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1. Introduction.

Let X —- EIFRTRFS be a set of' Boolean variables. A Boolean

network is a sequence of triples (8,117 8417 Ppe1)? + Cpt? Base? Prac)

where each 0, 1s a binary Boolean operation and each a; 5 bs 1s an

integer less than i . We associate with each integer 1 , 1<1 <n+k ,

a Boolean function f£(1) given by f (i) = x. if l<i<n,

f(i) = f(a;) 0; f(b) if ntl < i < n+k . If F,F,..,F are

Boolean functions of X15%py ees X, the network computes FioFny eee, Fp

if there is a function §: {1,2,...,m}= {1,2,...,ntk} such that F.o=£(p(1)) ,

where = denotes logical equivalence. The network 1s monotone if 6. ¢ {An V]

for all 1 , where a denotes conjunction and V denotes disjunction.

In this paper we study the size of monotone networks for computing

certain Boolean functions. Our interest 1n this problem stems from three

sources. (1) Techniques for analyzing monotone network complexity may

be useful 1n analyzing non-monotone network complexity, about which

little 1s known. (2) Our lower bound results apply not only to

monotone networks, but to algorithms for other kinds of computation.

(3) Our main lower bound result implies that an almost-linear algorithm

for computing functions defined on paths in trees [12] is optimum to

within a constant factor.

We restrict our attention to Boolean functions F. of the form

~~ F, =A {x eX, , where X. € X . That is, F,F,,...,F is a set of

conjunctions of various subsets of variables. In Section 2 we review

previous results on such sets of functions. In Section 3 we prove a basic

result which gives conditions under which we can afford to ignore

disjunctions. In Section 4 we exhibit an anomalous set of conjunctions

whose minimum-size monotone network contains a disjunction. We also use
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the results of Section 3to derive sufficient conditions for the

non-existence of such anomalies. In Section ) we prove a non-linear

lower bound for sets of conjunctions which correspond. to path:; in trees,

thus proving the optimality, to within a constant factor, of the main

algorithm in [12].
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2. Previous Results.

Several researchers, including Lamagna, Savage [5,10], and

Nechiporuk [7], have studied the complexity of monotone networks for

computing conjunctions. We summarize their main results here. See [L4,8,9]

for lower bounds on the size of monotone networks for computing other types

of functions. The following two theorems are special cases of much more

general results proved by Savage [10].

Theorem A. For 1 <i <m, let X, ¢ X . Let F, =A tm eX, } . Then

FioFos oo nF can be computed by a monotone network using 2m| n/log m | */
binary conjunctions and no additional operations.

The 1dea used in the proof of Theorem A 1s the same as used in the

four Russians' algorithm for matrix multiplication [2]. For details, see [10].

TheoremB. For m and n polynomially related = and sufficiently large,

almost all sets of m conjunctions in n unknowns require cmn/log m 2X

operations when computed by any Boolean network.

This theorem can be proved by a straightforward counting argument. See

) [10] for details and Moon and Moser [6] for a related result.

Theorem B shows that the bound in Theorem A is tight for almost all sets

"ofm conjunctions inn unknowns, if m and n are polynomially related.

However, 1t seems very hard to explicitly exhibit sets of conjunctions which

require as many operations as indicated by Theorem B.

x All logarithms in this paper are base two; | x1 denotes the mallet
integer not less than x .

x*/ We say m and n are polynomially related if there is some polynomial
p such that m < p(n) and n < p(m) .

xxx Throughout this paper, <¢ denotes a sultable positive constant.
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Nechiporuk [7] and Lamagna and Savage [5] have exhibited sets of n

conjunctions in n unknowns which require c D2 binary conjunctions

for their monotone computation. Their constructions use the same ideas,

which we shall review in Section 5. To the author's knowledge, no harder

sets of conjunctions have been explicitly exhibited.



