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I

INTRODUCTION

| Recursive definitions are usually considered from two different points 4f
view, namely:

(1) As an algorithm for computing a function by repeated substitutions

| of the function definition for its name.
| (11) As a functional equation, expressing the required relations between
}

values of the defined function for various arguments. A function that

satisfies these relations (a solution of the equation) 1s called a fixedpoint.

The functional equation represented by a recursive definition may have many

: fixedpoints, all of which satisfy the relations dictated by the definition. There
is no a priori preferred solution and therefore, 1f the definition has more than

| one fixedpoint, one of them must be chosen. A number of works describing

a least (defined) fixedpoint approach towards the semantics of recursive

definitions have been published recently (e.g., Scott [8]). Researchers in the

. field have chosen the least fixedpoint as the "best solution" for three

reasons:

(1) It uniquely exists for a wide class of practically applicable recursive

definitions.

(11) The classical stack implementation technique computes this fixedpoint

for any recursive definition.

(iii) There is a powerful method (computational induction) for proving

properties of this fixedpoint.

However, as a mathematical model for extracting information from an implicit

functional equation, the selection of the least defined solution seems a poor

choice; for many recursive definitions, the least fixedpoint does not reveal

all the useful information embedded in the definition. In general, the more

defined the solution, the more valuable it is. On the other hand, this argument
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should be applied with caution, as there are inherently underdefined recursive

j definitions. Consider the extreme example F(x) < F(x), for which any partial

function is a solution. A randomly chosen total function is by no means

| superior to the totally undefined least fixedpolnt in this case.

| The optimal fixedpoint, defined in this paper, tries to remedy this situation.

It 1s intended to supply the maximally defined solution relevant to the given

| recursive definition. Consider, for example, the following recursive definition for

| solving the discrete form of the Laplace equation, where F(x,y) maps pairs of
| integers in [-100,100]x[ =100,100] into reals:

| Flxy) <= if x<-100 Vv x>100 Vv y<-100 V y>100

then X45
else L[F(x-1,y)+F(x+l,y)+F(x,y-1)+F(x,y+1)].

This concise organization of knowledge 1s defined enough to have a unique

total fixedpoint (which 1s our optimal fixedpoint), but its least fixedpoint

| is totally undefined inside the square [=-100,100]x[-100,100].

| While the notion of the optimal fixedpoint 1s theoretically well-defined, its

| computation aspects contain many pitfalls, since the optimal fixedpoints of
certain recursive definitions are non-computable partial functions. We do not

| pursue 1n this paper the practical aspects of the optimal fixedpoint approach;

in Manna and Shamir[4,5], and in more detail inShamir[8],we suggest several

| techniques directed toward the computation of the optimal fixedpoint.

In Part I of this paper, a few structural properties of the set of all fixedpoints

| of recursive definitions are proven. The otpimal fixedpoint is then introduced

: 'in Part II)as the formalization of our intuitive notion of the "best solution"

of recursive definitions. The existence of a unique optimal fixedpoint for any
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recursive definition, as well as some of its properties, are established. In

Part III we consider the computability (from the point of view of recursive

function theory) of the optimal fixedpoint of recursive definitions.

An informal exposition of the main ideas and philosophies of the optimal fixed-

point approach is contained in [ 5]. A more complete investigation of the various

fixedpoints (including the optimal fixedpoint) or recursive definitions appears in

[9]. Results which are somewhat related to this work'have been obtained by Myhill

[6], who investigated ways in which total functions can be defined by systems of

formulaes.

PART I. SOME STRUCTURAL PROPERTIES OF THE SET OF FIXEDPOINTS

In this part we introduce our terminology and prove those structural properties

of the set of fixedpoints of recursive definitions which are needed in Part II.

A. Basic Definitions

+ : :
Let D be a domain of defined values D to which the "undefined element"

+
is added. The identity relation over D 1s denoted by =. The set of all

+0 +
mappings of (D ) into D is called the set of _ partial functions of n argu-

ments over D, and is denoted by PF (D,n).

| The binary relation "less defined or equal," © , over various domains
| plays a fundamental role in the theory.
|

| Definitions:
| . | ]
| (a) For x,y €D , xEy if x =w or x Evy.
| - +0 .

| (b) For x,y € (D) , X Cy if Xs C Ys for all IKKi<n.
_ — +.a

(c) For f£,,f, € PF(D,n) |, f, E f, if £,(%) C £,(%) for every x € (D') ,

. (d) A function f € PF(D,n) is monotonic if X ET 7 => f(x) = £(y).

oo The relation © is a partial ordering of PF(D,n). We shall henceforth use
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the standard terminology concerning partially ordered sets. In particular:

Definitions: For any subset S of PF (D,n):

(a) £ € S is the least element of S if fE g for any g € S.

