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in Introduction to Boolean Function Complexity

by

Michael S. Paterson
(University of Warwick, Coventry, U. K.)

Abstract.

The "ccmplexity” of a finite Boolean function may be defined with
respect to its computation by networks of logical elemenis in a variety
of ways. Thae three complexities of "circuit size", "formula size" and
"depth" are considered, and some of the principal results concerning their
relationsnits and estimations are presented, with ocutlined proofs for some
of the simpler theorems. This survey is ruthlessly restricted tc networks
in which all two-argument logical functions may be used. A rich corpus
of theory related to logical networks under a variety of restrictions may
e found in the literature, but is apt to be confusing in a first
introduction.

Keywords and phrases: Boolean functioms, complexity, loglcal networks,
finite functions, formula size, depth.
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1. Introduction.

My purpose in composing this trief account is to introduce the general
mathematical reader to some of the resulis and problems concerned with the
complexity analysis of Boolean functions. In the interests of conciseness
and coherence of presentation I shall attempt to cover just a few restricted
areas which I have found to be of particular theoretical interest.

The study of Boolean function complexity draws its importance from
several branches of computer science. The original and most ocbvious
motivation is that many of the tasks for which digital electronic equipment
must be designed can be usefully represented as the computation of Boolean
functions. As exampies, I have in mind sorting networks, umary-to-binary
converters, miltiplication units and address decoders. A second catchment
ares lies in the recently active field of algebraic algorithmic complexity.
Attractively structured problems such as matrix multiplicetion, polynomial
evaluatim and convolution product have their simplest incarnation over the
two-element Boolean domain. The esim is to reach a complete understanding
of the complexity «f such basic algorithms. Finally I should menticn
"machine-based” cwumplexity where we are concerned with time or space bounds
on the dehaviour of Turing machines, random-access machines or other
whstractions of digital computers. For exsmple, a Turing machine accepting
or rejecting an input string msy be so simulated by a Boolean network
camputing a function that lower bounds on the corplexity of such & function
yield corresponding bounds on the running time of the Turing machine (20,25].
Aproof that P& NP, see [8], is in principle feasible by such an
arproach.

2 - mmtm L)

Ist B be the set of n-ergument Boolean fumctions {£: {0,1)" - [0,1}]) .
(The correspondence with the femiliar Boolssn dcmain {false , true] is

that 1 represents trus .) We note that |n‘|-2”n, 8o, for exsyple,
|32| =16 . To introduce our notations end terminology for these 16 basic
functions we list them in Table 1. To obviate explicit function tables,
definitions in terms of GP(2) , the two-element field, are provided.




Sy=bol for f Name for f £(x,y)

o] 0
constants

l 1

Y x
projections

., y

;1 - 1+x

;'2 - 1+y

A, AND conjunction x.y

A, HAD nand 1+x.y

v, OR disjunction xtyEX.y

v, NOR nor (1+x).(1+y)

- implicatian l+xtx.y

- ow 1+yfx.y

by - x.(1+y)

- -- y.(1*x)

. not-equivalence vy

- equivalence, bi-implication ltxty

The 16 functions of B, with Gr(2) equivalents.

Tadle 1.

Punctions in B ars to be camputed by ayclic circults over the
m’e' Thess may be represented as finite directed acyciic graphs
w2th n input nodes and ome oytput pods, each input node corresponding
«2th one of the arguments and each other node being associated with some
alexsnt of 32. The indegree of the imput nodes is ze¢ro and esch other
=54e has an ordered pair of incoming arcs. An association of dbinary



values to the inputs naturally inc.ces binury values on all other nodes
(vy applying the appropriate basis function at each to tae values of
its predecessors) and hence the circuit defines a function of B,
carputed at its output node. A smell example is given in Figure 2.

