eliminate this dependence by creating an implication of the first line
implying the fourth. FOL has a command for the introduction of implications, I (implication
introduction). It creates the proof step composed of its first argument implying its second. The
dependencies of this new line of proof are those of the second argument to the oI command, less any
line whose WFF is the same as the first argument. It 1s a useful command for eliminating
dependencies. Applied to lines one and four, we get

xxxxx>] 104:

5 (MAN(Socrates)a¥Yx.(MAN(x)>MORTAL(x)))oMORTAL(Socrates)

This 1s the WFF we want. It has no dependencies; it 1s a theorem. It 1s roughly equivalent to the

English sentence, If Socrates is a man, and for all x if x is a man, then x is mortal, then Socrates is
mortal.

: section 2 Another Simple Proof.

Let us next try the expression and solution, in FOL, of the following puzzle, loosely adapted from
: Gardner [1959].

You have three boxes, one containing only black marbles, one only white,
and the third, both black marbles and white marbles, The boxes were

originally labeled BB, WW, and BW, respectively, to indicate their
contents, but now someone has come along and switched the labels so
that every box is labeled incorrectly, How can one remove and examine
one marbla from only one box, and thereby determine w hat the correct

labeling of the boxes should be?

A solution to this problem goes as follows. One selects a marble from the box labeled BW. Let us
assume this marble 1s black. As the box labeled BW 1s incorrectly labeled, the other marbles in this
box must also be black. Therefore, the box labeled BW must have only black marbles. As the box
labeled WW must have black marbles (otherwise it would be correctly labeled), and cannot be the
box with only black marbles (for that is the box BW), then it must have marbles of both colors. It
immediately follows that the box labeled BB must have only white marbles. The reasoning 1s
similar when the marble drawn 1s white.

To express these lines in predicate calculus, we need to establish several conventions. There are
eight individuals in this problem, the three boxes, which we will call ONE, TWO and THREE,
respectively, the three labels, BB, Ww, and BW, and the two kinds of marbles, BLACKS and WHITES.
The following declaration creates these eight individual constants (INDCONSTSs).

++xx2DECLARE INDCONST ONE, TWO, THREE, BB, Ww, BW, BLACKS, WHITES;

4 AN FOL PRIMER

Some of these objects are boxes, others are not. We will naturally want to distinguish between the
boxes and the not boxes. We can conveniently do this by defining a predicate constant (PREDCONST),
BOX that will be true when its argument 1s a box.

++ **xDECLARE PREDCONST BOX 1;

The “1” at the end of the predicate declaration indicates that this predicate has only one argument.

There are also three PREBCONSTs with two arguments in this problem, IS, LABELED and HAS. The
predicate IS will describe the true contents of the box, basically, what the box would be labeled if it
were correctly labeled. We will think of a box being LABELED with a label, and it HAS white and
black marbles. We declare these predicates:

xx *%*ECLARE PREDCONST IS LABELED HAS 2;

It is also useful to have a few individual variables (INDVARs).

x+x+xxDECLARE INDVAR x,y, 2;

These are the necessary primitives for translating the puzzle. The first phrase of the puzzle states
that there are three boxes in the world. We have decided to call our three boxes ONE, TWO and
THREE. A WEF expressing part of the equivalence of the predicate BOX and these individuals is:

Vx .(BOX({x)= (x=ONE v x=TWO v x=THREE))

We can use this in our proof by making it into an axiom. Axioms can be used just like lines in a
proof, but axioms have names, instead of line numbers. They are assumptions which do not
introduce any dependencies into the proof. To make the above WFF an AXIOM, we say:

*+x+xAX]0M AREBOX: |

* Vx. (BOX (x) = (x=ONE v x=TWO v x=THREE));;

This axiom 1s now called AREBOX. Note the pair of semicolons at the end of the axiom. This is
one of the more unpleasant syntactic constructs of FOL.

The meaning of each label 1s expressed in the axiom LABEL. This defines the predicate IS on
BOXes and marbles.

**xxx AXIOM LABEL:

* V x. (IS(x,BB) = (HAS (x, BLACKS) A-HAS (x, WHITES))),
. x v X. (IS(x,Wl} = (HAS (x,WHITES)A-HAS (x,BLACKS))),

* V x. (IS(x,BW) = (HAS (x,WHITES)A HAS (x,BLACKS)));;

Note the use of one name for these three axioms. When we wish to refer to the second axiom, we
will call it LABEL2.

If boxes were labeled correctly, we could determine which marbles the box has from the above
axiom. However, the problem states the opposite; all labels are wrong.

*++xxAXI0M WRONG-LABEL< ,

AN FOL PRIMER 5

* V x y. (LABELED (x,y)2>~I1S(x,y))};;

We also know that there 1s one box of each kind.

*+*x+xAXI0M IS-EACH:

* 3 x. (BOX(x)} A I5(x,B8B)),
* 3X. (BOX(x) a IS{x,WW}),
* 3 x. (BOX{x) A 1S(x,BW));;

Once again, the parts of this axiom will be refered to as IS_EACHI,IS_LEACH?2, and IS_EACH3.

The “3” 1n this axiom 1s called an existential quantifier and is read there exists, 1.e. there exists a
BOX, x which has only black marbles m it, 1.e., IS (x,BB).

AXIOM names can be used in proof generating commands just as line numbers can. To instantiate
the AXIOM WRONG-LABEL to the individual ONE and the label BB, we say:

xxxVE WRONG-LABEL ONE BB;

1 LABELED(ONE,BB)>~IS(ONE,BB)

Similarly, to apply this axiom to the other two box label pairs, we give FOL the commands:

sxxVE WRONG-LABEL TWO WW;

2 LABELED(TWO, WW)>-IS{ TWO,WW)

sxxYE WRONG-LABEL THREE BW;

3 LABELED(THREE,BW)>-IS(THREE, BW)

Note that we have arbitrarily decided which box 1s labeled with which tag.

We will also need to know what it means for a box to be Ww. The axiom LABEL provides this
definition .

sx3+xVE LABEL] ONE:

4 IS(ONE,BB)=(HAS(ONE,BLACKS)A~HAS(ONE,WHITES))

sxx*3YE LABEL2 TWO:

5 IS(TWO,WW)=(HAS(TWO, WHITES)A-HAS(TWO, BLACKS))

sx+%xVE LABEL3 THREE;

6 IS(THREE,BW)=(HAS(THREE,WHITES)AHAS(THREE,BLACKS))

We know from the axiom IS-EACH of the existence of some boxes. We want to use this axiom, but

we cannot until we remove the existential quantifiers of its parts. The command to accomplish this
1s 3E or existential elimination.

6 AN FOL PRIMER

WFFs with the major connective of Vrefer to all individuals; we can apply them to anything at all.

WFFs quantified by an 3, on the other hand, refer to some nameless individual; all we can do 1s give
it aname. To say, in effect, Let’s call it x. The form of the 3E command is the same as VE; but the
created line has the form of an assumption and depends only on itself. When a future consequence
of this assumption no longer mentions this new name, FOL will automatically remove this
assumption as a dependency and replace it with those of the existential statement.

xxx*xx3E |S_EACHL x ;

7 BOX(x)AIS(x,BB) (7)

sxxx%3E [S_EACHZ y;

8 BOX(y)aIS(y,wwW) (8)

x+xxx3E [S-EACH3 7;

9 BOX(z)aIS(z,BW) (9)

We can now talk about these x, y, and z. Note that we used different names in each 3E. To have
called them the same would be to imply their equality; this 1s clearly not so, and FOL would
remember such a tacit assumption. As each of x, y, and z is .a box, the axiom AREBOX can be
applied to them.

*xxkxVYE AREBOX x;

1 0 BOX(x)=(x=ONEv(Xx=TWOvx=THREE))

x+*xxxVE AREBOX vy ;

11 BOX(y)=(y=ONEv(y=TWOvy=THREE))

**xx*xVE AREBOX z;

12 BOX(z)c(z=ONEv(z=TWOvz=THREE))

The TAUT command doesn’t know about the predicate = (equals), but there is a command,
TAUTEQ, which can decide (some) tautologies using knowledge of the equality predicate. Its form
1s the same as the TAUT command used in the last proof; note that axioms can be used, just as line
numbers in its list of reasons. One invocation of the TAUTEQ command will yield us the solution
to the puzzle.

