
SPACE BOUNDS FOR A GAME ON GRAPHS

by

Wolfgang J. Paul
Robert Endre Tarjan
James R. Celoni

STAN-CS-76-545

MARCH 1976

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Space Bounds for a Game on Graphs

xX *¥

Wolfgang J. paul Robert Endre rarian
Computer Science Department Computer Science Department
Cornell University Stanford University
Ithaca, New York 14850 Stanford, California 94305

wu

James R. Celoni **/
Computer Science Department ,

Stanford University
Stanford, California 94305

Abstract.

We study a one-person game played by placing pebbles, according

to certain rules, on the vertices of a directed graph. In [3] it

was shown that for each graph with n vertices and maximum

| in-degree d , there is a pebbling strategy which requires at most

c(d) n/log n pebbles. Here we show that this bound is tight to within

a constant factor. We also analyze a variety of pebbling algorithms,

including one which achieves the 0(n/log n) bound.

Keywords: pebble game, register allocation, space bounds, ‘Turing machines.

*/
Research partially supported by DAAD (German Academic Exchange

Service) Grant No. 530/402/563/5.

xx/
Research partially supported by National Science Foundation grant
DCRT2-03663-A03.

Reproduction in whole or 1n part 1s permitted for any purpose of the
United States Government.

1

1. Introduction.

LetG = (V,E) be an acyclic directed graph with vertex set V and

edge set E . If (i,j) is an edge of G¢ , we say i is a predecessor

of J andj 1s a successor of 1 . We denote the set of predecessors

of a vertex j by B(j) . The number of predecessors of a vertex is its

in-degree; the number of successors of a vertex 1s 1ts out-degree. A vertex

of in-degree zero is a source; a vertex of out-degree zero 1s a sink. We denote

by &(n,d) the class of all acyclic. directed graphs G with n vertices,

each having in-degree no more than d . We use CsCysCps eee to denote

positive constants. We use c(d),c,(d),c,(a), --. to denote positive

constants depending on d but not onn . Finally, we let [i,j] 'denote

the set of integers fk: i < k <j}.

In this paper we study a one-person game played on graphs. The game

involves placing pebbles on the vertices of a graph Ge.#(n,d) according

to certain rules. A given step of the game consists of either placing a

pebbleon an empty vertex vv of G (this is called pebbling v) or

removing a pebble from a previously pebbled vertex. A vertex may be

pebbled only if all its predecessors have pebbles. (As a special case of

this rule, any source may be pebbled at any time.)

The object of the game is to pebble a given vertex of G subject to

the constraint that at most a given number of pebbles are ever on the graph

simultaneously. We may 1n addition require that this pebbling be accomplished

in the minimum number of steps. We can pebble any vertex of G in n

steps, using n pebbles, by pebbling the vertices in topological orders!
and never deleting pebbles. We are interested in pebbling methods which

use fewer than n pebbles but possibly many more than n steps.

%/ I.e., if (i,j)€eE , then i is pebbled before J [4].

The number of pebbles used in the pebble game models the storage

requirements ofa computation, in the following intuitive sense. Each

vertex represents a value. This value is computed by applying a particular

operation to the values represented by the predecessors of the vertex.

Sources represent input values. Each pebble represents a storage location.

Pebbling a vertex corresponds to computing the value represented by the

vertex and storing the value in the location represented by the pebble.

Deleting a pebble from a vertex corresponds to freeing the storage

location represented by the pebble, thus making unavailable the value

represented by the vertex. Should this value be needed at a later time,

it must be recomputed. The pebble game has been used as a model for

register allocation problems [7] and as a tool for studying the relationship

between time and space bounds for Turing machines [1,3].

Known results concerning the pebble game include the following.

Theorem A. If Ged(n,d) and G has maximum out-degree one (i.e.,

G 1s a tree), then any vertex of G can be pebbled in time n using

¢,(d) log n pebbles [1]. For infinitely many n , there is a graph

Ge.n,2)of maximum out-degree one which requires cq log n pebbles

to pebble some vertex [5].

Theorem B [1]. For infinitely many n , there is a graph G e¢.#n,2)

‘which requires c/n pebbles to pebble some vertex.

Theorem C [3]. If Gegn,d) , then any vertex of G can be pebbled

using. c¢(d) n/log n pebbles.

