SPACE BOUNDS FOR A GAME ON GRAPHS

by

Wolfgang J. Paul
Robert Endre Tarjan
James R. Celoni

STAN-CS-76-545
MARCH 1976

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

a0 NI

¥
b

LUAEN

Space Bounds for a Game on Graphs

Wolfgang J. Paul f/ Robert Endre Tarjan tf/
Computer Science Department Computer Science Department
Cornell University Stanford University
Ithaca, New York 14850 Stanford, California 94305

James R. Celoni fﬁ/
Computer Science Department ,

Stanford University
Stanford, California 94305

Abstract.

We study a one-person game played by placing pebbles, according

to certain rules, on the vertices of a directed graph. 1In [3] it

was shown that for each graph with n vertices and maximum

in-degree d , there is a pebbling strategy which requires at most

c(d) n/log n pebbles. Here we show that this bound is tight to within

a constant factor. We also analyze a variety of pebbling algorithms,

including one which achieves the O(n/log n) bound.

Keywords: pebble game, register allocation, space bounds, ‘Turing machines.

*
‘/ Research partially supported by DAAD (German Academic Exchange
Service) Grant No. 530/402/563/5.

*%
—‘/ Research partially supported by National Science Foundation grant
DCRT72-036065-A03 .

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1. Introduction.

Let G = (V,E) Dbe an acyclic directed graph with vertex set V and

edge set E . If'(igﬂ is an edge of G , we say 1 is a predecessor
of j and j 1is a successor of i . We denote the set of predecessors
of a vertex j by B(j) . The number of predecessors of a vertex is its

in-degree; the number of successors of a vertex is its _out-degree. A vertex
of in-degree zero is a source; a vertex of out-degree zero is a sink. We denote
by &(n,d) the class of all acyclic. directed graphs G with n vertices,
each having in-degree no more than d . We use C,cl,cg,... to denote
positive constants. We use c(d),cl(d),cg(d),--. to denote positive
constants depending on d but not on n . Finally, we let [i,j] 'denote
the set of integers {k: i <k < j} .

In this paper we study a one-person game played on graphs. The game
involves placing pebbles on the vertices of a graph Ge.&n,d) according
to certain rules. A given step of the game consists of either placing a
pebble on an empty vertex v of G (this is called pebbling v) or
removing a pebble from a previously pebbled vertex. A vertex may be
pebbled only if all its predecessors have pebbles. (As a special case of
this rule, any source may be pebbled at any time.)

The object of the game is to pebble a given vertex of G subject to
the constraint that at most a given number of pebbles are ever on the graph
simultaneously. We may in addition require that this pebbling be accomplished
in the minimum number of steps. We can pebble any vertex of G in n
steps, using n pebbles, by pebbling the vertices in topological orderi/
and never deleting pebbles. We are interested in pebbling methods which

use fewer than n pebbles but possibly many more than n steps.

*
*/ I.e., if (i,3j) €E , then i is pebbled before j [k].

The number of pebbles used in the pebble game models the storage
requirements of a computation, in the following intuitive sense. Each
vertex represents a value. This value is computed by applying a particular
operation to the values represented by the predecessors of the vertex.
Sources represent input values. Each pebble represents a storage location.
Pebbling a vertex corresponds to computing the value represented by the
vertex and storing the value in the location represented by the pebble.
Deleting a pebble from a vertex corresponds to freeing the storage
location represented by the pebble, thus making unavailable the value
represented by the vertex. Should this value be needed at a later time,
it must be recomputed. The pebble game has been used as a model for
register allocation problems [7] and as a tool for studying the relationship
between time and space bounds for Turing machines [1,3].

Known results concerning the pebble game include the following.

Theorem A. If Ged(n,d) and G has maximum out-degree one (i.e.,
G is a tree), then any vertex of G can be pebbled in time n using
Ce(d)log n pebbles [1]. For infinitely many n , there is a graph
Ge&n,2) of maximum out-degree one which requires ¢y log n pebbles

to pebble some vertex [5].

Theorem B [1]. For infinitely many n , there is a graph G ¢&n,2)

‘which requires C/E'pebbles to pebble some vertex.

Theorem C [3]. If Ge%(n,d) , then any vertex of G can be pebbled

using . ¢ (d) n/log n pebbles.

