REMOVING TRIVIAL ASSIGNMENTS FROM PROGRAMS

by

Bernard Mont-Reynaud

STAN-CS-76-544
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Removing Trivial Assignments from Programs

Bernard Mont-Reynaud

Abstract

An assignment X <« Y in a program is "trivial" when both X and Y
are simple program variables. The paper describes a transformation which
removes all such assignments from a program P , producing a program P!
which executes faster than P but usually has a larger size. The number
of variables used by P' 1is also minimized. Worst-case analysis of the
transformation algorithm leads to nonpolynomial bounds. Such inefficiency,
however, does not arise in typical situations, and the technique appears to

be of interest for practical compiler optimization.

Keywords and phrases: optimizing compilers, program optimization,
program transformation, program schemas,

register allocation, renamings of variables.

CR categories: 4.12

This work was supported by a graduate fellowship from the IBM
Corporation; the National Science Foundation, grant MCS 72-03752 AG2,
at Stanford University, and the Office of Naval Research, contract
NOOO1k-75-C -0816, at Stanford Research Institute.

1. Introduction.

An assignment X « Y in a program is "trivial” when both X and Y
are simple program variables. An empirical study of FORTRAN programs
conducted by D. Knuth [1] suggests that trivial assignments occur quite
frequently in practical programs. Such assignments are also introduced
when rewriting recursive definitions as iterative ones. In this paper
we consider a transformation which removes all trivial assignments from
programs. The method can be impractical in pathological cases, but
behaves quite efficiently in most typical situations. It is thus of
interest for practical compiler optimization.

Let us consider Euclid's algorithm for computing the greatest

common divisor of two nonnegative integers:
gcd(A,B) = (if B = 0 then A else gcd(B, A mod B))

Here x mod y denotes the remainder of the integer division of x by y
This concise recursive definition is easily implemented in iterative form

(see Figure 1).

INPUT (A, B)

B +A mod B

L

A+~C

S

Figure 1. Flowchart GCDL.

The program GCD1 performs one test and three assignments for each
iteration. Two of the assignments, C « B and A « C , are trivial,
that is, both the left- and right-hand sides are simple program
variables. We will show how to transform any flowchart involving trivial
assignments into an equivalent flowchart which has no such assignments.
For example, there is a flowchart for Euclid's algorithm in which only
one test and one assignment are needed for each iteration. Consider
Flowchart GCD2, shown in Figure 2. Note that every execution of the loop
in GCD2 corresponds to two iterations in GCD1. This will be called

2-fold loop unrolling.

F
A~ A mod B
F
B « B mod A
|

Figure 2. Flowchart GCD2.

- The reader should convince himself that the two flowcharts are indeed
equivalent, 1in a rather strong sense: The computation performed by GCD2
is step-wise identical to that performed by GCDl, except for renamings of
variables and the omission of trivial assignments. We observe that GCD2

runs faster and uses fewer variables than GCD1.

Such optimizations can be carried out systematically, using the
technique described below. Since the transformation is independent
of the interpretations of the program variables (e.g., as integers) or
of the primitive operations (e.g., the mod operation), it is best
viewed as a transformation of program schemas. We introduce basic
concepts and notations for discussing flowchart schemas and describe
an algorithm to transform them into schemas without trivial assignments.
The algorithm is then strengthened to minimize the number of
variables used. The inclusion of the technique in a practical system
(e.g., an optimizing compiler) raises some difficulties which are
discussed briefly. The examples given in Appendices A-E illustrate further

aspects of this technique.

2. Basic Concepts and Notations.

2.1 Flowchart Schemas.

In this section we briefly define a certain class of flowchart schemas.
This class is essentially equivalent to those used in classic papers
on the subject [2, 3]; minor differences in notation are introduced for
convenience in stating and illustrating our transformations.

A flowchart schema (or simply a schema) is a directed graph whose
nodes represent computational instructions or boolean tests. It uses a
setofvariables, X = {Xl’XE""’XN} ; a set of function symbols,
F = {fl,fe,...} (including constants); and a set of predicate symbols,
P = {pl’PE""}' In the following we let x stand for a finite
sequence of elements of X ; for example, X may be <X3’X1’XL’X1) .

