COMPLEXITY OF MONOTONE NETWORKS
FOR COMPUTING CONJUNCTIONS

by

Robert Endre Tarjan

STAN-CS-76-553
JUNE 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERSITY

{7

Complexity of Monotone Networks for Computing Conjunctions

*
Robert Endre Tarjm1—/

Computer Science Department
Stanford University
Stanford, California 94305

Abstract. Let Fl’FQ”"’Fm be a set of Boolean functions of' the form
F, =A {xeXi} , where A denotes conjunction and each Xi is a subset
of a set X of n Boolean variables. We study the size of monotone
Boolean networks for computing such sets of functions. We exhibit
anomalous sets of conjunctions whose smallest monotone networks contain
disjunctions. We show that if'f&I is sufficiently small for all i ,
such anomalies cannot happen. We exhibit sets of m conjunctions in n
unknowns which require celna(m,n) binary conjunctions, where a(m,n)

is a very slowly growing function related to a functional inverse of
Ackermann's function. This class of examples shows that an algorithm

given in [12] for computing functions defined on path:: in trees is oplimum

to within a constant factor.

Keywords: Ackermann's function, computational complexity, lower bound,

monotone Boolean circuit, path compression, tree.

f/ Research partially supported by National Science Foundation grant
MCS 75-22870 and Office of Naval Research contract NOOOLlk-76-C-0A55.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1. Introduction.

Let X —— {xl,...,xn} be a set of' Boolean variables. A Boolean
network is a sequence of triples (9n+1’an+1’bn+1)’""(gn+k’an+k’bn+k>
where each Gi is a binary Boolean operation and each ai,bi is an
integer less than i . We associate with each integer i , 1< 1i < n+k,
a Boolean function £f£(i) given by f(i) = X if1<i<n,
£(i) = £(a;) 0, f(by) if n+l < i < n+k . If F,Fy, .., F are
Boolean functions of X3 Xpyeees Xy the network_computes Fl’Fe""’Fm
if there is a function §: {1,2,...,m} - {1,2,...,ntk} such that Fizsf(¢(i)),
where = denotes logical equivalence. The network is_monotone if Gie{A,V}
for all 1 , where a denotes conjunction and V denotes disjunction.

In this paper we study the size of monotone networks for computing
certain Boolean functions. Our interest in this problem stems from three
sources. (1) Techniques for analyzing monotone network complexity may
be useful in analyzing non-monotone network complexity, about which
little is known. (2) Our lower bound results apply not only to
monotone networks, but to algorithms for other kinds of computation.

(3) Our main lower bound result implies that an almost-linear algorithm
for computing functions defined on paths in trees [12] is optimum to
within a constant factor.

We restrict our attention to Boolean functions Fi of the form
F, = A {x eXi} , where X; € X . That is, F,F,,...,F is a set of
conjunctions of various subsets of variables. In Section 2 we review
previous results on such sets of functions. In Section 3we prove a basic
result which gives conditions under which we can afford to ignore

disjunctions. In Section 4 we exhibit an anomalous set of conjunctions

whose minimum-size monotone network contains a disjunction. We also use

the results of Section 3to derive sufficient conditions for the
non-existence of such anomalies. In Section 5 we prove a non-linear
lower bound for sets of conjunctions which correspond. to path:; in trece:s,

thus proving the optimality, to within a constant factor, of the main

algorithm in [12].

2. Previous Results.

Several researchers, including Lamagna, Savage [5,10], and
Nechiporuk [7], have studied the complexity of monotone networks for
computing conjunctions. We summarize their main results here. See [4,8,9]
for lower bounds on the size of monotone networks for computing other types
of functions. The following two theorems are special cases of much more

general results proved by Savage [10].

Theorem A. For 1 <i <m, let Xi c X . Let Fi = A {::eXi} . Then
*
Fl’FE""’Fm can be computed by a monotone network using 2m[n/log m] —/

binary conjunctions and no additional operations.

The idea used in the proof of Theorem A is the same as used in the

four Russians' algorithm for matrix multiplication [2]. For details, see [10].