3. Properties of Minimum-Length Monotone Networks.

In order to bound the number of binary conjunctions required by monotone

networks for computing specific sets of conjunctions, we need a result which

allows us to ignore the effect of disjunction::. In thissectionweshowlhat

disjunctions can be ignored, provided we allow certain subconjunctions of.

previously computed conjunctions to be computed for free. We accomplish this

by showing how to transform a monotone network for computing functions

F. =A {xeX, } into a straight-line computation of the sets Xs from the

singleton sets {x} , using the operations of set union and arbitrary subset.

Let (0,4 1280477 ps1)? +2 (8 110810) be a monotone network

for computing AfxeX }, cee ys A {xeX ] Let f(1),f(2),...,T(ntk)

be the associated Boolean functions and let @: {1,2,...,m} - {1,2,...,ntk}

be such that f(@(i)) = A {xe X, . For 1 <i < mk, let

vA({x e¥,(1)] = f(i) be a disjunctive normal form for £f(i) . This
J

form is unique up to adding conjunctions A{Xe AY (i)} such that

¥, (1) c Ys (1) for some J .

Let Z (i) = ny, (1). Z (1) is independent of the disjunctive
J

normal form chosen to represent £f(1) . Z2(1) = {x} for 1 <i <n

and Z(#(j)) =X; for 1 <j <m . If 6 =V,

Z(ay) NZ(b,) = (0756) N NY, (by) = 7Z(i) , sinceJ J

(v A {x 1502p) vi v Aix eY., (by)] is a disjunctive normal formi J i J

= = ., (D, =

for £(i) . If ©; =A, z(a,) UZ(b,) (nxyte ) U (0 2)J J

nn { YY.)UY. , (b.)) = 2(i) , since V Vv A {xe¥.(a,)UY.,(b.)}=
«ay J x J 1 «ay JT 1 J 1
J J J J

v A {x cY.(a;)] A VA{xeY, (b;) 3 is a disjunctive normal formJ J J!

for f£(i) .
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Let 1 <j,j' <nmk . We say Jj depends on j' in the nctwork

(©4128 17 Ppi1) ys (910 Bre? Pic) if there is a sequence

j= 3(1),3(2), .... Jt) =j" such that j(it+l) ¢ la 1)7P5 (1) for
1<i<i-1.

Theorem 1. Let 1 <1 < n+k . Let G be any Boolean function of Xyo + en XX,

such that G DA{x €Z(i)} , and if A (x eX, OD f(i) and @(J) depends

on 1 then AlxeX,] DG. For 1< Jj <mnmk ,b let g(j) be the Boolean

function defined by g(j) = Xs if 1 <j <n and Jj ho i, g(j) = G

if j=1i, g(3) = g(a) 0; (b) if +1< j < n+k and j £ i . Then
g(#(3)) = £(p(3)) for 1 < J <m.

Proof. Let 1 <j<m. If #(j) does not depend on i , then

obviously g(@(3)) = £(@(j)) . Suppose @(j) does depend on i .

Let v = (Ys +255) be the Boolean vector such that ¥, = 1 1ff

x, . Then f(@(3))(y) = 1 . If f£(i)(y) = 1 , then AfxeXx,}o (i)

since f(i) is monotone, and A{x cX, OD G by hypothesis. Thus
G(y) = 1, and g(#(3))(¥) = £((3))(y) = 1 . If £(i) (y) = 0 , then

£(1) (y) < gi) (y) , and 1 = £(B(3))(¥) < e(@(3))(y) . In either case,

since g is monotone, g(@(j)) (z) = 1 for any Boolean vector

7 = (207205 «0 z.) such that £(@(j))(z) = 1 .
Let z be such that £(@(j))(z) = 0 . Let f be such that

Z, = «If x, €Z(i) , then G(z) = 0 < £(i) (z) and

g(B(2))(2) < £(#(3))(z) = 0 . 1f X, ¢7(i) , let Y,, (i) be such

that X, £Y,, (1) . Let y = (yq2 +59) be the Boolean vector such

that Yn = 1 if 2,0 = 1 or Xn eY,, (1) . Then £(g(3))(y) = o

since y, _%, _- - But f£(1) (y) = 1 > G(y) . Thus
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2(B()) (2) < g@NF) < 2B)E) . 0 . Hence g(@(3))(3) . ©

whenever f£(g(j))(z) . o . O

Theorem 2. Let ntl < i < n+k . If Y, (i) & X for all j such that $(j)
depends on 1 and all {f , then there 1s a monotone network for computing

