Stanford Artificial Intelligence Laboratory . March
Memo AlM-277

Computer Science Department
Report No. STAN-CS-7 6-542

THE THEORETICAL ASPECTS OF THE OPTIMAL FIXEDPOINT %

by

Zohar Manna and Adi Shamir**

Research sponsored by

Advanced Research Projects Agency
ARPA Qrder No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

4
) - Ny Y
D Anseayy

1976






Stanford Artificial Intelligence Laboratory March 1976
Memo AlM-277

Computer Science Department
Report No. STAN-B-76-542

THE THEORETICAL ASPECTS OF THE OPTIMAL FIXEDPOINT %
by

Zohar Manna ‘and Adi Shamir**

ABSTRACT

In this paper we define a new type of fixedpoint of recursive definitions and investigate some of
its properties. This oprimal fixedpoint (which always uniquely exists) contains, in some sense, the
maximal amount of “interesting” information which can be extracted from the recursive
definition, and it may be strictly more defined than the program’s least fixedpoint. This
fixedpoint can be the basis for assigning a new semantics to recursive programs.

*T his is a modified and extended version of part I of a paper [4] presented at the symposium on
T heory of Computing, Albuquerque, New Mexico (May 1975) s«Present address: Computer Science
Department, University of Warwick, Coventry CV47AL, England

T his research was supported by the Advanced Research Projects A gency of the Department of
Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in this
document are those of tire author(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University, ARPA,or the U. S.
Government.

Reproduced in the U.S.A. Available fromthe National Technical Information Service, Springfield,
Virginia 22151,






INTRODUCTION

Recursive definitions are usually considered from two different points 4f
view, namely:
(i) As an algorithm for computing a function by repeated substitutions
of the function definition for its name.
(ii) As a functional equation, expressing the required relations between
values of the defined function for various arguments. A function that

satisfies these relations (a solution of the equation) is called a fixedpoint.

The functional equation represented by a recursive definition may have many
fixedpoints, all of which satisfy the relations dictated by the definition. There
is no a priori preferred solution and therefore, 1f the definition has more than

one fixedpoint, one of them must be chosen. A number of works describing

a least (defined) fixedpoint approach towards the semantics of recursive

definitions have been published recently (e.g., Scott [8])- Researchers in the

field have chosen the least fixedpoint as the "best solution" for three

reasons:
(i) It uniquely exists for a wide class of practically applicable recursive
definitions.

(ii) The classical stack implementation technique computes this fixedpoint
for any recursive definition.

(iii) There is a powerful method (computational induction) for proving
properties of this fixedpoint.

However, as a mathematical model for extracting information from an implicit

functional eq?ation, the selection of the least defined solution seems a poor

choice; for many recursive definitions, the least fixedpoint does not reveal

all the useful information embedded in the definition. In general, the more

defined the solution, the more valuable it is. On the other hand, this argument



should be applied with caution, as there are inherently underdefined recursive

definitions. Consider the extreme example F(x) <= F(x), for which any partial
function is a solution. A randomly chosen total function is by no means

superior to the totally undefined least fixedpoint in this case.

The optimal fixedpoint, defined in this paper, tries to remedy this situation.

It is intended to supply the maximally defined solution relevant to the given
recursive definition. Consider, for example, the following recursive definition for
solving the discrete form of the Laplace equation, where F(x,y) maps pairs of
integers in [-IOO,IOO]x[-loo,loo] into reals:

Flxy) <= if x<-100 Vv x>100 v y<-100 V y>100

then x2-+y2

else [F(x-1,y)+F(x+l,y)+F(x,y-1)+F(x,y+1)].
This concise organization of knowledge is defined enough to have a unique

total fixedpoint (which is our optimal fixedpoint), but its least fixedpoint

is totally undefined inside the square [-100,100]x[=-100,100].

While the notion of the optimal fixedpoint is theoretically well-defined, its
computation aspects contain many pitfalls, since the optimal fixedpoints of
certain recursive definitions are non-computable partial functions. e do not
pursue in this paper the practical aspects of the optimal fixedpoint approach;
in Manna and Shamir[4,5], and in more detail in Shamir[8], we suggest several

techniques directed toward the computation of the optimal fixedpoint.