*¥
Theorem B . For m and n polynomially related-—J/and sufficiently large,
KKK
cmn/log m X/

almost all sets of m conjunctions in n unknowns require

operations when computed by any Boolean network.

This theorem can be proved by a straightforward counting argument. See
[10] for details and Moon and Moser [6] for a related result.

Theorem B shows that the bound in Theorem A is tight for almost all sets
" of m conjunctions in n unknowns, if m and n are polynomially related.
However, it seems very hard to explicitly exhibit sets of conjunctions which

require as many operations as indicated by Theorem B.

*
/ All logarithms in this paper are base two; [%1 denotes the zmallent
integer not less than x

*% .
——/ We say m and n are polynomially related if there is some polynomial
p such that m < p(n) and n < p(m)

*AK
Throughout this paper, ¢ denotes a suitable positive constant.

Nechiporuk [7] and Lamagna and Savage [5] have exhibited sets of n
conjunctions in n unknowns which require ¢ n5/2 binary conjunctions
for their monotone computation. Their constructions use the same ideas,

which we shall review in Section 5. To the author's knowledge, no harder

sets of conjunctions have been explicitly exhibited.

3. Properties of Minimum-Length Monotone Networks.

In order to bound the number of binary conjunctions required by monotone
networks for computing specific sets of conjunctions, we need a result which
allows us to ignore the effect of disjunction::. In thissectionweshowlhat
disjunctions can be ignored, provided we allow certain subconjunctions of.
previously computed conjunctions to be computed for free. We accomplish this
by showing how to transform a monotone network for computing functions
F, = A &ceXi} into a straight-line computation of the sets X, from the

singleton sets {Xj} , using the operations of set union and arbitrary subset.

Let (On*l’an+l’bn+l)’""(en+k’an+k’bn+k) be a monotone network
for computing A{XGXl}, cee s A bceXm} . Let f£(1),f(2),...,f(ntk)
be the associated Boolean functions and let @: {1,2,...,m} - {1,2,...,ntk}
be such that £(@(i)) = A {x eXi} . For 1 <i<mk, let

vA{x eYj(i)} = f(i) be a disjunctive normal form for £(i) . This
J

form is unique up to adding conjunctions A{XGTYJ,(i)} such that
Yj(i) c Yj,(i) for some 7

Let Z (i) = r]Yj(i). Z(i) is independent of the disjunctive
J

normal form chosen to represent f(i) . Z(1i) = {xi} for 1 < i <n

andz(¢(,j))=xjfor1<_j§m.Ifoi=v,

z(a;) NZ(bs) = (ng(ai)) n(

n Yﬁ'(bi)) = 7(i) , since
j'

(v A {x eYj(a.i)) v (v oAfx eYj,(bi)}) is a disjunctive normal form
J'-V

J
Ny, (o)) :

for £(i) . If 0, = A, z(ai) UZ(bi) = (an(ai)) U (J

J

jn' (YJ- (ai)UYj,(bi)) = 7Z(i) , since ;/ j\/' A {x €Yj(ai) UYj,(bi)} =

n
J
(v A{x eYj(ai)}) /\(V/\{xeYj,(bi) 3) is a disjunctive normal form
J N

for f(i)

Let 1 < j,j' <mk . We say j depends on j' 1in the nctwork

(eml’aml’bml) s (en+k’an+k’bn+k) if there is a sequence

j = 3(1),3(2),3 =i such that j(i+l) ¢ {a‘j(i)’bj(i)} for
l1<i<e-1.

Theorem 1. Let 1 < i < nt+k . Let G be any Boolean function of x

17 0¥y
such that G DA{x €2(i)} , and if A {x er] D £(i) and ¢(Jj) depends
on i then A{xer} DG . For 1< j<mk, let g(j) be the Boolean
function defined by g(j) = X, if 1< j<nandjéi, g(i) = ¢
if j=1i, g(j) = g(aj) gj (bj) if #1 < j < n+k and j £ i . Then

g(f(3)) = £((3)) for 1< 3 < m.