A {xeX;} ..., Ax eX} of length shorter than k and with fewer

binary conjunctions than in (041783117 Ppe 1)? vee 9 (8 p08 ob) :

Proof. Let i be such that Y, (i) & x, for all j such that @(j)
depends on i and all £ . Then G = 0 satisfies the hypotheses of

Theorem 1. For 1 < j <ntk, let g(j) be the Boolean function defined

by (3) =x, if 1<js<n, 83) -0 if §=1, and gd) = &(a,) 65 &(b))
if n+1 < Jj <n+k and j # i . By Theorem 1 a network which computes

(1), . ..,g(ntk) will compute A {x cX,} yo... Aix Xx} :

We can thus simplify (6 117811201)? ce 3 (84128100) by deleting

all triples (05585505) such that g(j) = 0 and modifying other ars by
values appropriately. QU

By Theorem 2, any monotone network that uses a minimum number of

conjunctions to compute A {xeX 3 C.., Nix eX } must satisfy

(¥) For all i , Z(i) © ¥Y, (i) c X. for some j such that ¢(J)
depends upon 1 and some { .

A set network for computing XsXps eer X 1s a sequence of ordered

pairs (Wy52(1)) , (Wos2(2)) LL os (Wee (k)) satisfying
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(1) W. - X, (4) for all i .

(2) For all J , X, = W., for some i such that (1) < 5.

(3) For all 1 , either

(a) W, = x] for some j , or

(b) W, CW, and 2(1i') < (i) for some 1i' <i, or

(¢c) W, =W,, UW, and 2(3"'),2(i") < t(i) for some

i',2 0 ww x «@

Note that this definition depends upon the order of the sets Xe .

Theorem 5. Let (8,417 8 412 Pe) TEPC 8 100 0) be a monotone

network for computing A {x eX}, . . . . Afx eX } . There exists a set

network for computing XiyeeosXy which has no more set unions than the

monotone network has binary conjunctions, and.no more subset operations

than the monotone network has binary disjunctions.

Proof. If the monotone network does not satisfy (¥), simplify it

applying Theorem 2 until it does satisfy (¥*). Assume without loss of

i m

generality that UX. = X . (That is, each variable occurs 1n some
j=1"

conjunction.) For 1 <i <mnmk , let 2(i) be the minimum j such that

* ¢(j) depends upon i and Y, (i) o- X._for some £ . We claim
(z(1),2(1)), @ _, (Z(n+k),t(n+k)) satisfies (1), (2),(3).

Condition (1) 1s immediate. Condition (2) follows from

X =2Z(@(3)) . For 1<i<mn, Z(i) = {x,] and (3a) holds. For

ml <1 <ntk with 0, = Vv, Z(1) = z(a;) n2(b;) . Let 1 be such

that Y, (1) C XL (1) and Y,, (1) & Y, (1) for I! £ { . Then either
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Y, (1) = Y,.(a;) for some £' , in which case 2 (a) < ¢(1i) and (5b) holds

with i' = a, yor Y, (i) = ¥,. (by) for some £' , in which case

2 (by) <¢(i) and (Yb) holds with 1i' - b. . Por ntl <i. Zntk with

9; = A, Z (1) = z(ay) Uz(by) . Let I be such that Y, (1) C A (1) and
Y,, (1) #Y, (i) for 1° # £ . Then Y, (1) = Y,,(a;) UY, u(b,) for some

¢', 1" . It follows that (3c) holds with i' = 8s i" = Db, . -

Theorem 3 is powerful enough to allow us to derive lower bounds on the

number of binary conjunctions required to compute some interesting sets of

conjunctions, as we shall see in Section 5.
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4. The Power of Disjunctions.

We might conjecture that any set of conjunctions can be computed

in a minimum number of operations by using only conjunctions. The

following example shows that this 1s not true.