Then we let £ (x) and p, (x) stand for £, (XaX X))

and Pk(X5’Xl’X1L’Xl) , with fkeF and pkeP Let X. and Xj be

arbitrary variables in X

We consider the following kinds of nodes.

trivial assignment node: i i

(proper) assignment node:

effect node: k

test node: T @ 1

start node:
stop-node:

Flowchart schemas are constructed by combining one start node with

. one or more nodes of the other kinds.
These definitions are largely self-explanatory except for the

role of effect nodes. Effect nodes may represent operations such as

altering data structures or printing intermediate results, which do not

affect the values of the schema's variables. More generally the interpre-

tations of function and predicate symbols are allowed to have side-effects

as long as all changes to the values of the variables Xi are explicitly

made by assignments.

The flowcharts GCD1l and GCD2 are examples of schemas in our class.
(Note that A mod B should really be written mod(A,B) to fit our

definitions; similarly we need to write equalzero for the test

B = 0.) The example given in Appendix A illustrates the use of

effect nodes in representing destructive operations on data structures.

2.2 Renamings of Variables.

The use of renamings of variables, that is, mappings from the set
X .={Xl,X2,,,.,XN} of variables into itself, is central to our technique.
The relevance of such renamings to problems of register allocation has
already been noted elsewhere [4]. In our case we allow many-to-one
mappings. In terms of register allocation, this may be called register
sharing: at some point in the execution of a program, a single register
holds the values of several variables.

We also make use of partial mappings, or total mappings from X into
XlJ{w} , where w stands for "undefined". A typical renaming of
X = {%,¥,2,t} is the mapping S defined by S(x) = S(y) =y

4

S(z) =w and S(t) =z

Xxyzt)
Yyywz

or simply S = (y y w z) since the upper line is held constant for a

We can write S = (, extending the notation for permutations,

given schema. There are (N+1)N distinct renamings of X when lX\ =N

It is convenient to borrow from the vocabulary of register allocation
when describing properties of renamings. For the current example, we say
that the variables x and y are found in the "register" y . Register
y 1is "shared" since it holds more than one variable. Registers x and
t , which hold no variable, are said to be "available" or "free". This
suggestive terminology, however, does not limit the technique to register

machines, or to cases where there are enough registers to hold all program

variables. The actual register allocation and generation of appropriate
load and store operations, on a register machine, are not considered

here.

Given a renaming S of the set X of variables, and a functional
term f(2) , where X 1is the argument list (a sequence of elements of X),
we use f(8(x)) to denote the expression obtained by simultaneously
substituting §(X,) for Xp 5 o e S(XN) for Xy in f(x) . This
notational convenience also applies to predicates and to the special
functions INPUT and RETURN used in the start and stop nodes. It

is defined only when w does not appear after the substitution.

3. Basic Algorithm for Removing Trivial Assignments.

3.1 A Simple Example.

Before considering the algorithm in its full generality, let us fcilow
its operation on a simple example of a straight-line flowchart. (See

Figure 3.) The input flowchart has three variables x , v , z . We

begin the construction of the output flowchart by copying the start node,

and we use (x y w) for initial mapping since z has no value so far;

X and y might as well be mapped to themselves. Processing the trivial

assignment node =z < x results in changing the mapping to (x vy x),

BUSYDS SUTT-USTRILZS B JCO UOTARUIOISUBLJ,

ClErmpmenaa

(x¢£¢2)8 - £

(xL£¢x)F - z

dON

MIBYOMOTI andqno

‘¢ oanITd

(x £ z)

(£¢x) NINITY

(x £ 2

(z¢A¢%)8 - &

N

(x £ x

(z€Lx)T - x

(m £ x)

Sutddeuw fquagan)

\

JIeYOMOTT Judul

reflecting the fact that z is now found in register x . This node,

like all trivial assignments, needs no counterpart in the output flowchart;
it is convenient to use a no-operation (NOP) node for this case.

Next we process the assignment x « f(x,y,z) . Its counterpart has the
right hand side f(x,y,x) , obtained by the obvious substitution of
registers for the corresponding variables. For the left hand side, we
can't use register x since it is currently shared by variables x and z
But register z is free, so we can use it to hold the value f(x,y,x)

The mapping changes to (z,y,x) , reflecting the fact that x is now
found in register z . The right hand side of the transform of the
assignment y « g(x,y,z) is now clearly g(z,y,x) . For the left hand
side, we can use ¥y since it is not shared. The mapping is unchanged.