In Section 2we construct, for infinitely many n , a graph

G(n) e€Xn,2) such that G(n) requires cq n/log n pebbles to pebble

some vertex. This shows that the bound in Theorem C 1s tight to within

a constant factor. In Section J we give upper bounds for various

-pebbling methods, including a method which achieves the 0(n/log n)

3 bound of Theorem C. In Section I we present some further remarks.

| 2. A Lower Bound.

We prove the claimed lower bound by recursively constructing an

appropriate family of graphs. We use the following result of Valiant [8].

| For any value of 1 , there 1s a graph with c 2" edges, 2° sources,
| and ot sinks, which has the following property:

For any Jj e [1,24], if S is any subset of j sources and T

1s any subset of J sinks, then there are j vertex-disjoint

| | paths in C(1) from S to T .

| The vertices 1n this graph may have arbitrary in-degree. Replacing

| each vertex with in-degree d > 2 by a binary tree with d leaves at most

| doubles the number of edges. In the new graph each vertex has in-degree two,

and the graph still has the same property. Thus we have the following lemma.

Lemma 1. For any value of 1 there is a graph C(i) e Hot, 2) , with ol

| | sources and ot sinks, such that: For any J e [1,2] , 1f S 1s any

| subset of Jj sources and T is any subset of J sinks, then there are

J vertex-disjoint paths in C(i) from S to T .

Corollary 1. For any J] ¢ [0,241] , if J pebbles are placed on any j

vertices of C(1) , and T is any subset of at least j+l1 sinks, then

at least 2k. ; sources are connected to T via pebble-free paths.

Proof. For any J ¢ [0,2%-1] , let J pebbles be placed on C(i) and

let T be any subset of at least j+l1l sinks. Any subset S of j+l

sources 1s connected to T via j+l vertex-disjoint paths, at least one

of which must be pebble-free. Thus Jj is the maximum size of the set

of sources not connected to T by a pebble free path. 0

Using copies. of C(i) , we recursively define a set of graphs

(Gi): 1 =18,9,10, . ..) . G(8) = 5©) We form G(i+l) = (V(it+l),E(i+l))

from two copies of G(i1i) and two copies of C(1i) as follows.. Let

G(i) = (V(i),E(i)) have sources S(i) = {s(i,j): I c [1,21] and sinks

T(i) = {t(i,3): 7 e [1,2M]} . Let C(i) have sources

sc(i) = {se(i,3): J €[1,2%]} and sinks TC(i) = {te(i,3): j e [1,2] :

| Let Gy(1) , G,(i) be two copies of G(i) and let C,(i), C,(1) be
| two copies of C(i) . Let S(i+l) = {s(i+l,j): J e [1,213 and

| T(i+l) = {t(i+l,j): J € [1,2% be two new sets of vertices. Let

| © @(i+l) = (V(i+l),E(i+1l)) , where

V(itl) = S(i+l)UT(i+l) Uv, (1) UV, (1) uve, (1) UVC, (1) , and

E(i+l) = E, (1) U E, (1) U EC, (1) U EC, (1)
| i+1

U {(s(3+1,3) , t(1+1,3)): § e [1,27 1)

| U {(s(i*1,3), se,(1,3): j € [1,271]

U {(s(i+1, +27) ’ sc, (4,3)): J € (1,271)

U L(teq (1,3) , s1(1,3)):] € [1,27])

| U {(65(853) , 85(4,3))1je [1,271]

U {(b,(1,3)5 sey(L,8)): € [1,271]

U ((bey(1 3)» 6(241,9))1] € [1,271]

| PE AOU i
| U { (te, (4,3) » BAL, 5427)): J e [1,27]}

Figure 1 illustrates G(i+l) .

| Let m(i) = |S(i)| = |T(i)]| = 2% | Let n(i) = |V(i)| . Then

n(d) < 28 and n(i+l) < 2n(i)+ (2¢+9)2" , where c¢ is the constant

| given 1n Lemma 1. It is easy to prove by induction that n (i) < cod ot
| for some constant ¢; , and that G(i) e(n(i),2) .

5

Let cq = 14/256 , c, = 3/256 , Cy = 34/256 , and c) = 1/256 .
The following inequalities are immediate.

Cx m(i)/2 > c m(i+1)+1

(1-2¢c,) > Cy

c m(i) > c)m(i+1)+1

c, m(i)/2 > ec m(i+l)+11 =~ 2

(1-c,) > cq

(cs/2 - c,) > © .