In Section 2we construct, for infinitely many n , a graph
G(n) eXn,2) such that G(n) requires ¢y n/log n pebbles to pebble

some vertex. This shows that the bound in Theorem C is tight to within

a constant factor. In Section 3 we give upper bounds for various
-pebbling methods, including a method which achieves the O(n/log n)

bound of Theorem C. 1In Section 4 we present some further remarks.

2. A Lower Bound.

We prove the claimed lower bound by recursively constructing an
appropriate family of graphs. We use the following result of Valiant [8].
For any value of 1 , there is a graph with cl25L edges, 2ll sources,
and 2i sinks, which has the following property:

For any j e[i,Ei], if S is any subset of j sources and T

is any subset of j sinks, then there are j vertex-disjoint

paths in C(i) from S to T
The vertices in this graph may have arbitrary in-degree. Replacing
each vertex with in-degree d > 2 by a binary tree with d leaves at most

doubles the number of edges. 1In the new graph each vertex has in-degree two,

and the graph still has the same property. Thus we have the following lemma.

Lemma 1. For any value of i there is a graph C(i) ej(c21,2) , with 2%
sources and 2% sinks, such that: For any j € [1,21] , 1f S is any
subset of J sources and T is any subset of J sinks, then there are

J vertex-disjoint paths in C(i) from S to T

Corollary 1. For any e[0,21-l], if J pebbles are placed on any j
vertices of C(i) , and T is any subset of at least j+l sinks, then

at least 21-j sources are connected to T via pebble-free paths.

Proof. For any e[0,2i-l], let j pebbles be placed on C(i) and
let T be any subset of at least j+1 sinks. Any subset S of j+l
sources 1is connected to T via j+l vertex—-disjoint paths, at least one
of which must be pebble-free. Thus j 1is the maximum size of the set

of sources not connected to T by a pebble free path. O

Using copies. of C(i) , we recursively define a set of graphs

{G(i): 1 =8,9, 10, . ..) . a(8) =1+C(8) We form G(i+l) = (V(i+l),E(i+l))

from two copies of G(i) and two copies of C(i) as follows.. Let -
G(i) = (V(i),E(i)) have sources S(i) = {s(i,j):] e[l,Ei]} and sinks
T(i) = {t(i,3):] e[l,2i]} . Let C(i) have sources

sc(i) = {se(i,3): j e[l,ei]} and sinks TC(i) = {te(i,j):] e[l,Qi]} .
Let Gy(i) , Ge(i) be two copies of G(i) and let Cl(i) , Cg(i) be
two copies of C(i) . Let S(i+l) = {s(i+l,j): 7 e[l,ei"'l]} and
T(i+l) = {t(i+1l,3): J « [1,21+l]} be two new sets of vertices. Let

" @(i+l) = (v(i+l),E(i+l)) , where

v(irl) = s(i+1)UT(i+1) UV (1) UV,(4) UV (1) UVC,(1) , and

E(i+l) = E;(1) U E,(1) U EC,(1) U EC,(1)
U {(s(3+1,3) , 6(1+1,5)): 5 e [1,277)

U {(s(3+1,3) , se; (3,3)) ¢ | € [1,2])

U {(s(i+1, 3+2%) scy(1,3)): J e [1,2%13

U {(bey (4,3) , 5(2,3)) j € [1,27])

U ((6(5,3) , 55(8,3)):] € [1,27])

U {(8,(5,3) » sey(5,3)): | € [1,27])

U {(bey(iy 3) 5 B(3+1,9)) 1 j € [1,27])

U {(bey(4,3) » 50a2,3%20)): 5 e (1,271
Figure 1 illustrates G(i+l) .

Let m(i) = |8(i)| = |T(1)]| = 2t | let n(i) = |v(1)| . Then

8 . . i
n(8) <c2° and n(itl) < 2n(i)+ (20"‘9)21 , where c 1is the constant

.

given in Lemma 1. It is easy to prove by induction that n(i) < cO‘in

for some constant ¢, , and that G(i) e(n(i),2) .

Let ¢, = 1W/256 , c, = 3/256 , cy = 34/256 , and c) =1/256 .
The following inequalities are immediate.

c, m(i)/2 > c2m(1+l-)+l

3

(1-2¢ > ¢

o) >

cem(i) > chm(i+1)+1

¢, m(i)/2 > c2m(i+l)+1

*
Lemma 2. To pebble at least clm(i) sinks of G(i) in any order,-/
starting from an initial configuration of no more than c2m(i) pebbled
vertices, requires a time interval [tl’tg] during which at least c5m(i)

sources are pebbled and at least chm(i) pebbles are always on the graph.

