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Perhaps the simplest way to discover the prime factorization of
an integer n is to try dividing it by 2,3, k4,5, ... and to
"cast out" each factor that is discovered; we stop when the trial
divisor exceeds the square root of the remaining unfactored part.

The speed of this method obviously depends on the size of the
prime factors of n . For example, if n is prime, the number of
trial divisions 1s approximately nl/ e ; but if n 1s a power of 2,
the number is only about log n . In this paper we shall analyze the
algorithm when n 1is a "random" integer, determining the approximate
probability that the number of trial divisions is < n® when x" is :

a given number between O and 1/2 . One of the results we shall
55

prove is that the number of trial divisions will be < n'”” , about

half of the time.
In order to carry out the analysis, we shall study the distribution

of the k-th largest prime factor of a random integer. This problem

is of independent interest in number theory, and for k > 1 1t does
not appear to have been studied before. (Wunderlich and Selfridge [1h]
gave a heuristic argument that the second-largest prime factor will
tend to be roughly (nl"6l) -61 ~ n'Eh because the median value of
the largest prime factor is =~ n’61 ; besides their remark, which
stimulated the present investigation, the authors are not aware of any
published study of the second-largest prime factor. John M. Pollard
[private communication] has independently investigated the distribution

of second-largest prime factors, ard his computed values agree with

those presented below.)
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Section 1 of this paper presents the factorization algorithm
in detall and proves its correctness. Quantitative analysis begins
in Section 2, where the two frequency counts involved in the running
time a.;e interpreted in terms of the size of the largest two prime
factors.

The distribution of k-th largest prime factors is investigated
heuristically in Section 3, somewhat as & physicist might do the
analysis. A rigorous derivation of this distribution, somewhat as
a mathematician might do the analysis, is presented in Section L.
Sections 5and 6 continue the mathematical play by deriving interesting
identities and asymptotic formulas satisfied by these distributions.
Section 7 comes back to the factorization procedure and applies the
ideas to the results of Sections 1 and 2, somewhat as a computer
scientist might do the analysis.

Section 8 discusses the particular theoretical model used in these
analyses, and explains why the traditional "mean and variance" approach

is inappropriate for algorithms such as this. Numerical tebles and

empirical confirmation of the theory appear in Seetion 9. Finally,

Section 10 discusses a rather surprising connection between prime factors

of random m-digit integers and the cycle lengths of random permutations
on m objects.

Although we shall deal with & very simple approach to factoring,
the results and methods of this paper apply to meny other algorithms as
well. The paper is self-contained, and includes several examples

suitable for classroom exposition of asymptotic methods.




1. The Algorithm.

Here is the standard "divide and factor" algorithm which we
shall analyze in detail. A proof of its validity followe immediately

from the following invariant assertions governing the variables used:

n >2 ;3 (1.1)
D = Py eeePm (1.2)
Pys+++sPy &re prime numbers; (1.3)
m>d ; 4 (1.k)
all prime factors of m are >d . (1.5)

Since our goal is to analyze a simple algorithm rather than to present
it in optimized form ready for extensive use, we shall simply consider

the following informal Algol-like description:

t :=0;m:=n; d :=2; 1
while &° <m do D+l
begin increase d or decrease m:
if 4 divides m then D
begin
t =4+l p = d5mo:= m/d T-1
end
else d := d+1 D-T+1
end;
1::=1'.+l;1:ot i=mym :=1; 4 := 1; 1l

The invariant assertions hold after each line of this program. The
expressions in the right-hand column specify the number of times the

operations in a particular line will be performed, where

D is the number of trial divisions performed, (1.6)

T is the number of prime factors of n (counting
multiplicity). (1.7)



The usual refinements of this algorithm, which avoid a lot of nonprime
trial divisors by making & run through only values of the form
6k+1 , say, when d >3, have the effect of dividing D by a
constant; so our analysis of this simple case will apply also with

minor variations to the more complicated cases.
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2. Preliminary Analysis.

Let n, be the k-th largest prime factor of n ; thus
N, = Pryqok after the above algorithm terminates, for 1 <k <T .
If n has less than k prime factors (counting multiplicities),

let n, = 1l . We also let ny = for convenience in what follows.
The while loop in the algorithm can terminate in three different

ways, depending on how we last encounter it:
Case 1, n<h4. Then D=0.

Case 2, n >4 and the D-th trial division succeeds. Then the
final trial division was by d = n, , where d2 >n; . Since d is
initially 2 and the statement 4 := d+1 1is performed D-T+1 +times,

we have

2
D =n,+7-3 , n, >n; . (2.1)

Case 3, n >4 and the D-th trial division fails. Then the
final trial division was by d , where n, <d a.nci d2 < n, and

(d+l)2 >n (Note that if we set Py i=1 we have d >p, 4

l .
throughout the while loop.) Thus we have

D = F/‘xT11+T-3 5 ng <n . (2.2)

In all three cases we have the formula
= max(ne, I'./'rTl1)+T-3 ¢ (2.3)

Clearly D 1is the dominant factor in the running time, so most
of our analysis will be devoted to it. However, it turns out that the
analysis of T 1s also very interesting; for lerge random n , the
number T of prime factors can be regarded as a normally-distributed

random variable with mean 1n In n+1.03 and standard deviation

Min 1n n  (see Appendix A).



3. The k-th largest prime factor.

In order to analyze D , we shall first analyze the distributions
of n, and n, (and n, in general). Let Pk(x,N) be the number

of integers n in the range 1 <n <N such that
n, < N, (3.1)

where x 1is any number >0 . Thus Pk(x,N)/N is the probability
that a random integer between 1 and N will have k~th largest
prime factor < N . We will prove that this probability tends to a
limiting distribution

Pk(x,N)

Nlimw A - R0, (3.2)

where Fk(x) has interesting properties discussed below.

