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1. Introduction.

My purpose in composing this trief account is to introduce the general

mathematical reader to some of the results and problems concerned with the

complexity analysis of Boolean functions. In the interests of conciseness

and coherence of presentation I shall attempt to cover just a few restricted

areas which I have found to be of particular theoretical interest.

The study of Boolean function complexity draws its importance from

several branches of computer science. The original and most obvious

motivation is that many of the tasks for which digital electronic equipment

must be designed can be usefully represented as the computation of Boolean

functions. As exampies, I have in mind sorting networks, unary -to-binary

converters, multiplication units and address decoders. A second catchment

ares lies in the recently active field of algebraic algorithmic complexity.
Attractively structured problems such as matrix multiplication, polynomial

evaluati am and convolution product have their simplest incarnation over the
two-element Boolean domain. The sim is to reach a complete understanding

of the complexity <f such basic algorithms. Finally I should mention

"machine-based" cuaplexity where we are concerned with time or space bounds

on the behaviour of Turing machines, random-access machines or other

hstractions of digital computers. For example, a Turing machine accepting

or rejecting an input string may be 80 simulated by a Boolean network

computing a function that lower bounds om the cmplexity of such & function

vield corresponding bounds on the running time of the Turing machine {20,25}.

Aproof that P4& NP, see [8], is in principle feasibleby such an

arproach.

2. Definitions.

let B be the set of n-arpment Boolean functions {f: {0,1} ~ [0,1]} .
(The correspondence with the femiliar Boolesn domain {false, true] is

that 1 represents trus .) Ve note that | =2 . 80, for example,
2:9 = 16 . To introduce our notations end terminology for these 156 Ddasic
functions we list them in Table 1. To obviate explicit function tables,

definitions in terms of GF(2) , the two-element field, are provided.

2
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Sy=nol for f Name for f f(x,y)

0 0
constants1 } { 1

Ry x
projections

n, y

ny - 1+x

EA - l+y

A, AND conjunction x.y

A , HAD nand 1+x.y

Vv, OR disjunction XtyEX.Y

v, NOR nor (1+x).(1+y)

- implication 1l+xtx.y

- ee 1+y+x.y

- -- ¥.(1rx)

$,3 not-equivalence x+y

» equivalence, bi-implication ltxty

The 16 functions of B, with ar(2) equivalents.

Table 1.

Functions in A, are to de computedby acyclic circuits over the
resis 3, TheseBay be representedas finite directed acyciic graphs
“ith n input modes and one output pods, each input node corresponding
«2th one of the arguments and each other node being associated with some

slexentof 3, The indegree of the input nodes is zero and each other
~24e has an ordered pair of incoming arcs. An association of binary

>



values to the inputs naturally inc.oces binury values on all other nodes

(by applying the appropriate basis function at each to tae values of

its predecessors) and hence the circuit defines a function of B,
cazputed at its output node. A small example is givem in Figure 2.

| >"

Figure 2

A altermative formulation which is in many respects equivalent is

as a straight-line program, a fixed sequenceof camputation stepsat each

stepof which a basic function is applied to two arguments which may de

either results of previous steps or input argumant values. Thereare in

general many such sequences represented by a single acyclic circuit. One

that yields Figure 2 is given below.

Vi = K*T%

Vo Sum vy A x

Vy i= X, VV,



Various parameters of circuits may be used as a basis for complexity
measures. The most immediate is the circuit size, c¢ , which counts the

aupber of internal nodes or logical gates, and corresponds also to

the number of steps in a program. If each gate in a circuit requires the

same fixed execution time then the total time in a parallel camputation

by the circuit will be limited by the depth, d , of the circuit, the

zaximn number of gates on a path fram am input to the output node. In

the example, c¢=4 and 4d = ,

A mathematician might prefer to represent a Boolean function as a

well-formed linear expression over the input variables with fumction

symbols corresponding to 2lements of B, « This is equivalent to an
acyclic circuit where the logical gates have fanout (outdegree) at moat

one. Note that the input nodes may have arbitrary fanout, dbut it is

convenient in diagrams to repli-ate inputs so that the circuit can be

drawn as & tree in closer correspondence with the structure of the linear

formula. The size of u formula is jus: the circuit size, the nurder of

internal nodes. A formula of size 6 which "computes" the same function

as in Figure 2 is represented in Figure 3.