Proof. By induction on i . Let i = 8 . Consider an initial
configuration on G(8) of no more than three pebbled vertices and suppose
14 sinks are pebbled during time interval [0,t] . Any four of these
sinks are connected, via initially pebble-free paths, to at least 253
sources, by Corollary 1. Thus at least one of these sinks, say v , is
connected, via initially pebble-free paths, to at least 64 of the
‘sources. When v is pebbled, none of the 64 sources is connected to

v via a pebble-free path. Furthermore the set of sources connected to

v via a pebble-free path can decrease by at most one at each time step.

Let tl-l be the last time at which 64 sources are connected to v via

*
—/ i.e., each sink is pebbled at some time, but not all sinks need be
pebbled simultaneously.

pebble-free paths. During time interval ['tl,t] , 63 >34 sources of
G(8) must be pebbled, while at least one pebble is always on the graph.
This proves the lemma for i = 8.

Suppose the lemma is true for i . To prove the lemma for i+l ,
consider an initial configuration on G(itl) of no more than c m(i+1)
pebbled vertices and suppose at least clm(i+l) sinks are pebbled during

time interval [0,t] . We must consider several cases.

Case 1. There exists a time interval [tl’tE] c [0,t] during which at
least c5 m(i) /2 sources of Gl(i) are pebbled and at least cem(i)

pebbles are always on the graph. The subgraph of G(it+l) consisting of

all vertices and edges on paths from the set of sources {s(it1,j): J'€[1;2i]}
to the set of sinks {sl(i,,j): je[l,2i]} satisfies Lemma 1 and Corollary 1.
So does the subgraph of G(i+l) consisting of all vertices and edges on
paths from the set of sources {S(i+l,j+2i): je[l,Ei]} to the set of

sinks {sl(i,j): je[l,Ei]} . Let to be the last time before 'tl at
whichthereare no more than cgm(i+l) pebbles on the graph. At time to ,
since ¢ m(i)/2 > cem(i+l)+l , there are at least 2(m(i) —cgm(i+l)) =

(1-20*2)m(i+l) > cam(i-l-l) sources of G(i*l) connected via pebble-free

to t

paths to the cjm(i)/Z sources of Gl(i) pebbled from t)

1
During the interval [tO’tQ] , at least these sources of G(i*l) must be
pebbled, and at least cem(i)-l > chm(i+l) pebbles must be constantly

on the graph. Thus the lemma holds in this case.

Case 2. There exists a time interval [tl’t2] < [0,t] during which at
least- c5 m(i)/2 sources of Gg(i) are pebbled and at least czm(i)
pebbles are always on the graph. The lemma holds by a proof like that

in Case 1.

R

Case 3. There exists a time interval [tl’tE] c [0,t] during which
at least 1 m(i+1l)/2 sinks of G(itl) are pebbled and at least
czm(i) pebbles are always on the graph. During [tl’tz] either

cy m(i+1) /% sinks in {t(i*1,3): J € [1,21]} are pebbled or

ey m(i+1)/4% sinks in {t(i+l:j+21)= j € [l,2i]} are pebbled. The
lemma holds by a proof like that in Case 1, using the inequalities

¢y m(i+1) /b > c2m(i+l)+l , (1,-2c2) >c, , and cgm(i)-l > chm(i+1) .

b

Case 4. None of the previous cases hold. Since Case 3 does not hold,
there must be a time t;e [0,t] such that fewer than ¢; m(i+1l)/2 sinks
of G(i+l) are pebbled during [O,tl] and the number of pebbles on
G(i+l) at time t; 1is no more than cem(i) . During [tl,t] , at

least clm(i) sinks of G(i+l) are pebbled. Since ¢, m(i)/2 >

1
cgm(i+l)+l > czm(i)+1 , the number of sinks of Gz(i) connected to
these sinks of G(it+l) via pebble-free paths is at least (l-cg)rﬁ(i) .
Thus at least (l-c2)m(i) > clm(i) sinks of G2(i) are pebbled
during [tl,t] , starting from an initial configuration of no more
than - c2m(i) pebbled vertices. By the induction hypothesis there is
a time interval [t2,t3] c [tl,t] during which cBm(i) sources of
G2(i) are pebbled and chm(i) pebbles are always on Gg(i)]

