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Perhaps the simplest way to discover the prime factorization of

an integer n is to try dividing it by 2,3,L4,5, ... and to

"cast out" each factor that is discovered; we stop when the trial |

divisor exceeds the square root of the remalning unfactored part. |

The speed of this method obviously depends on the size of the

prime factors of n . For example, if n is prime, the number of

trial divisions is approximately nY/ 2 ; but if n is a power of 2, |

the number is only about log n . In this paper we shall analyze the

algorithm when n 1s a "random" integer, determining the approximate

probability that the number of trial divisions is < n* when x is :
a given number between O and 1/2 . One of the results we shall

prove is that the number of trial divisions will be < n'’ 2 , about |

half of the time. |
In order to carry out the analysis, we shall study the distribution

of the k-th largest prime factor of a random integer. This problem |
| is of independent interest in number theory, and for k > 1 1t does |

| not appear to have been studied before. (Wunderlich and Selfridge [1h]

: gave a heuristic argument that the second-largest prime factor will

| tend to be roughly (n}~ 01) 61 ry nH because the median value of

the largest prime factor is = n'61 ; besides their remark, which

stimulated the present investigation, the authors are not aware of any

published study of the second-largest prime factor. John M. Pollard

[private communication] has independently investigated the distribution
oman

of second-largest prime factors, ard his computed values agree with

those presented below.) XC - N B ”
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Section 1 of this paper presents the factorization algorithm

in detail and proves its correctness. Quantitative analysis begins

in jeckien 2, where the two frequency counts involved in the running
time are interpreted in terms of the size of the largest two prime |
factors.

The distribution of k-th largest prime factors is investigated |
heuristically in Section 3, somewhat as a physicist might do the |
analysis. A rigorous derivation of this distribution, somewhat as

a mathematician might do the analysis, is presented in Section Lk. |

Sections 5and 6 continue the mathematical play by deriving interesting |

| identities and asymptotic formulas satisfied by these distributions. |

Section 7 comes back to the factorization procedure and applies the

jdeas to the results of Sections 1 and 2, somewhat as a computer y

scientist might do the analysis. |
Section 8 discusses the particular theoretical model used in these :

analyses, and explains why the traditional "mean and variance' approach |
is inappropriate for algorithms such as this. Numerical tables and

enpirical confirmation of the theory appear in Section 9. Finally,

Section 10 discusses a rather surprising connection between prime factors |

of random m-digit integers and the cycle lengths of random permutations :
on m objects. :

Although we shall deal with a very simple approach to factoring,

the results and methods of this paper apply to many other algorithms as |

well. The paper is self-contained, and includes several examples |

suitable for classroom exposition of asymptotic methods.
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| 1. The Algorithm.

Here is the standard "divide and factor" algorithm which we

shall analyze in deteil. A proof of its validity follows immediately

‘ from the following invariant assertions governing the variables used:

n >2 ; (1.1)

Pys «esp, are prime numbers; (1.3)

m >d ; | (1.1)

all prime factors of m are >d4d . (1.5)

Since our goal is to analyze a simple algorithm rather than to present

it in optimized form ready for extensive use, we shall simply consider

the following informal Algol-like description:

t :=0;m:=n; 8 :=2; 3

while a° <m do D+l
begin increase d or decrease m:

if 4d divides m then D

begin

ti=t+l; p= dj m z= m/d, T-1
end

else d := d+1 D-T+1

end;

toi=%+l; p, = mMym t= 1; 4 = 1; 1

The invariant assertions hold after each line of this program. The

| expressions in the right-hand column specify the number of times the

operations in a particular line will be performed, where

D 1s the number of trial divisions performed, (1.6)

T is the number of prime factors of n (counting

multiplicity). (1.7)
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The usual refinements of this algorithm, which avoid a lot of nonprime

trial divisors by making 4 run through only values of the form

6k+1 , say, when d >3 , have the effect of dividing D by a

constant; so our analysis of this simple case will apply also with

minor variations to the more complicated cases.
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2. Preliminary Analysis.

| Let n, be the k-th largest prime factor of n ; thus |
n= Ppyqok after the above algorithm terminates, for 1 <k KT . |

| If n has less than k prime factors (counting multiplicities), |
let n_=1. Wealsolet nj =o for convenience in what follows.

The while loop in the algorithm can terminate in three different |

ways, depending on how we last encounter it: |
Case 1, n<4. Then D=0.

Case 2, n >. and the D-th trial division succeeds. Then the

final trial division was by 4 = n, , where a° >n, . Since 4d is
| initially 2 and the statement 4d := d+1 1s performed D-T+1l times,

| we have
| 2

D = n,+T-3 , n, >n, . (2.1)

Case 3, n >L4 and the D-th trial division fails. Then the

final trial division was by d , where n, <d and a° <n and
(a+1)° >n; - (Note that if we set Py := l we have d 2Pi_1

’ throughout the while loop.) Thus we have

: _ 2
D = [Va l+T-3 ; ny <n; (2.2)

In all three cases we have the formula

D = max(n, , [Va 1) +T-3 : (2.3)

Clearly D 1s the dominant factor in the running time, so most

| of our analysis will be devoted to it. However, it turns out that the

analysis of T 1s also very interesting; for large random n , the

| number T of prime factors can be regarded as a normally-distributed

| random variable with mean 1n ln n+ 1.03 and standard deviation

Vin Tn n (see Appendix A).
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3. The k-th largest prime factor.

In order to analyze D , we shall first analyze the distributions

of n, and n, (and nin general). Let P, (x,N) be the number

of integers n in the range 1 <n <N such that

n, < No, (3.1)

where x is any number > 0 . Thus P (x,N)/N is the probability

that a random integer between 1 and N will have k-th largest

prime factor < N°. We will prove that this probability tends to a

limiting distribution

| P, (x,N)
lim ——— = F (x) , (3.2)
N =o N k

where F(x) has interesting properties discussed below.