Let X = {p,q,r, SU Wy XX X55, 2] and consider the following

fourteen conjunctions (we use juxtaposition in place of A).

py = C(I) xy = ¢(5) xz= C(8) UX)X, X,Y = F(1)

qz = c(2) xXx,y = C(6) x, %,% = C(9) quX) XX, 2 = F(2)

ry = C(3) 1%p%3Y = ¢(7 ) XXX, 2 (10) WE)X XY = F(3 )
= C(k _SZ (4) SW XX = F(L)

We can compute these conjunctions using sixteen binary conjunctions and

one disjunction by the following method:

PY = PAY Xq¥ = xX) NY X 2 = xq Az

qz = gAZ xX XSY = Xs, NX y X1%X52 ¥ Xp NX 7

ry = TAY XX XzY = Xi NXg XY XXX = xX, NXqX,2

sz = SANZ

11



XXX (Y V Z) = XX XzY VX XX

ux, XX (Y Viz) uA XX (Y V 2)

Z) =WX XX (Y V ) WAX XX (Y Vz)

DUX|X KzY = DY AUX XX, (y v 2)

qQUXX X32 = ZA ux XX (y V Z)

= X V ZTWX, XX ry AWE. X, 2 (¥ )
= XSWE XX 5 sz AWK,X, 2 (¥ Vz)

However, at least eighteen binary conjunctions are necessary 1f no

disjunctions —-are used. To see this, note that py , 9z , ry , sz , XY
each require a separate binar

XXY XqXXzY » X92 5 XX,Z XX X52 d I$ y

conjunction, for a total of ten. Each F(1) requires at least two

additional conjunctions. To beat eighteen, at least one conjunction must

contribute to the construction of two of the F(i) 's. Such a conjunction

must construct a subconjunction of either Uk XnXg or WX XX .

No subconjunction of Ux x. or of LETE for i,j € {1,2,3} allows
the computation of any F(i) in one step. Thus some subconjunction of

UX, XoXg or WX XX which contains XX Xz must be constructed.

Without loss of generality we can assume XX Xz 1s constructed, using

two binary conjunctions. But no single additional conjunction will allow

the construction of F(1) , F(2) , F(3), F(4) in one step each. Thus at

least five more binary conjunctions are required, for a total of eighteen.

This example has the undesirable property that certain required

conjunctions are subconjunctions of other required conjunctions. We can

eliminate this property by adding, for each of the ten short conjunctions
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C(i) , a new set of variables (vy (1), vs (1), eeu vyg(i)] , and replacing C (i)

by the set of conjunctions C(i) Avy (1) , C(i) Avo (1), CL Ci) Avyg(i) :

The entire set of conjunctions (C (i) Av, (3) |1<i<10, 1 <3 <18}u
(F(1),F(2),F(3),F(4)} can be computed in 10°18 +16 = 196 binary

conjunctions and one disjunction; if the computation is carried out using

only binary conjunctions and some oi) is not computed, at least 11-16 198
binary conjunctions are necessary; if each C(i) is computed, 10-18+18 - 198

binary conjunctions are required.

This example can be generalized to show that for any n there is a set

of n conjunctions in n variables whose computation is faster by a constant

factor if disjunctions are used. The author does not know whether the use of

disjunctions can speed up such computations by more than a constant factor.

By using the results in Section 3,we can show that if |X. | 1s suffiently

small for all 1 , there are minimum-length monotone networks which use only

conjunctions to compute the functions F., =A {x cX. } .

Theorem 4. | et (6,417 2 117047) A CH 8 110 Pie) be any minimum-length

monotone network for computing a {x eX} o.oo... Af eX] . Suppose |X, | < {

for 1 <1<m. For ntl <i< n+k , if 6, =v, then 2 <|z(1)] < R2.

. Proof. Let 1 be such that 0. = Vv . If 2(1) = 0 , then by Theorem 1 any

use of the function f(i) can be replaced by use of the constant function 1 , !