In Part I of this paper, a few structural properties of the set of all fixedpoints

of recursive definitions are proven. The otpimal fixedpoint is then introduced

'in Part II)as the formalization of our intuitive notion of the "best solution"

of recursive definitions. The existence of a unique optimal fixedpoint for any



recursive definition, as well as some of its properties, are established. In

Part III we consider the computability (from the point of view of recursive

function theory) of the optimal fixedpoint of recursive definitions.

An informal exposition of the main ideas and philosophies of the optimal fixed-
point approach is contained in [ 5]. A more complete investigation of the various
fixedpoints (including the optimal fixedpoint) or recursive definitions appears in
[9]. Results which are somewhat related to this work'have been obtained by Myhill

[6], who investigated ways in which total functions can be defined by systems of

formulaes.

PART I. SOME STRUCTURAL PROPERTIES OF THE SET OF FIXEDPOINTS

In this part we introduce our terminology and prove those structural properties

of the set of fixedpoints of recursive definitions which are needed in Part II.

A. Basic Definitions

Let D+ be a domain of defined values D to which the "undefined element" g

+
is added. The identity relation over D 1is denoted by =. The set of all
+ 7 +
mappings of (D) into D is called the set of_partial_functions of n argu-

ments over D, and is denoted by PF(D,n).

The binary relation "less defined or equal," E , over various domains

plays a fundamental role in the theory.

Definitions:

+
(a) For X,y € D , xEy if x =wor x Ey.

(b) For ¥, € (D) , XC ¥ if x; £y, for all Kicn.
n
. - = = _ o+
(c) For fl’fE € PF(D,n) , fl = f2 if fl(X) = fg(x) for every x € (D) ,

(d) A function f € PF(D,n) is monotonic if X & § => £(x) = £(y).

The relation € is a partial ordering of PF(D,n). We shall henceforth use



the standard terminology concerning partially ordered sets. In particular:

Definitions: For any subset S of PF(D,n):

(a) £ € S 1is the least element of S 1if fC g for any g € S.

f eSS 1is a minimal element of S if there is no g € S which satisfies

(b)
gC f.

(c) £ € PF(D,n) is an upper bound of S if g & f for all g € S.

(d) £ € PF(D,n) is the least upper bound (lub) of S if f is the least

element in the set of upper bounds of S.

The notions of the greatest element, a maximal element, a lower bound and

the greatest lower bound (glb) of S are dually defined.

Definitions:
(a) £,9 € PF(D,n) are consistent if £(X) # w and g(X) # 0 => £(X) = g(X)
for every X e(D+)n
f,g €8

(b) A subset S of PF(D,n) 1is consistent if every two functions,

are consistent.

From the definition it follows that:
(i) A subset S of PF(D,n) has a lub, denoted by lub S, if and only if
S 1s consistent.

(1i) Every non-empty subset S of PF(D,n) has a glb, which is denoted by

glb S.

Definitions:

(a) A functional is a mapping of PF(D,n) into PF(D,n).

(b) A functional T over PF(D,n) is monotonic if £ € g => 7[f] C 1[g] for

every f,g € PF(D,n).
(c) A recursive definition is of the form F(x) <= T[F](x), where T is a

functional and F is a function variable.



Allthefunctionals we shall deal with in this paper will be monotonic over PF(D,n).
In practice, there are many types of functionals which are monotonic only over
a certain subset S of PF(D,n). The theory developed in this paper can be
applied to any such restricted functional, provided that S satisfies the
following two conditions:

(i) any consistent subset of S hasalubin S, and

(ii) any non-empty subset of S hasaglbin S.

For simplicity, we do not consider in this part functions over multiple
. + + + .
domains (e.g., D1 X . eeX Dn-aD ) or systems of functionals (e.g.,
(Tl,. . .,Tk)>. However, all the results can be extended easily to the more

general cases.