Lemma 2. To pebble at least ec m(i) sinks of G(i) in any order,

starting from an initial configuration of no more than ec m(1) pebbled

vertices, requires a time interval [t1,5,] during which at least cm(1)

sources are pebbled and at least cm(1) pebbles are always on the graph.

Proof. By induction on i . Let i = 8 . Consider an initial

configuration on G(8) of no more than three pebbled vertices and suppose

14 sinks are pebbled during time interval [0,t] . Any four of these

sinks are connected, via initially pebble-free paths, to at least 253

sources, by Corollary 1. Thus at least one of these sinks, say v , is

connected, via initially pebble-free paths, to at least 64 of the

‘sources. When v is pebbled, none of the 64 sources is connected to

Vv via a pebble-free path. Furthermore the set of sources connected to

Vv via a pebble-free path can decrease by at most one at each time step.

Let 6-1 be the last time at which 64 sources are connected to v via

* 1 1] []]J l.e., each sink 1s pebbled at some time, but not all sinks need be
pebbled simultaneously.

6

pebble-free paths. During time interval [t,t] , 63 > 34 sources of

G(8) must be pebbled, while at least one pebble is always on the graph.

| This proves the lemma for i = 8.

| Suppose the lemma 1s true for 1 . To prove the lemma for i+l ,
consider an initial configuration on G(i*l) of no more than ec m(i+1)

| pebbled vertices and suppose at least c m(i+1) sinks are pebbled during
| time interval [0,t] . We must consider several cases.

Case 1. There exists a time interval [t45%,] c [0,t] during which at

| least Cs m(i)/2 sources of Gy (1) are pebbled and at least ec m(1)
| pebbles are always on the graph. The subgraph of G(itl) consisting of

all vertices and edges on paths from the set of sources {s{i+l,J): jel1,2%1)

to the set of sinks {s, (1,3): je[1,2%7] satisfies Lemma 1 and Corollary 1.
| So does the subgraph of G(i+l) consisting of all vertices and edges on

paths from the set of sources (s(i+1, +24): 5el1,2%]) to the set of

sinks {s,(1,3): 5e[1,2 1) . Let ts be the last time before ty at
whichthereare no more than c m(i+1) pebbles on the graph. At time t, ,

since c, m(i)/2 > c m(i+1)+1 , there are at least 2(m(i) - ec m(i+1)) =

(1-2¢,)m(i+1) > cm (i+1) sources of G(i+l) connected via pebble-free

paths to the c,m(i)/2 sources of Gy (1) pebbled from t, to t,

During the interval [tpt] , at least these sources of G(i+l) must be

pebbled, and at least ec m(i)-1 > c)m(i+1) pebbles must be constantly

| on the graph. Thus the lemma holds in this case.

Case 2. There exists a time interval [t,5%,] Cc [0,t] during which at

least cg m(i)/2 sources of Go (1) are pebbled and at least cm(1)
pebbles are always on the graph. The lemma holds by a proof like that

in Case 1.

Case 3. There exists a time interval [t15%,] c [0,t] during which

at least c¢ m(i+1)/2 sinks of G(itl) are pebbled and at least

ec m(1) pebbles are always on the graph. During [t,t,] either

cy m(i+1)/% sinks in {t(i*t1, J): J «€ [1,24 are pebbled or
cy m(i+1)/4 sinks in (t(i+1, +21) : je [1,2%13 are pebbled. The

| lemma holds by a proof like that in Case 1, using the inequalities

| cq m(i+1)/b > ec m(i+1)+1 , (1-2¢c,) > Cx and ec m(i) -1 > cym(i+l) i
Case 4. None of the previous cases hold. Since Case 5 does not hold,

there must be a time %;ee [0,t] such that fewer than ¢; m(i+1)/2 sinks

of G(i+l) are pebbled during 10,%, 1] and the number of pebbles on

G(i+l) at time t; is no more than c m(1) . During [t,t] , at

least c,m(1) sinks of G(i+l) are pebbled. Since Cc, m(i)/2 >

ec m(i+1)+1 > ec m(i)+l , the number of sinks of Gy (1) connected to

these sinks of G(i+l) via pebble-free paths is at least (1-c,)m(1) :