Before we establish (3.2) rigorously, it will be helpful to give
a heuristic derivation analogous to that given by Karl Dickman [ 3 ],
who was the first to study this question in the case k =1 . Let us
consider Pk(t+dt s N) - Pk(t,N) » the number of n <N such that n,
lies between Nt and I\Itﬂit s when dt 41is very small. To count the
number of such n , we take all primes p lying between Nt and
Nt+dt » and multiply by all numbers m < Nl't such that m <p and
me_q >p - Now if n=mp we have n < Nl+dt and n =p; conversely
every n <N with n between Nt and Nt+dt will have the form
n=mp where p and m have the stated form. Note that the number

1-t
)

of m< -t such that m <P is approximately Pk(t/(l-t) y N
and the unwanted subset consisting of those m with me_1 <p has
approximately Pk_l(t/ (1-t) , Nl-t) members. Hence the number of m

with mp <N and m <P and me_q 2P is
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Pk(t/ (1-t), Nl-t) -Pk_l(t/ (1-t) , Nl't) s lgnoring second-order terms,
and we have
P (t+dt , N) = B, (t,N) ~ (x(n* 9y . n(Nt))(Pk(t/(l-t) , WY - B_,(6/(1t) Y.
(3.3)
Here the x function is defined as usual,
n(x) = the number of primes not exceeding x . (3.4)

According to the prime number theorem we have n(x) =~ x / In x , hence

n(Nt+dt) -:t(Nt) s Ntdt/t . (3.5)

Plugging this Into the above formula and dividing by N ylelds

l-t) l-t)

Pk(t+dt,N) - Pk(t,N) Lt Pk(t/(l-t),N
N & S

Pk-l(t/ (l't) sN

= >
Nlt

(3.6)

when N - « we have the differential equation

F(t)at = %(Fk('l‘%)'Fk-l('i%)) . (3.7)

Since Fk(o) =0 , we may integrate (3.7) to deduce the formula

noo = | (n() ma(e)) & - oo

According to our convention n, =, we define
Fo(x) = 0 forall x . (3.9)
We also must have

Fk(x) =1 for x>1, k>1 . (3.10)




Now it is easy to see that (3.8), (3.9), (3.10) define Fk(x)

uniquely for 0 <x <1, since we have
1 oat $ £
Fk(x) = l-‘fx. -‘E_(Fk(-l—-?) -Fk-l(ﬁ)) » 0<x<1 (3.11)

and this relation defines Fk(x) in terms of its values at points

>X .




L.  Proof without handwaving.

Our discus<ion in the previous section has been only quasi-rigorous,
but it shows that if the limiting relationship (3.2) holds then
Fk(x) had better be the function defined by (3.8), (3.9), and (3.10).

Now that we have a formula for F,_, let us try to prove the limiting

k
formula (3.2).

It is more convenient to work with the functions Oy defined by
P (@) = F (1/0) (k.1)

the above equations transform into the somewhat simpler recurrence

formulas
2 dt
(@ = L= (p(t-1)=p, 1(t-1)) F , for a>1, k>1; (k2)
1
pk(a) = 1 for O0<a<l, k>1 ; (k.3)
pk(a) = ® for <0 or k=0 . (b.b)

Furthermore we let Sk(x,y) be the set of positive integers n <x
such that n_ <y , and let ¥, (xy) = ||Sk(x,y)n be its cardinality,

so that

P (%,N) = vk(N,n") . (4.5)

We will show that

‘Yk(Na,N) = pk(a)Na + o/ 0g v , (L.6)

and it follows that a stronger form of (3.2) is true:

P, (x,N)
G Fk(x)+o(——-1°;'N) . (4.7)

10



Indeed, we will prove a result even stronger than (L4.6), namely
v (%x) = p (@x%+ o (@)x"/1n x¥ + 0(x¥/ (108 %)?) (4.8)

as X »» , for all fixed « > 1 , where Uk(oz) will be defined
appropriately below. In principle, the approach we shall use could
be extended to obtain an asymptotic formule for Yk(xa,x) which is
good to O(xa/ (log x)¥) for any fixed r ; the method is based on
ideas of N. G. de Bruijn [ 1], who went on to find extremely precise
asymptotic expansions of Yl(Na,N) in an elegant way using Stieltjes
integration by parts. (Note: When k = 1, the limiting formula
(3.2) was first established by V. Ramaswami [11]; K. K. Norton [ 9]
has given a comprehensive survey of the literature relating to this
important special case.)

We shall use a strong form of the prime number theorem due to

de la Vallée Poussin [ 2 ]:

n(x) = L(x)+0(x e* V18 Xy | (4.9)
where C 1s a positive constant and
X
dt
L(x) = j‘z e B (%.10)

A

Now to the proof, which will be "elementary" except for our use
of (4.9). Letting p range over primes and n over positive integers,

we have



EURTAC

Z n Xa =
M s - Bl

x<p<x

L lm<xYp|m <pandm_, >pl
x<p<x’

04 (01
(Y (x/p,p)-Y¥, _,(x/p, p-€))
X k-1
Q
x<p<x

where ¢ 1is a small positive number and \yo(x,y) =0 . The key idea

in our derivation will be to replace z Yk(xa/p » D) by

a
x<p<x

a
X

I ‘t‘k(xa/y »¥)dy/(1n y) , using the "density" function for primes
x

suggested by (4.10). To justify this, we have

a
& X 2
Za‘”k(?’l’) o vk(—y-,y)l—g‘%
X <p<x
&
= Z P 1] - J' ¥ 1 Edy_
04 04 X 04 y
x<p<x n eSk(x /DsD) n eSk(x /YY)
*/n
. z z 1\- | Ed%
1<n S;cx-l nkspsxa/n max (n, ;)
m <x/n X <P

2 (n(xa/n) - n(ma.x(nk,x)) +0(1) - L(xa/n) + L(ma.x(nk,x) ))

1<n sxa"l

nkaVn



. xa -C'\/log X
= Z ol — e
a-1 \ P
l<n<x
nksxa/n
= 0(x¥(l0g xHe TV Xy (4.11)
A similar estimate applies to 2 5 ‘Yk_l(xa/p » P-€) , SO we have
x<p<Lx
a a o
X x X dy
P
o
+of —=£— (k.12)
(1log x)

as x -, for all fixed r >0 . This is the formula we shall use
for @ >1 ; for 0 <@ <1 we have Yk(xa,x) = an_| . (The
brackets | | in the latter formula turn out to be important, since

the integral (4.12) is sensitive to 0(1) terms in the vicinity of

a
y=x .)

Oour proof of (4.8) is by induction on k , and for fixed k by
induction on a7l . Actually the first case k=1, [al =2 seems

to be the hardest; when 1 <a <2 we have

13



a
X a a
N e E X Sy —x
Yl(x,x) = X ‘[' \yl(y’y)] y+O

X (1og x)2
x
= xa_‘]" (x_ { })i.g. O(._a_.__
x y (log x)

Q-1
X

a
xa-xalna+xaj' {u}-e————+0 _x___e_
1 1n u (log x)

a & ot {u}du Lu} In u du x>
T LI e,
* pl(a) In & 'J‘l ( w2 ln(x /u) ) ) 0((105 x)2)

a ] a
a X {ulau pd X
x p,(@) + =+ 0(——) + Of —=——s (4.13)
bl 1n & J‘l 2l log x s x)2 ?

where {x} denotes x-|x] . The remaining integral is

© n+l

(o -z eme . o (=) 3)

1 u n>l n u n>l

Nn-—o

where 7 1is Euler's constant.