Copying the stop node with variables renamed completes the transformation.

3.2 Case of Loop-free Schemas.

The algorithm uses the auxiliary recursive function TASS (for
"remove Trivial ASSigmments"). Thisfunction takes two arguments:
a reference @ to a node in the input flowchart, and a mapping S
The call TASS(®,S) creates a new node in the output flowchart and
returns a reference Q.S to that node. The algorithm is defined by six
transformation rules, one for each kind of node. The first rule initializes
the computation, and the remaining five rules define the recursive function
TASS. Given the current mapping S , the node &« (on the left) 1is
transformed to the node &.S (on the right). The letters p and y stand

for references to nodes in the input flowchart.

%.2.0 Start node:
Caen®) > - C o D
& . TASS (B, 5,))

where S, is the initial mapping \u. (if ueX then u else w) .

3.2.1 Trivial assignment node:

X, «X. = NOP
1 J l
B TASS(B,S')

where 8' = zu.(if u = X, then s(xj) else S(u))

3.2.2 Effect node:

£(x) = £(s(x))
B TASS(B, S)

3.2.5 Test node:

C () D - C 2(5(0) 23

B Y TASS(B,S) TASS(7, S)

10

5.2.4 Assignment node:

X; < f(x) = s'(xi) - £(s(x))
! ' l
B TASS(B,S")

where S' 1is determined as follows. Let 8" be the mapping

- (if u = Xi then w else S(u)) . Choose R arbitrarily among the
free registers of §" (note that there is at least one such register).
Let S' be the mapping (u.(if u = X; then R else S"(u)) . (The reason

we define S' using S" and not S will become clear in Section 4.2.)

%.2.5 Stop node:
Cam> - GEmeED

The rules 3.2.0 - 3.2.5 completely define the transformation for
loop-free flowcharts. The algorithm amounts to a forward propagation
of a mapping through the input flowchart. For each node encountered,
a copy is created in the output flowchart, with variables renamed as
dictated by the current mapping.

For simplicity in stating the algorithm, we have transformed trivial
assignment nodes to NOP nodes. It is easy to imagine how such nodes can
be eliminated from the output flowchart (or better, how the algorithm

could be adapted to avoid their generation in the first place).

11

5.3 Treatment of Loops.

The algorithm described so far does not terminate when the input
flowchart has a loop. This case will be handled in the following way.
We strengthen the definition of TASS so that the reference (or node name)
a.S returned by the call TASS(@,S) is canonically associated with the
pair (@,8) . The nodes @ of the input flowchart are initially given
unique names. The distinct mappings S which arise during the computation
also have unique names; for example, they may be encoded as integers
between 0 and.(l\]’-l-l)l\l . One can construct a unique name Q.S by pairing
the names of & and S in any reasonable way. A critical property here
is that we can compute the name Q.S which will be returned by the call
TASS(Q,8) before we determine the attributes associated with that name,
and in particular before any recursive call is made. We will use a
global variable, CREATEDNODES, to keep track of the set of names .S
corresponding to all the calls TASS(®,S) performed so far. Initially
CREATEDNODES is a set of one element, the name of the start node in the
output flowchart. (At the end of the process, CREATEDNODES is the set of
nodes of the output flowchart.)

The recursive function TASS becomes:

TASS(a,S) :
begin let a.§ be the unique name canonically
associated with the pair (,S) ;
if a.S £CREATEDNODES
then include &.S in CREATEDNODES, and compute the attributes
(contents and successors) of &.S using the appropriate
rule among 3.2.1-3.2.5 (the successors are determined
by recursive calls of TASS)
else do nothing;
return @.S as the value of the function

end

12

Termination is now insured, since every edge of the input graph is

followed at most once for each of a finite number of mappings.

3.4 Correctness and Worst-case Analysis.

Proving (or even stating precisely) the correctness of the algorithm
falls outside the scope of this informal paper. The idea behind the proof

is fairly simple, however:

(a) For loop-free flowcharts it is sufficient to prove (by considering
rules 5.2.0 - 5.2.5 individually) that the input and output flowcharts are

logically equivalent.