Thus at least (1-c,)m(i) > cqm(1) sinks of G, (1) are pebbled

during [t,t] , starting from an initial configuration of no more

than ec m(1) pebbled vertices. By the induction hypothesis there 1s

a time interval [tos tal c [t{»t] during which com(1) sources of

G, (1) are pebbled and c;m(1) pebbles are always on G, (1)

Since Case 2 does not hold, there must be a time t), € [t,t]

such that fewer than Cq m(i)/2 sources of Gy, (1) are pebbled during

| [t55%),] and the number of pebbles on G(i+1l) at time t), 1S no more
than -em(1) . During [t,t] at least ¢; m(i)/2 sources of G, (1)

are pebbled. At time t), , since Cc, m(i)/2 - c m(1) > cym(i) , at

least cm(i) sinks of G1 (1) are connected via pebble-free paths to

these sources of G, (1) . During [t),,t5] these sinks of Gy (1) must

8

be pebbled, starting with no more than c m(1) pebbled vertices. By

the induction hypothesis there is a time interval [tos gl - [£),,%5]

during which cm(1) sources of Gy (1) are pebbled and c;m(1)

pebbles are always on G, (1) :

Since Case 1 does not hold, there must be a time t e ltt] such

that fewer than C m(i)/2 sources of G (1) are pebbled during

[tet] and the number of pebbles on G(i+l) at time t, is no more

than ec m(i) . During [t,t] at least Co m(i)/2 sources of G4 (3)

are pebbled. At time ts y since Cx m(i)/2 > ec m(i+1)+1 > c m(1)+1 ,
at least (1-2c,)m(i+1) > ec m(i+1) sources of G(i+l) are connected

via pebble-free paths to these sources of Gy (1) . Thus, during

[t,t] - [tot] C [£55 ts] at least cm(i+1) sources of G(i+1)

are pebbled and at least cym(i) + c)m(1) = cm(i+1) pebbles are always

on the graph. This completes the proof. U

Theorem 1. For infinitely many n , there is a graph G ¢.&n,2) such

that pebbling some vertex in G requires Cr n/log n pebbles.

Proof. For n = n(i) , 1 =28,9,10, let G = G(i) .Since

pebbling all sinks of G(i) from an initial configuration of no pebbled

vertices requires c)m(i) pebbles, there must be some sink whose

. pebbling requires cy m(i) pebbles. (Otherwise, the procedure of

pebbling the sinks one after another using a minimum number of pebbles

for each sink, and removing all pebbles after each sink 1s pebbled, would

pebble all sinks using fewer than c)m(i) pebbles.) Since n (i) < ec, 12’

and m(1) = ot , the number of pebbles required is Ce n(i)/log n(i)
for some constant Cs - O

9

5. Upper Bounds.

In this section we derive upper bounds on the number of pebbles

required by various pebbling methods. Let remove (set S) be a procedure

which removes all pebbles from vertices in . . Most of our results depend

upon the following algorithm, which pebbles vertices in a "depth-first" manner.

procedure depth-first pebble (graph G, vertex v, set s);
begin

for u eB(v)do if u not pebbled then
depth-first pebble (G, u, B(v) US);

pebble v;

remove (V-(W(v)));

end:

The following lemma is implicit in [3].

Lemma 3. If G = (LE) € #4n,d) has the property that any path to v

has no more than [vertices, then depth-first pebble (G,v,$) pebbles

v using no more than (d-1)(£-1)+2 pebbles.

Proof-. By induction on the length f of the longest path to v . If v

is a source, the procedure uses < (d-1)-0+2 pebbles. Suppose the

lemma is true for [{ and let the longest path to v have length #+1 .

Then the procedure uses max{(d-1)+(d-1)(£-1)+2, d+1} = (d-1)+2

pebbles. UU

~ The following more general method uses "permanent" pebbles, which

once placed on the vertices of a set P , are never removed.

10

procedure permanent pebble (graph G, vertex v, set P);

for ueP in topological order do depth-first pebble (G,u,P);
depth-first pebble (G,v,P);

end;

Lemma 4. If |P| = k¥ and if G = (V,E) €.4(n,d) has the property that

any path to v which avoids vertices in P contains no more than /{

vertices, then permanent pebble (G,v,P) pebbles Vv using no more than

k+(d-1)(2-1)+2 pebbles.