[x, v ((x) = x3) A x5) - [(x; = x;) A x)

el 2

x JY J

OR Qo ?

Figure 3
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Sach of the three measures we have described inriuces a corresvonding

acmplexity measure over B in a netural way. For aay f in B

| circuit size = c(f) = min{c(a) |a is a circuit for f}

Zcrmle size = (ff) = min{c(x) |x is a formula for f}

| depth = d(f) = pin{d(a) |@ is a circuit for f)

32ace in the example considered, the function 8(x;,%5,%) can be shown
=2 have an equivalent revresentation as XH AX AX, » We have
c(g) = 1(g) =d(g) =2 .

In this paper we shall consider only measures defined with respect

+2 the full basis B, . There is however a cousideradble literature
a:ncerned with other bases containing sometimes functions of more than

<TD arguments or maybe consisting of a particular subset of he appropriate
<5 some technology or application. A useful survey and bibliography for

<=age results can be found in [22].

Z. Belationships Among Complexity Measures.

Fortunately the three different measures we have derined are not |
saiirely independent. In this section we summarize the known inter-

relationships. Two of these are immediate.

Zxal. Foral f in B »

e(2) < 1(r) < 2) |

fronf. For the first inequalityit is enough to recall that & formula
‘3 a restrictedform of circuit. The second follows from the observation

“ast for any acyclic circuit an equivalentformmla with the same depth

2a be constructed by repeatedly duplicating nodes of the circult until

‘ze unit fanout restriction is satisfied. Furthermore any binary tree

42th depth 4 has st most 23-1 internal nodes. {J
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These inequalities are the best rossible of their type since for

ny n consider the function CONJ (n) in B defined by
oP

-(n)

i=1

w-ere T = _logn) . (All logarithms in this paper are to base 2.

"ha notation [Xx denotes the greatest integer not more than x .)
-= ig evident that for cong(®)

c= 2 = 221 = oP .

Por inegualities in the reverse directions we have no such complete

results. For £ and da, a technique of Spira [27] shows

d <alog! vhere = 2/10g(3/2) 3.02 .

(de use f <g tomean lim sup f/g <1.) Spire miastates his coefficient
as 210g 3 . A small refinement improves this coefficient to about

2,445 . Thus 4 and log ! are asymptotically within a constant multiple
os each other. A recent result of Paterson and Valiant [16] relates ¢

exd 4d dy

c > dlogd .

To» each of the sbove results a construction is given for a circuit of

relatively soall depth equivelent to a given formula or circuit.

tL. (Global Bumds.

Although determining the complexity of particular functions seems
asually rather difficult, there are surprisingly precise results on the

esymptotic complexities of “most” functioms. If we write es) for
=ax{c(f) | £cS] end similarly for 4 ed 1, then wmifora constructions

fsx all n yield | -

es: <2 , 108) <?/10gn , ay) <2 .

~-e first two constructions are due to Inpsnov [11,12]. The third result,

tr Meloll ané Paterson {13] improves only a little om a simple construction



oy Spire [28]. A remarkable feature of the results for ¢ and 1! is

that they are matched esy=ptotically by lower bounds for "almost all”

functions. Counting arguments due to Sharmon [26] and Riordan and

Shannon [21] respectively can be used to show that for all n , there is

a subset B) cB with [Bf| ~ |B,{ such that for all f in BY

o(r) >2"m , 2) >2"/10gn .