. and the triple (8; a;, by) 1s unnecessary. If Z(i) = EY , then by Theorem 1
any use of the function f(i) can be replaced by use of X , and the triple

(8 5a ,b ) is unnecessary. Suppose |z(i)|=14 . By (¥) z(i) c V, (i) CX,

for some J and since |X, 1 <I = | 2(1) | , (1) =A {ze X,] . But

72(i) = Z(a; ) Nz(o,) , and it follows that f(a) = £(b,) = A {x eX} . Thus
the triple CY as 5 b. ) is unnecessary.

Suppose |Z(i)| = 4-1 . Choose the minimum i such that 6, = V

and |2(1) | = R-1 . Then Z (1) = Z(a.) Nz(by) . By (¥), there must be

13



some J] such that BJ) depends on i and Y, (i) © X for some 1 .

Choose { such that Y,, (i) ¢ Y, (i) for all £' #1 . Then either

Y, (1) = Y (a) for some {" or Y, (i) = Tu (b,) for some I" .
suppose without loss of generality that the former is the case. If

2(a,) | = 1 , then z(a,) = Xs , f(a) = A {x 29 , and the triple

(5) %8(3) Pd (3) is unnecessary. If 12(a,) | = 1-1, say
Xs - %(a,) = {xs } , we can replace the triple (8g (5) 20(5)7 Pp (5) by

: (Asays1t) . Repeating this construction for each j such that # (3)

depends on 1 and Y, (1) SX; for some I , we eventually create a
network which violates (¥) and which can be simplified by Theorem 2. LJ

Theorem 9. If |X, | <4 for 1<i<m, then any minimum-length

monotone network for computing A {x cX}s. A {x eX} uses only

conjunctions.

Proof. Let (0+> a 1b.) CL, CHRWL IPL be any minimum-

length monotone network for computing A {x eX} y eee, AX eX |}

Choose the minimum 1 such that 4 = V 1f there 1s any such 1 .

By Theorem 4, | Z(1) | = 2 . Suppose Z; = {x5} If Z(i) = Z(a., )

) or Z(i) = z(b,) , then by Theorem 1 (65 850; ) and one of the triples

(9,5 a,b) for I e {asb,} can be replaced by the triple (A,J>3d") .

If 72(1i) C z(a.) and Z (i) C z(b,) , then 1z(ay) | > £-1 and

12(b,) | > f-1 . An argument like that in Theorem 4 for the case
|z(i) | = 2-1 shows that the network can be simplified. Thus any

network containing a disjunction is not of minimum length. OU
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Theorem O. If |X, | <5 for 1 <i<m, then some minimum-length

monotone network for computing A{x eX;}s.a, AlX eXjusesonly

conjunctions.

Proof. Let (60,4178 1° Py) 2+ + + 2 CHEFLINTLIY be any minimum-

length monotone network for computing A {x eX;} . . . . Ax eX } . Choose

the minimum i such that 6, = V, if there is any such i . By Theorem 4,

|1Z(1) |e{2,3} . If z(1) = EEN , then by Theorem 1 the triple

(852,50) can be replaced by the triple (A,J»Jd') . If |z(1) | = 3,
an argument like that in Theorem 5 shows that part of the network, including

the disjunction ©. , can be replaced by conjunctions without increasing

the length of the network. By repeating the construction for each

disjunction, a minimum-length network without disjunctions 1s obtained. od

The example previously considered shows that the bound of five in

Theorem 6 cannot be improved, and a similar example shows that the bound

of four in Theorem 5 cannot be improved.
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Do. Lower Bounds for Explicit Scts of Conjunctions.

In this section we review the end/? lower bound result of [b] and

[7] and provide another non-linear lower bound, tight to within a constant

factor, on the monotone complexity of a family of sets of conjunctions.

Theorem 7([5]. Let X, © X for 1 < i < m be subsets of variables such

that |X; NX | <1 for all i, J : Then any monotone network for computing
A {x eX, } for 1 <i <m has 2 |X; |-m binary conjunctions.1=1

Proof. Consider any set network for computing ERY Cy x . For any

particular X, , at least 1X, |-1 unions are required to combine the

elements of Xs into a single set. Each union used to combine elements

of X. produces a set containing at least two elements of Xs . Since

any pair of elements 1s contained in a Xnique set ; 0 each union used

to combine elements of Xs produces a set contained 1n Xx, but 1n no

Xs £ xX. . It follows that the 5 |X. | m unions required to combine
i=1

elements in Xi : cok are all distinct. The theorem follows from Theorem 3.