Now suppose we have proved that

& e

¥ (x )X) = & p, (@) + (1-7) —— g P (a- l)+o( )+o —_— (4.15)
1l 1 1n x 1 log x (log x)2

for 1 <a <m , where the bounding constants implied by the O 's depend

on m but not on x or a . The discussion in the previous paragraph

1



establishes (4.15) for m = 2 . We can extend it to the next case by

analyzing its value for m <a <ml :

Xa a (0
a 04 E_ g! X
Yl(x ,X) X -J‘ Yl( y 2 ¥y ) 1n y + O( 2)

X (log x)
_ xa_fa " HEED/E ot aft at o( e 2)
1 (log x)

2
- Il an(t-l) Jt | xoz/t %

a & (1-7) Pl(t'g) 1 2\
T ‘rz (pl(t-l) ¥ 1n LLE=1)/t ¥ O( (a/t) 1og x) o

& aft dt a :
- Iz & O(W%Es—i) T+ o(m) (4.16)

by substituting xa/ t for y and inserting (L.15). Continuing, we

get

2
v (5 = X -l jf o (8-1) S+ J‘l -1/t ot &

i

log x < (log x)

04 [0 a a
(1-7)x at 1 20/t X
" "[; pp(t-2) g3+ 0 ¥ et ro 5

xoz/ 2 ol

2 v
X" py(@) +x" Il Z ﬂg:; T ginyig ‘]1 py(t-D) F

(b.27)

1]
*Q
©
[
~
R
) -
+
»
5 | e
-
Xald
©
e
%)
[}
H
N’
+
(@]
/‘—\
5
D
-



since
a/2

[ 7 vt~ mE(relm) .

as in (4.13) and (L.1k4), and

08 X

l o 1 01
J‘ r_Su ndu = 0 J‘ Py | = O(——lx ) (4.19)

with bounding constants depending only on m . This establishes (4.15)
for all m , by induction.

We have proved (4.8) for k =1, with
Gl(a) = (l-)’)pl(a-l)

For larger k , a similar but simpler derivation applies: Assuming that

a a
‘{'k(xa’x) = 2 pk(oz) + l:x o (a) o(log x) +O((l°: x)e) (4.20)

for 1<a<m (cf. (4.15)), we extend this to m <a <mtl by

[0
( [0 ) a Ix (Y (xa ) ¥ (xa y)) dx &0 xa
\y % X = X - — y - — ————
et » k\y’ k-1\ y ’ In y (1og x)2

a_Ia ( v, ( Q(t- 1)/1; a/t) ( a(t- l)/t a/t)xoz/t ) %

1
a
+ 0| —X__
((log X)2)

1]
=

a
S 1- <[ (ay(6-2) =y (6-1))

1 (0, (6-1) - 0, _;(t-1)) == o(__xa ) (4.21)
- — o' + H .
1n e I t l (e x)a

16



the desired relation follows for k >2 provided that we define
v at
o () = -j; (0 (t-1) =0y _1(t-1)) g7 for a>2 ; (4.22)

ak(a) =0 for a<2 . (k.23)

It follows that

o (a) = (l-7)(pk(a-l) - pk_l(a'l)) (L.2h)

for all k>1.

17
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5. Identities satisfied by Py °

The functions pk(a) defined by (4.2), (L4.3), (4.4) possess many
rather surprising properties, and we shall examine some of them in
this section.

Our first goal is to express the Py in terms of the polylogarithm

functions Lk s defined by

Lo(a) 0 for @ <0, Lo(a) =1 for a>0 ;3 (5.1)

z dt
| b0 T (5-2)

1, (@)
o
Thus L,(@) =Ina for a>1, and Ly(0) = f n(t-1)at/t for
2
a>2, etc.; it is not difficult to verify that Lk(a) is 1/k!
times the integral of (dxl...dxk)/(xl...xk) over all points x,, T
particular, Lk(a) =0 for a<k.

By iterating the recurrence for P We find

1-py(@) = 1y(0) ~L,(@) + Ly(@) - L(@) + L(@) - ... (5:3)

1- pe(a) Le(a) - 2L5(cx) + BLh(a) - th(a) ¥aoe g (5.4)

for a >0, and in general

k

1-5@ = B ()@ (5.5)

n>0

These infinite sums are actually finite for any particular value of « .

Now let us examine several auxiliary functions:



a (t-1)at
5, (%) =j(') pi-a—_t-— for p>Q or B <0 3} (5.6)
5,.(0) = 5 (arl) ; (5.7)
l a pk(t'l)
1(0) - T W(trl)as (5.8)
5 |
a p (t-l)
0, (@) =fo —at (5.9)
e, () =prk(t)e'txdt , x>0 . (5.10)
0

(This is a different function ak(a) from that in Section 4.) It follows

immediately from the definition pk(a) =1- ok(a) + ck_l(cx) that

ck(a) = k- pl(a) - - pk(a) 4 (5.11)

Integration by parts enables us to evaluate Ik(a) as follows:

a o p (t)dt
L) T (@) = = py(8) In(erd)| ¢ [ oy
= - gy (@) In(or1)+ g (a41) . (5.12)
Thus in particular we have
(@) = - p(@) In(@)+1-p (ar1) , (5.13)
T,(0) = - py(@) In(a*l) - py(c) In(ow1)+3-2p (o#1) = py(ol) , (5.14)

etc. A somewhat surprising consequence of this relation is that

I (») = k(k+1)/2 , while o (=) =k ; in particular, I,(®) = o (=) .

19
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Integration by parts applied to Sk(a,a) yields

) s (g o . ) ¥ a p(vat
5, (%B) =8, (e = = + B S=
X k-1 I B S
apk(a) o+l pk(t-l)dt
= - Thx =B . (5.15)

1 (5+l-t)2

Differentiating the integral which defines Sk(a) = Sk(a,o&l) with

respect to o leads to a formulas which can be combined with this one:

a pk(t-l) dat
s! = -l) - —_—
k(a) pk(a ) Il (a-{-l-t)z

P (0-1) - 2 ((a-1)p, (a-1) +§,(a-1) -5, , (a-1))

1]

('Jx-' (pk(a-l) + Sk-l(a-l) - Sk(a-l)) s (5.16)

Now we are ready to prove an important relation which expresses Prt1

in terms of Py and Py °

Lemma..