AN FOL PRIMER

xxx% TAUTEQ

* (LABELED (ONE BB) ALABELED(TWO WW) ALABELED (THREE BW)) > (

* (HAS (THREE BLACKS)>
* (IS(THREE BB)AIS(ONE WWIAIS(TWO BW))) A

* (HAS (THREE WHITES)>
* (IS(THREE WW)AIS(ONE BW)AIS(TWO BB))})) 1:12;

13 (LABELED(ONE,BB)A(LABELED(TWO,WW)ALABELED(THREE,BW)))o(
(HAS(THREE ,BLACKS)o(IS{THREE, BB)A(IS{ONE,WW)AIS(TWO,BW))))A
(HAS (THREE , WHITES)o(IS(THREE, WW)A(IS(ONE,BW)AIS(TWO0,BB)))))

FOL automatically deletes dependencies created by the 3E command when the introduced variables
are no longer in the proof. As line 13 doeésn’t mention x,y or z, it is not dependent upon the fact
that we used x in line 7, and not some other INDVAR. As line 13 has no dependencies, it is a
theorem; Note the explicit assumption in this-theorem that box ONE 1s labeled BB, etc. Also note the
use of the expression 1:12 in the line number part of the command. This tells FOL to use all of the
lines between line one and line twelve, inclusive, in trying to decide this tautology.

section 3 Declarations

We now consider, in turn, most of the FOL commands mn greater detail.

As we have previously stated, FOL expects that all individuals, predicates, and operators used in a
proof be declared. The general form of a declaration is the word DECLARE, followed by the type
(SYNTYPE) of the declaration, followed by the identifiers to be declared of that type, often with other
useful information, such as the number of arguments of a predicate or operator, or the SORT to
which a individual belongs. A common cause of syntax errors in FOL is an incorrect or missing
declaration.

section 3.1 Individual Constants

Following the scheme above, we declare individual constants KingofSpades, QueenofHear t s and
Jacko f0iamonds with the command:

Fa*DECLARE INDCONST KingofSpadesQueenofHearts Jacko f0iamonds;

All natural numbers come as predeclared INDCONSTs in FOL. Any LISP s-expression, proceeded by
the quote character’, is treated by FOL as an INDCONST.

Remember that all FOL commands, except the COMMENT command, are terminated by semi-colons.

section 3.2 Predicate declarations

The declaration of a predicate constant 1s similar. One gives the predicate’s name, followed by the
number of arguments it takes. Thus to have predicates PLAYINGCARD and BLACKCARD, each of one
argument, we would declare:

8 AN FOL PRIMER

»****DECLARE PREDCONST PLAYINGCARD BLACKCARD 1;

The number of arguments of a predicate or operator 1s its ARITY. FOL will treat any predicate
constant of arity 1 as a SORT, that 1S, as denoting the collection of individuals for which it is true,
FOL also assumes that every SORT is non-empty; there at least one individual which satisfies every
predicate of arity 1.

More information than the mere existence of a constant can be conveyed to FOL by a declaration.
To tell FOL that the individual constant NineofSpades was of the SORT PLAYINGCARD we would
state:

=++DECLARE INDCDNST NineofSpades ¢ PLAYINGCARD;

the € symbol denoting membership, much as an individual can be the element of a set.

To state in its declaration that all REDCARDs are of the SORT PLAY INCCARD, we give the commands:

**x%*DECLARE PREDCONST REDCARD 1;

+x xxx MOREGENERAL PLAYINGCARD2 {REDCARD} ;

The MOREGENERAL command tells FOL that every REDCARD is a PLAYINGCARD. While a given
predicate can be declared only once, it can appear in a MOREGENERAL statement as often as
desired. MOREGENERAL may be abbreviated MG.

If we want the PREDCONST SPADE to take its argument without parentheses, we can declare it to be a :
prefix predicate, with the command:

*****xDECLARE PREDCONST SPADE 1 [PRE];

A typical FOL command using the prefix sort SPADE would be:

+*%%*ASSUME SPADE NineofSpades;

1 SPADE NineofSpades (1);

The PREDCONST SAMESUI T can be declared by:

xxxx DECLARE PREDCONST SAMESUIT 2;

To declare the symbol “<" to be an infix PREDCONST, used between its arguments, without
paren thesis, we state:

FE DECLARE PREDCONST <2 [INF

Other example of predicate declarations are:

*****DECLARE PREDCONST ACE, JACK, TEN,NINE1 [PRE];
*****DECLARE PREDCONST ROYALFLUSH 5:

AN FOL PRIMER

+xx*+DECLARE PREDCONST CAPTURES 2;

PREDCONSTs can be declared to range over other sorts. Thus the predicate £ on the natural numbers
can be declared:

*%%%x%¥ DECLARE PREDCONST <(NATNUM,NATNUM)[INF] ;

Declaring a predicate on a domain has no effect on the proof. Making declarations in this
manner, however, leads to a more easily understood proof; it 1s a convention we will use in the rest
of this paper.

Several PREDCONSTs come predeclared in FOL. The most important is the arity 2 infix PREDCONST
= (equals). FOL has a command for the substitution of equals for equals. This command will be
explained in a later section of this primer.

Other predefined ARITY 1 PREDCONSTs (SORTs) include the NATNUMs (natural numbers and zero) and
the SEXPRs (LISP s-expressions).

It 1s possible to declare a parsing hierarchy stating which infix or prefix predicate or operator is to
be evaluated first. Details on this procedure can be found in the FOL manual.

While FOL declarations may be inserted anywhere in a proof, it is a good practice to make all
declarations at the begining of the proof. It 1s also good practice to declare ARITY one PREDCONSTs
(SORTS) first, as it 1s possible to obtain an incorrect default declaration for a SORT by using it in
another declaration prior to its own.

section 3.3 Operator declarations

Operator (function) declarations are the similar to predicate declarations. One can, for instance,
declare one argument operators SIN and COS with:

+ xxx DECLARE OPCONST SIN COS 1;

And, like PREDCONSTs, OPCONST can be declared to range over certain sorts. For example, the
operator CONS on s-expressions and s-expressions can be declared:

+x xxx DECLARE DPCONST CONS (SEXPR, SEXPR);

One’can also specify therange of an operator in a declaration. Thus, to declare an infix OPCONST +,
of two arguments, on the domain of NATNUMs© NATNUMs 1nto the set of NATNUMSs, we say:

*****DECLARE OPCONST +(NATNUM,NATNUM) =NATNUM [INF];

The operator-P I ECEON which returns the chesspiece on a given square of a given board is declared:

****xDECLARE OPCONST PIECEON (BOARD, SQUARE) =CHESSPIECE;

LL—

10 AN FOL PRIMER

| Unlike PREDCONSTs, declaring the domain and the range of an OPCONST imparts information to the
proof checker. Such a declaration assures FOL that whenever the arguments of an operator are in
the declared domain SORTS, the result of the function will be of the SORT of the range. Thus, with
the declaration above, FOL knows that whenever the arguments of PIECEON are a BOARD and a
SQUARE, respectively, the value of PIECEON will be a CHESSPIECE.

sect ion 3.4 Other declarations

While FOL accepts several other SYNTYPEs in declarations, only two others are of interest to us.
Individual variables are are declared like individual constants, with the word INDVAR substituted for

INDCONST. Giving a SORT for the variable informs FOL that whenever this variable 1s used, it may
be presumed to be of that SORT. INDVARs are used both as variables, bound in quantified WFFs, and
as parameters, free in WFFs. Examples of declarations of INDVARS are:

Fax DECLARE INDVAR X,y, Z3
***x*¥DECLARE INDVAR day date month €¢ TIME;
**xx* DECLARE INDVAR CI C2 (C3 ¢ PLAYI NGCARDS:

The other important type of FOL identifier 1s the predicate parameter (PREDPAR). Any predicate
may be substituted for a predicate parameter, provided their arguments match. Predicate
parameters are found in induction axioms and the like; we will touch briefly upon their use later in
this chapter.

section 4 TERMs and WFFs

In FOL, individual constants and variables, and result of the application of operators are examples
of TERMs. Thus, with the obvious declarations, KingofSpades,Black_Kings_Rook_Pawn,3+4, and

Sin {Cos (Tan (5+3)%2)) are all examples of FOL TERMS. The arguments of predicates and
operators are always terms. FOL also accepts TERMs representing sets, n-tuples, and LISP s-
ex pressions. Details on these features may be found in the FOL manual.