(b) For flowcharts with loops we consider the infinite tree schema
associated with the output schema (see Figure 4). Imitating part (a)
above, we show that the nonterminating algorithm defined by rules
2.2.0 - 2.2.5 constructs an infinite tree schema which is equivalent to
the input flowchart. Then we show that the introduction of the global
variable CREATEDNODES described in Section 3.3 results in a schema
withloops, such that the associated infinite tree schema is precisely

the schema just shown to be equivalent to the input flowchart.

A rough analysis of the algorithm shows that, if n and e denotza
. the number of nodes and edges of the input flowchart, n' and e' the

same quantities in the output flowchart, and N the number of variables:

» we have n' < n(N+l)N and e' < e(N+l)N ;

° the number of calls of TASS during the execution of the algorithm

is exactly e' ;

15

HT

Figure 4.

A schema with loops and the associated infinite tree schema.

. if suitable representations are chosen for the set CREATEDNODES and

for the mappings, the total running time is O(e'(N+log e')) .

Thus the algorithm is "efficient" in terms of the size of its output.
However the size of the output can grow more than polynomially with the

size of the input.

L. An Improved Algorithm.

4.1 Back to the gcd Example.

The algorithm described in Section 3, when applied to GCD1, does not

produce GCD2, as might be expected, but GCD3 (Figure 5). One may wonder

why there are two occurrences of the test » together with their

associated stop nodes; it seems that we could jump directly from the node

tBe-~E&hed Ailnitial test B =0 . The reason is that
the two tests in question are generated under different mappings: (ﬁ'%(i)
for the first, (i % i) for the second. The basic algorithm overlooks

the crucial fact that the variable C 1is "dead", that is, its value 1is

no longer needed, when we reach the test B =0 . The mapping should have
ABC .
been (, g w) in both cases.

There is another difference between GCD3 and GCD2: the former uses
three variables and corresponds to a 3-fold loop unrolling of GCD1l
(cf. exercise 1.1.3 in [5], first edition, p. 465), while the latter
uses only two variables and its loop covers two iterations of GCDI.
This difference will also be removed by the inclusion of dead variable

analysis.

15

A« B mod C

Q:b z »(_ RETURN(C)

a
)0

@
o

RETURN(A)

I d

Figure 5. Flowchart GCD3.

16

4.2 The Improved Algorithm.

The reader is referred to'[6] for a general treatment of dead
variable analysis.

For our purposes it is sufficient to know that the "last uses" of
each variable can be identified in the program text. pore precisely, we
assume that dead variable analysis has been performed prior to our algorithm
and that each node @ in a flowchart schema now has an additional
attribute: last used at(a) , which is the set of variables (possibly
empty) which become dead at a . We need to be even more specific.

If @ is an assignment of the form x « f(x,y) , we consider the
following steps:

(1) f(x,y) 1is evaluated: x and y 'are live.

(2) x is now dead, since it will receive a new definition before

it is used again (possibly y also dies here).

(3) x gets a new definition, and is live again.

In such a case, we would include x in the set last used at(a) . the
new value of x might well be placed in a register different from the
register which held x when evaluating f(x,y) .

Rule 3.2.1 is modified by replacing

''S' = \u.(if u

X; then s(xj) else S(u)) '

with
"8 =)\u.(if u = X; then S(Xj) else if uclast_used at(a)
then w else S(u)) '.
Rule 3.2.4 is modified by replacing
g = A (if u = Xi then w else S(u)) '
with

'8" = \u.(if u elast_used at(a) then w else S(u)) !

17

It can be shown easily that S"(Xi) is w , whether or not X, belongs
to last _used at(a) , so that S" always has at least one free
register R , as before.

Rules 3.2.2 and 3.2.5 are modified by replacing the recursive calls
TASS(*,8) by TASS(*,S") , where 8" is again defined as
AU.(if uezlast_used_at(a) then w else S(u)) . Rule 3.2.5 is unchanged.

The resulting algorithm has a source of nondeterminism, due to the
arbitrary choice of a free register among the available registers, in the
case of a proper assignment. This nondeterminism can be removed by
ordering the set X of variables and choosing the free register of
lowest possible rank in that set. The ordering is such that the input
variables (those appearing in the arguments to INHUT in the start node)
precede other variables in the ordering of X . With these conventions,
the modified algorithm minimizes the number of variables used; that is,
if k is the largest number of variables simultaneously live at any
point in the input flowchart, then the output flowchart has at most k
variables. Other ways of taking advantage of the nondeterminism (for
example, to minimize the size of the output flowchart) will not be

considered here.