Using Lerma 1, we have also

a(f) > n-log log n+0(1) .

mo illustrate the form of such counting arguments we outline a proof

of the first inequality. It is sufficient to prove the following result.

lecma2. Foray €>0, the number of fimections of BR, such that

e(f) < (1-¢)2"/n is ole? ) .
Sroof. We first estimate the number of circuits with n inputs and

nm gates vhere the gates are labelled with integers 2,9 . A circuit
is specified whan for each gate the associated function and the origins
of its two arguments are given. Mn upper bound is therefore

Tt avails us little to reduce the constant 15 . Howeverwe are interested

cnly in minimal sise circuits for some function end this ewmsideration

simplifies our task. Firstly there will be just one gate with fwmout 0,
the output gate. Secondly, no two gates will coopute the same function
of the inputs, for if otherwise then one of them could de eliminated

reducing the circuit size. Bach minimal circuit sppoers emactly mi times

size at most N istherefore no more than | |

CM eam | |
oo z en -26°.
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With %< (1-¢) *2%/n , this quantity is bounded above asymptotically
oy

n

o(1-€)2

which accounts for a vanishingly small fraction of B, . Ul

Pizzenger surveys and gemeralizes some of the classical results of

+ais section in [19].

5. lower Bounds for Particular Functioms.

One of the most frustrating yet tantalizing aspects of Boolean

Punctioe complexity is revealed in this section. As we have seen above,

nearly all fimctions have circuit complexity which grows expomentially

with the number of arguments. It would be satisfying to be able to present

here a simple, explicitly given, function with exponential complexity.

™e only Junctions with such complexity known to date involve some kind

of diagonalization in their definitions or incorporate the totality of

Boolean “‘unctions over a slightly smaller set of arguments. Ehrenfeucht

[2], and Stockmeyer and Meyer [30] give examples of such functions.

If we restrict ourselves to "natural" functioms which esvoid all taint

of diegonalization the present predicament is extreme. The only lower

bounds knawm for such functions are linear in the number of arguments.

In particular, lower bounds asymptoticto 2n have been provedfor some

broad farilies of functions in B by Schnorr [28]. More recently
Paul has shown bounds asyrptotic to 23 n (17) end his result has deen
generalized to a wider class by Stockmeyer [29]. The latter proves this

lower bound for the very simple congruence functions c{) for all

cl (xy 0 e0rx) =-1 if zx = 0 (mod m)

= 0 otherwise,

xd catches this for C, with the same asymptotic upper bound! The
=gthods 57 Psul and Stockmeyer are too complicated to follow hare, but

->e flavour of & 2n lover bound proof can da givea in the simple example

9 |



of T,. The threshnold functions r(?) are defined by
(n) \ sy

= 0 otherwise.

Theorem 1.

e(r{®)) >2n-3 for n>2.

Proof. For n =2 , the result is obvious. Suppose n > 2 and the

result is true for all smaller values. Consider a minimal circuit for

o{®) with m gates, and select a gate g at maximel distance from the
output node. The arguments to this gate must be (distinct) input nodes,

X; » Xy SE. Ir x, and x, both have fanout 1 , the dependence of
the outrut on Xs, x, is only through the value of g . This is absurd
since for certain values of the other arguments the circuit must distinguish

enong three possible values for xy + xq , namely 0,1,2 . Ve may
therefore suppose that Xx, kas Janout at least two and is connected to
two distinct gates g and bh . If we fix the value of input x, to 0
then g¢ and h compute fimetions of only one argument. These are

trivial enough to be absorbed into the functions at the succeeding nodes,

eliminating g¢ and h . The resulting circuit has »-2 gates ard

certainly computes z{n-1) from the remaining arguments. By induction
we have

Other (lower) linear bcunds are given by Harper, Hsieh and Savage

[8]. These snd related results are surveyedby Savage in [22].

Ay non-linearlover bound for the circuit size of an explicitly

given function would constitute an importaat advance from our present

expertise. To prove FP # NP by this route would require a non-polynomial

lower bound for some suitable function. Some slight progresshas been

zade for the formmlasize measure and this will de cutlinedin the next

sections. There are as yet no ron-trivial lower bounds on depth other

than those derived directly for corresponding formula size results using

the relation A> log ! .