(b) £f€S 1s a minimal element of S if there is no gg € S which satisfies

gC f.

(c) £ € PF(D,n) is an upper bound of S if g E f£f for all g € S.

(d) £ € PF(D,n) is the least upper bound (lub) of S 1f f is the least

element in the set of upper bounds of S.

The notions of the greatest element, a maximal element, a lower bound and

the greatest lower bound (glb) of S are dually defined.

Definitions:

(a) f,g € PF(D,n) are consistent if £(X) # w and g(X) # w => £(X) = g(x)

4 0
for every Xx € (D) .

(b) A subset S of PF(D,n) is consistent if every two functions, f,g € S

are consistent.

From the definition it follows that:

(1) A subset S of PF(D,n) has a lub, denoted by lub S, if and only if

S 1s consistent.

(11) Every non-empty subset S of PF (D,n) has a glb, which is denoted by

glb S,

Definitions:

(a) A functional 1s a mapping of PF(D,n) into PF(D,n).

(b) A functional T over PF(D,n) is monotonic if f © g => 7[f] C 7[g] for

every f,qg € PF(D,n).

(c¢) A recursive definition is of the form F(x) <= 7[F](X), where T is a

functional and F 1s a function variable.
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Allthefunctionals we shall deal with in this paper will be monotonic over PF(D,n).

In practice, there are many types of functionals which are monotonic only over

a certain subset S of PF (D,n). The theory developed in this paper can be

applied to any such restricted functional, provided that S satisfies the

following two conditions:

(i) any consistent subset of S hasalubin S, and

(11) any non-empty subset of S hasaglbin S.

For simplicity, we do not consider in this part functions over multiple

+ + +

domains (e.qg., Dy X . veX D, —D) or systems of functionals (e.qg.,

(15 - . STE) ) However, all the results can be extended easily to the more

general cases.

| B. Fixedpoints, Pre—-fixedpoints, .and Post-fixedpoints

Definition: A function f € PF(D,n) 1s a fixedpoint, pre—-fixedpoint, or

post-fixedpoint of T if £f = 1[£f] , £f © 7[£f] , or 1 f] C f, respectively.

The sets of all fixedpoints, pre-fixedpoints, or post-fixedpoints of fT are

denoted by FXP(t) , PRE(T)or POST(T), respectively.

Clearly FXP(t) = PRE(T) N POST(T). A few useful properties of these sets

for a monotonic functional T are:

(i) FXP(t) , PRE(T) , and POST(T) are closed under the application of T.

(ii) If S ¢ PRE(7) is consistent, then lubS € PRE(rT).

(ii) If S < POST(t) is non-empty, then glhS € POST(7T).

The most important property of pre- and post-fixedpoints is that they enable

us to uniformly approach a fixedpoint of T , either by monotonically ascending



or-by monotonically descending to it. The theoretical background of this

process 1s contained in the theorem:

Theorem 1 (Hitchcock and Park): Let (S,<) be a partially ordered set, with

a least element (2 , and such that any totally ordered subset has a lub.

Then for any monotonic mapping T : S —» S , the set of fixedpoints of 7

contains a least element.

A formal proof, using a transfinite sequence of approximations rq) which

converges to the least fixedpoint of 7, appears in Hitchcock and Park[1].

An immediate corollary of Theorem 1 1s:

Theorem 2: For monotonic functional 7 :

(a) FXP(t) contains a least element, denoted by lfxp(rT)-

(b) If f € PRE(7T) then the set (f' € FXP(T) | f © f'} contains a

least element.

(c) If f£ € POST(T) then the set (f' € FXP(r)| £' © f} contains a

greatest element.

Proof:

(a) Immediate by Theorem 1, taking PF(D,n) as S , © as < , and the

totally undefined function as  .

(b) Define Se = (f' € PF (D,n) | fC f'). Se 1s partially ordered by

[C , and contains f as its least element. Since any totally ordered

subset s of Se 1s consistent, lub S exists. Furthermore,

rub S € 5; since £ © lubS.