This proof is due to Lamagna and Savage [5], except that they use a less

- general result than Theorem 3 as an intermediate step. d

Lamagna and Savage [5] and Nechiporuk [7] have exhibited families of

functions which satisfy Theorem / and have zx > en! 2 . Here 1is
another family of such functions.
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Let X = {15X05 ens X | , where n = K++. Let X, « X, for
1 <i<n, be the n lines of a projective plane [3] whose set of points

is X . A projective plane has the property that each pair of points 1s

contained in exactly one line, and each line contains exactly tl points.

Projective planes exist for all prime powers k = op’ [3].

Theorem 8. Any monotone network for computing A {x eX, } for 1<1i <n

requires nk binary conjunctions.

Proof. Immediate from Theorem 7.

The set of conjunctions defined by the lines of a projective plane

thus provides a simple, explicit example of a monotone Boolean function

which requires a non-linear number of operations when canputed by any

monotone network. Note that the bound in Theorem’/ 1s obviously tight

and implies that any minimum-length monotone network for such sets of

conjunctions uses no disjunctions. It 1s not hard to show that the

3/2largest lower bound that can possibly be proved using Theorem7 1s O(n / )
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We shall now usc Theorem 4 Lo chow Lhal the algorithm of [12] for

computing functions defined on paths in trees 1s optimum to within a constant

factor. For this purpose we need a few definitions from graph theory.

A directed graph. G = (V,E) consists of a finite set V of vertices and

a set E of ordered pairs ( v,w) of distinct vertices, called edges.

A path of length k from v to w in G is a sequence of edges

p= (vy,V,) 3 (Vp vz) vos (Novq) with vy =v and wv, =v.
A (directed, rooted) tree (T, r) 1s a directed graph T with a distinguished

vertex r ~such that there is a unique path from r to any other vertex.

We say v and w are related ( v 1s an ancestor of w and w 1s a

descendant of v ) if there is a path from v to w in T .

Let T be a directed, rooted tree with ntl vertices (and n edges).

For each edge (v,w) in T , let x(v,w) be an associated Boolean

variable. For related vertices v,w in T , let f(v,w) be the Boolean

function f(v,w) = A {x(y,2) | (y,2) on p(v,w)} , where p(v,w) is the path

from v to w in T . Consider the problem of computing E(w) , for

) m related pairs of vertices (Vos) , using a monotone network. An
O(m a(myn)) operation method for solving a more general version of this

problem (where conjunction 1s replaced by any associative operation) 1s

presented in [12]. Here we show that no better method is possible.

Given m related pairs (vys5) , order the pairs so that if (v5)

precedes (v1, J) in the ordering and vs # Vie , then v, is not an

ancestor of Ver in T . (This is always possible; see [12].) Now

associate with T and with the pairs (vss) a directed graph ol
and a cost C as follows. Initialize G to a = T . Process the

18



pairs (vows) in the order defined above. To process a pair (visu) ,
= ddto ¢

*

(¥55941) with i < i' which is not already present in G . Let the

cost of pair (Vso,) be £1 ; where I. is the length of the shortest

path from y- to 9. in ¢ (before the new edges for (viru) are
added). Let the cost' C be the total cost of all pairs (vw) .

Theorem 9. The cost C is a lower bound on the number of unions in any

set network which computes Xs Xpy woes Xo , Where

Xs = {x(y,2) | (vs2) ison p(vy,w)}

Proof. Consider any set network (Wy52(1)) , eee (Ws 2(k)) for computing

0 ® _ lie claim that, for any j , the number of values i , such

that z(i) = J and W, satisfies (3¢) but not (3a) or (3b), is at least

as great as the cost of (vim) :

Consider any set x. . By (2), there must be some i such that

x. = Ww. and ¢ (i) < j . Furthermore, Ww. must be constructed from
singleton sets using the subset and union operations of (%b) and (Jc).