B. Fixedpoints, Pre-fixedpoints, .and Post-fixedpoints

Definition: A function f € PF(D,n) is a fixedpoint, pre—-fixedpoint, or

post—fixedpoint of T if £ = 1[f] , £ © 7[£f] , or 7] f] C f, respectively.

The sets of all fixedpoints, pre-fixedpoints, or post-fixedpoints of T are

denoted by FXP(t1) , PRE(T) or POST(T), respectively.

Clearly FXP(t1) = PRE(T) N POST(T). A few useful properties of these sets
for a monotonic functional T are:

(i) FXP(t) , PRE(T) , and POST(7T) are closed under the application of T.
(1ii) If S ¢ PRE(T) is consistent, then lubS € PRE(T).

(ii) If S < POST(t) is non-empty, then glhS € POST(T).

The most important property of pre- and post-fixedpoints is that they enable

us to uniformly approach a fixedpoint of T , either by monotonically ascending



or-by monotonically descending to it. The theoretical background of this

process 1s contained in the theorem:

Theorem 1 (Hitchcock and Park): Let (S,<) be a partially ordered set, with
a least element Q , and such that any totally ordered subset has a lub.
Then for any monotonic mapping 17 : S —» S , the set of fixedpoints of Tt

contains a least element.

A formal proof, using a transfinite sequence of approximations T(X)<Q) which
converges to the least fixedpoint of 1, appears in Hitchcock and Park[1].

An immediate corollary of Theorem 1 is:

Theorem 2: For monotonic functional T

(a) FXP(T) contains a least element, denoted by lfxp(r)-

(b) If £ € PRE(7) then the set (f' € FXP(T)| f = £f'} contains a
least element.

(c) If £ € POST(r) then the set (f' € FXP(r1)| £' € f} contains a

greatest element.

Proof:
(a) Immediate by Theorem 1, taking PF(D,n) as S , T as < , and the

totally undefined function as Q .

(b) Define S_ = (f' € PF(D,n) | fC £'). S

£ is partially ordered by

f

C , and contains f as its least element. Since any totally ordered

subset s of S is consistent, lub S exists. Furthermore,

f

ub S € S_ since £ E lub_ S.

f

The given monotonic functional g maps PF(D,n) into PF(D,n) . It

is easy to show that T maps Sf into itself. Therefore, we may

6



consider the monotonic functional ' mapping gf into va which is

the restriction of T to Sf‘ Theorem 1 ensures the existence of a
least fixedpoint for 7', which is exactly the fixedpoint required.

(c) Using the reverse order, i.e., fl < f2 iff f2 c fl , a proof dual to
the proof of part (b) can be obtained. Q0.E.D.

Definition: A fixedpoint f of 7 is FXP-consistent if for any f' € FXP ('r) s

f and f' are consistent. The set of all FXP-consistent fixedpoints of

T is denoted by FXPC(T).

From the definition, it follows that for any monotonic functional T :
(a) Since lfxg('r) is FXP-consistent, FXPC('r) is non-empty.
(b) Since any two FXP-consistent fixedpoints are consistent, FXPC(T) is

consistent, and thus lub FXPC(T) exists.

Theorem 3: For a monotonic functional T , FXPC (rr) contains a greatest

element.

Proof: We know that £, = lub FXPC(T) exists. As a lub of fixedpoints,

f1 € PRE(T) . Thus, by Theorem 2b, the set (f' € FXP(r1) | f1 c f'}

contains a least element, say f2' We show now that f2 € FXPC(T), implying

that f2 is the greatest function in FXPC(T)

Let g be any fixedpoint of 7 . We would like to prove that f2 and

g are consistent, by showing the existence of a function £ such that

3

f, C f3 and g gf3 The set of fixedpoints S = FXPC(7) U {g} is

consistent by the definition of FXPC(r) , and therefore by Theorem 2b

again there exists some f, € FXP(t) such thhkb SC f Thus,

)

g §f5 and lub FXPC(1) C £

3

Since f2 was defined as the least fixedpoint

3
-



such that 1lub FXPC(7) C £, , we have f, & f5 0.E.D.