The given monotonic functional 1 maps PF (D,n) into PF (D,n) . It

is easy to show that T maps Se into itself. Therefore, we may
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consider the monotonic functional T° mapping gf into Se which is

the restriction of T to See Theorem 1 ensures the existence of a

least fixedpoint for T' , which is exactly the fixedpoint required.

(c) Using the reverse order, i.e., £; < £ iff £; C £ , a proof dual to

the proof of part (b) can be obtained. 0.E.D.

Definition: A fixedpoint f of 7 is FXP-consistent if for any f' € FXP(r7) ,

f and f' are consistent. The set of all FXP-consistent fixedpoints of

T is denoted by FXPC(T).

From the definition, 1t follows that for any monotonic functional T :

(a) Since Lfxp(T) is FXP-consistent, FXPC (7) 1s non-empty.

(b) Since any two FXP-consistent fixedpoints are consistent, FXPC(T) is

consistent, and thus lub FXPC(T) exists.

Theorem 3%: For a monotonic functional 7 , FXPC (1) contains a greatest

element.

Proof: We know that f; = lub FXPC(7T) exists. As a lub of fixedpoints,

f, € PRE(T). Thus, by Theorem 2b, the set (f' € FXP(r) | £1 E £'}

contains a least element, say fr We show now that £ € FXPC(7), implying

that £ is the greatest function in FXPC(rT) .

Let g be any fixedpoint of 7 . We would like to prove that £, and

g are consistent, by showing the existence of a function ts such that

f, £, and g C £5 The set of fixedpoints S = FXPC(t) U {g} is
consistent by the definition of FXPC(t) , and therefore by Theorem 2b

again there exists some £5 € FXP(t) such thhib SC fs . Thus,

g Cf; and lub FXPC(T) C £2 . Since f, was defined as the least fixedpoint
7
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such that lub FXPC(7) C t, , we have t = ts 0.E.D.

| C. Maximal Fixedpoints

Definition: A fixedpoint f of a functional T is said to be maximal

1f there is no other fixedpoint gg which satifies f © g . The set of all

maximal fixedpoints of 7 is denoted by MAX(ft).

Unlike the case of minimal fixedpoints, a monotonic functional may have any

number of maximal fixedpoints. MAX(7) "covers" FXP(t) in the sense that:

Theorem 4: For monotonic functional 1- , if f € PRE(T) then f © g for

some g € MAX(T).

— + 8
In other words, if f(d)= ¢ for some f € PRE(7), d € (D") and c € D,

then there must exist g € MAX(t) such that g(d) o c.

Proof: Let S = (f° € FXP(1) | f = f'). By Theorem 2b, Sg contains at

least one element =- the least fixedpoint which 1s more defined than f£.

We now show that S¢ contains an upper bound for any totally ordered subset.

Let S be sucha subset. Since 1t 1s totally ordered, 1t 1s in particular

consistent and thus lub S exists. Furthermore, as an lub of fixedpoints,

dub S is a pre-fixedpoint. Using Theorem 2b once more, there 1s a fixedpoint

£) which 1s more defined than lub S, i.e., which is an upper bound of 8S.

By the definition of S and Ses £46 S¢ and thus S has an upper bound in Sg

We have thus shown that S¢ 1s non-empty and contains an upper bound for

any totally ordered subset in it. By Zorn's Lemma, any partially ordered

set having these two properties contains a maximal element. This maximal
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element gg 1s clearly a maximal fixedpoint of Tt , and £f EE g by the

definition of See 0.E.D.

As a result of Theorem 4, we obtain

Corollary: For any monotonic functional T , MAX(T) in non-empty.

Proof: Follows by the fact that PRE (7) 1s non-empty, since the totally

undefined function () is always in PRE(fT). 0.E.D.

We also have

Theorem 5: For a monotonic functional 1 , if f € PRE(7) and g € MAX(f),

then either ff E g or f and g are not consistent.

Proof: By contradiction. Suppose fo g, and f and g are consistent.

Then f, = lub{f,g} exists and , = £€ PRE(T) . Thus by Theorem 2b there

is a fixedpoint £, such that £ = £- Therefore, g = £ , which

contradicts the maximality of g. 0.E.D.

From Theorem 5 we obtain

Corollary: Any two distinct maximal fixedpolints of T are not consistent.