Before we establish (3.2) rigorously, it will be helpful to give

a heuristic derivation analogous to that given by Karl Dickman [ 3 ],

who was the first to study this question in the case k =1 . Let us

consider P, (t+dt yy N) - P, (t,N) » the number of n <N such that n

lies between N° and Nota , when dt dis very small. To count the

number of such n , we take all primes p lying between nN and

gt » and multiply by all numbers m < nit such that m <p and
mq >p - Now if n=mp we have n < yitde and n = p 3 conversely
every n <N with n between N° and Nota will have the form
n =mp where p and m have the stated form. Note that the number

of m< Not such that m <P is approximately P (t/ (1-t) , NY ’
and the unwanted subset consisting of those m with meo_y <p has

approximately P_(t/ (1-t) , nit members. Hence the number of m |
with mp <N and m <p and m , >p is

”
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1-t 1-t |
P, (t/ (1-t) , N°) -P _,(%/ (1-t) , N°) , ignoring second-order terms, i

| and we have

t+dt t -t l1-tP, (t+dt, N) -P, (t,N) ~ («(N" 7) = n(N )) (PB, (t/(1-8) , N* ) =P, _(t/(1-t) , N77).
(3.3)

Here the a function is defined as usual,

n(x) = the number of primes not exceeding x . (3.4)

According to the prime number theorem we have n(x) ~ x/1ln x , hence

+ t

(N° Ly - (N°) = NCat/t : (3.5)

Plugging this into the above formula and dividing by N ylelds

P, (t+dt,N) - P (t,N) P, (t/(1-t) md P, .(t/(1-t) nt
gt bras, kN dt] Ck : k-1 ? |

sax |}
N t Nt t Nr t

(3.6)

| when N = «» we have the differential equation

| | at t t || Flt)at = 3 (ns) Bq =) : (3.7)
| Since F, (0) = 0 , we may integrate (3.7) to deduce the formula

- t t dt

A = | (n(%)nak) o®
According to our convention n, =®, we define

Fox) = 0 forall x. (3.9)

We also must have

F, (x) =1 for x>1, k>1 . (3.10)

8
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Now it is easy to see that (3.8), (3.9), (3.10) define F, (x)

uniquely for 0 <x <1, since we have | i

1 dt t t

and this relation defines F(x) in terms of its values at points
>% . |

|

I

} .

|
|!

|)

A
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4. Proof without handwaving.

Our discus<ion in the previous section has been only quasi-rigorous,

but it shows that if the limiting relationship (3.2) holds then

F, (x) had better be the function defined by (3.8), (3.9), and (3.10).

Now that we have a formula for Fl y let us try to prove the limiting

formula (3.2).

It is more convenient to work with the functions Pye defined by

p(@) = F(1/a) ; (k.1)

the above equations transform into the somewhat simpler recurrence

formulas

2 dt

py (@) = 1-J) (py (t=1) = Py _1(t-1)) T » for a>1, k>1; (4.2)

Py (9) = 1 for 0<a<l, k>1 ; (4.3)

p, (Q) = 0 for a <0 or k=0 . (L.h) |

Furthermore we let 8, (X,Y) be the set of positive integers n <x

| such thst n_<y , and let ¥, (x,y) = |I8,(%y)|| be its cardinality,
so that

P(%,N) = Y, (N,N) : (4.5)

| We will show that

vy (WN) = p (0 + ox”/ 10g 8%) (4.6)

and it follows that a stronger form of (3.2) is true:

P, (x,N) 1
—— = F, (x) + of Tog 7) . (4.7)

10
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| Indeed, we will prove a result even stronger than (4.6), namely

v (5x) z p, (x7 + 0, (@)x” /1n x& + 0(x*/ (log x)°) (4.8)

as x —-» , for all fixed a > 1 , where 0, (2) will be defined

appropriately below. In principle, the approach we shall use could

be extended to obtain an asymptotic formula for ¥, (xx) which is
good to o(x"/ (log x)T) for any fixed r ; the method is based on

ideas of N. G. de Bruijn [ 1], who went on to find extremely precise

asymptotic expansions of v, (N,N) in an elegant way using Stieltjes
integration by parts. (Note: When k = 1, the limiting formulas

(3.2) was first established by V. Ramaswami [11]; K. K. Norton [ 9]

has given a comprehensive survey of the literature relating to this

important special case.)

We shall use a strong form of the prime number theorem due to

de la Vallée Poussin [ 2 ]:

; «C A log xn(x) = L(x)+0(x e & ) (4.9)

where C is a positive constant and

Xx
dt

L(x) = J ar (4.10)
| Now to the proof, which will be "elementary" except for our use

of (4.9). Letting p range over primes and n over positive integers,

we have

11
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Lx) =v (xx) = ZZ |lin<x n= pl
x <p<X |

5 04

= 2 |lm<x/p|m <pandm _, >pl
a

xX <p<X

a a

= z (¥, (x /p, DP) - Yq (x /ps p=€))
X<p<x

where ¢ is a small positive number and ¥y(%5¥) = 0 . The key idea

in our derivation will be to replace o v, (x/p »P) by
x <p<x

Re:

[ v, (x7 , ¥)dy/(1n y) , using the "density" function for primes
X

suggested by (4.10). To justify this, we have

0
a x o

x - Ne dys o(€.5) J W500) 55
X <p <X

Ne:

= 2 2 1] - Z 1 | SL
a a X a ny

Xx<p<xX n € 8, (x /p,P) n € 8, (x 1¥,¥)

x /n
= 2 py 1 - I Gi7
1nd | npn | max(ng,x)

a

ny, <x’/n X <p

) Q x

= 2 (26m) - atmax(ngx)) + 0(2) - 1(x/n) + L(max(nx)))
1<n<x®1
n <x/n

| 12
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3 x -C A log X= Zi Of — e
a-1 \ "°

i l<n<x

n <x'/n |

= 0X (log xF)eTVIoB Xy (4.11)

A similar estimate applies to 2 a vy _ (x/p , P-€) , SO we have
Xx <p<X

0} 0} x
xX x X dy

xX

Qa

| + of —2 (v.12)
(log x)

|

as x - , for all fixed r >0 . This is the formula we shall use

for a >1 5 for 0 <Q <1 we have ¥, (x7,x) = Lx . (The
brackets | | in the latter formula turn out to be important, since

the integral (4.12) is sensitive to 0(1) terms in the vicinity of

; Qa
t Yy =X .)

Our proof of (4.8) is by induction on k , and for fixed k by

| induction on [al . Actually the first case k=1, [Qa] =2 seems

: to be the hardest; when 1 <a <2 we have

{

|

|
15
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x
X x x

0 x X X

1 I I\ vy Iny (10g x)2
x

pe Q Q 0

= x-] (£.(£) = + 0 —xpe y y y (log x)

Q-1
xX a

= xXx" Ina+x | } 5——+ 0 —t
1] u- ln x /u (log x)

a=-1
0} X x

Q X u {du {u} in u du X=x pl) + — | fulde, Iy a to)
In x ‘1 u u- In(x /u) (log x)

a ® 04
a X u {du X X

Inx” 1 u (log x)

where {x} denotes x-[ x] . The remaining integral is

R {uldu >> i (u=n)du _ 5 (1m ad) 1I 2 J 2 - n n+l
l uu n>1l n u n>l

= lim ((ln n) - (8 -1)) = l-y , (L4.1h)
! INN =-®

: where 7 is Euler's constant.