C. Maximal Fixedpoints

Definition: A fixedpoint £ of a functional T 1is said to be maximal
if there is no other fixedpoint g which satifies f © g . The set of all

maximal fixedpoints of 7 is denoted by MAX(7) .

Unlike the case of minimal fixedpoints, a monotonic functional may have any

number of maximal fixedpoints. MAX(T) ‘"covers" FXP(tT) in the sense that:
Theorem 4: For monotonic functional 1- , if f € PRE(7) then f T g for

some g € MAX(rT)

n
In other words, if f(d) = ¢ for some f € PRE(7), d € (D+) and c € D,

then there must exist g € MAX(t) such that g(d) o c.

Proof: Let Sf= (f' € FXP(T) I f £ £f'). By Theorem 2b, Sf contains at

least one element - the least fixedpoint which is more defined than f.

We now show that S contains an upper bound for any totally ordered subset.

f

Let S be such a subset. Since it is totally ordered, it is in particular

consistent and thus lub S exists. Furthermore, as an lub of fixedpoints,
dub S is a pre-fixedpoint. Using Theorem 2b once more, there is a fixedpoint

f1 which is more defined than 1lub S, i.e., which is an upper bound of S.

By the definition of S and € S_. and thus S has an upper bound in Sf‘

il f1 f

We have thus shown that S is non-empty and contains an upper bound for

f

!

any totally ordered subset in it. By Zorn's Lemma, any partially ordered

set having these two properties contains a maximal element. This maximal



element g is clearly a maximal fixedpoint of 1, and £ © g by the

definition of Sf. Q.E.D.

As a result of Theorem 4, we obtain

Corollary: For any monotonic functional T , MAX(T) in non-empty.

Proof: Follows by the fact that PRE(T) is non-empty, since the totally

undefined function  is always in PRE(fT). 0.E.D.

We also have

Theorem 5: For a monotonic functional 7 , if f € PRE(7) and g € MAX(T),

then either f & g or f and g are not consistent.

Proof: By contradiction. Suppose flz g, and f and g are consistent.
Then f, = lub{f,g} exists and , T £/€ PRE(7) . Thus by Theorem 2b there
is a fixedpoint f2 such that f1 = f2. Therefore, g f2 , which
contradicts the maximality of g. Q.E.D.

From Theorem 5 we obtain
Corollary: Any two distinct maximal fixedpoints of T are not consistent.

Proof: If f,g € MAX(t) , then in particular f € PRE(7) and we can thus
apply Theorem 5. The possibility f£Z g in ruled out by the maximality of

f , and thus f and g are non-consistent. Q.E.D.

PART II-. THE OPTIMAL FIXEDPOINT

A. Definition and Properties

By its definition, an FXP-consistent fixedpoint is a function which agrees

in value with every other fixedpoint of T for any argument. In particular,



if such a fixedpoint has a defined value ¢ at argument d, then there can
be no fixedpoint of t which has a different defined value c' at d

This value ¢ 1is then said to be weakly defined by T at d (it is not

"strongly defined," however, since there may be fixedpoints that are not
defined at all at d ). A fixedpoint which is not FXP-consistent, on the
other hand, represents some random selection of values from the many which

are possible. It is in this sense that we may say that a recursive definition

really "well defines" only its FXP-consistent solutions.

Among these "genuine" solutions of 1—- , the more defined the solution, the
more informative it is. Motivated by this quality criterion, we introduce

our main definition:

Definition: The optimal fixedpoint of a monotonic functional 7 1is its

greatest FXP-consistent fixedpoint. It is denoted by opt(r).

Note that Theorem 3 guarantees the existence of the (uniquely defined)
optimal fixedpoint of any monotonic functional. Using properties of MAX(7) ,

'we can characterize the optimal fixedpoint from a different point of view.

Definition: Since MAX(7t) is non-empty, glb MAX(t) always exists, and

is denoted by lmax(T).