Proof. Let 1<j<m. If #(j) does not depend on i , then
obviously g(#(3)) = £(#(3)) . Suppose @(j) does depend on i

Let 57 = (yl,...,yn) be the Boolean vector such that ylZ =1 iff

Xy e Then f(¢(3))(y) = 1 . If £(i)(y) = 1 , then A{xeXJ.}:) £(1)
since f(i) is monotone, and Afx er} O G by hypothesis. Thus

¢(¥) = 1, and g(#(3))(¥) = £(B(3))(¥) = 1 . If £(i) (y) = 0 , then
£(i) (y) < g(i) (), and 1 = £(B(3))(¥) < &(@(3))(¥y) . In either case,
since g is monotone, g(@(j)) (z) = 1 for any Boolean vector
z = (zl,ze,...,zn) such that £(@(j))(z) =1 .

Let z be such that £(#(j))(z) = 0 . Let ¢ be such that
= .. If.x, €Zz(i) , then G(z) = 0 < £(i) (z) and
g(#(2))(2) <£(#(3))(2) = 0 . 1f x, f2(1) , let ¥,, (i) be such
that X,)éYl.(i) . Let 3—[= (yl""’yn) be the Boolean vector such
that y,, = 1 if 2,, = 1 or x,, €Y, (1) . Then £(B(3))(y) = o

since y, _z, _ - . But £(i)(y) =1 > G(y) . Thus

g(#(3))(z) < &(@(3))(¥) < £(F(D)(¥) . 0 . Hence g(g(3))(z) . 0

whenever f£(¢(3))(z) . o . O

Theorem 2. Let ntl < i < n+k . If Y, (i) & Xj for all j such that @(J)
depends on i and all £ , then there is a monotone network for computing
A {xeXl}, ..., Afx eXm} of length shorter than k and with fewer

binary conjunctions than in (en+l’an+l’bn+l)’ ’(en+k’an+k’bn+k) .

Proof. Let i be such that Y, (i) & X, for all j such that @(J)
depends on i and all £ . Then G = 0 satisfies the hypotheses of

Theorem 1. For 1< j <ntk, let g(j) be the Boolean function defined

by g(3) =x; if 1<j<n, g3 =0 if j=1, andgj) = elay) oy g(b)
if n+l < j <n+k and j # 1 . By Theorem 1 a network which computes
g(1), . ..,g(mk) will compute A {x cxl} s ... N{xc Xn} .

We can thus simplify (eml’aml’bn+l)’ ’(On+k’an+k’bn+k) by deleting
all triples (Oj’aj’bj) such that g(j) = 0 and modifying other a.,J , bj'

values appropriately. O

By Theorem 2, any monotone network that uses a minimum number of

conjunctions to compute A {xeXl}, o, Ax eXm} must satisfy

(¥) For all i , Z(i) € Y, (i) ¢ 3(for some j such that ¢(j)

depends upon i and some [.

A set network for computing Xl’XE""’Xm is a sequence of ordered

pairs (Wp,2(1) , (W,2(2)) .. .,(W,e(k)) satisfying

(1) W, c X, (1) for all i .

(2) For all j , XJ = W, for some i such that (1) < 3.
(3) For all i , either
(a) W, = {xj} for some j , or
(b) W, €W, and 2(i') < z(i) for some i'< i, or
(c) W, =W, UW,, and 2(3"),2(i") < t(i) for some
1,8 06 x @

Note that this definition depends upon the order of the sets X.J .
Theorem 3. Let (On+l’ an+l’bn+l)’ ""(9n+k’ a‘n+k’bn+k) be a monotone
network for computing A {x eX;}, af{x eXm] . There exists a set

network for computing X ...,Xm which has no more set unions than the

l,
monotone network has binary conjunctions, and.no more subset operations

than the monotone network has binary disjunctions.