5. Discussion.

5.1 Interest of the Technique.

The removal of trivial assignments, as performed by the basic algorithm,
does not dramatically change the time complexity of a program. Ipstead,
the transformation usually reduces the constants involved in the analysis
of the program; in the case of the gcd algorithm, the work done by the

inner loop is reduced from one division, one test, and three assignments

18

to one division, one test, and one assignment. On the other hand, trivial
assignments are quite frequent in practical programs. In an empirical
study of a representative sample of FORIRAN programs [1l, p 112], D. Kauth
reports that 35 percent of all assignments, oOr 25 percent of all statements
executed, have no arithmetic operation on the right-hand side. These
percentages represent dynamic counts as the programs were being executed,
not merely static counts on the program text. Unfortunately [1]

does not tell how many of these assignments are indeed trivial; no
distinction is made there between simple variables and array elements.

The examples given in Appendices A-E, particularly in Appendix C, should
help convey the potential of the technique.

On a register machine, additional savings may result from the
reduction in the number of variables used. Also, independently of the
removal of trivial assignments, the use of renamings and node copying
solves the problem of "optimizing register allocation around a loop" [T i
by unrolling loops as many times as necessary to achieve the optimization.
Surprisingly, this is done without any explicit consideration of the loops

in the input flowchart.

5.2 Practical Difficulties.

One major drawback of the technique is that the size of the output
flowchart can exceed any fixed polynomial in the size of the input.
A remarkable example of this behavior, due to R. S. Boyer [8], is
presented in Appendix E. There are also cases where only minor gains
in efficiency are obtained at the expense of major increases in program
size (see Appendix D). These difficulties can be remedied in several

ways, including (a) the use of effort bounds and cost functions to

19

decide whether the transformation should be applied or not; (b) working
from the inside out, that is, beginning with inner loops; and especially
(c) the combination of (a) and (b).

Another practical difficulty, which is familiar in object code
optimization, arises from the idiosyncrasies of the primitive machine
operations. For example, when the operation C < A mod B used by the
ged algorithm is implemented using a single hardware division instruction,
one will not usually be free to choose the register C independently of A
and B . Tuning the method to a particular machine architecture is a

problem in itself.

5.3 Extensions.
The practical difficulties discussed in the previous paragraph point
to various improvements and extensions of the method. Some other

extensions under investigation are:

® Including the actual register allocation within the technique; in
the virtual register allocation currently performed, there is no
limit on the number of registers.

° Performing the transformation on an Algol-like text (source language)
rather than on flowchart schemas (intermediate language).

. Defining a metaalgorithm which generalizes the technique described
in this paper.

. Adding transformations to the class covered by the metaalgorithm,
such as boolean variable elimination and various optimizations

associated with loop unrolling.

20

Acknowledgments.

While teaching a data structure course at Stanford University in 1973,
Edward McCreight showed how a certain machine-language program for
destructive list reversal could be improved by a rather tricky use of
loop unrolling (see Appendix A). The puzzlement created by this
isolated example motivated an investigation which eventually led to the
ideas expressed in this paper.

These results would never have been obtained, however, without the
illuminating comments and continued encouragement provided by the author's
thesis advisor, Donald E. Knuth. Thanks are also due to Bob Boyer,

Rob Shostak and Jay Spitzen of Stanford Research Institute for enjoyable

discussions and helpful suggestions.

21

References

[1] D. E. Knuth, "An empirical study of FORTRAN programs," Software -
Practice and Experience i’(l97l),105-155.

[2] D. C. Iuckham, D. M. R. Park and M. S. Paterson, "On formalized

computer programs," Journal of Computer and System Sciences E (1970),

w0 =2hg

[%] %4. Manna, Matlhematical 'Theory of Computation, (McGraw-iiill, Loy/h),
I8 p.

[4] L. Logrippo, "On some equivalence-preserving transformations in

program schemas," Proving and Improving Programs, I.R.I.A.

Symposium held at Arc et Senans, France, July 1975.