Since Case 2 does not hold, there must be a time th é[tg,tﬁ]
such that fewer than Cq m(i)/2 sources of G2(i) are pebbled during
[ta’th] and the number of pebbles on G(i*l) at time th is no more
than -czm(i) . During [th’tB] at least ¢; m(i)/2 sources of G2(i)
are pebbled. At time %), , since cy m(i)/2 - czm(i) > clm(i) , at

least clm(i) sinks of Gl(i) are connected via pebble-free paths to

these sources of Ge(i) . During [th’t5] these sinks of Gl(i) must

be pebbled, starting with no more than ¢, m(i) pebbled vertices. By

2
the induction hypothesis there is a time interval [t5,t61 c [th’tB]

during which c5m(i) sources of Gl(i) are pebbled and cum(i)
pebbles are always on Gl(i) .

Since Case 1 does not hold, there must be a time t, e[t ,t6] such

T 5
that fewer than 03 m(i)/2 sources of Gl(i) are pebbled during

[t5’t7] and the number of pebbles on G(i+l) at time t7 is no more

than cem(i) . During [t7,t6] at least c4 m(i)/2 sources of Gl(i)
afe pebbled. At time t7- » since 05

at least (l-2c2)m(i+l) > c5m(i+l) sources of G(i+l) are connected

m(i)/2 > cgm(i+l)+l > c2m(1)+l ,

via pebble-free paths to these sources of Gl(i) . Thus, during
[t7,t6] c [tS’t6] c [t2’t5] at least c5m(1+l) sources of G(i+1)
are pebbled and at least chm(i)+ chm(i) = chm(i+l) pebbles are always

on the graph. This completes the proof.

Theorem 1. For infinitely many n , there is a graph G .&(n,2) such

that pebbling some vertex in G requires c5 n/log n pebbles.

M. For n = n(i) , i =8,9,10, let G = G(i) .Since
pebbling all sinks of G(i) from an initial configuration of no pebbled
vertices requires chm(i) pebbles, there must be some sink whose

pebbling requires chm(i) pebbles. (Otherwise, the procedure of

pebbling the sinks one after another using a minimum number of pebbles

for each sink, and removing all pebbles after each sink is pebbled, would
pebble all sinks using fewer than chm(i) pebbles.) Since n(i) < Qcoiei
and m(i) = 21 , the number of pebbles required is Cs n(i)/log n(i)

for some constant c¢. . O

p)

3. Upper Bounds.

In this section we derive upper bounds on the number of pebbles

required by various pebbling methods. Let remove (set S) be a procedure

N~

which removes all pebbles from vertices in . . Most of our results depend

upon the following algorithm, which pebbles vertices in a "depth-first" manner.

procedure depth-first pebble (graph G, vertex v, set s);
for u eB(v) do if u not pebbled then_
depth-first pebble (G, u, B(v)US);

pebble v;
remove (V-(W(v)));

end:

The following lemma is implicit in [3].

Lemma 3. If G = (V,E) € #(n,d) has the property that any path to v

has no more than f vertices, then depth-first pebble (G,v,$) pebbles

v using no more than (d-1)(£-1)+2 pebbles.

Proof-. By induction on the length f of the longest path to v . If v
is a source, the procedure usel < (d-1) -0+2 pebbles. Suppose the
lemma is true for £ and let the longest path to v have length f+1 .
Then the procedure uses max{(d-1)+(d-1)(£-1)+2, &1} = (d-1)2+2

pebbles. O

" The following more general method uses "permanent" pebbles, which

once placed on the vertices of a set P , are never removed.

10

procedure permanent pebble gEEBE,G, vertex v, EEEVP);
;EE’ueP in topological order do depth-first pebble (G,u,P);
depth-first pebble (G,Vv,P);

end;

Lemma 4. 1f |P| = k and if G = (V,E) €.4(n,d) has the property that
any path to v which avoids vertices in P contains no more than !/

vertices, then permanent pebble (G,v,P) pebbles Vv using no more than

k+(d-1)(2-1)+2 pebbles.