Now suppose we have proved that

| a x X x
¥, (xx) = x pi(Q) + (1-y) —— p,(a-1) ro 12) +0 —=——o (4.15)1 1 n © 1 log x (log x)°

for 1 <a <m, where the bounding constants implied by the O's depend

on m but not on x or a . The discussion in the previous paragraph

14
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i establishes (4.15) for m = 2 . We can extend it to the next case by

| analyzing its value for m <a <ml :
a |

X 04 x
LPN a X_ ay HS| ¥,(x7x) = x 1) ol > vs o| a =)

0 0

} Ro) v (EDTA 2 2 +0 X ”
1 (log x)

,
a a(t-1)/t _a/t dt

= X - | LX (t-1)/ Ld T
1

- x I py (6-1) + -ne * 7 8 ) 25 1n 2" 0 log x

_ I e7Ac o vail at | 5 x (4.16)
by substituting 2t for y and inserting (4.15). Continuing, we

get

v7 a a at © a(t-1)/t, aft at
1(x75x) = x" -x 1) py (t-1) T+ J, {x yx +

: a a a

ln x 2 & 2 (log x)

a2| y a a-l

=p (ed [| ulQue "Lend
1 vu n(x /u) ln x 1

1 xu du x

8 X D/q u (log x)

Qa A 1-7) x
= X p1(@) + 7 py (0-1) + 0 — ’ (4.17)

ln x (log x)



since

22

wendilibwe CAL Co)= —( 1-y+0[ =—— (4.18)
i oe 1n(x*/u) In x 108

as in (4.13) and (L4.1k), and

1 ou 1 a

[ =Su = of [ du | = os.) (4.19)2/a 2/a

with bounding constants depending only on m . This establishes (k4.15)

for all m , by induction.

We have proved (4.8) for k =1, with

0, (2) = (1-7) pq (@-1) s

For larger k , a similar but simpler derivation applies: Assuming that

Qa 0
a a X Xx xX¥Y. (x,x) = x p (a) + ——=a (@) +0 122) +0 ~————— (4.20)k k in & k log x (log x)°

for 1<a<m (cf. (k.15)), we extend this to m <a <m+l by

; a
X o a Qa

| a Q X X dy XY, (x7x) = x" - C (£.5) al.) + Of iesk I k\ y k-1\ y In y (Log1)
0’

Ieoy (x(t) 2 ty °F (x(t-1)/t AN at1 k k=1 t

Q

+ 0 —L(log x)

a

Qa dt

= X € 4 (py (t-1) =p, _,(t-1)) +
Q a

1 dat X « (4~ C——g | (0, (£-1) - 0, _1(t-1)) ro ) RA o[ 2) 3 (4.21)In x= 2 (log x)°

16



| the desired relation follows for k >2 provided that we define

| 2 at
o(a) = - J (0, (t-1) - a, _,(t-1)) z 3 for a>2 ; (4.22)

| 0, (@) = 0 for a<?2 . (4.23)

It follows that

0, (2) = (1-7) (py (2-1) = Pr (2-1) (4.24)

for all k >1.

17
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5. Identities satisfied by p, -

The functions py (@) defined by (4.2), (4.3), (4.4) possess many

rather surprising properties, and we shall examine some of them in

this section.

Our first goal is to express the Py in terms of the polylogarithm

functions L, y defined by

Ly(a) = 0 for a< 0, Ly (@) =1l for a>0 ; (5.1)

a
dt

L (2) = J, L _1(6-1) + (5.2)
Qa

Thus L,(@) =lna for a >1, and L,(®) = [ In(t-1)at/t for
2

a >2, ete. it is not difficult to verify that L, (@) is 1/k!

times the integral of (dey... dx )/ (x00 0x) over all points Xp ee ery

where 1 <X;,...,X <Q and |x =x, | >1 forall 143 . In
particular, L, (2) =0 for a<k.

| By iterating the recurrence for p we find

1- po (2) = L,(@) - 2L; (a) + 3Ly, (@) - br (@) aes 3 (5.4)

for a >0 , and in general

1-p(@ = Z (2), (@ (5.5)| Pk n / ntk } :
n>o0

These infinite sums are actually finite for any particular value of «a .

Now let us examine several auxiliary functions:

18
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|

a p, (t-1)at |
8, (asB) -J at for p>a or B <0 (5.6)

5.(@) = s,(@ar1) (5.7)

‘ a py (t-1)
I, (0) = ) —— In(t+l)dt ; | (5.8)

a p (t-1)k

0, (@) = ! —— dt (5.9)

0

(This is a different function a, (0) from that in Section 4.) It follows

immediately from the definition p, (@) =1- 0, (2) + 0, _1(®) that

0, (@) = k-p(a)-...-p (2) (5.11)

Integration by parts enables us to evaluate I, (a) as follows:

0} o p, (t)at
L(@) -I, (a) = =p, (t) 1n(t+1) l ¥ I —

= = py (@) In(c+l) + 0, (01) - (5.12)

| Thus in particular we have

1,(0) = - py(Q) In(@1)+1-p, (#1) (5.13)

| I,(0) = = p(a) In(*1) - p,(a) In(a*1)+3 -2p, (#1) - p(a1) , (5.14)

etc. A somewhat surprising consequence of this relation is that

| I, (») = k(k+1)/2 , while 0(®) =k ; in particular, I,(=) = 0(=) .

19



Integration by parts applied to 8, (8) yields
x

to, (t) a op, (t)at
| (0-5, (ap) = - S| vp XK

0 0 (2-t)

ap, (@) #1 p(t-1)dt
=p tA T= (5.15)

1 (p+1-t)

Differentiating the integral which defines 5, (@) = 8, (a,c) with
respect to a leads to a formula which can be combined with this one:

¢ py (t-1)at510) = py lanl) =f ET
K 1 (1-t)?