Figure 2

M alternative formulation wvhich is in many respects equivalent is
as a straight-line program, & fixed sequence of camputation steps at each
step of vhich a basic function is applied to two arguments which may be
either results of previous steps or input argument values. There are in
general rany such sequences represented by a single acyclic eircuit. One
that yields Pigure 2 is given below.

i =R ETR
Va = vl A x,
'3 = xl v 72
output := v3 -Y



Various parameters of circuits may be used as a basis for complexity
measures. The most immediate is the circuit size, ¢ , which cowmnts the
aupber of internal noles or logical gates, and corresponds also to
the number of steps in a program. I each gate in a circuit requires the
same fixed execution time then the total time in a parallel coamputation
by the circuit will be limited by the depth, 4, of the circuit, the
zaximun number of gates on a path fram am input to the output node. In
the exarple, ¢ =4 and d = ,

A mathematician might prefer to represent a Boolean function as a
well-formed linear axpression over the input variables with fumction
symbols correspanding to 2lements of 32 + This is equivalent to an
acyclic circuit where the logical gates have fanout (outdegree) at moat
one. Note that the input nodes may have arbitrary fanout, dbut it is
convenient in diagrams to repii-ate inputs so that the circuit can be
drawn as & tree in closer correspondence with the structure of the linear
formula. The size of u formula is jus. the circuit size, the numder of
internal nodes. A formula of size 6 which "computes” the same function
as in Figure 2 is represented in Figure 3.

[x v =x)Ax)] = [(x=x))Ax]




Sach of the three measures we have described inriuces a corresvonding
sc=plexity measure over B in a netural way. For amy f 1in Bn

circuit size = c(f) = min{e(a) |a is a circult for f}
Zcrmle size = (f) = min{c(x) |@ is a formula for £}

depth = d(f) = pin{d(x) |a is a circuit for £}

3face in the example considered, the functiom g(xl,:ge,xs) can be shown
<2 have an equivalent revresentation as xlf\r,al\xj » we have
clg) =1(g) =d(g) =2 .

In this paper we shall consider only measures defined with respect
<3 the full dbasis B,‘, « There is however a cousideradble literature
a:ncerned with other bases comtaining sometimes functions of more than
<7 argunents or maybe consisting of a particular subset of B2 appropriate
=<5 some technology or application. A useful survey and bidliography for
<=ege results can be found in [22].

2. Belstionships Among Complexity Measures.
Fortunately the three different measures we have derined are not

szilrely independent. In this section we summarize the kmown inter-
relationships. Two of these are immediate.

s l. TForal f in Bn,

e(f) < 1) < 229

Sxonf. TFor the first inequality it is enough to recall that & formla

27 a restricted form of circuit. The second follows from the cbservation
*aat for sny acyclic circuit an equivalent forsmla with the same depth

282 be constructed by repestedly duplicating nodes of the circuit until
+-2¢ unit fanout restriction is satisfied. Furthermore any binary tres

<2th depth 4 has st most 23-1 internal nodes. O



These inegualities are the best rossible of their type since for
==y n consider the function CONJ (n) in Bn defined by

. .(n
CO’.IU( )(Xl, ...,xn) = A xi
i=1
w-ere T = (logn) . (ALl logarithms in this paper are to base 2.
The notetion [ Xx; denotes the greatest integer not more than x )
=< ig evident that for consn)

c=l=2d-1-2p-l .

For inequalities in the reverse directions we have no such complete
vesults. For £ and d, & technique of Spira [27] shows

d <alog! where Q= 2/log(3/2) a3.02 .

We use f < g tomeean lim sup f/g <1 .) Spire misstates his coefficient
as 210g 3 . A small refinement improves this coefficient to about

2,445 . Thus 4 and log ! are asymptotically within a constant multiple
o® each other. A recent result of Paterson and Valiant {16] relates ¢

a2 4 by

cz%dlogd .

To» each of the sbove results a construction is given for a circult of
relatively szmall depth equivelent (o a given forwmula or circuit.

L, Global Bnmds.

Although Mcrl:lfuag the complexity of particular functions seems
asually rather difficult, there are swrprisingly precise results on the
psyzptotic cemplexities of "most" functions. If we write o(5) for
=ax{c(?) | £c5} end similarly for 4 sd I, then wmifora constructions
fsr all n yledd

o3, <2 , 1(8) < ¥/108n , 4(B) <m .

~=ea firs: two constructions are due to Iupenov [11,12]). The ﬂﬂ.rd result,
Ty MpCcll ané Paterson [13] improves only a little on & simple corizstruction



oy Spira {28]. A remarksble feature of the results for ¢ and ! is

that they are matched esy=ptotically by lower bounds for "almost all"

functions. Counting argurents due to Sharnon [26] and Riordan and

Shannon [21] respectively can be used to show that for all n , there is
. * j

s subset B C B, with |8}] ~ |B,| such that for all f in B

e(r) >2%n , f) 3 2"/1ogn .

Using Lerma 1, we have also
a(f) > n-log log n+0(1) .