Proof: If f,g € MAX(t) , then in particular f € PRE(7) and we can thus

apply Theorem 5. The possibility fC g in ruled out by the maximality of

f , and thus f and g are non-consistent. Q.E.D.

PART II-. THE OPTIMAL FIXEDPOINT

A. Definition and Properties

By 1ts definition, an FXP-consistent fixedpoint 1s a function which agrees

in value with every other fixedpoint of Tt for any argument. In particular,
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I

if such a fixedpoint has a defined value c¢ at argument d, then there can

be no fixedpoint of 1 which has a different defined value c¢' at d .

This value ¢ 1s then sald to be weakly defined by 7 at d (it is not

"strongly defined," however, since there may be fixedpoints that are not

defined at all at d ). A fixedpoint which is not FXP-consistent, on the

other hand, represents some random selection of values from the many which

are possible. It 1s in this sense that we may say that a recursive definition

really "well defines" only its FXP-consistent solutions.

Among these "genuine" solutions of 1—- , the more defined the solution, the

more informative 1t 1s. Motivated by this quality criterion, we introduce

our main definition:

Definition: The optimal fixedpoint of a monotonic functional tv is its

greatest FXP-consistent fixedpoint. It is denoted by opt(T).

Note that Theorem 3 guarantees the existence of the (uniquely defined)

optimal fixedpoint of any monotonic functional. Using properties of MAX (7) ,

'we can characterize the optimal fixedpoint from a different point of view.

Definition: Since MAX(T) is non-empty, glb MAX(t) always exists, and

is denoted by lmax(T).

As a glb of fixedpoints, Ilmax(T)€ POST(T), but it is not necessarily a

fixedpoint. For example, consider the following functional over pr(N,1) \L.

T[F) (x) : if x=0 then F(x) else O+F(x-1).

The fixedpoints of T are the totally undefined function ( , and all the

functions 1, , 1=0,1,..., defined as:

\l N denotes the set of natural numbers.
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i if x=0

£, (x) {0 otherwise.

It is clear that MAX(f7) = {£5,£15--.]. The glb of this set of functions
is:

w if x=0

max(r) (x) =§
‘D otherwise

This function is not a fixedpoint of T , but is a post-fixedpoint of rT,

It descends to the fixedpoint QQ by repeatedly applying T to it.

However, we show now that the function Imax(t) is closely related to

opt (T) :

Theorem 6: For a monotonic functional T , obpt(Tthe greatest element

of the set {f'e FXP(r)| £' = lmax(r)}.

Proof: Let us denote by £, the greatest element in the set. By Theorem

2c, the function f; must exist since lmax(t) € POST(71). We now have to

show that opt (7) = £; and £, C opt (T) .

To show opt (rT) - £ » we note that by definition, opt (T) is consistent

with any maximal fixedpoint f of 1 . By Theorem 5, it follows that

opt(T) Sf. Thus, opt(r) is a lower bound of MAX(T) , and therefore

opt(7)C lmax(T) = glb MAX (7) . Since £ 1s the greatest element of

(f "e FXP(r)| f£' Cc lmax(t)}we obtain Opt(T) =f.

We now show that £ C opt(r). By the definition of opt(T) , it suffices

to show that f£, € FXPC(T1) . Let f be any fixedpoint of 1 . Theorem 4

implies that there exists some f, € MAX(T) such that f C f,. By the
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definition of £, , it follows that £, £ . Thus, £ is an upper

boundof f and £ ry which implies that they are consistent. Since this

holds for any f € FXPy (7) , f, € FXPC(7). 3.2.0.

The original definition of opt (T) and Theorem 6 suggest that opt (T)

can be "reached" both from below (by ascending from lfxp(Tt) as high as

| possible in FXPC(T) ), or from above (by descending from MAX(r) ). This
|

situation is illustrated by the schematic diagram of Figure 1. 1h our graphical

| representation, the set (f' € FXP(t)| f= f'} is shown as an upper cone

(Figure 2A) , and the set (f' € FXP(7) | f' £ f) is shown as a lower cone

(Figure 2B).

The following properties of opt(T) 4 for a monotonic functional T ,

are immediate consequences of its definition and Theorem 6:

(a) If lfxp(Tt)is a total function, then opt(r)= lfxp(T).