1

=p (aD) - I ((@-1)p, (0-1) +5, (a-1) - 5, _(a-1))

| 1 . 1
| = = (py (@ 1) + 5, _1(@ 1) -5,(a-1)) » (5.16)

Now we are ready to prove an important relation which expresses Pres 1

in terms of Py and Prey °

Lemma.

| 1

Proof. Since Pres 1 (9) = py (2) = 1 and 8, (@) = S,.1(®) = 0 for
O <a <1, the result holds for [al =1 ; we will show that the

| derivatives agree, by induction on [al . Since

20



(a+1)p!, (#1) = p(@) =p, (@) = (5,_1(2) -8(@))/k ,

(rd)py (+1) = py ,(@) =p(@)

(ar1)s; (atl) = Py_1(Q) + 8, _o(@) - 8, _,(2) )

the desired result is equivalent to

k-1 k-1 1

TT x@ =F ea(® rf Bp@-50)

For k = 1 this is obvious, otherwise it holds by induction. ([O

By iterating the recurrence in the lemma, it follows that

13 1 1 18
Pres (®) = py (0) + 5.1 S, (a) +... + K(k-1) Sy.1(®) + k 5, (a) . (5. )

Finally let us consider the functions e, (x) defined in (5.10).

Somewhat surprisingly, these can actually be expressed in closed form:

E(x) E(x) E(x)E"L| Theorem. e, (x) Re 1+ 11 + 00 t+ Bor s» Where
E(x) = E, (x) is the exponential integral function

E(x) = [ ik dt/t = [ Ty it/t (5.19)
X 1

21



Proof. Once again we integrate by parts:

» py (t=1) R Pp-1(t-1) -(t-1)x
e, (x) -e (x) = I Rt m—p—— sao te dt

= -¢" [te t™ap (t)k
0

X po tx tx

= e J oy(8)(e -txe T)dt

= ef(e (x) +x e'(x)) .
k k

E(x)
If we let f, (x) = Xe e, (x) , we have therefore

f1(x) = £(®) (e (x) + xe!(x) -e Xe (x))k k k k

eX
= =F Bax) = Ef(x)

and it follows by induction on k that

k-1

| f, (x) 11 + oo + BE .
| In order to evaluate C , we integrate by parts in the opposite direction:

R -tx “tx © “tx
xe (x) = = [p (t)ad(e™) = - p(t)e™X| + [eT ap, (t): k k k

0 O 0

> tx dt |

= 1 i e™ (py (8-1) = py _;(-1))

® -u u u du

Hence C = lim_ x e (x) = lim _ f(x) =1. 0

22
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6. Asymptotic formulas.

In this section we shall study the asymptotic behavior of py (2)

for large Q . Our starting point is a simple proof that p, (2) is

exponentially small: Let us write p(a) for py (2) . Then since

a x

1+[ p(t-1)at = [ p(t-1)at
2 1

0 04

= = tp(t) + | p(t)dt
1 1

O41

= 1-ap(a) + | p(t-1)at (6.1)
2

we have

+l

I o(t-1)dt = ap(a) : (6.2)
0}

It follows immediately that ap(@) < p(@-1l) for all a >1 , hence

by induction

p(n) < 1/nm (6.3)

for all integers n > 1 . Considerably more precise formulas have been

obtained by de Bruijn [ 1] and others, and numerical results have been

tabulated by Mitchell [8] and by van de Lune and Wattel [13]; but

(6.3) suffices for our purposes in this section.

The rapld decrease of p; (2) simplifies the numerical evaluation

of integrals and it also leads to a simple treatment of the asymptotic

behavior of po (Q) :
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Theorem. For all fixed r >1 we have

c c C

0(0) = 2SRap + oa” (6.4)a ao 0’

y as a = o , where

A = e = 1.78107 24179 90197 98524 (6.5)

and the coefficients c, are defined by

k 2% k
2 Z c,/k? = exp I (e’-1) dt/t | = exp{ 2 =z /k.kt] . (6.6)

k >0 0 k>1

1 1 81 8351 184

Thus (€32€1sCps +++) = (x, 1,3 ’ iA ’ F ’ 5 Sh ’ PE ’

Za 3 AAA 3 oo) . Before proving the theorem, we note that
(6.6) implies the recurrence formula

c= = 2 (%)eacx > n>1 . (6.7)
1<k<n

i n-1 ] »
Therefore c¢ > ==c , for n>2, and c, , >n! ; the infinite

series Ze, fd diverges for all « . In other words, (6.4) is
strictly an asymptotic formula.

Proof. From the lemma in the previous section we have

o
t=1)dt

pp (2) = pq (2) +8, (a) = o(@) + | plt-1idt
0 r r+l

= p+] p(t-1)at| =+ Ee cee + f=), =
1 a a Ft FT (ar1-t)

a-1 k 1 -r-1
= pw)tf atte o@T (6.8)

O0<k<r O



1
0 ©

f

since [| p(t-1)(t-1)T" at/(o#1-t) < [ p(t-1)(t-1)71 dat < ow .
1 1

Furthermore we have

© @ 1,
[ ee)t®at = of [ ePt¥at | - ole ® (6.9)
a-1 a-1 |

as a —-+ = , by making very crude estimates not even as powerful as
|

(6.3), so we can integrate to « in (6.8): i

a. a a . &

po (Q) = i - + oe. 4 Re+ohy (6.10)
a a

where

> k
a, = J p(t)t at . (6.11) |

0

|

It remains to evaluate the a We have

k 2 t E in |T a 5. [ot)e™ at = e (x) = e (x) -Inx (6.12) |
* k kt! 1 |>0 0

by the theorem of Section 5; and it is well known that |
A

k>1 |

(See, for example, [7, exercise 5.2.2-43].) This combines with (6.12)

eo |
and (6.6) to prove that a, =ec. 0 i

I

i
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| The coefficients Cy have the curious property that
.

Cc 2c re. Ce
Ne) = TAL oe — + ves + — == + 0a” Ly (6.14)

| tl (al) (a1)
|

| is also an asymptotic expansion of Py but not as accurate when truncated.