Proof. If the monotone network does not satisfy (¥), simplify it

applying Theorem 2 until it does satisfy (*). Assume without loss of

m
generality that U Xj = X . (That is, each variable occurs in some
j=1

conjunction.) For 1 <i <mtk , let z(i) be the minimum j such that
" #(j) depends upon i and Y, (i) < X._for some ¢ . We claim
(z(1),2(1)), @ ., (z(n+k),t(n+k)) satisfies (1), (2),(3).
Condition (1) is immediate. Condition (2) follows from
X, =2(g(3)) . For 1<i<n, Zz(i) = {xi} and (%a) holds. For
ml < i<k with 6, = v, 32(3) = 2(a;) nZ(by) . Let 4 be such

that Y, (i) < X, (1) and Y, (i) ¢ Y, (i) for £' # 4 . Then either

Y, (1) = Yl'(ai) for some £' , in which case b(ai) < z(i) and (3b) holds

with i' = a, , or Y, (i) = Yl'(bi) for some {' , in which case

L(bi) <¢(i) and (3b) holds with i' -b, . For mtl <i.:Znk with

6, = A, Z(i) = Z(ai) uz(bi) . Let f be such that Y, (i) < Ab(i) and

Y,, (i) #Y, (i) for £' #4 . Then Y, (i) = Y,,(a;) UY, u(b;) for some

£', 1" . It follows that (3c) holds with i' = &y i" =D, . a
Theorem 3 is powerful enough to allow us to derive lower bounds on the

number of binary conjunctions required to compute some interesting sets of

conjunctions, as we shall see in Section 5.

10

4, The Power of Disjunctions.

We might conjecture that any set of conjunctions can be computed
in a minimum number of operations by using only conjunctions. The

following example shows that this is not true.

Let X = {p,q,r,s,u,w,xl,xg,xy,y,z} and consider the following
J

fourteen conjunctions (we use juxtaposition in place of A).

py = ¢(i) %y = ¢(5) x,z= ¢(8) pux X,y = F(1)
gz = c(d) XXy = c(6) X X,% = c(9) QUE XX 2 = F(2)

ry = C(3) X)X %5 = (7) X XpXsZ = c(10) W X XY = F(3)

I}
=
~~
=
~—

sz = C(L) SWK) XX,y

We can compute these conjunctions using sixteen binary conjunctions and

one disjunction by the following method:

PY = PAY Xy = Xl/\y X2 = Xy Az

qz = gqAzZ xlxgy = X2/\ Xy X1 X2 = xg/\xlz
ry = TrAy xlx2x5y = xﬁ/\xlxgy xlXEX'ﬁ = x.jl\xlxzz
sz = sAz

11

xlx2x5(y vz) = X XHaY VK X X2

uxlxexﬁ(y Vz) =uA xlxgxﬁ(y vV z)
wxlx2x5(y VzZ) = wA xlx2x5(y v z)
PUX X XLy = DY A UKy XKy (y vz)

QUK X XxZ = qZ A uxlXQXB(y v z)

WX X X5y = TY A WXlXQXB(Y Vv z)

SWK X X3Z = Sz walXEXB(y V z)

However, at least eighteen binary conjunctions are necessary if no
disjunctions -are used. To see this, note that py , 9z , ry , sz, XY
X1X5Y xlx2x5y » X9Z xlx2z s Xlx2x5z each require a separate binary
conjunction, for a total of ten. Each F(i) requires at least two
additional conjunctions. To beat eighteen, at least one conjunction must
contribute to the construction of two of the F(i) 's. Such a conjunction
must construct a subconjunction of either WX XXz or WX]_X2X5

No subconjunction of yx.x. or of WK X for i,j € {1,2,3} allows
the computation of any F(i) in one step. Thus some subconjunction of
u'xlx2x5 or lex2x5 which contains X1X2X5 must be constructed.
Without loss of generality we can assume X1X2X5 is constructed, using
two binary conjunctions. But no single additional conjunction will allow
the construction of F(1) , F(2) , F(3), F(4) in one step each. Thus at
least five more binary conjunctions are required, for a total of eighteen.

This example has the undesirable property that certain required
conjunctions are subconjunctions of other required conjunctions. We can

eliminate this property by adding, for each of the ten short conjunctions

12

C(i) , a new set of variables {vl(i),ve(i),...,vl8(i)} , and replacing C (i)
by the set of conjunctions C(i) /\vl(i) , C(1) AVQ(i)" o C(i)/\vl8(i) .
The entire set of conjunctions (C(i) /\vj(i) |1 <i<10, 1< 3 <18}y
{F(1),F(2),F(3),F(4)} can be computed in 10°18+16 = 196 binary
conjunctions and one disjunction; if the computation is carried out using
only binary conjunctions and some NC(i) is not computed, at least 11-15 1983
binary conjunctions are necessary; if each C(i) is computed, 10-:18+18 - 198
binary conjunctions are required.