7o illustrate the form of such counting arguments we outline a proof
of the first inequality. It is sufficient to prove the following result.

Lema 2. For sy ¢ > 0, the number of functions of ‘n such that
2!!

e(f) < (1-€)2"/n s of2°) .

Sroof. We Tirst estimate the number of circuits with n inputs and

n gates vhere the gates are ladbelled with integerr 2,..pR . A circult
is specified when for each gate the associated function and the origins
of its two arguments are given. An upper bound is therefore

(nm)>® .26

Tt avails us little to reduce the constant 15 . However we are interested
cmqmmmuncimitlfwmmmncndmm
sinpltfj.umtuk. Firstly there will de just one gate with fumout O,
the owtput gute. BSecondly, mo two gates will coogute the sams fumction
of the inputs, for if othervise then cne of them could de eliminated
reducing the circwit size. Each minimal circult sppeers emactly mi times
in this enunerstion sinde two different lsbellings must indeed give
sifferemt lebelied circuits. Perther esch circult is minimsl for precissly
one fwncticn. The mmber of distimct fusctions computed ¥y circuits of
size at most N is thersfore no more then

' =
I, -



With ¥ < (1-¢) -2n/n , this quantity is bounded above asymptotically
by

2(].-e)an
wvhich accounts for a vanishingly small fraction of nn . U

Pizzenger surveys and generalizes some of the classical results of
tais section in [19].

5. lower Bounds for Particular Functioms.

One of the most frusirating yet tantalixzing aspects of Boolean
Amction complexity is revealed in thiz section. As we have seen above,
nearly all functions have circuit complexity which grows expmentially
with the number of arguments. It would be satisfying to be able to present
here a simple, explicitly given, function with exponential complexity.
™e only functions with such complexity known to date involve some kind
of dlageelization in their definitions or incorporate the totality of
Boolean “unctions over a slightly smaller set of argusents. Ehrenfeucht
{2 ], and Stoclkmeyer and Meyer [30] give examples of such functions.

If we restrict ourselves to "natural” functioms which svoid all taint
o dlagonalization the present predicament is extreme. The only lower
tounds krowr for such functions are linear in the number of arguments.

In particular, lower bounds asymptotic to 2n have been proved for some
broed facilies of functions in B, by ldnm [2b]. More recently

Psul has shown bounds asyrptotic to 25:: {17) snd his result has deen
generalized to a widsr class by Stockmeyer [29]. The :uttu- proves this

mwmmﬁom-mwc_ for all
n>2, defined by

ci‘)(ﬁ,...,xn) =1 1t Tx, =0 (wdn)
=0 othervise,

4 matches this for ck with the same asymptotic upper dbowmd! The
=sthods 27 Psul and Stoclkmeyer are too complicated to follow hare, but
<ze flgvour of &« 2n lmmdmdcmhdmmmmm



of T, . The threshnold functions Tﬁ“) are defined by
(n) \ Y
Tm ‘(ﬁ,-.o,xn/ - l it inzn
= 0 otherwise.

Theorem 1.

c(Tén)) >2n-3 for n>2.

Proof. For n =2, the result is obvious. Suppose n > 2 and the

result iz true for all smaller values., Consider a minimal ecircuit for

Tén) with m gates, and select a gate g at maximal distance from the
output node. The arguments to this gate must be (distinct) input nodes,

) x.1 ssy. If x, and x‘1 both have fanout 1 , the dependence of

the outyut on x, , xd is only through the value of g . This is absurd
since for certain values of the other arguments the circuit must distinguish
eong three possible values for x1+xJ , namely 0,1,2 . We may
therefore suppose that Xy kas fanout at least two and is connected to

two distinct gates g end h . If we fix the value of input x, to 0
then g and h compute functions of only one argument. These are

trivial enough to be absorbed into the functions at the succeeding nodes,
eliminating g and h . The resultirg circuit has ®-2 gates and
certainly computes tg"]‘) from the remaining arguments. By induction

we have

m.a 2 2(“1)-5 » 1-‘.’ | 2 a.’ . D

Other (lower) linear bcunds are given by Harper, Haieh and Savage
[8). These snd related results are surveyed by Ssvage in [22].