Another series,

c Cc, =C c,~C.+C
0 A 0 2 10 ~r-l

2 E. 2(a-1)° 3(a=1) )
is, in turn, more accurate than (6.4). These series are obtainable from one

another using the relation po (2) = -(o1)p) (c+) + py (@) :

For k > 35 , we shall content ourselves with establishing the leading

term in the asymptotic expansion of Py 2 namely

k-2 k=3
_ A(ln a (In a)

[Appendix B contains an asymptotic expansion of Pz .] Consider first
Q

_ A 1)) _at_
5,00 = [ 1 5*0° 3] mi

1 t

| and note that

| at 1 [ep dt _ 21naJ, t(#1-t) ~ ol 1 EY , ol-t | © al

SE Wy op SF1 £2 (ot 1-1) ol 1 £2 ol 1 t(arl-t)

| 1 1 2 In a -1

-1 -1 -1 -1

: Hence 5,(@) = 2A ~ ln a+0(a”) , and pz (2) = Aa T1ln a+0(a 7)
| by (5.18). In order to use this approach for larger k , we note that,

when k >1,



x k Qa k a k

[ In © dt - we { (ln t) at , 1 [ (In t) dtt(o+l-t 41 t o+1 otl-t
1 1 1

1 (wma x 7 an)" ment)a
= @D (wl #1 J, t E

1 no)! , In(o+1) (1n a)¥ g
~ (ol) k+l +l

1 ; |
; k_ r (1n t) 1a( 1 - 2) atatl J t )

Now 1n(l-x) = -x f(x) , where f is a function satisfying

5 I-20 WS PE
l= (51) < o( 5%) = = In(o#l) (6.18) |

when 1 <t <a, hence :

a k-1 Qa |
(Int) _t _ 1 k-1J - In{ 1-5 Jit = 55 J (In t)° ~ 0(1n a)dt

.
ol

We have proved that

o k etl k |
r (Int)” at _ k2 (na)™— | (Ina) (6.20) |1 t(otl-t k+l 0 0 |

for all k >0 . Using (5.18), formula (6.15) now follows by induction,

together with

k-1 k-2 1
_ Ak{(ln « (1na)
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7h Application to factoring.

The distributions Fy (x) = py (1/%) can be used to estimate the
running time of various algorithms for factorization. For example, |

.

Pollard's important new Monte Carlo method [ 10] takes about Vn, steps,
where n, is the second-largest prime factor of n , so we can use a

table of Fy to state that Pollard's method will complete the

factorization in o(n' 106) steps at most, about half of the time. |

For the simple algorithm of Section 1, we need to analyze the

distribution of max (n,, ; ny ) , and this does not appear to be
expressible directly as an algebraic function of the Fy . However, |

we can readily carry out the analysis by using the techniques above. |

Let G(x) be the limiting probability that max (n,, yn; ) < Ne, |
when n is a random integer between 1 and N . Then |

G(x) = F(x) + Gy (x) = F(x) - G(x) , where G, (x) is the probability

that N° <n; < NX and n, < N , and Gy (%) is the probability that |
ny > Nx and n, < N . Arguing as above, we find }

{

2x 2X
dt X dt 1-%

Gy(x) = J Er) =0d To(%) ‘ (7.1)
X x |

2/a a
1 dt p(u-1)duG (2) = o((1-t)a) —_— = . P (7.2)1\ J,Ja t J +1 -u |

1 1
dt X dt 1-t i

Gx) =| F nd) 0(5 ) (7.3) |2X 2X

1 a=1
1 dt u-1l)du

G (1) = o((1-t)a) & = p(u-l)du (7.4)

1 1 1 1 |

(Note that AE )+ (2 ) = s,(a) = r( 2) 5 2 ) s in {
agreement with the lemma of Section 5.) It is clear from our asymptotic |

: |
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results that Gy (1/2) decreases exponentially for large « , hence

| it is numerically better to use the formula G(x) = Fy (x) + G, (x)
| than to use F(x) - G, (x) ; furthermore the integration is over a

: limited range. On the other hand for 2 <a <5 it is most

convenient to use G, since 6 1) = In(a/2) in this range.

|

{

(

|
. 29
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| 8. Remarks about the model. |
' H

| The probability considerations above are for random n between |
l and N , and for relations such as n, < N° ; but from an intuitive

1 standpoint we might rather ask for the probability of a relation such

as n, < nt » without considering N . Actually it is easy to convert
from one model to the other, since most numbers between 1 and N are |

large.

More precisely, consider how many numbers n between SN and N |
|

1 1

have n, < nN ; this is P, (x,N) -p( X35 v) = 3 NF, (x) + O(N / log N) ,
| since P, (%,N) = N-F, (x) + 0(N/ log N) . Furthermore, consider how

| many of these n have n* < n < N° : The latter relation implies
| n> (in) = log 2/log N , and F, (x - log 2/log N) ==

| F(x) +0(1/ log N) , since F, 1s differentiable; so the number of such

n is at most P, (x,N) - P(x - log 2/log N,N) = O(N/ log N) . (The

constant implied by the 0 in (4.7) will be independent of x in a

| bounded region about x .)

: We have shown that F(x) +0(1/1log N) of all n between > N
and N satisfy n, < n" . Therefore if Q, (%,N) denotes the total

number of n <N such that n_ < n* , we have

Q (%,N) = 2 - N F(x) +0 NTN + o oi )
| 1<j<log,logN 2 log(N/2%)

= vey) +o ir ) (8.1): k log N 3 i
{

by dividing the range N/log N <n <N into log, log N parts.

J
!
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It is customary to define the "probability" of a statement S(n)

about the positive integer n by the formula

Pr(S(n)) = i T (number of n < N such that S(n) is true) , (8.2)hp

| when this limit exists. Thus, we can state well-known facts such as the

following: Pr(n is even) = : ; Pr(n is prime) = 0 ;
Pr(n is squarefree) = 6/- . Equation (8.1) now yields another result

of this type:

Pr(n, <n") = F(x) ’ (8.3)

for all fixed x .

Another important observation should also be made about the theoretical

model we have used to study the factorization algorithm in this paper:

We have stated our results in terms of the probability that the running

time is < N (or, if we prefer, nx }; this contrasts with the customary

approach to the study of average running time, which derives mean values

and the standard deviation. The reason for abandoning the traditional

| approach is that the mean and standard deviation are particularly

| uninformative for this algorithm. This phenomenon is apparent when we

consider that the mean running time over all n <N will be relatively

| near the worst case n®*? , but in more than 70 per cent of all cases the
actual running time will be less than po :

In order to understand this rather anomalous situation more fully, let

| us calculate the asymptotic mean and standard deviation of the largest

prime factor ny when all integers 1 <n <N are considered equally

likely. Let &(t) be the probability that n, < t , when n is in this

range. Then the derivation of Eq. (4.13) allows us to conclude that
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|

N/t 2
_ 1 {uldu 1

5(t) = l+lnlnt-InlnN+ == I X + of 15m ) ’ (8.4)
for /N<t<N.