This example can be generalized to show that for any n there is a set
of n conjunctions in n variables whose computation is faster by a constant
factor if disjunctions are used. The author does not know whether the use of

disjunctions can speed up such computations by more than a constant factor.

By using the results in Section 3, we can show that if |Xi| is suffiently
small for all i , there are minimum-length monotone networks which use only

conjunctions to compute the functions F. = A {chi} .

Theorem 4. L et (o 2 be any minimum-length

pt1? B2 P)0 (Cpie 80 Pl

monotone network for computing af{x eX;}, Af{x eXm} . Suppose lXil < I

for 1<i<m. Forntl <i <n+k, if ¢, = v, then 2 < |[z(i)| < R2 .

Proof. Let i be such that 6, =v . IfZ(i) = ¢ , then by Theorem 1 any
use of the function f(i) can be replaced by use of the constant function 1 ,
. and the triple (Oi, a;, b;) 1is unnecessary. If Z(i) = {XJ.} , then by Theorem 1
any use of the function f(i) can be replaced by use of XJ. , and the triple
(@ a ;b) is unnecessary. Suppose |Z{i)| =+t . By (¥) z(i) € Vv, (i) ’_Xj
for some j and since lle < I = IZ(l)l , £(1) =A {::eXJ.} . But

Z(i) = Z(ai) ﬂZ(bi) , and it follows that f(ai) = f(bi) = A {x eXJ.} . Thus

the triple (Oi, a5 bi) is unnecessary.

Suppose |Z(i)| = {-1 . Choose the minimum i such that Qi =V

and |Z2(i)| = R-1 . Then z(i) = Z(a.) ﬂZ(bi) . By (¥), there must be

13

some j such that ¢(J) depends on i and Y, (i) € X for some !
Choose { such that Y,, (i) ¢ Y, (i) for all £' #1 . Then either
Y, (1) = Yl"(ai) for some {" or Y, (i) = YI"(bi) for some "
Suppose without loss of generality that the former is the case. If
|Z(ai)‘ = { , then Z(a.i) = X,j , f.(ai) = A {x eXJ.} , and the triple
(®¢(j)’a¢(j)’b¢(j)) is unnecessary. If |Z(ai)\ = 1-1, say

Xj -Z(ai) = {xi, } , we can replace the triple (@¢(j)’a¢(j)’b¢(j)) by
(/\,ai,i') . Repeating this construction for each j such that #(Jj)

depends on i and Y, (i) C_:XJ. for some I , we eventually create a

network which violates (¥) and which can be simplified by Theorem 2. O

Theorem 5. If |Xi| < 4 for 1 <1i<m, then any minimum-length

monotone network for computing A {x (—:Xl} s . . . A {XeXm} uses only
conjunctions.
Proof. Let (0,15 8,,15P, Ys .. (©n+k’an+k’bn+k) be any minimum-

length monotone network for computing A {x eXl} s oo, A{X eXm})
Choose the minimum i such that Qi = Vv 1f there is any such i

By Theorem 4, |Z(1)| = 2 . Suppose Z; = {Xj,xj,}, . If Z(i) = Z(ai)
or Z(i) = Z(bi) , then by Theorem 1 (Qi, ai’bi) and one of the triples
(QIZ’ al,bl) for 1 ¢ {ai,bi} can be replaced by the triple (A,3,3') .
If 7Z(i) C Z(ai) and Z(i) < Z(bi) , then 'Z(ai)l > £-1 and

‘Z(bi) | >4-1 . An argument like that in Theorem 4 for the case

lZ(i) | = {-1 shows that the network can be simplified. Thus any

network containing a disjunction is not of minimum length. d

14

Theorem 6. If |Xi| <5 for 1<i<m, then some minimum-length

monotone network for computing A{XeXi}:.&,A{Xexh}usesmﬂﬂ

conjunctions.