(b) opt(T) € max(nif and only if + has a unique maximal fixedpoint.

It is clear that a necessary condition for opt (T) (d) = c¢ for some de
on

~+
(D') and c¢ €0D is:

(i) f£(d) = w or £(d) = c¢c for all f € FXP(r), and

(ii) £(d) = c¢ for at least one f € FXP(r7).

However, this condition is not sufficient, 3s demonstrated in the previous

example:

T{F](x): if x=0 then F(x) else O:F(x-1).

All the fixedpoints of T are either undefined or defined as 0 at x = 1

and there-are fixedpoints which are defined at x = 1, while opt(T) (1) = g.

B. Examples

In this section we 1llustrate the theory presented in this part with two
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| funct-ionals. These functionals are monotonic only over the subset

MON(N,1) of all monotonic functions in PF(N,1l). Since MON(N,1) satisfies

the two conditions mentioned at the end of section I-A, we may restrict the

discussion to the domain MON(N,l1) rather than PF(N,1).

Example 1: Consider first the monotonic functional Ty over MON(N,1):

| 7, [F] (x} if x=0 then 1 else F(F(x-1)).

| The least fixedpoint of this functional 1is

lif x= 0

| Lfxp (7) ={| w otherwise.

We would like to show that opt (r,) = Lfxp(7,). For this purpose, it

suffices to find two fixedpoints £555 € FXP(Ty) whose values disagree

for any positive x. Two such functions are, for example:

. f €

| £, (x) _ {1 if x N
: ® if x = y

and

| x+1 if x € N

(x) = {12 w 1ifx=w |

| Thus both opt (74) and Imax (,) cannot be defined for any positive

integer x ; since f(w) = w for any f € FXP(T,), we finally obtain

| that opt (7) = Imax (7) = Lfxp (7).

Since LExp (7) and opt (7) are the least and greatest elements of FXPC(Tq) ,

Lfxp (7) is clearly the only element of FXPC(7,).

The functions £, and £ above are maximal, since they cannot be extended

at Xx = ® . It is quite an instructive exercise to characterize all the

maximal fixedpoints of Ty: For example, 1t can be easily shown that any

maximal fixedpoint other than £ 1s a total, ultimately periodic function
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] over— N.

Example 2: Let us consider now the functional Tov defined over the same

| domain:

r,[F] (x) : if x=0 then 1 else 2F(F(x-1)).

| One can easily show that Lfxp (7,) = 1£xp(7,) . The fixedpoint opt (1, )
| cannot be obtained by the technique used in the previous example, since no

| appropriate fixedpoints £ and f£, can be found. As a matter of fact, this
| functional has exactly three fixedpoints:

w otherwise.

| l1 if x=0
O ifx=1

| f(x) = 42 if x =2
L if x= 3

| 0 otherwise |

| ; if x=0| ) if x = 3i+4l)
£5 (x) =\¥2 if x = }ip i=0,1,2,...

| 4 if x = 3i+43

| w 1f x = g

These fixedpoints are related by f;E £,E Es and therefore

Lfxp(T,) = £,

| opti(T,) = =opt ( 5) max (7, ) fs
| MAX (T,) = (£5)

PART III. THE COMPUTABILITY OF OPTIMAL FIXEDPOINTS.

| In this part we state several results concerning the computability of optimal

fixedpoints over the natural numbers. In our constructions we shall use

systems of functionals T= (Tiseeesy)s where each r, is a monotonic

functional mapping any k-tuple (£5 - . of) of partial functions into a partial
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function (FIESTREEPS MB Thus, ¥F maps any k-tuple LL) of partial
functions {ntoths k-tuple (rl Eppes fi lseee, mE, £1); it represents
a system of recursive definitions of the form

ern. 0 HEE ¥)
F(x) <= T[EpsonFL IR)

A fixedpoint of T is now defined as a k-tuple (£,500esf)) mapped by
T to itself. We shall be interested in the computability of the function

ty appearing as the first element in such a tuple (this function is usually

called the malin function; the others are called the auxiliary functions).

All the definitions and results contained 1n parts I and II of the paper can

be extended easily to this general case.

We first show that the collection of optimal fixedpoints of recursive definitions

over the natural numbers contains(as main functions) all the partial computable

fuhctions:

Theorem 7: Any partial recursive function ©, Over the natural numbers 1s

the optimal fixedpoint of some effectively constructable system of recursive

definitions.