We shall now calculate the asymptotic behavior of the k-th moment

of this distribution, namely the asymptotic expected value of ny .
[Incidentally, our derivation provides a good example of the use of

Stieltjes integration.] The k-th moment is

k N x

E(ny) = Il to dst) (8.5)
/N

and since the integral from 1+VN is o #2 as(t) | = or?)1

it can safely be ignored. We are left with

N N/t 2

Ee o 2420204 +1020 + a [0 dul, o m7 ) )/N 1 u 8

N 1 k \Z

- [ t*a@nint)+ == [ (Y) a lulu, _ N° ; (8.6)In N v 2 2

/N /N 1 u (log N)

i by replacing t by N/v in the second integral. [The 0 estimate here
b

| is justified by the following general lemma: Let [ f(t) dg(t) and
a

b

| £(t) dh(t) exist, where h(t) = 0(g(t)) , and where both f and g
| a

: are positive monotone functions on [a,b] . Then it is easy to see that

b b

J £(t) ao(g(t)) = o(f(a)g(a)) +0(£(b)g(b)) +o [ £(t)de(t)|
a a

{,

| if we integrate by parts twice.] The first integral in (8.6) is

32



Li ]

r t5lat wr dv Rs (ff dv fT In v dv/N ins 1 vn N-1n v) InB\G SY Fann - nv)

I NG
: k InN (log N)©

/N kt 2The second integral is -/1n N times [ ({v}dv/v » which is within
1

o(n~(k1)/2y of

[ {vidv _ 5 [ (v-j)dvk+2 k+2
l v Jot J \'s

To k\ .k XK ) © k+l| [k+l© kt1
J>I\ TJ (3+1) J (3+1)

_ 5 ( 1 (1 ) 1 1B k(t) | Jk k | ~ k+l et1
321 = (341) (+1)

1 1 1 k+l

= WD) "wr (C(eD)-1) = §-L

Thus we have shown that

(log N)

It follows that the mean value of n, is asymptotically
j /

(n°/12)N / In N , and the standard deviation is (¢(3)/3) 72x /In N , to

| within a factor of 1+0(1/log N) . In particular, the ratio

standard deviation

: —mean © (5.5)

: as N =» o 3 this result demonstrates the unsuitability of a traditional

"mean and variance" approach to the analysis of such algorithms.
|
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9. Numerical results.

| The differential-difference equations for p, 8re convenient ly
suited to numerical. integration. For example, given internal arrays

containing p,(m + k/n) , op, (m+ k/n) , and ps (m + k/n) for
0 <k < mt, where m is some fixed integer and 8 = 1/n is the

step size and t depends on the method of integration, one pass over

these arrsys serves to increase m by 1 . When m reaches a

suitably large value, the asymptotic formulas derived above provide

an excellent check on the accuracy of the calculations. Another

excellent check comes from the formula

®

e = ! p(t)at = p(1) +2p(2) + 3p(3)+ «ot (9.1)

| cf. (6.2), (6.5), and (6.11). (Incidentally, identity (9.1) appears to

be new; it was discovered empirically, after noticing that the results

of numerical integration seemed to resemble a "familiar" constant. This

particular constant came as a surprise, since e’ usually occurs only

in connection with infinite products. After the proof of (9.1) was

found, the theorem in Section 5 above followed rather quickly. Thus,

{ numerical results indeed suggest theorems.)

The following table gives representative values of PL 2 Pps P3
' and G to 12D :

{

}

J

| Sh
i



| | b

| a p,(@) po (2) p5(2) G(1/a)
1.0 1.000000 000000 1.000000 000000 1.000000 000000 1.000000 000000 |

1.5 .50453% 891892 1.000000 000000 1.000000 000000 1.000000 000000 |2.0 .306852 819440 1.000000 000000 1.000000 000000 1.000000 000000 |

2.5 .130319 561832 .953389 706294 1.000000 000000 .7302Lk6 154979

% 048608 388291 852779 323041 1.000000 000000 Lh7314 214932

3.5 .016229 593243 733481 165219 .997526 273042 .223819 L93955

4.0 004910 925648 .623681 059959 .985113 653272 .096399 005935

4.5 .001370 117741 533652 572034 .960975 011157 .036573 065077

5.0 .000354 724700 L63222 186987 .927859 653628 012413 482748

| 6.0 .000019 6Lg696 365217 751694 .851107 195638 .001092 266742

| 7.0 .000000 874567 .301786 010308 777229 329492 .000071 391673

8.0 .000000 032321 257435 710831 712844 79k121 .000003 662651 |
9.0 .000000 001016  .224592 162720 657959 581954 .000000 153284

| 10.0  .000000 000028  .199248 208994  .611115 997540  .000000 005383
12.0 .000000 000000 162638 856635 . 535865 613616 .000000 000004

14.0 .000000 000000 137437 368144 478221 Thohl2 .000000 000000

16.0 .000000 000000 .119016 453035 1326k2 865532 .000000 000000

18.0 .000000 000000 .104958 753569 395653 753569 .000000 000000

20.0 .000000 000000 093875 845625 . 364991 546696 .000000 000000

| 25.0 .000000 100000 074277 8030k4k . 307069 057805 .000000 000000
30.0 .000000 000000 061453 736517 266170 912880 .000000 000000

| 40.0  .000000 000000  .0L5683 813582  .211838 770538  .000000 000000

50.0 .000000 000000 036356 095670 177085 969207 .000000 000000

60.0  .000000 000000  .030192 055732  .152778 425203  .000000 000000

i
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‘ A !

(In 1930, Dickman published 8D values of py (@) for integer

a < 8 ; his figures were correct except that p1 (7) was glven as

" .0000 0088 ".)

Figure 1 shows these distributions graphically, and illustrates

1 1

the fact that F1(0) = G'(0) = ry 1) = ry :) =0, F5(0) = A,
(3) = 2 , F(2) = 1, F(0) = = . Although the graphs of F, ,
Fy , and Fs are qualitatively different, the graphs of Fr for

k >L4 will resemble that of Fs (but they will rise ever more
steeply) .