My non-linear lower bound for the circuit size of an explicitly
given function would constitute an importaat advance from our present
expertise. To prove P 4 NP by this route would require a non-polynomial
lower bound for same suilable function. Some slight progress has been
zade for the formumla size measure snd this will be cutlined in the next
sections. There are a3 yet no ron-trivial lower bounds on depth other
than those derived directly for corresponding formula size results using
the relation A>log ! . '

19




5. Lower Bounds on Formula Size.

An irportant theorem nere is due to Neciporuk [15]. Suppose that
the argurents to a function £ in Bn are partitimed into blocks
Rl"“’Rp « If for some i the arguments in all the blocks RJ ’
J$1, are fixed to O or 1 in some way, the result is a restriction
of £, a function ' depeniing only on the variables in Ri . Let
By be ‘he number of different such restrictions f' for all possible
fixations of the other variables. Now the theorem can be stated simply
as follows.

Theorem 2 (Neciporuk). There exists a > O such that for all ¢,

P
10(2) >a. T 1log B,
1=l

where the my 's are as defined above. )

To explore the maximm possible lower bounds derivable from this
theorem we note that if R1 contains r variebles then there are on the

one hand at most 2°  possible functicns R, , and cn the other at
most 2"°T fixations of the remaining variables. Hence

r
m, < mnfe® ,2"T)

&ad the octimm bound, which requires r to be about logn , is of order
nalloc n.

The variety of arplications of Neciporuk's theorem is illustrated by
the fallowing exmmples. The full bound of a-n2/logn for some a > 0
is provable for Neciporuk's original functions [15] and for functions
defined by Paul {17]. In both cases the exsmples involve some notion of
"indirect addressing”, for instance Paul uses functions of the form

£(X, ¥y 5 eee s, ’)2) = g
~7 21 A Sipet Iy

vhere x and the !1" are binary vectors of length s , and vhere =z
iz & binary rector of leagth k = 2° . To carpute the value of the

functior, “he vector x is regarded as a binary index to selact the




vector Ve vhich is used sinilarly to select one binary digit of =z .

:Ieciporuk-"s example can be slightly modified and both upper and lower
bounds of order na/log n yroved for the result.

More algebraic in nature are the exarples of determinent over GF(2)
by Klcss [ 9) and the "sieble marriage problem” (exact matching) by
Harper ent Savage [ 5]. The lower bounds proved in these cases are
only a-n’/2 . Finally we have unpublished results from two entirely
Gifferen areas. There is z coniexti-“ree language over a binary alghabet
s0 that the n-ary function defined by the strings in the language of
length n has formula size of order at least n-/logn . The topological
predicate of connectedness on a sjuare binary array yields a function
with formula size at least ac.n-logn .

We close this section by mentioning two similar theorems giving
ron-linesr lower bownds cn formuls size. The firat is due to Hodes and
Specker [ 7] sand has been applied by Hodes to geametric predicates such
as convexity and cornectedness { <]. The second is a result of Fischer,
eyer and Paterson, a weaker version of which appears inm [3]. Both
theoresns can be roughly expressed as follows.

"Theorem” (X). Forall f in 3 either 1(2) is X-large or there is
an X-restriction of f to m varisbles which is X-linear. O

Wher X = Hodes - Specker, an X-restriction is made by setting the
renaining variables to O end an X-linear function is of the form

8(xs -eesky) = By @ (B A /‘\ %) e (o, A? x,)

where 'be,h]_,ln2 are Boclean constants and overline denoctes negation.

Wher X = Fischer - Meyer - Paterscn, an X-restriction is made by
settirg egual numbers cf varisbles to 0 and 1, md an X-linear functian

has the form

&(xyycc00x) =0, 8 ? (o, Axy)

for scxme constants bo""’bn .



In both cases X-large is defined in terms of n and m (the number
=® variables of the restriction). The largest bounds provable with the
S rst theorem are less than n log® n  where

2

< )m

log"n = least m such that 22 >n .

Tae merit of the second theorem lies in its capacity to prove bounds up
o0 nlogn/loglogn . We shall return to these theorems in the next
section where their speclalizations to symmetric functions are more
suceinctly expressible.

7. Symmetric Functioms.

A symmetric function is one which is invariant under permitatioms
e its arguments, or equivalently, a function f£(x,...,X) is symmetric
12 and only if there is a function g such that

£(Xyse0erX)) = ‘(?xi) .

There are precisely 2™1  symmetric functions in B, since in can

sake nt]l different values. We denote the set of symmetric functicns in

bySn.

A much lower range of complexities is involved here.