A predicate, with its arguments, forms an ATOMIC WELL FORMED FORMULA, or AWFF, for short.
Examples of AWFFs are:

SAMESUIT (KingofSpades, QueenofHear ts)
3=Black_Kings_Rook_Paun
RED (Sin (Cos(3x%4)-2))

Any AWFF is a WELL FORMED FORMULA, (or WFF for short). WFFs may also be formed by joining
WFFs with the infix sentential connectives A (and), v (or), ® (equivalence), and > (implication), and by
prefixing the connective = (not) to any WFF. These connectives have their usual propositional
calculus meaning when used in a WFF. Examples of WFFs include:

KINGS (KingofSpades)ASPADE (KingofSpades)
(TELEPHONE (x) > (1S_RINGING (x)) >5SOMEONEHASCALLED (x) })

= (3+4=5+254%5%y=S i n (2))& (F (x) =7vy=2)

AN FOL PRIMER 1

WFFs may be built by adding a quantified individual variable (INDVAR) to another WFF. Thus to
state that the above WFF concerning SOMEONEHASCALLEO is true of all telephones, we write:

Yu. (TELEPHONE (u) > (IS_RINGING (u) >SOMEONEHASCALLED (u) })

To state that for all x, there exists ay such that y=Sin{x), we write:

Vx. 3y.y=Sin{x)

The quantified variables need not appear in the matrix of the WFF. For example, the WFF, there
exists an x and ay such that 3-4, would be:

3x y. (3=4)

Consider a WFF A=Y¥x,B, where B 1s also a WFF. The scope the quantified variable x 1s B. The
variable x 1s said to be bound in the WFF A. Any variable bound in B is also bound in A. All other

variables mentioned in A are said to be free in A. The same rules apply, of course, for the WFFs
employing the 3 quantifier rather than the V quantifier. Thus, in the WFF:

Vx. (Jy. (xxB=y-y)o{(z=3))

the INDVAR x and y are BOUND, while the INDVAR z 1s free. The scope of Vx in this WFF is
Jy. (xxkB=y-y)>(z=3). The scope of Jy In this WFF is (xxB=y-y).WFFs can be transformed into
equivalent WFF by correctly renaming the bound variables. Thus, if INDVAR x and w are of the same
SORT, the above WFF 1S equivalent to:

Vu, (Jy. (wxB=y-y) >(z=3})

Declaring an INDVAR to be an element of a SORT assures FOL that whenever that variable 1s used, it
will be in that SORT. Thus, if the variable u was declared to be of SORT TELEPHONE, then our first

forall statement about ringing telephone would be equivalent to:

Vu. (IS_RINGING (u) o5SOMEONEHASCALLED (u))

section 5 Axioms

One way of expressing definitions and known facts about the world to FOL 1s by the use of AXIOMs.
An axiom, command consists of the word AXIOM, followed by an identifier and a colon, a list of WFFs
separated by commas, and terminated by two semicolons. If the “list of” WFFs contains only one WFF,
then that WFF 1s referred to by the identifier. If more than one WFF 1s included in the list of WFFs,

then they are refered to collectively by the identifier, or individually by new identifier formed by
appending the number of the WFF in the list to the identifier. This is perhaps better explained by
the use of an-example:

12 AN FOL PRIMER

=xxx* AXIOM ACES:

* Vx y. ((ACE (x) A-ACE (y)) oCAPTURES(x y}},
* Vs. (ISSUIT(s)o3x. (ACE (x) ASUIT(x) =s)),

* SUIT (AceofSpades)=Spade,
* Vx. (ACE (x)=RANK(x)=Ace} ;;

The first WEF on this list 1s named ACES], the second, ACES2, and so forth. They can be
collectively referenced as ACES.

If we gave the following statement to FOL:

Fak AXIOM ZEROADD: vx. (x+8=x);;

then this WFF would be referable only by the name ZEROADD, not as ZEROADDI.

It 1s also possible to nest axioms, creating a hierarchy of names to refer to them. The FOL manual
contains details on this procedure.

Axioms that contain predicate parameters (PREDPAR) are AXIOM SCHEMA. Any predicate may be
substituted for the PREDPAR In an axiom schema, provided it has the same number of arguments as
the PREDPAR which it 1s replacing. Axiom schema are useful in axioms that are valid for any
properly used predicate, such as induction axioms. Information on the use of axiom schema is in
the FOL manual.

It 1s important to remember that a proof 1s only as valid as the axioms upon which it 1s based.
From axioms that do not describe the “real” situation, it 1s possible to prove “unreal” theorems; from
axioms that are mutually contradictory, it 1s possible to prove anything.

sect ion 6 The FOL Proof

There are three kinds of commands that can be given to FOL: Declarative commands, of which

declarations and axioms are examples, administrative commands, which are used to obtain
information about the state of the proof, and proof generating commands.

A FOL proof consists of a set of declarations, axioms, and other declarative commands, followed by
a series of legal FOL inferences. Each of these deductions generates a line of a PROOF. Proof steps
are numbered consecutively, starting with line 1, and may be refered to by their line number. These
lines may or not be dependent upon other steps of the proof. The validity of any line with a
dependency has not been proven to be greater than that of the steps it 1s dependent upon. A line
with no dependencies is a theorem in the given axiom system.

Each command for generating a line of a proof is a rule of inference. Each such rule requires
stating either the WFF that 1S to be infered, a list of previous proof lines and axioms from which to
make the inference, or both of these.

AN FOL PRIMER 13

: section 6.1 Introduction to the Two by Two Colored Grid World

| To demonstrate the various proof generating commands in FOL, we shall axiomatize a small section
of the two by two colored grids world. Conceptually, the two bytwo colored grid world consists of

square grids of four squares, each colored wi th one of a set of colors, in this case, RED, GREEN,
: YELLOW and BLUE. The squares are identified as S11, 512,521 and S22, where we use the numbers

as row and column coordinates. This 1s a sample grid:

Sil SI2

RED BLUE

S21 s22

| GREEN RED

1 Agrid

| We want each of the four colors, and each of the four squares, to be different; that 1s, RED 1s not
| equal to GREEN, and S111is not S22. We can speak of the COLOROF a particular grid-square

combination, and the next square clockwise, of any square, an operator we designate as "=", The
FOL declarations of these facts look like:

x0DECLARE PREDCONST COLOR SQUARE GRID 1 [PRE];
*+x*x+x*DECLARE INDCONST RED GREEN YELLOW BLUE¢COLOR;
***+xDECLARE INDCONST S11 S12 s21 s22 ¢ SQUARE;
#4 DECLARE OPCONST COLOROF (GRID SQUARE) =COLOR;
xxxDECLARE OPCONST - (SQUARE) =SQUARE;

The reader with access to the FOL proof checker 1s urged to run the FOL program, and give it the
commands in this section. Remember that the five asterisks are the FOL prompt, typed by FOL, not
the user.

We have declared the ARITY one PREDCONSTs to be prefix operators. This permits us to use them
with or without parentheses around their arguments.

We will also want variables for each of our SORTs, so the following declarations will prove handy:

=»***DECLARE INDVAR GGl1G2e¢ GRID:

FEF DECLARE INDVAR S S152 ¢ SQUARE;
Fak+ DECLARE INDVAR C (1 C2 CA CB ¢ COLOR:

As grids are composed of their four colors, we will have use for an operator MAKEGRID, which takes
four colors, and forms a grid from them. We declare it:

14 AN FOL PRIMER

; «x *xxDECLARE OPCONST MAKEGRID (COLOR,COLOR, COLOR, COLOR) =GRID;

| The extent of the SORT of colors and the SORT of squares may be axiomatized with t he following
two AXIOMs. We will later consider a better way of telling FOL about these two finite sets.

xx xxx AXIOM EXTCOLOR: VC. (C=REDVC=GREENVC=YELLOWVC=BLUE),
* -RED=GREEN,
* -RED=YELLOW,
* -RED=BLUE,
* -GREEN=YELLOW,
* -GREEN=BLUE,

: * - YELLOW BLUE; ;

+x2x2AX10M EXTSQUARE: VS. (S=511v5=512v5=521vS=522),
* -511=512,

Ck -511=521,
| * -511=522,
| ¥ -512=521,

* -512=522,

: * ~521 =522; ;

| The fact that any grid 1s the sum of the colors of its squares is expressed by the axiom GRIDSIZE.

| ** xxx AXIOM GRIOSIZE:

| * VG. (G=MAKEGR]D (COLOROF (G S11)
| * COLOROF (CG S12),

| * COLOROF (G S21),* COLOROF (G S22)))3;

And the particular clockwise ordering of the squares by the axiom NEXTSQUARE.