Proof. When depth-first pebble (G,u,P) is called by permanent pebble ,

any pebble-free path to u contains no more than [vertices, since
every vertex in P on a path to u has been pebbled previously. The

bound follows from Lemma 3. O

Erdds, Graham, and Szemerédi [2] have proved that in any acyclic
directed graph of n edges there is a subset P of cln log log n/log n
vertices such that every path which avoids P has length at most
¢,n log log n/log n . (Furthermore they provide an easy way to find such
a subset P .) Their result combines with Lemma 4 to give the following

theorem.

Theorem 2. If G = (V,E) e&(n,d) and P C V is properly chosen, then

permanent pebble (G,v,P) uses at most cdn log log n/log n pebbles.

To come closer to the Theorem C bound, we must use an algorithm

somewhat more complicated than permanent pebble . We defer discussion

of this algorithm to the end of the section.

" Theorem 1 and Lemma 4 also yield:
Corollary 2 [2]. ‘For infinitely many n there is a graph G e T(n,2)
such that every subset P of the vertices of G with the property "Every

path which avoids P has length at most |P|"has at least cln/ log n

vertices.

11

We now give good methods for pebbling two special classes of
graphs. We call G = (V,E) € &An, d) a level graph if V can be
partitioned into levels L(1),L(2),...,L(m) such that if (v,w) €E
and veL(i) , then welL(i*l) . Let G be a level graph and let k
be any positive integer. Call level i large if |L(i)| > k and small
otherwise. Let (i(j): 1< j < £} be the set of indices of small
levels, 1in increasing order. Let i(0) = 0 , i(£+l) =ml , and L(0) = ¢ .
Let veL(j) be any vertex and let L' be the integer such that
i(2') < j and i(£'+1) > 7

The following algorithm efficiently pebbles v

procedure level pebble (gragh G, set array L, array i, vertex v, integer £');

for 3 = 1wl 1 dg
for ueL(i(j)) do
depth-first pebble (G, u, L(i(j-1)) UL(i(j)));
remove (L(i(J-1)));
end;
depth-first pebble (G,v,L(i(2')));
end;
Lemma 5. Procedure level pebble pebbles any vertex of a level graph

G = (V,E) ¢ {n,d) using no more than 2k+ (d-1) % pebbles.

Proof. During the pebbling process, no more than two small levels ever
contain pebbles simultaneously. Thus at most 2k-2 pebbles are ever on
small levels. The number of levels between two small levels is at most % ,

since there are at most = large levels. Thus the number of pebbles used in an

k
outermost call of depth-first pebble is at most (d-1) -E—+ 2 , and the total
number of pebbles used is at most 2k+ (d-1) l_ri . O

12

Theorem 3. If GeX(n,d) is a level graph, any vertex of G can be

pebbled using #8(d-l)n pebbles.
Proof. Immediate from Lemma 5, choosing k =4 (d-1) n/2 . O

The bound in Theorem 3 is tight (to within a constant factor which
depends on d), because the graphs Cook used to prove Theorem B are level
graphs.

The class of m-tape Turing machine graphs T(n,m) 1is the subset of

&(n,m+l) containing graphs G = (V,E) of the following type.

v={(13,(4), -3, (1)) 1 < i <n, § (1) =1 for all k ,
and §, (#*+1) € (3, (1)-1, 3, (1) , §(1)+1} for all i < n
and all k) ;3
m

B= U300, O w. (Li(1), @y

it = max{e < i: §, (1) = 3, (1))
U {((1,37(2)5 453, (1)) , (#1,3,(1#1), .53, (#1))): 1 < i < n)

The pebble game on m-tape Turing machine graphs was used in [1,3]
as a tool for relating the time and space requirements of Turing machines.
It has been conjectured that there are graphs in T(n,1l) which can require
ecn/log n pebbles to pebble some vertex. We disprove this conjecture by
adapting a proof of Paterson for space-efficient simulation of one-tape
Turing machines [6].

Let G = (V,E) € T(n,1) . For any j , let
H(j) = {(i,jl(i)) eV: 3, (1) = j} . For any S € V , let

width(S) = ma.x{\,jl(i) -jl(i’)\: (1:31(3)) , (1',3,(i')) es) . For any s € V ,

15

there must be some ;j such that max{\dl(i)-J\: (i,Jl(i))e S) Si% width (S)+1
and |H(J)| < %n/width(S) . Removal of the vertices in H(j) splits S
into two parts, 8, = {(i,jl(i))ES: j, (1) < 3} and

S, = {ijl(i))eS: j, (i) > J) . Any path in G which contains a vertex

in S1 and a vertex in 82 must contain an intervening vertex in H(J) .