19



5. Lower Bounds on Formula Size.

An irportant theorem here is due to Neciporuk [15]. Suppose that

| the argurents to a function f£ in B are partitioned into blocks

Brees Ry « If for some 1 the arguments in all the blocks R, »
_ J#1, are fixed to 0 or 1 in some way, the result is a restriction

of ff, a function f' depending only on the variables in Ry . Let
nm, be “he number of different such restrictions f' for all possible

fixations of the other variables. Now the theorem can be stated simply
as follows.

Theorem 2 (Neciporuk). There exists a > O such that for all fr,
Pp

1((f) >a. log m,
i=l

where the m, 's are as defined above. ©)

To explore the maximum possible lower bounds derivable from this

theorem we note that if R, contains r variables then there are on the

one hand at most 2 possible functions on R, » and on the other at
rost 277 fixations of the remaining variables. Hence

r

m, < min{e® ,2™T)

end the occtimm bound, which requires r to be about log n , is of order

n2/1og n.
The variety of arplications of Neciporuk's theorem is illustrated by

the following examples. The full bound of a-n°/log n for some a>0
is provable for Neciporuk's original functions [15] and for functions

definedty Paul {17]. In both cases the examples involvesome notion of

"indirect addressing”, for instance Paul uses fmctions of the form

(x,y ) ses3 Y » 2) - I

where X and tae y's are binary vectorsof length s , and where z
iz a binary rector of length k=2". 10 coepute the valueof the

functior, “he vector x is regarded as a binary index to select the

11



vector Ix which is used sinilarly to select one binary digit of =z .
Teciporuk's example can be slightly rodified and both upper and lower
bounds of order no/log n rxroved for the result.

More algebraic in nature are the exarples of determinant over GF(2)

vy Klcss [ 9) and the "steble marriage problem” (exact matching) by
Harper and Savage [ 5]. The lower bounds proved in these cases are

| only a-n>/2 . Finally we have unpublished results from two entirely
Gifferen- areas. There is a contexti-Zree language over a binary alphabet

so that the n-ary function defined by the strings in the language of

length n has formula size of order at least 0°/log n . The topological
predicate of connectedness on a sjuare binary array yields a function
with for=ula size at least a-n-logn .

We close this section by mentioning two similar theorems giving

ron-linesr lower bounds cn formulas size. The first is due to Hodes and

Specker ( 7] and has been appliedby Hodes to geametric predicates such

as convexity and connectedness { <). The second is a result of Fischer,

‘feyerand Paterson, a weaker versionof which appears in [3]. Both
theorems can be roughly expressed as follows.

| "Theorem" (X). For all f in 3 either 1(f) is X-largeor there is
an X-restriction of f£f to m variables which is X-linear. OO

¥her X = Hodes - Specker, an X-restriction is made by setting the

remaining variables to O and an X-linear function is of the form

8(Xys ceesX) = By © (by A A x,) © (b, “© x)
where bys By 50, are Boolean constants and overline denotes negation.

ther X = Fischer -Meyer- Paterascn, an X-restriction is made by

setting equal mumbers of variables to 0 and 1, md mm X-linear function
has the form

8(xy9.c0sXx) =, 8 ® (bo, Axy)
for scxe constants Dys eo esby .

12



In both cases X-large is defined in terms of n and m (the number

=Z variables of the restriction). The largest bounds provable with the

rst theorem are less than na log" n  vhere

2

' Jm

log” n = least m such that 2° > n .

Tne merit of the second theorem lies in its capacity to prove bounds up

io nlogn/loglogn . We shall return to these theorems in the next

section where their specializations to symmetric functions are more

succinctly expressible.

T. Symmetric Functions.

A symmetric function is one which is invariant under permitatioms

cI its arguments, or equivalently, a function f£(x,,...,x) is symmetric
2 nd only if there is a function g such that

There are precisely o™1 symmetric functions in B, since p23 x, cm
sake nt] different values. We denote the set of symmetric functions in

2. by Sy, .
A much lower range of complexities is involved here.