Proof. When depth-first pebble (G,u,P) is called by permanent pebble ,

any pebble-free path to u contains no more than [vertices, since

every vertex in P on a path to u has been pebbled previously. The

bound follows from Lemma 3. [UI

Erdos, Graham, and Szemerédi [2] have proved that in any acyclic

directed graph of n edges there 1s a subset P of cn log log n/log n

vertices such that every path which avoids P has length at most

c,n log log n/log n . (Furthermore they provide an easy way to find such

a subset P .) Their result combines with Lemma 4 to give the following

theorem.

Theorem 2. If G = (V,E) e&n,d) and P C V is properly chosen, then

permanent pebble (G,v,P) uses at most cdn log log n/log n pebbles.

To come closer to the Theorem C bound, we must use an algorithm

. somewhat more complicated than permanent pebble . We defer discussion

of this algorithm to the end of the section.

" Theorem 1 and Lemma 4 also yield:

Corollary 2 [2]. ‘For infinitely many n there is a graph G e7(n,2)

such that every subset P of the vertices of G with the property "Every

path which avoids P has length at most | P| " has at least c;n/ log n
vertices.

11

; We now give good methods for pebbling two special classes of

graphs. We call G = (V,E) € &n, 4) a level graph if V can be

partitioned into levels L(1),L(2),...,L(m) such that if (v,w)€E

and veL(i), then welL(i+tl) . Let G be a level graph and let k

be any positive integer. Call level 1 large if |IL(1) | > k and small

otherwise. Let (i(j): 1 < j <1} be the set of indices of small

| levels, in increasing order. Let i(0) =0 , i(4+1l)= ml , and L(0) = ¢ .

| Let veL(j) be any vertex and let £' be the integer such that

i(4') < j and i(2'+1) > J .

The following algorithm efficiently pebbles v .

procedure level pebble (graph G, set array L, array i, vertex v, integer 1');

begin

for j := 1 until £' do

begin

for ue L(i(j)) do
depth-first pebble (G, u, L(i(j-1)) UL(i(J)));

remove (L(1(3J-1)));

end;

depth-first pebble (G,v,L{i(L')));

end;

Lemma 5. Procedure level pebble pebbles any vertex of a level graph

G = (V,E)€ Kn,d) using no more than 2k+ (d-1) r pebbles.

Proof. During the pebbling process, no more than two small levels ever

| contain pebbles simultaneously. Thus at most 2k-2 pebbles are ever on
]

| small levels. The number of levels between two small levels is at most 2 ,
since there are at most = large levels. Thus the number of pebbles used in an

outermost call of depth-first pebble is at most (d-1) z+ 2 , and the total

number of pebbles used is at most 2k+ (d-1) z . J

12

Theorem 3. If Ge&n,d) is a level graph, any vertex of G can be

pebbled using ~N8(d-l)n pebbles.

Proof. Immediate from Lemma 5, choosing k _ AJ (a-1) n/2 . U

The bound in Theorem 5 is tight (to within a constant factor which

depends on d), because the graphs Cook used to prove Theorem B are level

graphs.

The class of m-tape Turing machine graphs T(n,m) 1s the subset of

Hn,mtl) containing graphs G = (V,E) of the following type.

v={(L3;(1) .-»3 (1): 1 <i <n, Jp (1) = 1 for all k ,

and Jy (i+1) e (3, (1)-1, 73, (1) , Jy (1)+1} for all 1 <n

and all k) ;

m

E= Uy {((1,3,(1), @ gw (Li), @ ps
k=1

it = max{f < i: §, (4) = 3, (1)

U{((4,3,(2)5+53 (1), (8#1,5,(3#1),..,3 (3#1))): 1 <4 <n) .

The pebble game on m-tape Turing machine graphs was used in [1,3]

as a tool for relating the time and space requirements of Turing machines.

It has been conjectured that there are graphs in T(n,1l) which can require

en / log n pebbles to pebble some vertex. We disprove this conjecture by

adapting a proof of Paterson for space-efficient simulationof one-tape

Turing machines [6].