L}ll

=aeorem 3. c(sn) is linear in n, :(sn) is bounded by a palynomial
2 n, and d(sn) is O(log n) .

Zroof. Each bound results from & two-stage comstruction. In the first
stage & circuil is designed to campute the binary representation of the
sum zxi . This set of [log(n*tl)1 =p functions can de computed
elther with a circuit of sizse O(n) or in depth O(log n) , by a recursive
szlitting process in which representatiana for the two halves of the
srgument set are camputed and then added together. The additiom of two
r-digit binary numbers can be perforwed “y a circuit of sizse O(p) 4n a

:2raightforvard way. For the depth bound a signed-digit representation {1 ]



can be used so that an addition requires depth only O(log p) . A binary
revresentation is not used until the final result. A

The second stage has only to campute the required function from the
v results of the first stage. The results given in Section 4 show that
this stage requires either anly about 2¥/p = O(n/log n) gates or anly
depth p+*l . The urrer bound on formuls size follows from that for
depth. O

Detailed constructions for the first stage are provided by Muller
end Preperata [14]. A polynomial upper bound for l(sn) is proved by
Krapchenko [10]. The best bound on formula size published to date is
0(a276+++) and due to Pippenger [ 18].

The results of Schnorr [2L,25] show that for each n >2 all
except eight functions have size corplexity at least 2n-3 . The eight
remaining functions heve complexity n-l or ) . Stockmeyer shows in
[29) that at least half of sn hes complexity about 2% n . He also
states that c(Sn) <én .

Directing our attention again to formula size we find that Neciporuk's
theurem is relatively impotent for symmetric functions since for a block
of size r the mmber of resirictions is limited to min{2™'}, n-r+l}
£0 that only lineer lower bounds are deriveble.

¥hen the theorez of Hodes and Specker i3 restricted to symmetric
functions it can be restated more dramaticslly.

Toeoren 4. For some (slowly growing) function t(n) with t - e as
n-w, forall £ in sn

either 2(£) > n-t(n) or 2(f) <2n .

Proof. The only symretric functions which escape the conditions sufficient
Jor a nc-linear lower bound are functions of the form
(boAAz Y8 (v AV x,) © (v, A n) ey, .

For all n , each of these 16 functions has a formula of size at most
a'lo :




The only limitation therefore to the power of the Hodes - Specker
theorem for symmetric functions i{s the lownesas of the bound. A rather
better bound is attainable for many symmetric functions using the
Fflascher -Meyer - Paterson result. The corresponding simplification to
S, is as follows,

Theoren 5. For some a > 0, all sufficiently large n end for all ¢
in sn we have, for all k

either £(f) > a+.n.+log k/log log k
or f is a function only of exi in the range
i

k<X x <n-k. [
-971=

Whereas in the previocus theorem a fimction escaped the lower bound only
if it was constant or alternating except possibly in the "end zomes" of
size one of the sum function, in this second result the "end zones" are
of size k . To produce a bound of order n .log n/log logn we need
to ensure that k > n€ for scme ¢ >0.

For the families of threshhold functions Tﬁn) end congruence
functions cl(!n) defined in Section 5 we may estedblish the following
results as corollaries of Theorems 5 and 6.

(1) Forall k>2, !(T{n))/n ~® a8 n-~e,
(i1) For all € > 0, there iz a constant a > 0 such that
:(:l(“))>n-n-1o¢n/1oglo;n for n® <k <n-n®,

and
!(cin)) >a'nclogn/loglogn for 2 <k <n-n .

The fimctions c{“) are of special interest again since one can construct

formules of order n .log n for these, to approach the proven lower bound
rather closely.



8'

Conclusion and Open Problers.

A miltitude of problems of practical and theoretical interest can

be expressed in terms of the cozplexity of Bool:an functions. In receat
years a substantial body of new results in this area has been attained.
There remain however embarrassingly large gaps in our inowledge and
proof techniques. This can best be eppreciated in considering the
following set of simply stateable open problens.

1.

2.

3.
L.

S.

Prove a non-linear lower bound on the circuit size of same explicitly
given Boolean functioms.

Prove a quadratic lower bound on the formula size of explicit
functions.

Improve the gemeral inequality c > a-d-log 4 .

Prove an asymptotic depth bound not derivable from a corresponding
bownd on formula sigze.

Show l(sn) > a.-n-logn for some a >0 .
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