As a glb of fixedpoints, Imax(t) € POST(7), but it is not necessarily a
fixedpoint. For example, consider the following functional over PF(N,I)\}:

if x=0 then F(x) else O+F(x-1).

T[F] (%) :

The fixedpoints of T are the totally undefined function Q , and all the

functions fi , 1=0,1,..., defined as:

\l N denotes the set of natural numbers.
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0 otherwise.
It is clear that MAX(f7) = {fo,fl,...}- The glb of this set of functions
is:
w if x=0
Imax () (x) ={
D otherwise

This function is not a fixedpoint of T, but is a post-fixedpoint of 7.

It descends to the fixedpoint { by repeatedly applying T to it.

However, we show now that the function lmax(T) 1is closely related to

opt(T) :

Theorem 6: For a monotonic functional T , bt (Tthe greatest element

of the set {f'e FXP(r) | £' = lmax(T)}.

Proof: Let us denote by fl the greatest element in the set. By Theorem

2c, the function £, must exist since lmax(T) € POST(T). We now have to

show that opt(T) & £, and £, © opt(T)

To show opt(T) = £, + we note that by definition, opt(t) 1is consistent
with any maximal fixedpoint f of ¢ . By Theorem 5, it follows that

opt(T)St. Thus,h opt(T) 1is a lower bound of MAX(T) , and therefore

1]

glb MAX(T) . Since f1 is the greatest element of

(f "€ FXP(T)l f! glmax(rr)}we obtain Opt(T)Efl.

opt (1) Lmax(7)

We now show that f1 C opt(r). By the definition of opt(T) , it suffices

to show that f; € FXPC(7) . Let f be any fixedpoint of T . Theorem L

implies that there exists some f, € MAX(t) such that f C f,. By the

2
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definition of f1 » 1t follows that £, C f2 . Thus, f2 is an upper

1
bound of f and f1 r which implies that they are consistent. Since this
holds f f € FXP
olds for any (t) + £, € FXPC(T) . Q.E.D.

The original definition of opt(T) and Theorem 6 suggest that opt (T)

can be "reached" both from below (by ascending from lfxp(T) as high as
possible in FXPC(T) ), or from above (by descending from MAX(r) ). This
situation is illustrated by the schematic diagram of Figure 1. In our graphical
representation, the set (f' € FXP(T) | fc £'}  is shown as an upper cone

(Figure 2A) , and the set (f' € FXP(r)| £' © f) is shown as a lower cone

(Figure 2B).

The following properties of 92_1:-(7) + for a monotonic functional T ,

are immediate consequences of its definition and Theorem 6:

(a) If lfxp(rt) is a total function, then opt(r) = lfxp(r).

(b) opt(r) € max(n if and only if . has a unique maximal fixedpoint.

It is clear that a necessary condition for opt(T) (d) = c¢ for some d €
n
+
(D') and c¢ €D is:

(i) £(d) = w or £(d) = ¢ for all f € FXP(r), and

1l

(1i) £(d) = ¢ for at least one f € FXP(T1).

However, this condition is not sufficient, as demonstrated in the previous
example:
T{F](x): if x=0 then F(x) else O-F(x-1).

1

All the fixedpoints of T are either undefined or defined as 0 at x

and there-are fixedpoints which are defined at x = 1, while opt(T) (1) = g.

B. Examples

In this section we illustrate the theory presented in this part with two

12




MAX (T)

opt ()

FXP(T)-

Fig. 1. The fixedpoints of a recursive program
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funct-ionals. These functionals are monotonic only over the subset
MON(N,1) of all monotonic functions in PF(N,1). Since MON(N,l) satisfies
the two conditions mentioned at the end of section I-A, we may restrict the

discussion to the domain MON(N,l1) rather than PF(N,1).

Example 1: Consider first the monotonic functional T, over MON(N,1):
Tl[F} (x} if x=0 then 1 else F(F(x-1)).

The least fixedpoint of this functional 1is

1£x <Tl) E.{l ifx=0
w otherwise.