** xxx AXIOM NEXTSQUARE:' =(511)=512,
* + (512) =522,
* . =(522)=821,
* +(521)=S11;;

We are now free to explore t he concepts involved in the two by two grid world. Let us begin by
declaring four predicates that express facts about grids that interest us.

We wish the predicate HAS, on grids and colors, to be true whenever one of the squares of the
given grid is the stated color. Similarly, FREEOF shall be true if no square of the given grid is of
t he given color. ALLTHESAHE states that every square of its grid argument 1s the same color,

ALLDI FFERENT, that each square is colored differently. A grid is PLAID if the squares alternate in
color. Thus, we get t he following declarations and axioms:

*****DECLARE PREDCONST ALLTHESAME (GRID) [PRE];
###%:44 DECLARE PREDCONST ALLOI FFERENT (GRID) [PRE];

| +xx%x0DECLARE PREDCONST HAS (GRID COLOR):
*x***DECLARE PREOCONST PLAID(GRID) [PRE];

+x +xxDECLARE PREDCONST FREEOF (GRID COLOR);

AN FOL PRIMER 15

+222 AXI0M DEFINITI ONS:
* VG. (ALLTHESAME G=3C. VS. COLOROF(GC S)=C),
* VG. (ALLD I FFERENT C=

* ¥S1 s2. (COLOROF (G S1)=COLOROF (G S2)0S1=S2)),
* VG C. (HAS(G C) =3S.COLOROF (G S)=C),
* VG. (PLAID G=¥S1.3C1 C2. (-C1=C2A(COLOROF (G S1)=Cln
* COLOROF (GC +(S1))=C2na

* COLOROF(GC +(-(S1)))=C1))),
* VG C. (FREEOF (G C)=VS,-COLOROF (G S}=C);;

sectiori 6.2 Sample Proof in the Grids World

For our first grids world proof, we wish to prove that for any grid, G, if all the squares of G are
colored identically (ALLTHESAME), and the color of (COLOROF) square S21 on G is RED, then G has no
square that is GREEN (it is FREEOF GREEN).

The first proof step generating command 1s t he ASSUME command, described in our proof of the
mortality of Socrates. FOL will remember t he dependence of those sections of t he proof that rely on
an assumption. Remember that a theorem is not proven until it is free of dependencies.

We are trying to prove the WFF:

VG. ((ALLTHESAMVE GACOLOROF (G, S21) =RED) oFREEOF (G, GREEN))

arid find 1t useful to assume the first half of the implication, for some general variable, G. If we can
prove this true for any G, we will be able to universally generalize, and assert its truth for all G.

To repeat, commands to FOL begin after t he five star prompt, and continue until the semicolon.
The numbered lines are the proof steps that FOL prints. Statement sinth is font are
commands typed to FOL; Statements in this font are FOL's responses. In this paper,
some of FOL’s responses have been reformatted for easier reading.

¢+++4ASSUME ALLTHESAME GACOLOROF (G, 521) =RED;

1 ALLTHESAME GACOLOROF(G,S21)=RED (1)

The parenthesized one at the end of t he line signifies that this proof step 1s dependent upon
line one. As line one was an assumption, this is only fair. Any deduction that uses line one will
also be dependent upon line one. Proof steps may be dependent upon several other lines.

Many axioms and proof steps are of the form “forall x,y..." where X,Y,...is a list of variables.
For instance, all of the axiom DEFINITIONS 1s of this form. The FOL command for specializing

an axiom or proof step whose major connective is a V t o aparticular individual 1s VE. VE stands
for forall elimination. For each of the sentential connectives and quantifiers (A, v, &3,-, V, and 3)
FOL has a rule for the introduction of that connective, and another for its elimination. These are

abbreviated with the two character command formed by joining t he connective or quantifier in
question, with an / or an &, depending upon whether that connective (or quantifier) is to be
introduced into or eliminated from the given WFF. As nost of the functions of these rules can be

16 AN FOL PRIMER

done by the TAUT and TAUTEQ rules, we shall consider only those among these commands that
cannot be done any other way.

We assumed that the grid Gis an ALLTHESAME grid. What 1s an ALLTHESAME grid? The axiom
DEFINITIONSI tells us. To use it, we must specialize its variable to G. To eliminate the Vv
character, we use the VE rule. The syntax of the VE rule isthe word VE, followed by either the
name of a WFF that 1s an axiom (that 1s, DEFINITIONSI, not DEFINITIONS) or a line number,

followed by a list of TERMs. If the SORT of a TERM 1s not the same as (or less general than), the SORT
of the variable 1t wishes to 1nstantiate, FOL will insert that as a condition of the proof step. The VE
command is terminated by a semicolon (of course). This rule can only be applied to proof steps or
axioms that have as their main connective a V, followed by at least as many variables as we wish to
eliminate.

In the, future, we will refer to the concept of proof step or axiom that is a WFF as a VL. Each VL has
its own dependencies. The origin of the name VL1s obscure.

***%*xVE DEFINITIONS] G ;

2 ALLTHESAME G=3C.VS.COLOROF(G,S)=C

The line now refers to a specific grid, G, rather than to all grids, as the axiom did. Note that since
this fact 1s obtained exclusively through the use of an axiom, this line has no dependencies.

The TAUT command, introduced in the first proof, will decide all propositional tautologies. The
command consists of the word TAUT, followed by a WFF, followed by alist of line numbers and
axiom names, separated by commas. This list 1s called the reason list for this inference. If the WFF
1s a tautological consequence of the given lines and axioms, then a new proof step with that WEF 1s
created; if not, an error message 1s printed. The second half of line two 1s a tautological consequence

of lines one and two; we obtain it in one step.

**x*xTAUT 3C.VS.COLOROF (G,S)=C 1,2;

3 3C.VS.COLOROF(G,S)=C (1)

Since a line with a dependency of line one was used in t he reason list of this TAUT, this line is also
dependent upon 1.

Note that the tautology decider can determine the equivalence of WFFs identical except for the
renaming of bound variables, but cannot look inside the matrix of a quantified WFF any further than
that. That 1s the reason for the heavy emphasis on the VE and the 3E rules.

Line three states that there exists some color, C, such that for all squares, S, the COLOROF (G,S) 1s
C. We want to have a name for this color, so we use the 3E command used in the second proof. We
apply 1t to the WFF on line three.

*xxxx3E 3 c;

| 4 VS.COLOROF(6,5)=C (4)

AN FOL PRIMER 17

This line is dependent upon itself (4), not on line one. This is because by using the 3E command,
we have said, in effect, “Assume that this fact 1s true of the individual C”. Any statement we can
prove which 1s not dependent upon the fact that we called the variable C will not have four as a
dependency. Instead, FOL will make that proof step dependent upon the same lines as step three
depends upon.

We now have the fact that COLDROF (G,S) =C for all squares S. We wish to apply this to two
different squares. First, we know what the COLOROF (G S21) is (red) from our original assumption.
This will tell us that C 1s RED. Secondly, we are going to want to make a statement about all squares
S (that the COLOROF (G S) 1s not GREEN), so we are going to want to instantiate line four to a general
S. Lines five and six are the result of these commands.

*xxxxVE 4 S21 ;

5 COLOROF(G,S21)=C (4).

*x¥xxVE 4 S;

6 COLOROF(G,S)=C 4)

Recall the second command for deciding tautologies, TAUTEQ. Whereas TAUT knows only about
propositional tautologies, TAUTEQ knows the meaning of the predicate =, and can substitute equals
for equals in predicates, though not in operators. While TAUTEQ 1s more powerful than TAUT,
it 1s also much slower, and its use, when not required, is not recommended.

sx2xx TAUTEQ ~COLOROF (G, S) =GREEN 1,5,6,EXTCOLOR;

7 -(COLOROF(G,S)=GREEN) (1)

Here the use of the axiom name EXTCOLOR refers to all of the subparts of EXTCOLOR. Note that the

dependency on line 4 has disappeared. This dependency was introduced by an 3E, and, like the
similar dependencies in the second proof, has been removed when the named variable (C) is out of
the proof.

Having established this fact for the square S, we wish to generalize it to all S. This process, which
1s often called universal generalization, 1s accomplished through the use of the Vicommand (for
for-all introduction).