The following recursive algorithm efficiently pebbles a vertex v

in G = (V,E) € T(n,1) .

Bone-tape pebble (Era;gh G, set S, vertex v);

if width(S) < k then

gﬂi(i,jl(i))ES in topological order while i < v do
pebble (i,jl(i));
let (i',jl(i')) be the vertex (if any) in S with

largest i' < i and_jl(i') = 9, (1);
remove pebble from (inl(iﬁ);
Eﬂgi
remove (S-{v});
Eﬂg

else

begin
set 81’82;
find j such that max{ljl(i)-jlz (i,jl‘(i)) €8} < % width(8)+1
and |H(J)| < 3n/width(S);

S, = {(5,3,(1)) es: 3, (1) < 3);

14

8, = {(1,3,(1)) es: 3, (1) >3);
for (i,jl(i)) € H(J) in topological order do
begin
AN~~~

if (i-1,3,(i-1)) €8, then one-tape pebble

(G} Sl) (i-l) Jl(i"l)))

else if (i-l,jl(i-l)) €8, then one-tape pebble
(6,85 (11,5, (1-1))) 3
pebble (1,3,(1))3

end:.
NSNS

if veS, then one-tape pebble (g, 8,5 V)

else Hvesg zone—tape pebble (G,Sg,v);

remove (S-(v)) ;

end one-tape pebble;

15

Lemma 6. Procedure one-tape pebble pebbles any vertex of a graph

G = (V,E) ¢ T(n,1) using % + k pebbles.

Proof. Let p(n,x) denote the number of pebbles used by one-tape
pebble (G,8,v) when G = (V,E) € T(n,1) and S ¢V has width(S) = x
Then

p(n,x) < x if x <k, and

p(n,x)Sp(n,|~—§-x'])+éxE if x >k .

Let x be such that x <k, % x >k . Then

j-1 s\t
<73 (5) +x
-é-)X i=0
9n . .
< &=+t k for any positive J

The maximum number of pebbles required to pebble any graph in T(nm,1) is

9

no more than p(n,n) < 7;n+ k . U

Theorem 4. If GeT(n,1) , any vertex of G can be pebbled using 6/n
pebbles.

Proof. Immediate from Lemma 6, choosing k = 3./n. Cl

Cook's graphs can be embedded in one-tape Turing machine graphs with
an increase of only a constant factor in the number of vertices. Thus
the Theorem % bound is tight to within a constant factor. By modifying

the construction of Section 2, we can show that two-tape Turing machine

16

graphs require en/ (log n)2 pebbles in the worst case, and we believe
but cannot prove that this lower bound can be improved to en/log n .

The last result of this section is an algorithm, based on
the proof of Theorem C in [3], which efficiently pebbles any
vertex of an arbitrary graph. The algorithm is recursive and operates on
a graph G in the following manner. If G is small, the vertices of G
are pebbled in topological order without removing pebbles. If G is large,
G is split into two parts, G, and G, , ©of roughly the same mumber of
edges, such that noedges run from G, to Gy . If a vertex in G, is
to be pebbled, the method is applied recursively to Gl . If a vertex in

G, 1s to be pebbled and the number of edges from Gy to G, is small

2
(i.e., less than l/log I , where { is the number of edges in G), then

the vertices in G1 with successors in G2 are permanently pebbled by
applying the method recursively to Gl and all pebbles except the
permanent ones are removed. Then the vertex in G2 is pebbled

by applying the method recursively to G2 . If a vertex in G2

is to be pebbled and the number of edges from Gl
to a2 is large, the algorithm is applied recursively to G2 . Whenever
the next vertex v to be pebbled in G2 has some predecessors Ujjy«.<>U,
in Gl s the algorithm is applied recursively to Gl to pebble Upy eeerly
and all pebbles in Gl but the ones on ul,-..,uk are removed. After v
is pebbled, all pebbles are deleted from Gl , and the method continues on G2.
This algorithm is given more precisely below. The parameter , is
the partition of the vertex set V of G created by nested recursive
calls of the procedure. Set T gives a set of vertices which, once
pebbled, are not to be unpebbled during the current recursive call of the
procedure. Integer k is some suitable positive constant. The procedure

call best pebble (G, fVL‘5¢) will pebble vertex v in graph

G = (LE) € &n,d) .
17

procedure best pebble (graph G, partition o, vertex v, set T);
begin
find Se’/ such that veS;
b= H(u:w)3 u,weS}';
ié’l < k EEEE,

for ueB(v) do if u not pebbled then best pebble (G,S,u,TUB(v));
pebble v; -
remove (V- (T U{v}));
Eﬂg
Eiig