(sk(a)-sk_l(a)) y for k>1 . (5.17)

L L

pk"‘l(a) = pk(a) +
Proof. Since pk+l(a) = pk(a) =1 and sk(a) = sk_l(a) =0 for

0 <a <1, the result holds for [al =1 ; we will show that the

derivatives agree, by induction on [al . Since

20



(#1)py, (1) = p (@) - pyyq(@) = (5,_(@) -5,(@)/k ,

(OH':L) pl'{(OH'l) pk-l(a) - pk(a) ’

(a+l) S}'{(a"'l) Pk(a) + Sk-l(a) = Sk(a) )

(a1)s) (@) = p, () +5, (@) -5, _,(0)
the desired result is equivalent to

k-1 - 1

X Pk(a) = X pk-l(a) + X (Sk-l(a) -Sk-2(a)) .

For k =1 this is obvious, otherwise it holds by induction. [

By iterating the recurrence in the lemma, it follows that

pml(a) = p(@) + ﬁ Sy(@) + oou #+ R'El-_lf sk_l(a) + -fésk(a) . (5.18)

Finally let us consider the functions ek(x) defined in (5.10).

Somewhat surprisingly, these can actually be expressed in closed form:

-E(x) k-1
_ e E(x) E(x
Theorem. ek(x) = 1+ =375+ .00t —(11?_)3—,—) s where

E(x) = El(x) is the exponential integral function

E(x) = fme-tdt/t = fme'xtdt/t .
X 1

21



Proof. Once again we integrate by parts:

® o (t-1) - te1
() -6 (0) J.l pi(t-1) tpk-l( ) b om(t-1)% 44

@

X -tx
= - € J;te dpk(t)

w®
" f pk(t) (e-t'x -tx e-tx)dt
0

ex(ek(x) +x el'{(x)) .

If we let fk(x) = er(x) ek(x) » we have therefore
f}'{(x) = eE(x)(ek(x) +x el'((x) -e* ek(x))
oX
= -5 fL4(x) = E'(x)fk_l(x)

and it follows by induction on k that

k-1
_ E(x) E(x
fk(x) = C+ T E "'+_((_L$_k-1!

In order to evaluate C , we integrate by parts in the opposite direction:

=]

xe (x) = - {) p, (t) d(e™™)

= p(t)e'tx|:+ j;)e-txdpk(t)

@

o 5 J:-Le-'tx(pk(t_l) - pk-l(t-l)) %E

e j:e'“(pk(% ) l) "’1‘:-1(1§1 } l)) i_u '

Hence C = lim _ x ek(x) = lim fk(x) =1. O

X =

22
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6. Asymptotic formulas.

In this section we shall study the asymptotic behavior of pk(a)
for large «a . Our starting point is a simple proof that pl(a) is

exponentially small: Let us write p(a) for pl(cx) . Then since

o Q
1+ p(t-1)at = [ p(t-1)at
2 1

H

0 a
-tp(t) |+ [ p(t)at
1l 1

o+l
— 1-ap(a)+J‘ p(t-1)dt (6.1)
2
we have
a+l
J o(t-1)dt = ap(a) . (6.2)
01

It follows immediately that «ap(®) < p(@-1l) for all « >1 , hence

by induction
p(n) < 1/nm! (6.3)

for all integers n > 1 . Considerably more precise formulas have been -
obtained by de Bruijn [ 1] and others, and numerical results have been
tabulated by Mitchell [8)] and by van de Lune and Wattel [13]; but
(6.3) suffices for our purposes in this section.

The rapld decrease of pl(a) simplifies the numerical evaluation
of integrals and it also leads to a simple treatment of the asymptotic

behavior of pe(a) :
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Theorem. For all fixed r >1 we have

c (o4 (]
0 1 r-1 -r-1

as a - = , where

A = ¢ ~ 1.78107 24179 90197 9852k (6.5)

and the coefficients ck are defined P.X

5 k k/k, _ ( b t ) - ( k ,)
ze /kt = exp| [ (e’-1) at/t | = exp| T =z /kki] . (6.6)
0

X >0 k>1

Thus (co,cl,cz,...> = <1,1,%, l%., %2 5 8_51, .8_15%].-, _18_12%02,

52907 17688M7 B > . Before proving the theorem, we note that

105 7 oh5

(6.6) implies the recurrence formula

0
It
S

% “)c n>1 . (6.7)
1<k<n k/nk '’

n-1
2 n=2 entl

series Z}ck/otk diverges for all « . In other words, (6.k4) is

c > n! ; the infinite

Therefore c, > for n>2, and ¢

strictly an asymptotic formula.

Proof. From the lemma In the previous section we have

a
(@ = (@ +sy@ = p@+[ SGIEE

3 ® e el L4 bl (t-) ", (-
= p(a)'fjll p(t-1)dt O‘+ = +oae. 1 + ar+l(a+-l-t)
a-1
= T [ @)t at/d™ s 0@ (6.8)
O<k<r O

-t



since jap(t-l)(t-l)“l at/(a+1-t) < pr(t-l) (-1l at < o .
1 1

Furthermore we have

J’w pe)t¥at = o fm ettfar | - o(e-§a) (6.9)

a-1 a-1
as 0 - » , by making very crude estimates not even as powerful as

(6.3), so we can integrate to « in (6.8):

a a a A
p (@) = 24 2+ o+ EZ4o@@Th) (6.10)
0/ Q
where
B = fop(t) tXat . (6.11)

It remains to evaluate the ak . We have

k ®
o 2 - fop(t) e et = ey (x) = eT(X)INX (g0

v ™

k >0

by the theorem of Section 5; and it is well known that

SE(x) -lnx = 7+ D (0Kt . (6.13)
k>1

(See, for example, [7, exercise 5.2.2-43].) This combines with (6.12)

and (6.6) to prove that &, = e7ck . Q@
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The coefficients ¢, have the curlous property that

k
e 2c re
@) = Al =2 5 —=L i e 2 et (6.14)
P2 2 T
o+l (1) (o#1)

is also an asymptotic expansion of Py but not as accurate when truncated.