Proof. Let (en+l’an+l’bn+l) s (ka’an+k’bmk) be any minimum-
length monotone network for computing A {x eXl}, afx eXm} . Choose
the minimum i such that @, = V, if there is any such i . By Theorem 4,

|z(1i) |ef2,3} . 1f zZ(i) = {xj,xj,] , then by Theorem 1 the triple
(Gi’aifbl) can be replaced by the triple (A,J»3') . 1If |z2(1)] =3,

an argument like that in Theorem 5 shows that part of the network, including
the disjunction @i , can be replaced by conjunctions without increasing

the length of the network. By repeating the construction for each

disjunction, a minimum-length network without disjunctions is obtained. L

The example previously considered shows that the bound of five in
Theorem 6 cannot be improved, and a similar example shows that the bound

of four in Theorem 5 cannot be improved.

15

b. Lower Bounds for Explicit Scts of Conjunctions.

In this section we review the cn5/2 lower bound result of [%] and
[7] and provide another non-linear lower bound, tight to within a constant

factor, on the monotone complexity of a family of sets of conjunctions.

Theorem 7[5]. Let X, ¢ X for 1 < i < m be subsets of variables such
that lXi(Wle < 1 for all i, j . Then any monotone network for computing
m

A {X(SXi} for 1<i<m has X2 |Xﬁ‘—m. binary conjunctions.
i=1

Proof. Consider any set network for computing Xi,Xg,.,.,X For any

m
particular Xi , at least |Xi|—l unions are required to combine the
elements of Xi into a single set. ©Each union used to combine elements
of ZXi produces a set containing at least two elements of Xi . Since

an air of elements is contained in ni . each union used
y p a Xnique set ;0

to combine elements of Xi produces a set contained in Xi but in no

m
X, # Xi . It follows that the z |Xi|—m unions required to combine
J i=1
elements in Xl” '”%n are all distinct. The theorem follows from Theorem 3

This proof is due to Lamagna and Savage [5], except that they use a less

general result than Theorem 3 as an intermediate step. a

Lamagna and Savage [5] and Nechiporuk [7] have exhibited families of

m
functions which satisfy Theorem 7 and have 2 |Xi| > cni/2 . Here is
1-1

another family of such functions.

16

Let X = {xl,xg,...,xn} , where n = k?+k+l . Let Xi c X, for
1 <i<n, be the n lines of a projective plane [3] whose set of points
is X . A projective plane has the property that each pair of points is
contained in exactly one line, and each line contains exactly ktl points.

Projective planes exist for all prime powers k = pr[5]-

Theorem 8. Any monotone network for computing A {x eXi} for 1< i <n

requires nk binary conjunctions.
Proof. Immediate from Theorem 7.0

The set of conjunctions defined by the lines of a projective plane
thus provides a simple, explicit example of a monotone Boolean function
which requires a non-linear number of operations when camputed by any
monotone network. Note that the bound in Theorem7 is obviously tight
and implies that any minimum-length monotone network for such sets of
conjunctions uses no disjunctions. It is not hard to show that the

O(n3/2)

largest lower bound that can possibly be proved using Theorem7 is

17

We shall now usc Theorem % Lo show thal the algorithm of {12 I ror
computing functions defined on paths in trees is optimum to within a constant
factor. For this purpose we need a few definitions from graph theory.

A directed graph. G = (V,E) consists of a finite set V of vertices and

a set E of ordered pairs (v,w) of distinct vertices, called edges.

A path of length k from v to w in G is a sequence of edges

P = (vy,v,) ,(v2,v5) » e (VoVyq) with vy = v and v, =W.

A (directed, rooted) tree (T, r) 1s a directed graph T with a distinguished

vertex r ~such that there is a unique path from r to any other vertex.
We say v and w are related (v is an ancestor of w and w is a
descendant of v) if there is a path from v to w in T

Let T be a directed, rooted tree with ntl vertices (and n edges).
For each edge (v,w) in T , let x(v,w) be an associated Boolean
variable. For related vertices v,w in T , let f(v,w) be the Boolean
function f(v,w) = A {x(y,2z) | (y,2) on p(v,w)} , where p(v,w) is the path
from v to w in T . Consider the problem of computing f(vj,wj) , for
m related pairs of vertices (Vj’wj) , using a monotone network. An
O(m a(myn)) operation method for solving a more general version of this
problem (where conjunction is replaced by any associative operation) is
presented in [12]. Here we show that no better method is possible.