We would like to show that OEC(T1>E 1fxE(Tl). For this purpose, it
suffices to find two fixedpoints fl’f2 € FXP(Tl) whose values disagree

for any positive x. Two such functions are, for example:

1 if x
f.(x) =
1(®) {mifx

m

and

{X‘F]_ if x €N

£

»x
1]

Thus both ogt(Tl) and lmax(Tl) cannot be defined for any positive

integer x ; since f(w) = w for any f € FXP(Tl), we finally obtain

that opt(t,) = lmax(t,) = Lfxp(T,).
OpLimy/ = 2Max(Ty) = 2ZXPIT)

Since _lfxp(T,) and opt(T are the least and greatest elements of FXPC(T,),
—LIXp Ty QR (T, 1

lfxE(Tl) is clearly the only element of FXPC(Tl).

The functions f1 and f2 above are maximal, since they cannot be extended
at x = . It is quite an instructive exercise to characterize all the

maximal fixedpoints of T For example, it can be easily shown that any

maximal fixedpoint other than f2 is a total, ultimately periodic function

14



over- N.

Example 2: Let us consider now the functional 7 defined over the same

P
domain:

T2[F] (x) : if x=0 then 1 else 2F(F(x-1)).

One can easily show that L1fxp(7,) = 1fxp(t)) . The fixedpoint g('rg)
cannot be obtained by the technique used in the previous example, since no

appropriate fixedpoints f1 and f2 can be found. As a matter of fact, this

functional has exactly three fixedpoints:

fl(x)s lifx=20
® otherwise.
lifx=0
Oifx=1
fe(x) =42 if x =2
L if x =3
Ou otherwise l
ﬁ ifx=0
) if x = 3i+l]
f3(X) =\U2 if x= ip 1=0,1,2,...
4 if x = 3i+3
wif x =

These fixedpoints are related by f;E £, & f3, and therefore

1fx2§72) = f1

opt(ry) = Lmax(r)) = £,
MAX(1,) = {£;]

FXPC(TE) = FXP(TQ) = {fl,f2,f3}

PART IITI. THE COMPUTABILITY OF OPTIMAL FIXEDPOINTS.

In this part we state several results concerning the computability of optimal
fixedpoints over the natural numbers. In our constructions we shall use
systems of functionals T = (-rl....,Tk), where each Ty is a monotonic

functional mapping any k-tuple (£ . .,fk) of partial functions into a partial

1’
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function Ti[fl,...,fk]. Thus, ¥ maps any k-tuple (L1..."fk) of partial
functions ¢ntothe k-tuple (Tl[fl""’fk]""’Tk[fl""’fk]); it represents

a system of recursive definitions of the form

F1(§)<=11[F1‘... HEEO ®

Fk(E) <=7 [F, e B (R)
A fixedpoint of T is now defined as a k-tuple (fl""’fk) mapped by
T to itself. We shall be interested in the computability of the function
f appearing as the first element in such a tuple (this function is usually

1

called the main function; the others are called the auxiliary functions).

All the definitions and results contained in parts I and II of the paper can

be extended easily to this general case.

We first show that the collection of optimal fixedpoints of recursive definitions

over the natural numbers contains(as main functions) all the partial computable

fuhctions:

Theorem 7: Any partial recursive function wi over the natural numbers is
the optimal fixedpoint of some effectively constructable system of recursive

definitions.

Proof: Any partial recursive function can be computed by a counter machine
with two counters (cf. Hopcroft and Ullman [2], page 98). Such a machine

can be simulated by a system of recursive definitions in the following way.

The input value is stored in variable Xy and with each counter g (i=1,2)
is associated a variable X The main recursive definition which initializes
the counters is

Fl(x) <= Fg(x,0,0)

The function variables F2""’Fk correspond to the states qe,. L of

16



the counter machine. The i—th(i>2) recursive definition is either of the

form

"

. — = R
Fi(xo,xl,xz) <= if x,=0 then x; else Fm(xo,xl,xe),

or of the form (for j=1,2)

. 4 ’ ’ " " "
<= = F
Fi(xo,xl,xz) if X, 0 then Fn(xo’xl’XE) else m(xO’xl’XE)’
where the indexes n,m are chosen according to the state to which the counter
machine transits when it is in state q;, and counter ¢, has the respective
- i
value (zero or non—zero). Each transformed variable x' or x” stands for either

x+l or x-1, according to the operation done on the counter or the input value

upon transition.