Another serles,

c c,=C c,=c.+e
p2(o[)=AO+lO+210

-r-l)
a-1 2(a-1)2 3(c>t-1)3

+... | +0(a

is, in turn, more accurate than (6.4). These series are obtainable from one

another using the relation pe(a) = -(o&-l)pé(ml) + pl(a) :

For k >3 , we shall content ourselves with establishing the leading

term in the asymptotic expansion of Py namely

k-2 k=3
pk(a) = % +O(£—ln—g)-—) for k>3 . (6.15)

[Appendix B contains an asymptotic expansion of Pz .] Consider first

& 1 t
5,(0) = Il (% i O(t—e')) S

and note that

Y a0 J.“dt+°‘ dt _21na
fl t(o1-t) = ol 1 =3 .fl o+1-t T ol !
[ =t . L &, [ g
By *l J 27 @ ) T
1 1 2Ina _ -1
= Ct—+-i (l-a) + ?—1)2 = 0(a ) . (6-17)

Hence 5,(a) = 2Aa™ In a+0(a™) , and p5(®) = aa~lin a+o(@™)

by (5.18). 1In order to use this approach for larger k , we note that,

when k >1,



.fa me)a 1 Fane)fa, 1 Fane)a
; t{orl-t ool J‘l t o+l Il atl-t

1 (e x % (0 )"t mentyat
(a+1) (k+1) o+l Jl t

1 (o)™ 1n(en) (1n @)

(c#l) (k+1) o+l
k-1 t
x & (Int) ln(l - &1/t
+ ——
o+l ol t

Now 1n(l-x) = -x f(x) , where f is a function satisfying
t a o1l N

when 1 <t <a, hence

k-1
Ia (In t)"" ln( 1- 2 )dt - == jla (1n )%™ 0(1n a)at

1 t 1
k
= O(lma)” . (6.19)
We have proved that
a k k+1 k
(Int)"dt k2 (Inaq) (In )
.f t(a+l-t) ~ ktl o *9 a 2 (6.20)

1

for all k >0 . Using (5.18), formula (6.15) now follows by induction,

together with

k-1 k-2
5,(@) - A}fﬁ.—lgy%)a—* o(!ﬂ;‘-L-) : (6.21)




7. Application to factoring.

The distributions Fk(x) = pk(l/x) can be used to estimate the
running time of various algorithms for factorization. For example,
Pollard's important new Monte Carlo method [ 10] takes about «/—n_g' steps,

vhere n, is the second-largest prime factor of n , so we can use a

2
table of F, to state that Pollard's method will complete the

2
factorization in O(n’ 106)

steps at most, about half of the time.

For the simple algorithm of Section 1, we need to analyze the
distribution of ma.x(n2 ; fﬁ: ) , and this does not appear to be
expressible directly as an algebraic function of the Fk . However,
we can readlly carry out the analysis by using the techniques above.
Let G(x) be the limitiné probability that max(n,,vn;) < N,
wvhen n is a random integer between 1 and N‘ . Then
G(x) = Fl(x)+Gl(x) = F2(x) -Gz(x) s where Gl(x) is the probability

that N° < n, < ¥* and n, < N, and G,(x) is the probability that

n; > N2x and n, < N . Arguing as above, we find
s (x) & a1t L
Gl(X) = j;{ TFl it = J;c = P(T) ’ (7.1)

1 B/a dt & 1)
w(2) - [, stoe & - [ el (7.2
a(x) < J‘l at F (_L) - J.l at p(ﬁ) ; (7.3)

2 o t "1\ 1-t oy t X
1 -1

o) - L o000 § - [ 2GR (1.4)

(Note that Gl(é)+G2(é) = sl(a) = Fz(é)-Fl(aJ:) s in

agreement with the lemma of Section 5.) It is clear from our asymptotic
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results that Gl(l/oz) decreases exponentially for large « , hence
it is numerically better to use the formula G(x) = Fl(x) + Gl(x)
than to use Fe(x) -G2(x) ; furthermore the integration is over a
limited range. On the other hand for 2 <a <3 it is most

convenient to use G, since Ge(é) = In(a@/2) in this range.
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8. Remarks about the model.

The probability considerations above are for random n between
1l and N , and for relations such as n, < N 3 but from an intuitive
standpoint we might rather ask for the probability of a relation such
as n < n* s without considering N . Actually it is easy to convert
from one model to the other, since most numbers between 1 and N are
large.

More precisely, consider how many numbers n between %N and N

have n_< N ; this is Pk(x,N) -pk( X, % N) = % N~Fk(x) +0(N/log N) ,

since Pk(x,N) = N'F _(x)+0(N/log N) . Furthermore, consider how

Tk
many of these n have n < n < N* : The latter relation implies

X
ngnk>(%N) _ y* - log?/logN 4 F, (x - log 2/1og ) =

Fk(x) + O(l/ log N) , since Fk is differentiable; so the number of such
n is at most Pk(x,N) -Pk(x -log 2/log N, N) = 0(N/log N) . (The
constant implied by the O in (4.7) will be independent of x in a
bounded region about x .)

We have shown that Fk(x) +0(1/1log N) of all n between -;—' N
and N satisfy n, Snx . Therefore if Qk(x,N) denotes the total

number of n <N such that n < n* s we have

z Ll rx)rof —2—) ) +of 2~
ls,jglogelogN 23 (k(X) (log(N/QJ))) (lOSN)

NFk(x)+O(T°-g—N-) - (8.1)

Qk(x: N)

by dividing the range N/log N<n<N into log2 log N parts.



It is customary to define the "probability" of a statement S(n)
about the positive integer n by the formula
Pr(s(n)) = lim %(number of n <N such that S(n) 1is true) , (8.2)
N-x

when this limit exists. Thus, we can state well-known facts such as the
following: Pr(n is even) = % 3 Pr(n is prime) =0 ;
Pr(n is squarefree) = 6/ n2 . Equation (8.1) now yields another result

of this type:
Pr(n, <n) = F(x) (8.3)

for all fixed x .

Another important observation should also be made about the theoretical
model we have used to study the factorization algorithm in this paper:
We have stated our results in terms of the probability that the running
time is < N (or, if we prefer, n* ); this contrasts with the customary
approach to the study of average running time, which derives mean values
and the standard deviation. The reason for abandoning the traditional
approach is that the mean and standard deviation are particularly
uninformative for this algorithm. This phenomenon is apparent when we
consider that the mean running time over all n <N will be relatively

O3 » but in more than TO per cent of all cases the

actual running time will be less than no'h 5

near the worst case n

In order to understand this rather anomalous situation more fully, let
us calculate the asymptotic mean and standard deviation of the largest
prime factor n, when all integers 1 <n <N are considered equally
likely. Let §(t) be the probability that n, <t , when n is in this

range. Then the derivation of Eq. (4.13) allows us to conclude that

i



e e L

N/t 2
_ 1 {u}du 1l
§(t) = l1+Inlnt-1nlnN + 7755 fl 2 + O(_——logN) ’ (8.4)

for /N<t <N .