-aeorem 3. c(s)) is linear in n , 1(s,) is bounded by a polynomial
in n, and a(s,) is O(log n) .

roof. Each bound results from a two-stage construction. In the first

stage a circuit is designed to campute the binary representation of the

sun Tx, . This set of [log(n*l)l =p functions can be computed
ether with a circuitof sise O(n) or in depth O(logn) , dy a recursive

szlitting process in which representations for the two halves of the

argument set are camputed and then added together. The addition of two

r-digit binary numbers can de performed “y a circuit of sise O(p) in a

:craightforwvard wey. For the dupth bound a signed-digit representation {1]

13



can be used so that an addition requires depth only O(log p) . A binary

representation is not used until the final result.
The second stage has only to compute the required function from the

v results of the first stage. The results given in Section 4 show that

this stage requires either only about 2®/p = 0(n/log n) gates or enly
depth p+tl . The urrer bound on formula size follows from that for

depth. oJ

Detailed constructions for the first stage are provided by Muller

end Preparata [14]. A polynomial upper bound for ¢(s,) is proved by
Krapchenko [10]. The best vound on formula size published to date is

o(a> 96+ ++) and due to Pippenger [ 18].
The results of Schnorr [24,25] show that for each n > 2 all

except eight functions have size complexity at least 2n-3 . The eight

reaaining functions heve complexity n-l or 1 . Stockmeyer shows in

[29) that at least half of § has complexity sbout 22 n . He also
states that c(S)) <n.

Directing our attention esgeain to formula size we find that Neciporuk's

theorem is relatively impotent for symmetric functions since for a block

of size r the mmber of restrictions is limited to min{2"! » n-r+l}
£0 that only linear lower bounds are derivable.

When the theorex= of Hodes and Specker is restricted to symmetric

functions it can be restated more dramaticelly.

Taeorem 4. For some (slowly growing) function t(n) with t -e as

n-e, forall £ in S,

either 2(f) > n-t(n) or 2(f) <2n .

Froof. The only symmetric functions which escape the conditions sufficient

or a nc-linear lower bound are functions of the form

A Nx (0) AV x) 0 (0, nD x) @1,
For all n , eachof these 16 functions has a formula of size at most

a-1. _

pT]



The only limitation therefore to the power of the Hodes - Specker

theorem for symmetric functions {ss the lownesa of the bound. A rather

better bound is attainable for many symmetric functions using the

fischer - Meyer - Paterson result. The corresponding simplification to

Sy is as follows.

Theorem 5. For some a > 0, all sufficiently large n and for all f

in 8, we have, for all k

either 2(f) > a+n-.log k/log log k

or f is a function only of D x, in the range
i

Whereas in the previous theorem a function escaped the lower bound only

if it was constant or alternating except possibly in the "end zones" of :

size one of the sum function, in this second result the "end zones" are

of size k . To produce a bound of order n .log n/loglogn we need
to ensure that k > n® for some ¢ >0.

Yor the families of threshold functions T.*) end congruence
functions o{®) defined in Section 5 we may establish the following
results as corollaries of Theorems 5 and 6.

(1) For all k>2, (r™))/n + 48 n ~~,
(11) For all € > 0, there is a constant a > 0 such that

1(z™)) >a-n-logn/loglogn for n‘ <k< nn,
and

1c) >a*nclogn/loglogn for 2 <k <n-n®.

The fimetions ci») are of special interest again since ome can construct
formulae of order n .logn for these, to approachthe proven lower bound

rather closely.

15



8. Conclusion and Open Problexs.

A multitude of problems of practical and theoretical interest can

be expressed in terms of the cozplexity of Bool:an functions. In recent
years a substantial body of new results in this area has been attained.
There remain however embarrassingly large gaps in our nmowledge and

proof techniques. This can best be epprecisted in considering the
following set of simply stateable open problens.

1. Prove a non-linear lower bound on the circuit size of some explicitly

given Boolean functioms.

2. Prove a quadratic lower bound on the formula size of explicit
functions. :

3, Improve the gemeral inequality c > a-d-log 4 .
L. Prove en asymptotic depth bound not derivable from a corresponding

bound on formule size.

5. Show 1(s,) > a-n-logn for some a > 0.

16
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