8 VYS.-(COLOROF(G,S)=GREEN) (1)

The axiom DEFINITIONSS states that a grid 1s free of a color if for all squares S, the color of that
grid on that square is not the given color. Just like in step two, we use the instantiation rule for
forall statements with this axiom, getting

sxxx2VE DEFINITIONSS G GREEN;

9 FREEOF(G,GREEN)=VYS.-(COLOROF(G,S)=GREEN)

18 AN FOL PRIMER

Our tautology decider can now tell us that grid G 1s free of GREEN. We give the TAUT rule the
WEF we wish to establish, and the VLs which imply it.

xx %%%x TAUT FREEOF (G GREEN) 8 9:

1 0 FREEOF(G,GREEN) (1)

This was the conclusion we desired. To remove the dependency upon line one, we introduce an
implication, with line one as the premise, and line ten as the conclusion. This 1s done by the use of
the =I command. Of all of the commands we have considered so far, only the >] command removes
dependencies. (Dependencies caused by the use of dE commands are removed when the variable or
variables instantiated by that command are no longer in the proof). Later, we shall also consider the
=I and -E rules, which also eliminate dependencies.

CREAR T 15108;

11 (ALLTHESAME GACOLOROF (G,S21)=RED)>FREEOF(G, GREEN)

We note that line eleven is not dependent upon any other line. It is true, to the extent that our
axiom system 1S valid. Being free of dependencies, we can generalize its variables to all individuals
of their SORTs. (FOL will not let us generalize proof steps that contain variables which are free in
their dependencies -- to do so would be equivalent to letting us conclude that because some single
apple x 1s red, that all apples are red.

The command for generalizing a proof step to all elements of a SORT 1s, once again, forall
introduction, VI.

sxxxxV] 11 G:

12 VG.((ALLTHESAME GACOLOROF(G,S21)=RED)>FREEOF(G,GREEN))

Line twelve 1s our desired theorem. Note that it 1s free of dependencies. Any line with a
dependency 1s not a valid theorem.

section 7 Simplification mechanisms

One of the motivations for the use of predicate calculus in artificial intelligence research is as a
vehicle for the expression of reasoning in a well understood machine manipulative form. Not all
mmtelligent action 1s based purely on -deduction; in fact, most of human intelligence relies more upon
observation than reasoning. We look at ‘a book. The book 1s seen to be “green”, as an immediate
observation, not as a deduction involving, say, analysis of wavelengths of light and sensory receptors
in the eye. Similarly, humans cross streets without conscious analysis of the traffic flow, add numbers
without resorting to basic set theory, and play chess without considering each move in terms of the
geometry-of the board and the axioms of number theory.

FOL has a method of doing purely computational tasks. SIMPLIFY permits the attachment of
computational functions and predicates in the programming language LISP to the operators and

| —

AN FOL PRIMER 19

predicates of the FOL proof structure. When a LISP function 1s attached to a FOL operator, we
are assuring FOL that the value of that function can be computed by evaluating the associated
LISP function.

This paper will not attempt to explain the use of the LISP language. The reader unfamiliar with
I LISP is refered to McCarthy(1962]) or Weissmann [1967].

In FOL, the mapping between the FOL proof structure and LISP 1s generated by the ATTACH
command. Attachment generates no proof steps; rather, it 1s a declaration, and like the other
declarative commands, may contain axiomatic information.

FOL permits mapping between PREDCONSTs and LISP predicate functions, OPCONSTs and LISP
functions, and INDCONSTs and LISP atoms and s-expressions. The specified map can be either one
way, from FOL to LISP, or, in the case of INDCONSTs, two way, in both directions.

Let us return to the two by two colored grid world. We wish our proof checker to be capable of
| manipulating these grids, so we need an internal representation for them. FOL allows a user to

have more than one representation of each object in LISP. The details are beyond the scope of this
| primer, but may be found in the FOL manual. In cases where only one representation 1s being used

the following command must precede all attachment commands.

+*xx«REPRESENT x AS UNIVERSE:

A suitable internal format is to represent a grid as a two element list, with each element being a two
- element list of colors. The FOL command to declare this attachment 1s:

*++xxATTACH GRID (DE GRID (L) (AND

* (EQ (LENGTH L)2)* (EQ (LENGTH (CAR L))2)
* (EQ (LENGTH (CADRL)) 2)
* COLOR (CAARL))
x COLOR (CADARL))

x COLOR (CAABRL))

* COLOR (CADADRL))}));

Here LENGTH is the standard LISP LENGTH function that returns the integral length of the top
level of a list. But the predicate COLOR 1s unknown to LISP. Hence, we must also define an
attachment to COLOR. The LISP function MEMQ provides a convenient method.

++£22ATTACH COLOR (DE COLOR (X)
* (MEMQ X (QUOTE (RED GREEN YELLOW BLUE))) I; |

Note the form of an attachment to a function or predicate: the word ATTACH, followed by the
predicate’s name, a LISP function, and a semicolon. The LISP function can be a standard,
predefined function, like CAR or LENGTH, a DEFPROP or DE expression (which also puts the
function of that name on the property list of that atom), or a LISP LAMBDA expression.

The given attachments are still not enough, as we must tell FOL that the LISP atoms RED, GREEN,
YELLOW and BLUE are to correspond to the FOL INDCONSTs RED, GREEN, YELLOW and BLUE. This

20 AN FOL PRIMER

leads us to the other kind of attachment statement, where an INDCONST 1s attached to a LISP atom or

s-expression. The appropriate FOL commands would be:

*+x*x*ATTACH RED & RED;
*+xxxATTACH GREEN e GREEN,
wicks ATTACH YELLOW » YELLOW
Fak ATTACH BLUE eo BLUE;

The o 1n this command tells FOL that the stated map 1s two way; that if the atom YELLOW 1st he
result of the evaluation of a LISP function that 1s attached to a FOL OPCONST, then that atom

YELLOW 1s meant to correspond to the FOL INDCONST YELLOW. If we had wanted to represent
YELLOW internal to LISP as the atom Y, we would have said:

Fak ATTACH YELLOW oY;

The simplification structure knows of yet another type of declaration, the EXTENSION command.
Many real problems, and especially those of a non-mathematical nature, deal with small finite sets.
For example, the set of playing cards in the deck, the people in the room where the body was found,
and colors in the grids world are all examples of small finite sets. Declaring the extension of such a
set enables the SIMPLIFY command of FOL to do two things: to search the items in that set when
seeking to satisfy a forall or there exists statement, and implicitly to differentiate between the items of
the extension set. That 1s, 1f a SORT Phas an extension of A B C and D, then the simplification
mechanism may use the fact that A=B, A=C, B=D, and so forth. Either of these properties can be
stimulated without the use of the extension statement; the first, through the use of an axiom listing
the elements of the set, the second through another axiom explicitly stating the inequalities involved.
But both of these methods are long and clumsy, and are best avoided.

The FOL extension command consists of the word EXTENSION, followed by a SORT, and a set
expression (a set, or the union or intersection of sets) which constitutes the extension of that SORT.
Other SORTs whose extension has already been defined may be used as sets in an extension
command. In our two by two colored grids world example, the extension of COLOR can be declared
by the statement:

+x*x EXTENSION COLOR {YELLOW BLUE GREEN RED};

After this declaration, the simplification mechanism can conclude the axiom EXTCOLOR.
Similarly the axiom EXTSQUARE can be replaced by the declaration:

kr EXTENSION SQUARE {S11 S12 S21 S223

The same INDCONST may belong to more than one extension; however, the only things FOL will
permit to be declared elements of an extension are INDCONSTs. (remembering, of course, that LISP
S-expressions and the natural numbers are also INDCONSTS.)

Suppose we have a particular grid in mind. We might want to call the grid whose top row is
YELLOW and whose bottom row, BLUE, by the name, MYGRID.

LL —

AN FOL PRIMER 21

Sil. S12

YELLOW | YELLOW

S21 S22

BLUE BLUE

HYGRID

]

We would make the declaration:

oo +x+xxDECLARE INDCDNST MYGRID ¢ GRID:

Following ‘the structure for grids mentioned above, we’d want to include the attachment:

++3:+ATTACH MYGRIO « ((YELLOW YELLOW) (BLUE BLUE) } ;

Let us make the following attachments to the PREDCONSTs HAS and FREEOF. Note that the function
FREEGF 1s defined in terms of the function’ HAS.