The evaluation of the least fixedpoint of this system of recursive definitions

is done by repeatedly replacing a term Fi(xO’xl’x2) by the appropriate term

/ ’ ’ " " " . . L
Fn(xo’xl’XE) or Fm(xO’xl’XE)’ thus simulating the state transitions of
the counter machine. The process stops if and when a term Fi(xo’xl’XE) is
replaced by the term Xy (according to a definition of the first type), and

the current value of X is taken as the result of computation.

Due to the simple nature of these recursive definitions, their optimal
fixedpoint coincides with their least fixedpoint (the main function in which

is mi). To show this, define for any natural number c the following

k-tuple of functions (fi,...,fﬁ):

¢ if evaluation of Fl(x) is non-terminating

c:
fl(x) ={Y if evaluation of Fl(x) terminates with value vy,

and similarly, for i>2:

. if evaluation of F,(x.,X,,X ) is non-terminating
fc(xxx)={° i\F02*1°%2

i‘"0’"1’"2/ "ty if evaluation of Fi<x0’xl’x2) terminates with value vy.
For any c, the k-tuple (f;,...,fi) so defined is a fixedpoint of the

system. It is a maximal fixedpoint by its totality. The optimal fixedpoint

17



. . c
(fl,...,f is less defined than (fI,...,fC) for all c, and thus

) x
fl(x) cannot be defined if the evaluation of Fl(x) is non-terminating.

Q.E.D.

Theroem 7 shows that any function which can be defined as the main function in
the least fixedpoint of an effective recursive definition (i.e., any partial
recursive function) can also be defined as the main function in the optimal
fixedpoint of a (perhaps different) effective recursive definition. The
converse, however, 1is not true. To show this, it suffices to consider the
following simple functional over the natural numbers:

T[F] (x): if F(x) 1 then h(x) else O,

where h(x) is the halting function, defined as:

1 if ¢@_(x) is defined
h(x) = {; Px
if ¢x(x) is undefined.
The function h(x) is computable, as are all the other base functions which
appear in the definition. In order to find the optimal fixedpoint of T,

we analyze the possible values of F(x) for any x (there is absolutely no

relation between values of F for different arguments x). The value of
F(x) can always be w or 0, as a direct substitution shows. The value 1
is possible only if h(x) = 1. Any maximal fixedpoint of T is a composition

of values 0 and 1 (only if legal) for the wvarious arguments x. The

optimal fixedpoint is then defined as 0 whenever only 0 is a possible

value, while it is @ whenever both 0 and 1 are possible values. Thus
if wx(x) is defined

opt (1) (x) E{w
B 0 if mx(x) is undefined,

and this "inverted halting function" is non-computable.

In order to see how non-computable an optimal fixedpoint may be, we

prove:
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Theorem &: Let f(xl""’xn) be a total predicate over the natural numbers,\—l-
which is the main function in the optimal fixedpoint of some system of recursive
definitions (1‘3,...,Tk). Then there is a system of recursive definitions
(T]_,T2,T5,.. *9Tk) such that:

Q.Et_('rl)(x29""xn) = (H XIEN)[f(Xl,...,Xn)].

Proof: The two additional recursive definitions Tl and T, are given by:
Fl(x2""’xn> <= F2(O,x2,...,xn)
= if . .
F, (xl,xz, ,xn) <= if F3 (X p%,5 ,xn) > 0 then 1 else 2 Fa(x1+1,x2, ,xn)
The first definition simply initializes the search conducted by the second
definition for a wvalue of x1 for which Fj(xl’XE" .. ,xn) is non-zero (true).
Such a sequential search is legal, because we assume that in the optimal
f ixedpoint F3 (i<,x2 ,...,xn) represents a total function. If this search is
successful, FE(O,xg,...,xn) (which is the wvalue returned by the main definition
’rl) is 2 to the power of the first such X found, and this value is

clearly non-zero.