We shall now calculate the asymptotlic behavior of the k-th moment
of this distribution, namely the asymptotic expected value of nli .
[Incidentally, our derivation provides a good example of the use of

Stieltjes integration.] The k-th moment is

N
B(n) = fl t5ast) (8.5)

/N
and since the integral from 1+VN is O(N‘k/ef d@(t)) = O(N’k/z)
1

it can safely be ignored. We are left with

N N/t 2
tkd<l+lnlnt-lnlnN+ LY ﬂled_“+o(l°;N))

'5'1\} n N 1 u
N 1

- t¥a(inint) + — ¥Y a “d“ 0 _ N ), 8.6
J;'ﬁ (Inlnt) + Nj;ﬁ() J‘ + (logN)2 (8.6)

by replacing t by N/v in the second integral. [The O estimate here

b
is justified by the following general lemma: Let f f(t) dg(t) and
a
b
If(t) dh(t) exist, where h(t) = 0(g(t)) , and where both f and g
a

are positive monotone functions on [a,b] . Then it is easy to see that
b b
[ £(¢) do(s(t)) = O(f(a)s(a))+0(f(b)s(b))+0(f £(t) dg(t) |
a a

if we integrate by parts twice.] The first integral in (8.6) is
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1

fN t5la N,kj“/ﬁ dv _ (IfN- dv +Ifﬁ In v dv |
o B 1 anr-myv) I A S lann-iny)
N SRR G
kInN (1og N)E)
/N kt2
The second integral is -Nk/ln N times f {viav/v , which is within
1
o(N'(k*l)/e) of
® 1
f {viav _ b3 dv
k+2 k+2
1l v Jj>1 v

foll L

Bz 1
k (j+l) k+l jk +1 (:j+l)k+l
( 1 ) Bl 1
S0k ) R (gl

1 1 1 kt+l
- weTy - G-y - - LR

i
[}
I\,f. ™
/‘\

1]
Cse
'\,f. ™M
/\

Thus we have shown that

(k1) N +o< N . (8.7)

n;) =
1 k+l In N (log N)2

It follows that the mean value of n, is asymptotically
/
(n2/12)N/ln N , and the standard deviation is (c(})/i)lfen/«lln N , to

within a factor of 1+0(1/log N) . In particular, the ratio

standard deviation _ (8.8)
mean

as N - o 3 this result demonstrates the unsuitability of a traditional

"mean and variance" approach to the analysis of such algorithms.
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9. Numerical results.

The differential-difference equations for p, Bare conveniently
suited to numerical. integration. For example, given internal arrays
containing p,(m + k/n) , pp(m + k/n) , and p5(m+ k/n) for
0 <k <ntt , where m is some fixed integer and 8 = 1/n is the
step size and t depends on the method of integration, one pass over
these arrays serves to increase m by 1 . When m reaches a
suitably large value, the asymptotic formulas derived above provide
an excellent check on the accuracy of the calculations. Another

excellent check comes from the formula
®
e - fo p(t)at = p(1)+2p(2) +3p(3)+ +vv (9-1)
cf. (6.2), (6.5), and (6.11). (Incidentally, identity (9.1) appears to
be new; it was discovered empirically, after noticing that the resul{;s
of numerical integration seemed to resemble a "familiar" constant. This

7 usually occurs only

particular constant ceme as a surprise, since e
in connection with infinite products. After the proof of (9.1l) was
found, the theorem in Section 5 above followed rather quickly. Thus,
numerical results indeed suggest theorems.)

The following table gives representative values of PL 2 Po 2 P3

and G to 12D :
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1.0
1.5
2.0
2.5
5.9
545
k.0
k.5
5.0
6.0
@
8.0
9.0
10.0
12.0
ik.o
16.0
18.0
20.0
25.0
30.0
ko.o
50.0
60.0

pl(a)

1.000000
.59453k
.306852
130319
.048608
.016229
.004910
.001370
.000354
.000019
.000000
000000
.000000
000000
.000000
.000000
000000
000000
000000
000000
000000
000000
.000000
000000

000000
891892
819440
561832
388291
5932L3
925648
117741
724700
649696
874567
032321
001016
000028
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

0o @)

1.000000 000000
1.000000 000000
1.000000 000000
.953389 70629k
8527179 323041
733481 165219
.623681 059959
.533652 57203h
h63222 186987
365217 751694
.301786 010308
257435 710831
224592 162720
.199248 208994
.162638 856635
137437 368144
.119016 453035
.104958 753569
.093875 845625
074277 8030k4k
.061453 736517
.045683 813582
.036356 095670
030192 055732

35

93 (@)

1.000000 000000
1.000000 000000
1.000000 000000
1.000000 000000
1.000000 000000
.997526 273042
.985113 6532712
960975 011157
.927859 653628
.851107 195638
TT77229 329492
.712844 794121
.657959 58195k
.611115 997540
.535865 613616
478221 7holik2
432642 865532
395653 753569
.364991 546696
. 307069 057805
.266170 912880
.211838 770538
.177085 969207
.152778 425203

G(1/a)

1.000000 000000
1.000000 000000
1.000000 000000
730246 154979
LAh731h 214932
.223819 493955
.096399 005935
.036573 065077
.012413 482748
.001092 266742
.000071 391673
.000003 662651
.000000 153284
.000000 005383
.000000 00000k
.000000 000000
.000000 000000
.000000 000000
.000000 000000
.000000 000000
.000000 000000
.000000 000000
.000000 000000
000000 000000
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Figure 1 Distributions of the three largest prime factors of a random

3 integer, and the distribution of the simple factorization time.
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Figure 2. Empirical distribution functions corresponding to Figure 1,
based on the factors of the largest 100 10-digit numbers.
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(In 1930, Dickman published 8D values of pl(a) for integer
a < 8 ; his figures were correct except that p1(7) was given as
" 0000 0088 ".)

Flgure 1 shows these distributions graphically, and illustrates
Gg'(0) = ( —w( )_o, ro)—A,

15 FB(O) = » . Although the graphs of Fi»

the fact that F'(O)

o(2) -2, mo

are qualitatively different, the graphs of Fk for

(but they will rise ever more

0

F2 , and F‘3

k > L4 will resemble that of F3

steeply) .
The following table shows percentage points of the distributions

Fl s F 5 ;s for example, the probability is only 10 percent that
.18616
>n .