*xx£sATTACH HAS (DE HAS (GC)
* (AND (GRID G)
* (OR
* (MEMQ C (CAR G))
* (MEMQ C (CADRG)))))
+x+x+ ATTACH FREEOF (LAMBDA (GC) (AND (GRID G) (NOT (HAS GC))));

We can then- give FOL the following commands, obtaining the stated proof steps.

++x22SIMPLIFY -YELLOW=BLUE;

1 ~(YELLOW=BLUE)

++++xSIMPLIFYHAS (MYGRID YELLOW) ;

2 HAS(MYGRID, YELLOW)

s+xxx SIMPLIFY HAS (MYGRID RED) ;

3 -~HAS(MYGRID,RED)

+x+xxSIMPLIFY FREEOF (MYGRID GREEN) ;

4 FREEOF(MYGRID,GREEN)

22

***xxSIMPLIFY YC. (HAS (MYGRID C)o ((C=YELLOWVC=BLUE) A-C=RED)) ;

5 VC.(HAS(MYGRID,C)>((C=YELLOWvC=BLUE)A-~(C=RED)))

The simplify nechani sm has allowed us to deduce these facts by simple commands. Each of them
would require either a complicated derivation, or a specific axiom, to do without simplification.

By use of the FUNCTION command, it is possible to declare auxiliary functions to FOL.
Functions so declared may be used, like the standard LISP functions, in attachments and ot her
function statements. Only EXPRs (not FEXPRs or MACROs) may be declared by the
FUNCTION command. If we had declared the auxiliary function MAKEPAIR by

*xxxxFUNCTION (DE MAKEPAIR (X Y) (CONS X (CONS Y NIL)));

then an *attachment to MAKEGRID would be:

x*xxxATTACH NAKEGRIO (LAMBDA (A B C D)
* (MAKEPAIR (MAKEPAIR A B) (MAKEPAIR C D))};

The value of this command 1s not immediately apparent in this simple example. However, as
attachments increase in complexity its worth becomes more obvious.

section 7.1 The Grids World Revisited

As a final sample proof, we present a proof by contradiction, intended to illustrate t he =] and
substitution proof generating commands, and a few of the proof administrative commands.

In this proof, we seek to show that if a grid 1s plaid, and square S12 1s RED, then square S111s not
RED. Expressed in predicate calculus, this looks like:

VG. ((PLAID GACOLOROF (G S12) =RED)>-COLOROF (G S11) =RED)

For this proof it will be useful to have an attachment for the operator =; the auxiliary function
NEXT 1s defined for the use of the attachment function. Similarly, we must tell FOL of t he
mapping between the external, FOL interpretation of the individual squares, and the internal,
LISP representation. For this, we have chosen the obvious mapping of the square names into
themselves. The following declarations are therefore presented to FOL.

xxxxxFUNCTION (DE NEXT (SL)
* (COND ((EQ (CAR L) S) (CADR L)) (T (NEXT S (COR L)))));

+x++*ATTACH » (DE = (S) (NEXT S (QUOTE (S11 S12 S22 S21 S11))));

#05 ATTACH S11 » S11;
*xx*xxATTACH S12 e S12;
*+xxx*ATTACH S21 o 521;
++xATTACH S22 « S22:

AN FOL PRIMER 23

It 1s often convenient to refer to lines mm a proof not by their line number (which is apt to change if
a few lines are added or removed from the proof), but rather by sone symbolic or relative tag. FOL
provides several mechanisms for doing this. One of these is the LABEL command. The basic form
of this command is the word LABEL, an identifier, and a line nunber. Ifthe line number 1S omitted,

the next line is presumed. Once an identifier has been declared a label, it may be used wherever
that line number could be used. In this example, t he next command given is

FF LABEL THI SLI NE;

As no implicit line number is given, THISLINE is presumed to apply to the next proof step (line I).
THISLINE can now be used as a synonym for the VL 1 in any FOL command. Note that the label 1s
not permanently attached to the named line; a label may be redeclared for a different line.

As the theorem we wish to prove 1s a universal generalization of A>B, we find it useful, in this
proof, to start by assuming the “A” part, for some general grid G.

***xxASSUME PLAID GACOLOROF (G,S12) =RED;

1 PLAID GACOLOROF(G,S12)=RED (1)

We want a proof by contradiction, so we assume the contrary of the desired result. If our
assumption in line two leads to a contradiction (a conclusion of FALSE) then we will have proven our
theorem.

kak ASSUME COLOROF(G, S11) =RED;

2 COLOROF(G,S11)=RED (2)

We now consult our definition of a plaid grid. The axiom DEFINITIONS4 defines plaid grids; we
use VE to instantiate it to our grid G.

sx*x+xVE DEFINI TIONS4 G;

3 PLAID 6=¥S1.3C1C2.(~(C1=C2)A(COLOROF(G,S1)=C1A(COLOROF(G,-»(S1))=C2n
COLOROF(G,=»(=(S1)))=C1)))

We will wish to apply the second part of this VL to two different squares; to do so, we must first
isolate the quantified part. The TAUT command will get it for us. Note the introduction of the
subpart designator, the :#2 in the taut command. FOL provides a method for refering to part of a
previously mentioned WFF by use of a subpart designator. The WFF that 1s on any VL may be

accessed by appending a : to that VLs name; successive first operands and second operands of the
main connective of a WFF are accessed by appending #1's and #2’s to the colon. For instance, the
main connective of line two is =, the first operand, the TERM COLOROF (G,S11). Thus, in this proof,
FOL will treat 2: #1 as synonymous with COLOROF (G,S11). Similarly, 1: #2#1#11sthe INDVAR G
The reader 1s urged to experiment with subpart designators; the relief from the recopying of long
WFFs 1s certainly a good incentive for their use. Subpart designators may be used wherever a WEF
or TERM 1s required. Care must be exercised, however, to insure that the expression designated is
the desired one.

Let us call the resulting VL. ALLSQ

24 AN FOL PRIMER

| xx%+xL ABEL ALLSQ;
*xxxxTAUT 3: #21,3;

| 4 ¥S1.3C1C2.(-(C1=C2)A(COLOROF(G,S1)=ClA(COLOROF(G,~»(S1))=C2n
COLOROF(G,~(=(S1)))=C1))) (1)

This fact is to be applied first to the square S12. Here we use another method of refering to ot her
lines in FOL, the 7. When used in place of a line number, a single T refers to the previous line;
each additional T moves the referent back a line. Thus, the string Tt refers to the proof step two
lines ago; the line five back would be 11711.

xxxxkxVE I’ S12;

5 3C1C2.(-(C1=C2)A(COLOROF(G,S12)=C1lA{COLOROF(G,>(S12))=C2n
COLOROF(G,»(~(S12)))=C1))) (1)

The definition so produced refers to colors Cl and C2; to get to the matrix of this expression, we
need to remove the quantifier.

sxx¥x3E + C1 C2;

6 =(C1=C2)A(COLOROF(G,S12)=C1A(COLOROF(G,»{S12))=C2A
COLOROF(G,»(+(S12)))=C1)) (6)

Note that this line was produced by an existential elimination, and is therefore dependent only upon
itself.

We can consult the simplification mechanism for the value of =» (+(S21)) (the square two away,
| clockwise, from the upper right hand corner)

| £+:xxSIMPLIFY -(=(512));

7 +(-+(S12))=S821

| The last remaining important class of proof step generating commands are the substitution

| commands, SUBST and SUBSTR. A substitution command 1s of the form SUBST <w»!{> IN <v/>;.
The first <v!> is presumed to be of the form A-B or A=B; if SUBST is used, every occurrence of B in
the second 1s replaced by A, and the resulting WFF becomes the next proof step, its
dependencies the union of the dependencies of the first and second <w>s. SUBSTR 1s used for
replacing A by B.

| Substitutions may occasionally result in the automatic renaming of a bound variable. This is rare,

| but 1ts occurrence should not unduly alarm the user.
++#££SUBSTR * IN MM;

| 8 =~(C1=C2)A(COLOROF(G,S12)=CIn(COLOROF(G,~»(S12))=C2n
COLOROF(G,S21)=Cl)) (6)

i Thus, we have established the color of square S21 in grid G. Another instantiation to line four will
allow us to say something about the desired square, S11.

AN FOL PRIMER 25

*xxxsVYE ALLSQ S21;

9 3C1C2.(~(C1=C2)A(COLOROF(G,S21)=C1A(COLOROF(G,-(S21))=C2n
COLOROF(G,»(=+(S21)))=C1))) (1)

Once again we need names for the two colors in line nine. Calling them Cl and C2 will lead to
trouble; we have not established that they are the same as the colors referred to in line six" (even
though they can be proven to be the same). So let us call them CA and CB. Note the renaming by
the JE command.