If no such value x1 can be found, we claim that the only two possible values
of fixedpoints for F2(O,x2,...,xn) are w and 0. The fact that these are
possible values is shown by direct evaluation. Suppose now that there is some
other possible defined value c. This value should satisfy c = 2*1 -F2(x1+1,...,xn)
for any natural number Xy If ¢ >0, this cannot hold if X is sufficiently
large, no matter what the value of F2 (x1+1,...,xn) is. Thus by the
definition of the optimal fixedpoint, th('rl) (x2,...,xn) = 0 in this case.

Q.E.D.

We can now prove:

Theorem 9: Any (total) predicate f(xl,...,xn) in the arithmetic hierarchy of

\l We assume that the truth value false/true of the predicate is determined
by a zero/non-zero value of f.
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predicates over natural numbers can be defined as the main function in the optimal

fixedpoint of some system of recursive definitions.

Proof: Any such predicate f can be expressed by (see, for example,

Rogers [T])

f(Xi+1,...,xk) . (Hxi)(NHXi-l) ...(NHxl){ch(xl,""xi’xi-'-l’...’xk)],
or by

f(xi+1,...,xk) Pl Ex) (~3x, ) ...GvSle)[¢J(xl,...,xi,xi+1,...,xk)],
where

wj(xl,...,xk) is a recursive predicate.

These two forms can be constructed in the following way. First a system

which defines the recursive function mj(xl,...,xk) is constructed (by its
totality, one need not use the method described in Theorem 7 - any system of
recursive definitions which yields wj as least fixedpoint also yield it as
optimal fixedpoint). Then the pair of recursive definitions described in
Theorem 8 is added for each existential quantifier, from right to left.

The only change one should make in each pair in order to handle the negation
sign is to change the predicate FB(xl' . "’ﬁ9>0 into F3(x1’°"’xn)=0; thus

we search for values which do not satisfy the previous existential condition.
Finally, if‘a form of the second type above should be constructed, the following

main recursive definition is added:

FO(E) <= if F,(¥) > 0 then 0 else I,

and the resultant predicate F1(§) is thus inverted in Fo(g).

The proof that the procedure described above constructs a system of recursive
definitions yielding the predicate £(X) as the main function in the optimal fixed=-

peint is a stmight-forward generalization (by induction) of Theorem 8. Q0.E.D.
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Once we have constructed recursive definitions for all the predicates in
the arithmetic hierarchy, we can also construct recursive definitions for
all the partial functions whose graph\-]-' is a predicate of the arithmetic

hierarchy.

Theorem 10: If f(x) is a partial function with graph g(x,y) in the
arithmetic hierarchy, then there exists a system of recursive definitions

such that the main function in its optimal fixedpoint is f@)

Proof: By Theorem 9, there exists a system of recursive definitions
(TB,...,Tn) for which the main function in the optimal fixedpoint is the
(total) function g(;c-,y), The following two recursive definitions T and
To are added to the system («rl serves as the main definition):

F, (%)<= F, (x,0)

F2(;,y)<= if F5G’Y) > 0 then y else F2(§,y+1).

The proof that Fl(;) really yields the desired partial function is a mixture
of elements from the proofs of Theorems 7 and 8. The recursive definition
To conducts a search (initialized by 0) for a value y which satisfies
F5(;’Y) >0 (i.e., for which g(X,y) is true). If a value y is found, it
is taken as the result of computation. Otherwise, due to the simple form of

Tys any constant value ¢ can serve as a value for a fixedpoint, and thus the

main function in the optimal fixedpoint is undefined. 0.E.D.

\l The graph g(x,y) of a partial function £(x) is a predicate defined by:

- _ (true if £(X)=y, yfo
8(x,y) = {fTee if £(x)Eys YW
In particular, if £(x) is undefined then g(x,y) is false for all y# w.
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