Given m related pairs (Vj’wj) , order the pairs so that if (Vj’wj)
precedes (Vj"wj) 1n the ordering and vJ. # VJ., , then V‘J. is not an
ancestor of vJ., in T . (This is always possible; see [12].) Now
associate with T and with the pairs (Vj’wj) a directed graph G*

and a cost C as follows. Initialize G* to G* = T . Process the

18

pairs (Vj’wj) in the order defined above. To process a pair (vi’w‘]) ,
%
= t
let p(vj,w,j) (yl,yQ) 2 (y23y5) J e ww 2 (yk,yk“'l) . Ad‘d O G each edge
*
(yi,yi') with i < i' which is not already present in G . Let the
cost of pair (vj,wj) be zj-l 5 where I'J is the length of the shortest
*

path from 37 to vg in G (before the new edges for (VJ,WJ.) are

added). Let the cost' C be the total cost of all pairs (Vj,Wj) .

Theorem 9. The cost C is a lower bound on thce number of union: in any

set network which computes Xl’XQ""’Xm , Where

Xj = {x(y,2) | (y,2) is on P(Vj:WJ-)}

Proof. Consider any set network (Wl,z,(l)) , eees (Wk,L(k)) for computing
Xl’Xe" [] .. We claim that, for any j , the number of values i , such
that z2(i) = j and W, satisfies (3c) but not (3a) or (3b), is at least
as great as the cost of (Vi’wi) .

Consider any set X.J . By (2), there must be some i such that
XJ =¥, and ¢(i) < § . Furthermore, W, must be constructed from
singleton sets using the subset and union operations of (%b) and (Jc).

It follows that there are indicdl, 1’2, & e 5 1IZSi such that
(1) ch_:W(ll)UW(lg) U.--UW(i,);
(ii) each W(ij,) satisfies either (3a) or z,(ij,) < z(i) ; and

(iii) the number of sets W(i') satisfying neither (3a) nor (3b)

but such that z(i') = 1 is at least £-1

(We can produce this set of indices il’ 12,...,:11 with a backward trace

through the set network from index i .)

19

Order w(il),.-.,w(il) so that w(il), contains the variable
for the first edge on p(vj,wj) , W(ij,) for 2 < j' < h contains
the variable for the edge on p(VJ,Wj) following the last cdge whose
variable is in w(}ﬂ-l)’ and w@h) contains the wvari able for the
last edge on p(vj,wj) . (Note that the contents of the sets
L(GIVEDIF W(jz) are unimportant.)

Since W(ij,) SXL(i) for 1 < j' < 12(0) , there is a sequence

J"
of edges (ul,ug), (ue,uB) s .. (u.h, Uh+l) in G* such that
Up SV Uy =Wy and, for 1 < j'< h , edge (uj’uj+l)

is added to G before or during the time (V. ,. \»W. /.) 1s
L(ljc) L(ljn)

*
processed.=. Since a(ij,) <z(i) < 3, (uj"uj'+l) is present in G
before (vj,wj) is processed. Hence h-1 , and also R-1, is an
upper bound on the cost of (vj,wj) . This proves the claim, and the

lemma follows by summing over all j . [

Now we apply the very general lower bound result of [1l], which

states :

Theorem C [11]. There is a positive constant c¢ such that, for all m
and n with m > n , there is a tree T of n vertices and a sequence
of m pairs (v.,wj) of related vertices for which the total cost C 1s

¥

at least cma(m,n)

Y We define a(myn) as follows. Let A(i,x) be defined wnon-ncgutlive
integers by A(0,x) =2x for x >0, A(i,0) =0 for i -1,
A(i,1) =2 for 1 > 1 , and A(i,x) = A(i-1, A(i,x-1)) for i > 1,
x >2 . A(i,x) is a slight variant of Ackermenn's function [1].