*xxxx3E 1 CA CB; |

10 ~(CA=CB)A(COLOROF(G,S21)=CAn(COLOROF(G,+({S21))=CBA
COLOROF (G,=(=(521)))=CA)) (10)

The successor square to S21 1s S11. Notice that SIMPLIFY can evaluate both operators and
predicates.

*xxxxSIMPLIFY S11=5(521);

11 S11=4(S21)

And another substitution, this time with the SUBST command.

: xxx %xSUBST + IN 1 OCC 1;

12 -(CA=CB)A(COLOROF(G,S21)=CAA(COLOROF(G,S11)=CBA
COLOROF(G,+(S11))=CA)) (10)

We see here another ‘modification of the substitution commands, the occurrence list. If the
substitution command has, before the semicolon, the word OCC, followed by an ordered list of
integers, then the substitution 1s made only for those instances specified by t he occurrence list. That
1s, if the command were SUBST thAisline IN thatline OGC 1 3 53, then the substitution would occur

only in the first, third, and fifth occurrences in thatline.

This proof has produced a contradiction; lines 1, 8, and 12 imply that square S11 cannot be RED; the
assumed line 2 demands it. We can use TAUTEQ to infer the WFF FALSE. In this command, we
see yet another way of giving a series of line numbers to a FOL command, the RANGELIST. The
lines from line M to line N, inclusive of M and N, can be shortened to M:N. If the M 1s omitted,

the first line of the proof is presumed; if the N is absent, the last line of the proof (7) is assumed.
Note that we have given TAUTEQ not only lines 1,2,8 and 12, needed for the contradiction, but
also the superfluous lines 9, 10 and 11.

sxxxx TAUTEQ FALSE THISLINE,2,8: 1;

13 FALSE (1 2)

The variables Cl, C2, CA and CB are no longer mentioned mn this line, (or in any line which this line
depends upon), hence this line no longer depends on line 5.

26 AN FOL PRIMER

We come to the other major FOL command for removing dependencies, =I. If a contradiction
(FALSE) has been generated as a proof step, then we can conclude, dependent upon the other lines in
t he dependency of the FALSE line, the negation of one of the assumptions that caused that line, If
the FALSE line has no dependencies, there is a contradiction in the axiom system.

There also exists as ~E command, parallel in use to the ~I command, for the elimination of a
negation, rather than its introduction.

We illustrate here another type of relative line numbers. A label can have appended an additive or
subtractive constant, which then refers to that many lines before or after the line associated with that
label. Thus, LINEX+3 1s the third line after the line LINEX; LINEX-1 1s the line before LINEX.

*xxkkx-] 1, THISLINE+1;

14 -(COLOROF(G,S11)=RED) (1)

All that now remains is the insertion of t he implication symbol, and the generalization of this proof
to all grids.

x¥x¥xx>] THISLINED?T;

15 (PLAID GACOLOROF (6, S12)=RED)>~(COLOROF (G,S11)=RED)

xxxkxV] P GeCl;

16 VG1.((PLAIDGIACOLOROF(G1,S12)=RED)>~(COLOROF(61,S11)=RED))

Notice the renaming (from G to G1) accomplished in this use of VI. The WF on line 16 is, of course,
equivalent to the same WF with G1 replaced by G (or, by G2, for that matter).

We have proven the theorem.

The astute reader may have noticed several shortcomings and have several questions about our
proof. It is certainly longer than it needs be, and a much more powerful theorem relating the
difference of colors of squares on plaid grids could certainly have been proven with the sane effort.
But the purpose of this exercise was to introduce the use of the line referents and the substitution
commands, not to prove powerful grids world theorems. The reader may also reasonably inquire
about the necessity of the substitution commands. They are needed because the TAUTEQ
command 1s capable of substituting equals for equals in predicates, but not in functions. That 1s, if
a and b are individuals, P a predicate, and F a function, TAUTEQ can conclude from a=b t hat
P(a)=P(b), but cannot conclude that F(a)=F(b). One can establish the equality of F(A) and F(B)
using the SUBST and SUBSTR commands. .

|

AN FOL PRIMER 27

section 8 Administrative commmands

section 8.1 The show commmand

Several administrative commands are worth mentioning. The SHOW command displays details of
the present proof structure on your console. There are several varieties of SHOW. One can have
the current proof listed by responding to the five star prompt by typing SHOW PROOF;. SHOW PROOF
42, L I NEX, %, L INEX+2: 11%; would list, in order, line 42, the line labeled LINEX, the previous line,
and all lines from two lines after LINEX to four lines ago.

The other show commands are:

*xxx#SHOW AXI OMS;

lists all axioms;
*++2xSHOW AXIOMS DEFINITIONS,EXTCOLORI;

lists both axioms DEFINI TIONS and EXTCOLORI.

*+x+xSHOW DECLARATIONS <syntype>;
lists all things declared to be of that syntype;

#x%kx%x SHOW DECLARATIONS <list of identifiers,;
lists the declaration information for each identifier in the list.

krxx SHOW GENERALITY <SORT list>;

lists the SORTS both more and less general than the requested SORTS.
AEE ESHOW LABELS <ranges;

lists the labels and associated line numbers in that range.
x+xxxSHOW LABELS <identifier lists;

lists the line number for each identifier in the list.

For example, the various show commands, in the context of the last proof:

+*+xx+SHOW PROOF THISLINE,7,111:%;

**& ASSUME PLAID GACOLOROF(G,S12)=RED;

1 PLAID GACOLOROF(G,S12)=RED (1)

*xxxxSIMPLIFY ;

7 »+(+(S12))=S21

Xxkkkk—] t,COLOROF(G,S11)=RED;

14 —~(COLOROF(G,S11)=RED) (1)

**¥x*¥*x>] lot ;

15 (PLAID GACOLOROF(G,S12)=RED)>~(COLOROF(G,S11)=RED)

28 AN FOL PRIMER

xxxxxVI t GeGl;

16 VG1.{ (PLAID GIACOLOROF(G1,S12)=RED)>~(COLOROF(G1,S11)=RED))

+x*x%*SHOW AXIOMS DEFINITIONS3,NEXTSQUARE;

| DEFINITIONS3: VG C.(HAS(G,C)=3S.COLOROF(G,S)=C)
NEXTSQUARE: NEXTSQUAREL: +(S11)=S12

NEXTSQUARE2: -(S512)=522
| NEXTSQUARE3: =+(S22)=S21
: NEXTSQUARE4: =(S21)=S11

%¥xxSHOW DECLARATIONS 1 NDCONST:

INDCONST

MYGRID S22 S21 S12 S11 BLUE YELLOW GREEN RED

| +%xx%SHOW DECLARATIONS G,MAKEGRID,COLOR, YELLOW, FOOBAZ;

| Gis INDVAR of SORT GRID
MAKEGRID is OPCONST |
The domain 1s COLOR & COLOR © COLOR © (COLOR, and the range 1s GRID

| COLOR is PREDCONST
The domain is UNIVERSAL[R«1000]
COLOR 1s a SORT with:

INDCONSTs BLUE YELLOW GREEN RED

INDVARS CB CA 2 CIC

YELLOW1s INDCONST of sort COLOR

No declaration for FOOBAZ

+**x**SHOW LABELS 1:12;

label ALLSQ 6

| label THISLINE 1
xk ¥xxSHOW LABELS THI SLI NE;

THISLINE: 1 PLAID GACOLOROF(G,S12)=RED

The output of any show command can be directed to a file by inserting a right arrow and a file
nane before the closing semicolon. Thus, the command:

*x**% SHOW PROOF 9:475 » THIS.PRF [FOL,REF];

will list the proof steps nine through 475 onto the file THIS.PRF[FOL,REFI

AN FOL PRIMER 29

section 8.2 The Backup File

FOL keeps a transcription of everything typed to it on the file BACKUP. TMP. If the system
crashes during an execution of FOL, this file may be edited to recover the lost input.

section 8.3 Erasing Proof Steps

| Lines may be deleted from the proof by the use of the CANCEL command. CANCEL
<|1nenumber>; removes all lines of that number or greater from the proof; CANCEL: renoves just
the last line. As the dependence of each proof step on the other lines of the proof is not easily
determined, FOL does not allow for removal of lines from the middle of proofs.

sect ion 8.4 Reading in FOL Command Files

Input files of FOL commands may be read into FOL by the use of the FETCH command. FETCH

<f.ilename>; opens the file <filename>, and reads and executes the commands on that file; FETCH
<filename> FROM <identifier>;, searches the file <filename> for a command MARK <identifier>: and
begins reading from that point; FETCH <filename> TO <identifier>: reads the file until MARK
<identifier> ; 1s encountered. The FETCH command may contain both a FROM and a TO marker.
For example,

*xx+xFETCH INPUT.FOL FROM MARKI TO MARKEND;

would begin reading the file INPUT.FOL, and search for the command

MARK MARK1;

FOL would begin processing commands from that point, until the command

MARK MARKEND;

was read. Control would then be returned to the previous level.