D

o1



AT T R -

e .. A g

-l(

e B e

.01 2697k .00558  .00068
.02 .29341 .01110 .001k49
.03 3100k .01656 .00239
.0k 32341 .02196 .0033L
.05 .33483 02730 .00k435
.10 37851 .05308 .00995

.15 .41288 07741 .01629
.20 304 .10033 .02327
.25 7068 12191 .03079

.30 19656 .14216 .03882
Lo .54881 .17892 .05636
.50 .60653 .21172 .07584
.60 67032 2L267 09745
.70 .74082 27437 .12165
.75 77880 .29153 .13506
.80 .81873 31035 .1kg72
.85 86071 33201 16627
.90 .90L8L 35899 .18616
<95 95123 39672 21377
.96079 L0681 22141
.970ks5 11850 23054
.98020 143268 2422k
.99005 45169 .2595L
1.00 1.00000 . 50000 33333

VIR
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Empirical confirmation of the theory is illustrated in Figure 2,

which shows exact empirical distribution functions corresponding to

Figure 1 for the 100 numbers n = lolo-m y 1<m <100 . As expected,

the deviation from Fk(x) is most pronounced for k =1 and x > % )

but the deviations are not severe. This set of numbers contains three

10

primes (lO:LO =33, lolO -57, 10 -71) , and ten products of two

primes. The smallest values of n, occurred for

107 2100 = 137-101-73-11.52.52.2% | 10064 - L63.L31.29.37.2°

the largest values of n, occurred for 10lo -69 = LW56767-21893 ,

2
lolo -22 = 85021:19603-3+2 ; the largest values of n3 occurred for

1070 .51 - 88301-421269 , 10%°-73 = 13879.359.223.3% . The ,

smallest values of ma.x(\/nl 5 n2) occurred for

10%0 2100 = 137.101.73.11-5.32.2% , 1010 .25 - 2857.113-59.7.52.3

(so these would be the easiest numbers in the given range to factor by

the simple algorithm); the smallest values of n, for which ’

«fn—l >n, occurred for 1072 66 s 59417.103-43.19.2 ,

10 68 = 77201-53-47-13.2° .
In Dickman's original paper he calculated the "average" value

of x such that n, = nx » namely the expected value of log n, / log n .

This equals

1 ® ®
D, = J; xdF (x) = - jl p'(t) at/t = jl p(t-1) d.t/t2 (9.2)

and by Eq. (5.14) we also have

e

-] ©

J’l o(-1) at/t° = - §(=-1) = ]‘l p(t-1) dt/(t+1) . (9.3)

-
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In a similar way we can determine the expected value of log n / log n ,

a number which can be expressed in several ways, namely

®

[ (pleD) - py(e0)) a6/6® = 1= [ () avfe?

1
D, = J;) x dF, (x)

[+ -]

Il (py(t-1) =2p, _;(t-1)+p, ,(£-1)) db/(t+1) . (9.4)

Numerical evaluation (using the asymptotic formulas for Py and Pz )

gives

D = .62432 99885 ; (9.5)
D, = .20958 08743 ; (9.6)
D, = .08831 60989 - (9-7)

(Dickman's value for D, was .624329998 . Note that D, is not equal

At
to Dl(l-Dl) , although n

2

o 18 the largest prime factor of n/n; .)

The average value of a logarithm may seem at first to be of limited
practical interest, by eomparison with the median and other percentiles;

km is the

asymptotic average number of digits in the k-th largest prime factor of

however, we can interpret it meanin fully by saying that D

an m-digit number. Dickman's constant Dl arises also in an unexpected
wey in connection with our simple factoring algorithm: The probability
that n, < «/5: , namely the probability that the algorithm needs to
divide by all numbers up to '\/;:-L y 1s

ot 1 %
D #n) - £ () S wen o0

o




!

¢

by substituting u = 2/t -1 . 8o this probability equals D, ! In
the empirical tests which led to Figure 2, exactly 61 of the 100

numbers had n2 < \/n 5

=

L1



10. Relation to permutations.

The numerical value of D, in (9.5) leads again to a feeling of

1
g_é_j'g vu; and sure enough Dickman's constant turns out to be the same as
"Golomb's constant", which has been evaluated to 53 places in [6].
Golomb's constant A 1is defined to be limn - tn/n » Where ln is
the average length of the longest cycle in a random permutation. 1In
Golomb's original a.na.lysis. [5] of this eombinatorial problem (which is not

obviously related to prime factors at all!), he independently defined s
[
function essentially identical to p(a) , and he computed A =f p(t-l)d:l;/t2
1
o©
mmerically. Another expression )\ =f exp(-x -E(x)) dx was found later
0]

by L. Shepp and S. P. Lloyd [12].

In Table 1 of their paper, Shepp and Lloyd list also the limiting
(k) i k-1
values £'°//n —~f E(t)" ~ exp(-t -E(t))dt/(k-1)! for the average length
0

of the k-th longest cycle; and this agrees numerically with Dk for

1<k<3. Infact, the Shepp - Lloyd fornula yields D, for all k,

k

since

[+ ]

k-1
E((I:E-)T}T exp(-t -E(t))dt

Io te (e, () - e _(8))at

<

J(‘) te™ fo (py(u) = pk_l(u))e'qu du at

L (u) dt du

J; (py(u=1) = p) _5(u-1)) J; te

. fl (p(u-1) - py 4 (u-1)) dufu® . (10.1)

L2
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Therefore, if we are factoring a random m-digit number, the distribution
of the number of digits in its prime factors is approximately the same as
the distribution of the eycle lengths in a random permutation on m
elements! (Note that there are approximately ln m factors, and
approximately Iln m cycles.)

There is a fairly simple explanation for the fact that pk(a) turns
up in the study of cycles in permutations. Let Qk(n,r) be the number
of permutations on n objects having less than k cycles of length
exceeding r . Then, by considering the permutations on nt+l elements
{0,1,...,n} and considering the n!/(n-m)! possible cycles in which O
appears with m different elements, we have

Qk(ml,r) = 055<r EP_;'JT Qk(n-m,r) +rSZ (Tfa-,— Qk_l(n-m,r) 3 (10.2)

m<n

Therefore if qk(n,r) = Qk(n,r)/n'. is the probability that the k-th

largest cycle has length < r , we have

(n+1)qy (ntlr) = 2 g (nmr)+ 2 g, (n-mr) (10.3)
0<m<r r<m<n

replacing n by n-1 yields

ng, (m,r) = 2 qy(n-l-mr)+ 2 q _, (n-1-m,r) . (10.4)
0<m<r r<m<n

Subtracting these two equations, we have
(n+1)(q, (mt1l,r) ~q (n,r)) = q__,(n-1yr) -q, (n-r,r) , (10.5)
k k k-1 k
and this is analogous to the differential equation

o pp(0) = py (@) -p (@) (10.6)
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The connection between the two problems is completed by showing that
9y (1) = p (/1) +0(1/r)

A similar distributlon is obtained for the degrees of the factors
of a random polynomial of degree n , over a finite field: The average

degree of the k-th "largest" irreducible factor will tend to be approximately

Dkn

Let us close by stating an open problem: Are the functions Py

algebraically independent? They are linearly independent, because of

Eq. (5.5).
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Appendix A. The number of prime factors.