Proof: Any partial recursive function can be computed by a counter machine

with two counters (cf. Hopcroft and Ullman [2], page 98). Such a machine

can be simulated by a system of recursive definitions 1n the following way.

The input value is stored in variable Xs and with each counter c, (i=1,2)

1s associated a variable X.. The main recursive definition which initializes
the counters 1is

Fy (x) <= F, (x,0,0) .

The function variables Foyeoos Fy correspond to the states 9s - : 9G of
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the counter machine. The i-th (i>2) recursive definition is either of the

form

F, <= 1 = /" / 1"; (X%15%,) if X O then Xq else Fo (x5,%7,%.)

or of the form (for j=1,2)

: 14 ’ / mn l/ I<= = F

Fy (x55%)5%,) if X5 O then Fo (x5:%1,%3) else n(¥52X1%3) 5
where the indexes n,m are chosen according to the state to which the counter

machine transits when it 1s in state q,, and counter c, has the respective
= J

value (zero or non-zero). Each transformed variable x' or x” stands for either

x+l or x-1, according to the operation done on the counter or the input value

upon transition.

The evaluation of the least fixedpoint of this system of recursive definitions

1s done by repeatedly replacing a term F, (%5%1,%,) by the appropriate term
/ / / " / / ' ' . .

F_(x5,%1,%)) or Fo (%0,%],%5), thus simulating the state transitions of

the counter machine. The process stops if and when a term Fy (xg2%q 2%) is

replaced by the term xy (according to a definition of the first type), and

the current value of x is taken as the result of computation.

Due to the simple nature of these recursive definitions, their optimal

fixedpoint coincides with their least fixedpoint (the main function 1n which

1s ©) To show this, define for any natural number c¢ the following
Cc Cc

k-tuple of functions (£]>-eesfp):

c- ¢c 1f evaluation of F(x) 1s non-terminating
f -{ (%) v if evaluation of F(x) terminates with value vy,

and similarly, for i>2:

. if evaluation of F,(x.,x,,X ) is non-terminating

£ (x, x, 5) =f 10271021i'V70’71L’72/ Ay if evaluation of F, (%,,%),%,) terminates with value vy.
Cc c

For any c¢, the k-tuple (£15 00es fy) so defined is a fixedpoint of the

system. It 1s a maximal fixedpoint by its totality. The optimal fixedpoint
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(£1s0een fp) is less defined than (fy5005 5) for all c, and thus

£, (x) cannot be defined if the evaluation of Fy (x) is non-terminating.

Q.E.D.

Theroem ‘7 shows that any function which can be defined as the main function in

the least fixedpoint of an effective recursive definition (i.e., any partial

recursive function) can also be defined as the main function in the optimal

fixedpoint of a (perhaps different) effective recursive definition. The

converse, however, 1s not true. To show this, it suffices to consider the

following simple functional over the natural numbers:

T[F] (x): if F(x) 1 then h(x) else 0,

where h(x) is the halting function, defined as:

hi) = ( if 0, (x) is defined
w if Pp, (%) is undefined.

The function h(x) is computable, as are all the other base functions which

appear in the definition. In order to find the optimal fixedpoint of rT,

we analyze the possible values of F(x) for any x (there 1s absolutely no

relation between values of F for different arguments x). The value of

F(x) can always be w or 0, as a direct substitution shows. The value 1

is possible only 1f h(x) = 1. Any maximal fixedpoint of 7 is a composition

of values 0 and 1 (only if legal) for the various arguments x. The

optimal fixedpoint is then defined as 0 whenever only 0 is a possible

value, while 1t 1s @ whenever both 0 and 1 are possible values. Thus

if @_ (x) is defined

opt (1) (x) -{ *
0 if 0, (%) is undefined,

and this "inverted halting function" 1s non-computable.