17 72
implies weS, and £/2 -d < | {(u,w): uesl}| < 1/2+ g;
if | {(u,w): ues, , W€S2}| < 1/log f then
begin

set C;

divide S into 8 S, such that (u,w) €E and ues,

¢ := (u|&(u,w) with ues; W€S2};
E,Q,E ueC 9233 u not pebbled EEEE,

best pebble (G, S-{S} U {sl,sz} ,u, TUC);
best pebble (G,/-{S}U {sl,sg} , Vv, TUC);
remove (V - (T U(v)));

end

else best pebble (G, S-{S}U {Sl, S2} s V, T)s
end end best pebble;

Theorem 5. Procedure best pebble pebbles any vertex of a graph

G = (V,E) ¢ &n,d) using c(d) n/log n pebbles.

Proof. Let g(m) be the maximum number of pebbles used by best pebble
to pebble any vertex in any graph with m or fewer edges and maximum

in-degree d . Then

18

a(m) < k if m<k ,

m m n - ; >k .
q(m) 5ma.x{q(2+ d)+logm’ 2q(2+d logm)} e

It is easy to show by induction that g(m) < ¢ m/log m for a suitable

positive constant ¢ . The theorem follows. J

L. Remarks.

Theorem 1 gives a lower bound of cn/log n for the number
of pebbles necessary to pebble every graph in .&(n,2) . This result
implies that the upper bound in Theorem C is tight to within a constant
factor. The result also shows that the space-efficient simulation for
multi-tape Turing machines given in [3] cannot be improved without using
new techniques.

Many questions about the pebble game remain unanswered and several
application areas remain to be explored. For instance, how much time must
one sacrifice to achieve a given savings in pebbles? How many pebbles
can be saved while preserving a polynomial running time? How much time
can be saved while preserving a cn/log n pebble bound?

A possible application area lies in the derivation of lower bounds
on the time necessary for various computations. For instance, suppose
we wish to prove a lower bound of cn log n on the size of a Boolean
circuit necessary to do some computation. If we can prove that any
circuit either has size c,n log n or requires simultaneous storage

of Gn intermediate results, the bound follows from Theorem C.

Acknowledgment. For helpful and inspiring discussions we thank

Professors V. Claus and K. Mehlhorn.

19

References

[1] S. A. Cook, "An observation on time-storage trade off,"
Proceedings of the Fifth Annual ACM Symp. on Theory of Computing
(1973), 29-33.

[2] P. Erdds, R. L. Graham, and E. Szemerédi, "On sparse graphs with
dense long paths," STAN-CS-75-504, Computer Science Department,
Stanford University (1975).

(3] J. Hoperoft, W. Paul, and L. Valiant, "On time versus space and

related problems," Sixteenth Annual Symp. on Foundations of

Computer Science (1975), 57-64.
. [4] D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass. (1968), 258-265.
[5] M. 8. Paterson and C. E. Hewitt, "Comparative schematology,"

Record of Project MAC Conf. on Concurrent Systems and Parallel

Computation (1970), 119-128.

[6] M. s. Paterson, "Tape bounds for time-bounded Turing machines,"
Journal of Comp. and Sys. Sci. 6 (1972), 116-12k.

[7] R. Sethi, "Complete register allocation problems," Proceedings of
the Fifth Annual ACM Symp. on Theory of Computing (1973), 182-195.

[8] L. Valiant, "On non-linear lower bounds on computational complexity,"

Proceedings of the Seventh Annual ACM Symp. on Theory of Computing
(1975), 45-53.

20

direct

e ()
e

o \ connections

e .
e C 1 -~ -
/,: P 2(l/; P /
™~
T(i+l)

Figure 1. G(i+l) .

21