Following the notation of Hardy and Wright [ 6 ], let w(n) be
the number of distinct prime factors of n, and let Q(n) be the
total number of prime factors including multiplicity. Thus, Q(n)
is the quantity T in the analysis of the algorithm above. Clearly
1<q(n) < log2 n , and both of these limits are obtained for infinitely
many n ; similarly w(n) can get as largeas Inn/lnlnn . On
the other hand thete extreme values are relatively rare, and the number
of factors is usually near 1n lnn .

P. Erdds and M. Kac [ 4] proved that the number of n in the range

1 <n<N such that w(n) <In In N+cNln InN is

Vor ‘o

hence, for example, the probability that |w(n) <=1ln 1In N| <cANInlnN

c 2
L e /2 dt |N + o(N) (A.1)

for fixed ¢ >0 approaches the limiting value

2
\/%i ‘f-cc e /2 a . (A.2)

We might say that w(n) behaves essentially like a normally distributed
random veriable with mean and variance In lnn , where n is large.
Erdos and Kac remarked that their methods, which were based on

the idea that residues modulo distinct primes are independent, could

be extended to the case of prime factors with multiplicities included,
but they did not state what the resulting theorem would be. Fortunately
it is easy to deduce the asymptotic behavior of ((n) from that of
w(n) , using a method like that in [5]. Let k(N) be the number of n

in 1 <n <N such that

s



w(n) <InlnN+cAlnlnN (A.3)

and let K(N) be the number such that

Q(n)<1nlnN+c'\/lnlnN+lnannN . (A.H)

Then |k(N) -K(N)| is at most the number of n which satisfy (A.3)
but not (A.L), or (A.h) but not (A.3), and both of these quantities
are o(N) : If n satisfies (A.3) but not (A.4), we have

((n) ~w(n) >1n In In N ; and the number of such n 1is

O(N/ 1n 1n 1n N) , because

Z  (a(n) -w(n)) = o(N) (A.5)

1<n<N

by [6, Theorem 430]. If n satisfies (A.l4) but not (A.3), then

InlnN+cNlnIn N < w(n) <lnlnN+(c+%].£_—F-) InInN ,
In In N

and this is o(N) by the theorem of ErdSs and Kac.

We have proved that the number of n 1in the range 1 <n <N
such that ((n) <1ln In N+c V¥ln In N is asymptotically given by
the normal distribution (A.1l). But this estimate is insensitive to
0(1) terms, so the "average order" [6, Theorem 430] is also relevant:

lim 2  (w(n) -1n 1n N)
N-=» 1<n<N

=2

= (108(1 ] %) 5 %) ~ .26149 72128 L7643 ; (A.6)

P prime

L6




1im 2 (q(n) -1n 1n N)
N - 1<n<N

=21+

T > 103(1 = %) + 5%1) 1.03465 38818 g7L38 .
P prime

(These sums may be evaluated to high precision using the formula

2 is = 2 Eﬁnallng(ns)
p prime p n>l

for s >1.)
Let S = [1010 -m|1 <m <100} be the numbers used to construct

Figure 2 above. For neS we have 1ln 1ln n =~ 3.1366 , and the

following table shows the actual distribution of w(n) and Q(n) .

k = 1 2 3 L 5 6 7 8 9 10 11 12
l{nes |w(n) =k} 3 1% 3 29 1 3 1 0 0 O 0 O
l{nes |(n) =k}|| 3 20 27 25 15 11 5 3 1 1 0 1

The respective mean values are 3.50 and L4.27 . The number of

square-free n (those with w(n) = Q(n) ) was 61, compared to the

expected value 600/ & - 60.793 .

7

(A.7)

(A.8)
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Appendix B. An asymptotic formula for Ps

In this appendix we shall sketch the derivation of an asymptotic

expression for pi(a) a8 O = o . Our starting point is the formula

a-1 p,(t)at
5. (@) = 2
2 S at
r+1
Q-1 @l o, (t) t™tat
S T o, (t) tRat + —— = 5 (B.1)
o<r<r o {) 2 I Io a-t

we replace the final term by its asymptotic value

r r-1
a-1 (et +et” T+ ...+c ,t)dt a-1
A 0 1 r-1 i O( 1 .f dt ) , (B.2)
0]

Otri-l 0 o=t O‘rl-l -t

so that the remainder is O(a'r'l log @) . The main integral in (B.2)

is a linear combination of

a-1 .k @, .k o3
e flﬂi)c_i’ﬁ = &na-g)- T (3‘)(-1)5—3- » (B.3)

5 a-t §51

Q-1 Kk =
and it remains to evaluate [ po(t) t7dt to O(ozk log ) .
0

Since p, = 5,1+ py » We have

a a t
k k ggu-lz
\J;) pe(t)t at = %t dt | I du+ p(t)

a Q ‘bk 1
[ etalan [ g5t ) + e+ 0@
0 u

i o, e 3 . o ST



[0/
= [ p(u-1)(u-1)* In(o#+1l-u)au
1

' ng (1'; ) % I: o(w) (u-2) " ((ar1-u) 1) + &+ o Tt

= z (a‘j-(?)) a‘k-j/3+ (In ¢ -H, +1)a,

1<y<k

- ¢ o +o@TY B.b
e Bt 5/ + O ) (B.4)

[-4]

where & = J' o(t) t¥at = ac Putting all this together and summing
0

k .

leads to the formula

2b 2b 2b
0 1 r-1 -r-l
SE(a) = (2 In a+l)92(a) = ? - ? ----- ar + o(a ) (B.5)
where
by = Hea v T (k) /3 - (B.6)
k k k 1<3 <k j /) %k-3 '

1 41 1l 13391
In particular, (b,,b;sbys--+) = A<O, 2,.)? > Tg ; 2155_ ; 2202 ,

1052%2(.)8 2 > » Since p; = 2 (py (@) + py(@) +8,(@)) » we have

the final formula

n

b

b
p5(@) = (Ina+1)p,(a) - ;9 SR 5

-r-l)

+ ofa (B.7)
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