) It follows that there are indicd, Ly <0 0 0 =1, <3 such that

(1) Xs W(ig)uw(ip) U.--UW(i,);

(ii) each Wis) satisfies either (3a) or 2 (34) < z(i) 3; and

(iii) the number of sets W(i') satisfying neither (3a) nor (3b)

but such that z(i') = i is at least 2-1 .

(We can produce this set of indices ipdps eer, with a backward trace

through the set network from index i .)
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Order W(iy),.-esW(i)) so that Wii) contains the variable

for the first edge on D(V3595) , Wis) for 2 < j* < h contains

the variable for the edge on p(v3Ws) following the last cdge whose

variable is in W(i., nN , and wii) contains the vari able for ithejit- :

last edge on p(v,,W,) . (Note that the contents of the sets

Wp) ya w(i,) are unimportant.)

Since Wii) CX,(3, ) for 1 <j'<1(0) , there is a sequence
J!

.

of edges (ugrus) (ups uz) sy (a, mq) in @¢ such that
= . — . 1

Up SVL Wg = Ws and, for 1 < j'< h , edge (uyrus,9)
1s added to * before or during the time (v_,. SW. ) is

L(1,)° "2 (1.)
J J

*

processed.=. Since 2 (154) < (i) < 3, (wy 0r0y047) is present in G

before (vss) is processed. Hence h-1 , and also R-1, is an

upper bound on the cost of (vssw.) . This proves the claim, and the
lemma follows by summing over all J . [OJ

Now we apply the very general lower bound result of [11], which

states :

) Theorem C [11]. There is a positive constant c¢ such that, for all m

and n with m > n , there is a tree T of n vertices and a sequence

of m pairs (vss) of related vertices for which the total cost C 1s
5%

at least cma(m,n) . z/

We define a(m,n) as follows. Let A(i,x) he defined ewnon-ncgotlive

integers by A(0,x) =2x for x >0, A(i,0) =0 for i ->1,

A(i,1) = 2 for i > 1 , and A(i,x) = A(i-1, A(i,x-1)) for i > 1,

x >2 . A(i,x) is a slight variant of Ackermann's function [1].

Let a(mn) = min{z > 1 | A(z, LI m/nl) > log n} .
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We have, from Theorems 3,9, and C:

Theorem 10. For anym > n , there is a tree T and a set of m pairs

(vows) of related vertices such that any monotone network for computing

£(v 35) for each pair uses at least ema(m,n) binary conjunctions.

This result implies that the algorithm of [12] for computing

£(vy,s) for such pairs 1's optimum to within a constant factor, among
straight-line algorithms.
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6. Remarks.

The lower bounds 1n Theorems 8 and 10 apply not only to monotone

networks, but also to straight-line algorithms which use more general

operations to combine the appropriate subsets of inputs. [or instance,

the lower bounds hold 1f A 1s replaced by maximum over real numbers

and Vv 1s replaced by minimum over real numbers.

For operations over certain domains, the lower bounds of Theorems 8

and 10 apply not only to straight-line algorithms, but to all algorithms

which can compute values only by applying various operations to the

input values. Such domains include sets (replacing A by set union and

V by set intersection), strings (replacing A by string concatenation

and omitting v ), and function spaces (replacing =a by function

composition and omitting Vv ).

Apparently, no one has yet explicitly exhibited a family of monotone

Boolean functions £ : {0,1} - {0,1} such that f has a monotone
circult of size polynomial in n but no monotone circuit of size linear

in n . The family of functions

n

f(x Lox) = VA {x eX: } ,
i=1

where the sets Xi Zon? «=X are the lines of a projective plane

whose points are EERERFE , 1s a possibility for such a family.

Another possibility 1s the family of functions

m

fo (X%0, 0x) ) 2 A {xeX. } ,
1i=1
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|

. where Xp op 0X correspond to appropriate path:; in a Llreceof n

edges. Perhaps the proofs of Theorems 8 andl0 can be extended to give

lower bounds in these cases. Another open problem is to determine by how

much disjunction helps in computing sets of conjunctions.
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