[5] D. E. Knuth, Fundamental Algorithms, The Art of Computer Programming l
(Reading, Mass.: Addison-Wesley, 1968, 2nd edition 1973), 63k pp.

[6] J. Cocke and J. T. Schwartz, "Programming languages and their
compilers," Courant Institute of Mathematical Science, New York

University, 1970.

[7] K. Kennedy, "Index register allocation in straight line code and
cimple loops," in Design and Optimization of Compilers (R. Rustin, ed.)

Prentice-Hall, Englewood Cliffs, N. J., 1972, 51-0k.

[8] R. S. Boyer, personal communication, December 1975.

22

-Appendix A. Destructive list reversal.

The example in Figure A-1 is due to Edward McCreight of Xerox Palo
Alto Research Center. The program takes as input a pointer to a linked
list, and returns a pointer to the reversed list, obtained by destructive
updating of the original list. The meaning of resetlink(P,q) is
LINK(P) <« Q . The first form is used to make it clear that the correspcnding
node is an effect node, not an assignment node. The constant null is
written null() , i.e., as a function without arguments, to distinguish

it from a variable. The test is null(P) checks whether P = null

25

input flowchart output flowchart

Camrn) > Camn(z)

\

l Q « null() I Q « null()
. T
is null(P) RETURN(Q is_null(P) w
F F
N W
| R « LINK (P) I R « LINK(P)
W - N
resetlink(P,Q) resetlink(P,Q)
- T
Q<P is null(R) w
F
~
P «~R Q « LINK(R)
|
A2
resetlink(R,P)
Coo_mar(@ DT> Cromm(z) >
F
P «~ LINK(Q)
_ W
l resetlink(Q,R) I
Figure A-1. Destructive list reversal.

2L

feaae ue UT UMWTXBW U4 ZUITUTL T-4 oandtg

——

—
fﬂ+ﬁ1ﬂ _

T+t - €

JIBYOMCTI Andanc

1IBYOMOTJ qndut

* JIBYOMCT S

Lo

ndqno syl 9® JUTHOOT 9ICI9q JTISWIY 3T Sursouwss AIq 03 Pa3TAUL ST Japeal ayq
{peAcwSI 8q jouusds jaeyoMOTF 4nduTl oYz UT T — [quawufTsse TRTIATJIG 8U3 9BUG Wess Lew 4T ASITI 1Y
U)Xt f(T)X ABaI® U UT QUOWSTO UMWIXBW 9Y3 JC XSPul oya seqndwod T-g 2andtd ut oTduexs ayJ

- f21J® UR UT WNWIXBW ayq Burpuld '°g XIipusddy

25

Appendix C. Recurrence relations.

The example in Figure C-1 is typical of all recurrence relations of
the form an = f(an-l’an-E""’an—k) . The program computes an , given

the value of n . The transformation results in k-fold loop unrolling

and saves k assignments per iteration. The figure illustrates the case
k=3.

r
L
?

| treat cases n =1, 2, 3 treat cases n =1,2, 3
} and initialize Xl ’XE’ X5 and initialize Xy s X5 X
| , \ =
_;lxh “ f(XB’XQ’Xl) X - f(XB,Xg,Xl)

|

| =TI I T

| F ' F

:

¥ n < n-1 n < n-1

| _L

| _ N

Xy 7 4

% Figure C-1. Recurrence a = f(an-l’an—Q’an-B)

26

Appendix D. A costly optimization.

input output

PV

very
large
program
P

Figure D-1. A costly optimization.

Figure D-1 illustrates the need for evaluating the gain in execution

time versus the gain in program size (and/or for focusing on inner loops).

27

Appendix E. A pathological case.

The program shown in Figure E-1 takes n inputs Xl’XQ’ ..,Xn and

returns them in ascending order of the values. The auxiliary variable X'

helps perform exchanges.

Xl
- x - _ L X PR

X) < X, 5 xj X 1 <X, REI‘URN(Xl, ™ ,xn)
— t — 1] P '

Ky = X 53~ X X, <X

Figure E-1. Sorting n variables.

This flowchart has mtl variables and 4n-2 nodes. The transformed

flowchart has n.ni+l nodes: the stop node, and each of the (n-1) test

nodes are copied exactly once for every permutation of the variables

XpseeoX

28