Fetches may be nested (to a depth of ten); thatis, a fetched file may use the fetch command.
Remember, the five asterisks so frequently repeated in this paper are FOL’s prompt, and not part of
the command. If you intlude them in a fetched file, an error nessage results.

Comments may be included in the fetched file through the use of the comment command. If FOL
reads a statement of t he form:

COMMENT x ... this is a

- two | ine comment . . . x

then the string between the asterisks is‘ ignored by the command parser. Note that there is no
semicolon after the comment command. The use of asterisks here is arbitrary; any matching pair of
delimiters (except %) would do. Asthe COMMENT command ignores semicolons, it is useful for

30 AN FOL PRIMER

removing large sections of input commands from the FOL mput stream, without actually deleting
them from the input file.

If FOL encounters an error i n reading a fetched file, the fetch 1s terminated, and command returns
to the user.

section 8.5 Using FOL from non-Stanford terminals

There are certain difficulties in trying to use FOL from non-Stanford terminals. The most
important of these is the lack of the logical connectives and quantifers (A,v,~,2,5,¥,3) on most non-
Stanford keyboards. Even from a non-local terminal with the full character set, a minor difficulty
arises when the monitor interprets the exists character (3) as a control U, and ignores the line on
which it’ was typed. It 1s possible to overcome these problems, and use FOL from a non-Stanford
terminal or over the ARPA net by the use of the TTY command. The command

xkxxxT1Y;

will rename the sentential connectives and quantifiers to be &, OR, NOT, IMP, IFF, FA and EX.
FOL will now print those characters with their new names, and will accept these new names in WFFs.
The various quantifier and connective introduction and elimitiation commands mentioned in this
text also have synonyms. One may use DED for >I, NI for -I, NE for -E, UC for VI, US for VE,
EC for 31, and ES for 3E. The derivation of these names may be found in the FOL manual.

The command

xxx xUNTTY;

undoes the action of the TTY command. After the UNTTY command, the connectives and quantifiers
will print using their usual nanes, and the FOL parser will cease to recognize the TTY mode names.
One can switch arbitrarily between TTY and UNTTY modes.

section 8.6 Saving the state of the proof

The our last administrative command is the EXIT command. EXIT; returns the user to the monitor;

the monitor SAVE program will then save the FOL core image for later restarting. Thus, a typical
sequence for saving the FOL core image and listing a proof on the lineprinter is:

+ *%%% SHOW PROOF - MY. PRF;

sxxxxEX]T;

The EXIT command does a garbage collection and takes a while

Exit
tC

. SAMYFOL (we're talking to the monitor here)
Job saved in 130 pages. (Upper not saved)
tC

AN FOL PRIMER 31

SPOOL MY. PRF (Request a listing on the lineprinter)

Exit

tC :

. RU MYFOL (Get back into FOL)

Saving input on: BACKUP. TMP

XERXES (We can continue with the proof here)

section 9 Pointers to additional information

The source file for t his paper is FOLPRM.REF[AIM,DOC]. The FOL commands used ip this
primer, and practice exercises for FOL can be found on.the file EXERCIL.FOL[UP,DOCI.

We wi sh to thank John McCarthy and Bill Classmire for their many helpful suggestions on and
corrections to the drafts of this primer.

i

32 AN FOL PRIMER

Bibliography.

Gardner, M. (1959) T ke Scientific American book of Mathematical Puzzles and Diversions, Simon and
Schuster, New York

Kleene, S.C. (1968) Mathematical Logic, John Wiley & Sons, Inc. New York

Manna, Z. (1974) Mathematical Theory of Computation, McGraw-Hill Book do. New York

McCarthy, J. (1962) et. al. LISP 1.5 Programmer’s Manual MIT Press, Cambridge, Massachusetts

Mendelson, E. (1964) Introduction to Mathematical Logio D. Van Nostrand Co. Inc., New York

Prawitz, D. (1965) Natural Deduction - a proof theoretical study, Almquist & Wiksell, Stockholm

Weissman, C. (1967) LISP 1.5 Programmer? Manual, MIT Press, Cambridge, Massachusetts

Weyhrauch, R. and W. Glassrnire (to appear) A Users Manual for FOL

Weyhrauch, R. and A. J. Thomas (1974) FOL: a Proof Checker for Flrst-order Logic, Stanford A.L
Memo 235

AN FOL PRIMER 33

Index

=, In show command 28 HAS, predconst 4
-, operator 13 HAS, predicate 14
=I, inference rule 26 INDCONST 1

€ 8 INDCONST, declarations 7
Q1 individual constants, declarations 7
QE, inference rule 2, 15 individual variable, declarations 10
VI, inference rule 17 INDVAR 1

o 20 INDVAR, declarations 10
= 9 inference rule, -I 26

administrative commands 27 inference rule, QE 2, 15
A LLDIFFERENT, predicate 14 inference rule, YI 17
A LLTHESAME, predicate 14 inference rule, ASSUME 2, 15
ARITY 8 inference rule, SIMPLIFY 18, 20

ARPA net, using FOL over the 30 inference rule, SWBST 24
ASSUME, inference rule 2, 15 inference rule, SUBSTR 24
ATTACH 19 inference rule, TAUT 2, 16

attachment 18 inference rule, TAUTEQ 6, 17
AWFF 10 inference rule, 3E 5
AXIOM SCHEMA 12 Inference rule, 2] 3, 18
axioms 4, 11 infix 8

| . backup file 29 IS, predconst4
BACKUP. TMP 29 LABEL 23, 26

boxes, puzzle about 3 LABELED, predconst 4
CANCEL 29 line number 23, 24, 25, 26

colored grids world 13, 22 LISP 7, 19
Comments 29 main connective 2, 16

declarations 1, 7 MAKEGRID, operator 13
declarations, individual constants 7 marbles, puzzle about 3
declarations, individual variable 10 MARK, in FETCH command 29
declarations, operator constant 9 MC 8
declarations, predicate constant 7 MOREGENERAL 8
declarations, predicate parameter 10 MYCRID, imdconst 20
DECLARE 7 NATNUM 9

dependencies 2, 3, 12, 15 natural deduction 1
dependencies, created by 3E command 6,7, 17 OCC 25
errors, syntax 7 occurrence list 25
exercises 3 1 operator constant, declarations 9
EXIT 30 PLAID, predicate 14
EXTENSION 20 PREDCONST 1

FETCH 29 PREDCONST, declarations 8

FOL 1 PREDCONST, predeclared 9
FOL, commands 12 predeclared, PREDCONST 9
FOL, how to run | predicate constant, declarations 7
FOL, proof 12 predicate parameter 12
fonts 2 predicate parameter, declarations 10
FREEOF, predicate 14 PREDPAR 12
FROM, in FETCH command 29 PREDPA R, declarations 10
FUNCTION 22 prefix 8, 13

‘

34 AN FOL PRIMER

RANGELIST 25

reason list 16

REPRESENT 19

representation 19
rules of inference 2, 12
SEXPR 09

SHOW 27

simplification 18
SIMPLIFY, inference rule 18, 20

Socrates, proof about 1
SORT?18

source file for this paper 31
subpart designator 23
SUBST, inference rule 24
substitution 24

SUBSTR, inference rule 24

SYNTYPE 7, 10

TAUT, inference rule 2, 16

TAUTEQ, inference rule 6, 17

TAUTEQ, substitution by 26
TERM 10

TO, in FETCH command 29
TTY 30

UNTTY 30

variable, bound 11

variable, free 11, 18

variable, scope 11
VL 16, 23

WFF 1, 10
T 24

Jd 5

JE, inference rule 5

>I, inference rule 3, 18