Let ¢ = (VLE)€ T(n,1) . For any j , let

H(3) = {(1,3,(1)) ev: J, (i) = j} . For any S © V , let

width (S) = max{|j(1) -J(i")]: (L,3,(2)) , (1',3,(i")) eS) . For any S © V ,

13

there must be some ;j such that max{|J, (1) =] |: (1,.,(1)) ¢ S) <= width (S) +1
and |H(j)| < %n/width(S) . Removal of the vertices in H(j) splits S

| into two parts, 8; = {(1,3,(1)) ES: J, (1) < j} and

S, = {(1,3,(1)) eS: j, (1) > 3) . Any path in G which contains a vertex

in S and a vertex in So must contain an intervening vertex 1n H(3) .

| The following recursive algorithm efficiently pebbles a vertex v

in G = (V,E) e T(n,1) .

Bone-tape pebble (graph G, set 8, vertex wv);

if width(S) < k then

for (1,3,(1)) ES in topological order while i <v do

pebble (1,3,(1));

let (1'53,(1")) be the vertex (if any) in S with

largest i' < i and J, (1") = 5, (1);

remove pebble from (1'537(1"));3

end;

remove (S-{v});

end

else

SEL Byy Bos

find j such that max{|j,(1)-j]: (1,3,(3)) eS} < = width(s)+1
and |H(3)| < 3n/width(s);

S, := {(1,3,(1)) es: J, (1) < J);

14

| S, = {(1,3,(1)) es: 3, (1) >9);

| for (1,3,(1)) e H(j) in topological order do
begin

] ANS

| if (i-1,3,(i-1)) cS, then one-tape pebble

| (6,8, (1-1, (1-1)))

| else if (i-1,j;(i-1)) eS, then one-tape pebble

| (Gy 8,5 (1-1,3,(1-1)));

pebble (i,3,(1));

| end.

if ves, then one-tape pebble (G, 815 V)

else if ves, zone—tape pebble (Gs8,57) 5

| remove (S-(v)) ;

| end one-tape pebble;

15

Lemma 6. Procedure one-tape pebble pebbles any vertex of a graph

G = (V,E) € T(n,1) using 2 + k pebbles.

| Proof. Let p(n,x) denote the number of pebbles used by one-tape

pebble (G,8,v) when G = (V,E) € T(n,1) and S ¢V has width(S) = x .

Then

p(n,x) < x 1f x <k, and

2) p(n $x] J 2 if x >k.
Let x be such that x < k , 2x >k . Then

J J

p(n, (2)x) < 2 Bex2 —- 1

i=1 p) x
2

7-1 1

< 0 2 (2) + k
| 2)x 1=0

< © + k for any positive J .

The maximum number of pebbles required to pebble any graph in T(n,1) is

On
no more than p(n,n) < += +k. LJ

Theorem 4. If GeT(n,1l) , any vertex of G can be pebbled using 6/n

pebbles.

Proof. Immediate from Lemma 6, choosing k = 3/0. Cl

Cook's graphs can be embedded in one-tape Turing machine graphs with

an increase of only a constant factor in the number of vertices. Thus

the Theorem 4 bound is tight to within a constant factor. By modifying

the construction of Section 2, we can show that two-tape Turing machine

16

graphs require cn / (log n) 2 pebbles in the worst case, and we believe

but cannot prove that this lower bound can be improved to ecn/log n .

The last result of this section is an algorithm, based on

| the proof of Theorem C in [3], which efficiently pebbles any
| vertex of an arbitrary graph. The algorithm is recursive and operates on

a graph G in the following manner. If G 1s small, the vertices of G

are pebbled in topological order without removing pebbles. If G 1s large,

G is split into two parts, G, and G, , of roughly the same number of

edges, such that noedges run from G, to Gy. If a vertex in Gy is

to be pebbled, the method 1s applied recursively to Gy . If a vertex 1n

: G, is to be pebbled and the number of edges from G; to Gy, 1s small

(i.e., less than 1/1og I , where { is the number of edges in G), then

| the vertices 1in Gy with successors 1n Gy are permanently pebbled by
applying the method recursively to Gy and all pebbles except the

) permanent ones are removed. Then the vertex in Gy, 1s pebbled

by applying the method recursively to G, . If a vertex in G,

1s to be pebbled and the number of edges from Gy

to Go 1s large, the algorithm is applied recursively to G, . Whenever

the next vertex v to be pebbled in Gy, has some predecessors Ups ee ely

| in Gq y the algorithm 1s applied recursively to Gy to pebble LE ERRRFLN
and all pebbles in Gy but the ones on CEFRREFLW are removed. After v