The following table shows percentage points of the distributions

Fy ’ Fs ’ Fs y for example, the probability is only 10 percent that
.18616

n, >n .
>

oJ|



| |

:

p F;H(p) Fo (p) 75 (p) |
.01 26974  .00558  .00068 |
02 29341 01110  .001k9 |
.03 31004  .01656 ~~ .00239

Ob 32341 .02196  .0033h

.05 33483 02730  .00435 |

.10 37851 .05308  .00995

.15 41288  .077h1 .01629

.20 Alhzok  .10033  .02327

.25 47068 .12191  .03079

.30 19656 .14216 .03882 ]
10 54881  .17892  .05636

50 .60655  .2ll72  .O758k

.60 67032 L2L267 09745 |

.70 74082 2TU3T .12165 i
75 77880 .29153 .13506
.80 81873  .310%35  .1h972 |
.85 86071  .33201  .16627 |
.90 .g0u8lL  .35899  .18616 |

| .95 95123 . 39672 21377

.96 96079 40681 22141
97 .970hS 11850 23054 |

| .98 98020  .h3268  .2h22k |
.99 99005  .k5169  .2595h |

} 1.00 1.00000 . 50000 +33353%

|



Empirical confirmation of the theory is illustrated in Figure 2,

which shows exact empirical distribution functions corresponding to |

Figure 1 for the 100 numbers n = 10% y 1 <m<100 . As expected,

the deviation from F(x) is most pronounced for k =1 and x > = ’
but the deviations are not severe. This set of numbers contains three

primes (102° - 33, 107° - 57» 102° -71) , and ten products of two

primes. The smallest values of n, occurred for | 2
102° -100 = 137-101-73-11.52.32.2%2 , 1070-64 = 463.431.29.50.2° ;

: the largest values of n, occurred for 1070 -69 = L56767-21893 ,

101° -22 = 85021-19603-3+2 ; the largest values of ny occurred for
101° 251 = 88301-421°269 , 1070-73 = 13879.359.223.3° . The

smallest values of max(Vny ; n,) occurred for

107° -100 = 137-101-73.11-57.3°.2% , 10-25 - 2857.113.59.7.5%.3 |
(so these would be the easiest numbers in the given range to factor by

the simple algorithm); the smallest values of ny for which |
10 |

ng >n, occurred for 10 -66 = 59417-10%-43.19.2 , |
100-68 = 77201-53-47-15.2° . |

In Dickman's original paper he calculated the "average" value

of x such that n, = ne , namely the expected value of log n, / log n .
|

This equals )

D, = [ xar (x) = -[ p(t) at/t = [ p(t-1) dt/t (9.2)
0 1 i |

and by Eq. (5.14) we also have

x0 o ©

J; p(t-1) t/t" = - S,(w-1) = J, p(t-1) dt/(t+1) . (9.3) |
| |

!

59 |
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In a similar way we can determine the expected value of log nm, / log n , ,
a number which can be expressed in several ways, namely

D, = J xdF,(x) = I (py(t-1) =p, _;(£-1)) at/t™ = 1 - J, py (£) dt/t |
© 5

= J (py (t-1) =2p,,(£-1)+p ,(£-1)) dt/(t+1) . (9.1) |

Numerical evaluation (using the asymptotic formulas for Ps and P )
gives

D, = .62432 99885 ; (9.5)
|

D, = .20958 08743 ; (9.6)

Dy = .08831 60989 . (9.7) |
|

(Dickman's value for D, was .624329998 . Note that D, is not equal |
to D,(1-D;) , although n, is the largest prime factor of n/n, .)

|

The average value of a logarithm may seem at first to be of limited |

practical interest, by eomparison with the median and other percentiles; x

however, we can interpret it meéanin fully by saying that D, m is the i
|

asymptotic average number of digits in the k-th largest prime factor of |

an m-digit number. Dickman's constant Dy arises also in an unexpected ‘]]
| way in connection with our simple factoring algorithm: The probability |

that n, < Vn, , namely the probability that the algorithm needs to
divide by all numbers up to Vn, y 1s

4

1a t oat (2(1-t) 3
I] % rary) UN (EH) - J plus) au/(u1) (9-8)

ko |
i



| \ ;

i by substituting u = 2/t-1 . So this probability equals D, ! In

| the empirical tests which led to Figure 2, exactly 61 of the 100
numbers had n,, < Vn, "

{

!

{

|
R
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10. Relation to permutations. ]

The numerical value of D, in (9.5) leads again to a feeling of

déja vu; and sure enough Dickman's constant turns out to be the same as

"Golomb's constant", which has been evaluated to 53 places in [6].

Golomb's constant A is defined to be lim _ t / n, where { is
the average length of the longest cycle in a random permutation. In

Golomb's original analysis [5] of this eombinatorial problem (which is not

obviously related to prime factors at alll), he independently defined =
"

function essentially identical to p(a) , and he computed A = [ o(t-1)dt/t°
1

(a 0)

muerically. Another expression \ = [ exp(-x-E(x)) dx was found later
0

by L. Shepp and S. P. Lloyd [12].

In Table 1 of their paper, Shepp and Lloyd list also the limiting

(k) P k-1
values £‘//n - E(t) exp(-t -E(t))at/(k-1)! for the average length

0

of the k-th longest cycle; and this agrees numerically with D, for

1 <k<3. Infact, the Shepp - Lloyd formula yields Dy for all k , |

since

® ge)? SL

J Sy exp(-t -E(t))dt = Mi (e, (t) -e,_;(t))at |
+2] ee)

-t -tu

| = J te [ (py (1) = ppp (u))e du dt
0 0 |

eo) @ b
-t(u ]

" J; (py (u-1) = py _;(u-1)) [ te ) dt du
} .

= J; (py(u-1) =p, _1(u-1)) du/u® . (10.1)
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|
Therefore, if we are factoring a random m-digit number, the distribution |

of the number of digits in its prime factors is approximately the same as

the distribution of the cycle lengths in a random permutation on m

elements! (Note that there are approximately In m factors, and |

approximately In m cycles.) |

There is a fairly simple explanation for the fact that p, (Q) turns

up in the study of cycles in permutations. Let Q, (nr) be the number J
of permutations on n objects having less than k cycles of length

exceeding r . Then, by considering the permutations on ntl elements

{0,1,...,n} and considering the n!/(n-m)! possible cycles in which © |

appears with m different elements, we have |

nt nt

Q (ml,r) = ZL —~— Q, (n-myr)+ 2 ~~ Q, _,(n-m,r) . (10.2) ¥
k 0<m<r (n-m)! “k r<m<n (n-m)! “k-1 -

Therefore if a, (n, 7) = Q (ny) /nt is the probability that the k-th |

largest cycle has length <r , we have | |

(nt1)q, (n+l,r) = 2 a, (n-m,r) + > q,_; (n-m,r) 3 (10.3) a
O0<m<r r<m<n

replacing n by n-1 yields ¥

|

nq, (n,) = 2 q, (n-1-m,r) + Z 9, (n-1-m,T) " (10.4) 1.
| O<m<r r<m<n

Subtracting these two equations, we have |

,

(n+l) (q,(ntl,r) -q, (n,)) E qy_1 (0-157) -q, (n-r,1) ’ (10.5) 1
}

and this is analogous to the differential equation :

@ py) = py_p(a-1) - py(a) (10.6)

| 43 jf
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The connection between the two problems is completed by showing that

a(mT) = py (0/7) +0(1/1) .