Let a(mn) = min{z > 1 | A(z, Ll m/nl) > log n} .

20

We have, from Theorems 3,9, and C:

Theorem 10. For any m > n , there is a tree T and a set of m pairs
(vj,wf) of related vertices such that any monotone network for computing

f(vj’wj) for each pair uses at least- cma(m,n) binary conjunctions.

This result implies that the algorithm of [12] for computing
f(Vj,Wj) for such pairs i's optimum to within a constant factor, among

straight-line algorithms.

21

6. Remarks.

The lower bounds in Theorems 8 and 10 apply not only to monotone
networks, but also to straight-line algorithms which use more general
operations to combine the appropriate subsets of inputs. [or instance,
the lower bounds hold if A is replaced by maximum over real numbers
and VvV is replaced by minimum over real numbers.

For operations over certain domains, the lower bounds of Theorems 8
and 10 apply not only to straight-line algorithms, but to all algorithms
which can compute values only by applying various operations to the
input values. Such domains include sets (replacing A by set union and
vV by set intersection), strings (replacing A by string concatenation
and omitting v), and function spaces (replacing a by function
composition and omitting v).

Apparently, no one has yet explicitly exhibited a family of monotone
Boolean functions fn:[O,l}n - {0,1} such that f has a monotone

circuit of size polynomial in n but no monotone circuit of size linear

in n . The family of functions
n
fn(xl, . . O,Xn) = i_/l /\ {X Exin} >

where the sets Xln’XQn’°"’Xnn are the lines of a projective plane
whose points are {Xl""’xn} , is a possibility for such a family.

Another possibility is the family of functions

m
2 A {xeX,
i=1

fn (Xl, Xe: . °)Xn) a lI'l} 2

22

where Xln’X2n""’xmn correspond to appropriate path:; in a trce ol n

edges. Perhaps the proofs of Theorems 8 andl0 can be extended to give

lower bounds in these cases. Another open problem is to determine by how

much disjunction helps in computing sets of conjunctions.

Acknowledgments. Extensive discussions with Mike Paterson helped to

clarify the ideas in this paper. John Savage provided several important

references.--.

23

References

(1]

W. Ackermann, "Zum Hilbertshen Aufbau der reelen Zahlen," Math.
Ann. 99(1928), 118-133.

(2] A. V. fho, J. E. Hopcroft, J., D. Ullman, The Design and Analysis

E

of Computer Algorithms, Addison-Wesley Publishing Co., Reading,
Mass. (1974), 2L43-247.
[3] M. Hall, Jr., Combinatorial Theory, Blaisdell Publishing Co.,
Waltham, Mass. (1962), 167-188.
[4] E. A. Lamagna and J. E. Savage, "On the logical complexity of symmetric

switching functions in monotone and complete bases,"™ Technical Report,
Center for Computer and Information Sciences, Brown University (1973).

[5] E. A. Lamagna and J. E. Savage, "Combinational complexity of some
monotone functions," Fifteenth Annual Symp. on Switching and Automata
Theory%(l97hb 140-14k .

[6] J. W. Moon and L. Moser, "A matrix reduction problem," Mathematics
of Computation 20 (1966), 328-330.

(7] £. 1. Nechiporuk, "On a Boolean matrix," Systems Theory Research 21
(1971), 236-239.

[8] M. S. Paterson, "Complexity of monotone networks for Boolean matrix

product," Theoretical Computer Science 1 (1975), 13-20.

[9] V. R. Pratt, "The power of negative thinking in multiplying Boolean

matrices," Proceedings of Sixth Annual ACM Symp. on Theory of

Computing (1974),80-83.

[10] J. E. Savage, "An algorithm for the computation of linear forms,"
SIAM J. Comput. 3 (197k4), 150-158.

[11] R. E. Tarjan, "Efficiency of a good but not linear set union
algorithm," J.ACM 22 (1975), 215-225.

[12] R. E. Tarjan, "Applications of path compression on balanced trees,"

STAN-CS-75-512, Computer Science Department, Stanford University (1975).

24