1s pebbled, all pebbles are deleted from Gy , and the method continues on G,

This algorithm 1s given more precisely below. The parameter J 1s

| the partition of the vertex set V of G created by nested recursive
calls of the procedure. Set T gives a set of vertices which, once

pebbled, are not to be unpebbled during the current recursive call of the

procedure. Integer k 1s some suitable positive constant. The procedure

call best pebble (G, hv,8) will pebble vertex v in graph

| G = (V,E) €¢ Hn,d) .

procedure best pebble (graph G, partition of, vertex v, set T);
begin

find Se such that ves:

t= | {(ww): u,wes}l;

if1 <k then

for ueB(v) do if u not pebbled then best pebble (GyS,u,TUB(V));
pebble v; —
remove (V- (T U{v}));

end

else

divide S into SH S, such that (u,w) €E and ues,
implies wes, and £/2 -d< | { (u,w): ues, }| < 4/2+ d;

if | { (w,w): ues, » wes, }| < £/log t then

st, ©

C := (u | d(u,w) with ues, weS, 1;
for ueC do if u not pebbled then

best pebble (G, /-{S} U {8158,} ,u, TUC);
best pebble (G,/-{S}U {8,58,} , V, TUC);
remove (V - (T U(v)));

end

else best pebble (G,/-{8}U {81,8,}, v, T);
end end best pebble;

Theorem 5. Procedure best pebble pebbles any vertex of a graph

G = (V,E) € 4(n,d) using c(d) n/log n pebbles.

Proof. Let g(m) be the maximum number of pebbles used by best pebble

to pebble any vertex in any graph with m or fewer edges and maximum

in—-degree d . Then

18

a(m) < k if m<k ,

q(m) < wer {a2 + a) + Tog mn’ 2a(5 + d - mew) if m>k .
It 1s easy to show by induction that qg(m) < c¢ m/log m for a suitable

positive constant ¢ . The theorem follows. []

L. Remarks.

Theorem 1 gives a lower bound of en/log n for the number

of pebbles necessary to pebble every graph in #(n,2) . This result

implies that the upper bound in Theorem C 1s tight to within a constant

factor. The result also shows that the space-efficient simulation for

multi-tape Turing machines given in [3] cannot be improved without using

new techniques.

Many questions about the pebble game remain unanswered and several

application areas remain to be explored. For instance, how much time must

one sacrifice to achieve a given savings 1n pebbles? How many pebbles

can be saved while preserving a polynomial running time? How much time

can be saved while preserving a cn /log n pebble bound?

A possible application area lies in the derivation of lower bounds

on the time necessary for various computations. For instance, suppose

we wish to prove a lower bound of cn log n on the size of a Boolean

circuit necessary to do some computation. If we can prove that any

circuit either has size cn log n or requires simultaneous storage

of Gn intermediate results, the bound follows from Theorem C.

Acknowledgment. For helpful and inspiring discussions we thank

Professors V. Claus and K. Mehlhorn.

19

| References

| [L] S. A. Cook, "An observation on time-storage trade off,"

Proceedings of the Fifth Annual ACM Symp. on Theory of Computing

(1973), 29-35.

| [2] P. Erdos, R. L. Graham, and E. Szemerédi, "On sparse graphs with

dense long paths," STAN-CS-75-504, Computer Science Department,

Stanford University (1975).

[3] J. Hopcroft, W. Paul, and L. Valiant, "On time versus space and

related problems," Sixteenth Annual Symp. on Foundations of

Computer Science (1975), 57-64.

. [4] D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass. (1968), 258-265.

[5] M. S. Paterson and C. E. Hewitt, "Comparative schematology,"

Record of Project MAC Conf. on Concurrent Systems and Parallel

Computation (1970), 119-128.

[6] M. S. Paterson, "Tape bounds for time-bounded Turing machines,"

Journal of Comp. and Sys. Sci. 6 (1972), 116-12k.

| [7] R. Sethi, "Complete register allocation problems," Proceedings of
the Fifth Annual ACM Symp. on Theory of Computing (1973), 182-195.

[8] L. Valiant, "On non-linear lower bounds on computational complexity,"

Proceedings of the Seventh Annual ACM Symp. on Theory of Computing

(1975), u45-53.

20

S(1+1)

>< direct
NT connections

| |
IN

etG,, (1) |) Pre wo Pa

gd Cp (1)
vd re rd ~~

T(i+l)

Figure 1. G(i+l) .

21