A similar distribution is obtained for the degrees of the factors

: of a random polynomial of degree n , over & finite field: The average

degree of the k-th "largest" irreducible factor will tend to be approximately

Dn .

Let us close by stating an open problem: Are the functions Py

algebraically independent? They are linearly independent, because of

Eq. (5.5).
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oo Appendix A. The number of prime factors.

Following the notation of Hardy and Wright [ 6], let w(n) be

the number of distinct prime factors of n , and let Q(n) be the

total number of prime factors including multiplicity. Thus, Q(n)

1s the quantity T in the analysls of the algorithm above. Clearly

1<Qq(n) < log, n , and both of these limits are obtained for infinitely

many n ; similarly w(n) can get as largeas Inn/Ilnlnn . On

the other hand these extreme values are relatively rare, and the number

of factors is usually near In ln n .

P. Erdos and M. Kac [ 4] proved that the number of n in the range

1 <n<N such that w(n) <ln In N+cNlnInN is
|

(% i or a) + o(N) ; (A.1)| Nox Yeo

hence, for example, the probability that |w(n) -1n In N| <c Nin In N

for fixed c¢ > 0 approaches the limiting value

A [ et 2g (A.2)
i

We might say that w(n) behaves essentially like a normally distributed

random variable with mean and variance In ln n , where n is large.

Erdos and Kac remarked that their methods, which were based on

the idea that residues modulo distinct primes are independent, could

be extended to the case of prime factors with multiplicities included,

but they did not state what the resulting theorem would be. Fortunately

it is easy to deduce the asymptotic behavior of ((n) from that of

| w(n) , using a method like that in [5]. Let k(N) be the number of n

in 1 <n <N such that

Ls
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wn) < mInN+cvlnln N (A.3)

and let K(N) be the number such that

Qn) <InInN+cAInlnN + nln InN : (A.L)

Then |k(N) -K(N)| is at most the number of n which satisfy (A.3) ,
5

but not (A.4), or (A.4) but not (A.3), and both of these quantities |
are o(N) : If n satisfies (A.3) but not (A.4), we have

Q(n) =w(n) >1n In In N ; and the number of such n is

O(N/ ln 1n ln N) , because

2 (a(n) -w(n)) = o(N) (4.5)

L<n<N |
by [6, Theorem 430]. If n satisfies (A.4) but not (A.3), then

InInN+cAlnInN < w(n) < In ln N+ eI RETJin 1n |

and this is o(N) by the theorem of ErdSs and Kac.

We have proved that the number of n in the range 1 <n <N

such that Q(n) <1n In N+c Vln In N is asymptotically given by %
|!

the normal distribution (A.1l). But this estimate is insensitive to i
0(1) terms, so the "average order" [6, Theorem 430] is also relevent: a

1im = 2  (w(n)-1n 1n N) y
N-wo ' 1<n<N

JLB |

Pp prime

|
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im £  Z (a(n)-1n 1n N)
Nw 1<n<N

= 7 + I (108( - 3) + = ~ 1.03465 38818 97L438 . (A.T)P p-1
p prime

(These sums may be evaluated to high precision using the formula ;

2 + = 2 n(n) In {(ns) (A.8) : )
P prime p n>l ,

for s >1.) |

Let S = (10% -m|1 <m <100} be the numbers used to construct

Figure 2 above. For neS we have 1n ln n= 3.1366 , and the |

following table shows the actual distribution of w(n) and Q(n) . |
|

xk = 1 2 3 4 § 6 7 8 9 10 11 12
]

{nes |w(n) =k}}| 3 1 3 29 1b 3 1 0 0 0 O O
}

|fnes|qn) =k} 3 0 27 25 15 11 5 3 1 1 0 1 ;
y.

The respective mean values are 3.50 and 4.27 . The number of

square-free n (those with w(n) = Q(n) ) was 61 , compared to the |
Af

expected value 600/”. = 60.793 . i

t
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Appendix B. An asymptotic formula for Ps

In this appendix we shall sketch the derivation of an asymptotic

expression for ps (2) a8 a =» o . Our starting point is the formula

a-1 op, (t)dt |2

5,(0) = J a-t
0

. . oo . Lol op(8) tT at |y Le A o,(t) tT at + ——= ——————— ;  (B.1)0<k<r Atl 0 2 LH i] a=t
|

we replace the final term by its asymptotic value

4g r-1

| A 7 (est + c,t +... c._qb)dt re? 1 Pr at (5.2)
A “ii a TY

so that the remainder is O(a i log @) . The main integral in (B.2) |is a linear combination of

a-1 _k 0’ k -J

[ Lot = J (ot) abat _ oF(1n a-H)- Z ()e)? 2 y (B.3)
0 1 j21

a-1 " or |
and it remains to evaluate ] po(t) t dt to Ch log (v) . |

i 0 i
:

; Since Pp = Sq + py » We have

! a 0 tk k u-1 |
[ ope) thas = [ fas| I BRLaur p(t) |

d © a LX rel }i = p(u-1)du —— dat | + a + 0a" 7) i0 ) thin k |
;

L8



| a x
= i o(u-1) (u-1)" 1n(c#l-u)du

1

a

- Z (3 )3 J, ow (w-1)*((@1u)3-1) +2 _+0(a™"h)2

] Lm (« -(5)) f-y/3 + (In a-Hy+ Lay

. = aVa,./3+00@Th (B.4)
1<j<r “tJ ’

where a = ; o(t) t dt = Ac, . Putting all this together and summing
| leads to the formula

| 0 i] 2b)._y -r-1
i S,(a) = (2 In a+ 1)p,(a) Pm it co Tr o(a ) 9 (B.5)

where

_ k

b = Ha + Zo ( : ) bf #8)

| In particular, (byrPysDps ce) = 2{0,2,%, 22, 22, ral
| RE , oo) . Since pg = > (pq(c) + po (0) + 8,(2)) » we have

the final formula

| b b

p5(0) = (ln a+1)p,(@) = = =... - il o@T™l) (B.7)04

!

| hg 2
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