In orderto see how non—computable an optimal fixedpoint may be, we

prove:
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Theorem 3&8: Let £(xy,.005x)) be a total predicate over the natural numbers,\&
which 1s the main function in the optimal fixedpoint of some system of recursive

definitions (ty aeeesmy) Then there 1s a system of recursive definitions

opt (7) (Xs eeesx) = @ x EN) [£(xy,..0,% )]

Proof: The two additional recursive definitions 1 and Ts are given by:

Fi(xg,e0,x)) <= F, (0%, 000%)
* & 9 <= f * oo @& id ¢ & 8 [ JF, (15%, xX) if Fo. (x 3%,5 x) > 0 then 1 else 2 F(x, +1,x,, »X_)

The first definition simply 1nitializes the search conducted by the second

definition for a value of Xy for which Fs (%),%, . . aX) 1s non-zero (true).
Such a sequential search is legal, because we assume that in the optimal

f 1xedpoint Fa (R,%y see erX) represents a total function. If this search 1is

successful, Fy (0,%5,0 005%) which is the value returned by the main definition

1) is 2 to the power of the first such xy found, and this value 1s

clearly non-zero.

If no such value X; can be found, we claim that the only two possible values

of fixedpoints for F (05%, 000%) are ®w and 0. The fact that these are

possible values 1s shown by direct evaluation. Suppose now that there 1s some

other possible defined value c. This value should satisfy c = 2XLuF, (x41, 00x )n

for any natural number Xx, If ¢> 0, this cannot hold if xq is sufficiently

large, no matter what the value of Fo (xl, 000%) is. Thus by the

definition of the optimal fixedpoint, opt (Ty) (Xy500e,x ) = 0 in this case.

Q.E.D.

We can now prove:

Theorem9: Any (total) predicate E(xys0005%) in the arithmetic hierarchy of

\l We assume that the truth value false/true of the predicate is determined
by a zero/non-zero value of f.
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predicates over natural numbers can be defined as the main function in the optimal

fixedpoint of some system of recursive definitions.

Proof: Any such predicate ff can be expressed by (see, for example,

Rogers [T7])

E(x pq0eeeaxy) 0 (Ex) eazy) oebrax)le(esx xyx),
or by

E(x; 1000 es%y) Po (~ 1x; ) (0 8x) cen m mo (x50 eax 0X sax),
where

CPUC SERRYL is a recursive predicate.

These two forms can be constructed in the following way. First a system

which defines the recursive function P(x heen) is constructed (by its
totality, one need not use the method described in Theorem7 ~ any system of

recursive definitions which yields ®. as least fixedpoint also yield it as
optimal fixedpoint). Then the pair of recursive definitions described in

Theorem 8 is added for each existential quantifier, from right to left.

The only change one should make in each pair in order to handle the negation

sign is to change the predicate Fox) + LX )X0 into Fa (xys000,%)=0; thus
we search for values which do not satisfy the previous existential condition.

Finally, 1f‘a form of the second type above should be constructed, the following

main recursive definition 1s added:

F(x) <= if F,(X) > 0 then0 else 1,

and the resultant predicate F(x) is thus inverted in F(x).

The proof that the procedure described above constructs a system of recursive

definitions yielding the predicate £(X) as the main function in the optimal fixed=-

point is a stmight-forward generalization (by induction) of Theorem 8. 0.E.D.
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! Once we have constructed recursive definitions for all the predicates in

the arithmetic hierarchy, we can also construct recursive definitions for

| all the partial functions whose graph \d 1s a predicate of the arithmetic

hierarchy.

Theorem 10: If f(x) is a partial function with graph g(x,y) in the

| arithmetic hierarchy, then there exists a system of recursive definitions

such that the main function in its optimal fixedpoint is £(x).

Proof: By Theorem 9, there exists a system of recursive definitions

(Teves) for which the main function in the optimal fixedpoint 1s the

| (total) function g(x,y). The following two recursive definitions Ty and

T, are added to the system (79 serves as the main definition):

F,(x)<= F, (x,0)

F, (x,y)<= if Fy (x,) > 0 then y else F, (x,y+1).
The proof that FP, (x) really yields the desired partial function 1s a mixture

: of elements from the proofs of Theorems 7 and 8. The recursive definition

: To conducts a search (initialized by 0) for a value y which satisfies

Fo (x,9) > 0 (i.e., for which g(x,y) is true). If a value y is found, it
1s taken as the result of computation. Otherwise, due to the simple form of

Tos ANY constant value ¢ can serve as a value for a fixedpoint, and thus the

| main function in the optimal fixedpoint 1s undefined. 0.E.D.

\1l The graph g(x,y) of a partial function f(x) is a predicate defined by:
- _ (true if f£(X)=y, yo

| 800) = Jtatse if £(x)Fy, vhu

In particular, if f(x) is undefined then g(x,y) is false for all y# w.
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