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We consider a generalized conjugate gradient method for solving
systems of linear equations having nonsymmetric coefficient matrices with positive-
definite symmetric part. The method is based on splitting the matrix into its
symmetric and skew-symmetric parts, and then accelerating the associated iteration
using conjugate gradients, which simplifies in this case, as only one of the two
usual parameters is required. The method is most effective for cases in which the
symmetric part of the matrix corresponds to an easily solvable system of equations.
Convergence properties are discussed, as well as an application to the numerical

solution of elliptic partial differential equations.
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0. Introduction
In a related paper [3] we discuss a generalized conjugate gradient (CG)

iterative method for solving a system of real, linear, algebraic equations
Ax =b , (1.1)

where A 1is symmetric and positive definite. The method is based on splitting off
from A an approximating symmetric, positive-definite matrix M that corresponds
to a system of equations more easily solvable than is (1.1), and then accelerating
the associated iteration using CG. The method appears to be especially effective
for sparse matrices A arising from the discretization of boundary-value problems
for elliptic partial differential equations. For these cases, naturally arising
selections for M often result in iteration matrices possessing eigenvalue distri-
butions for which CG acceleration is effective.
The CG method has a number of attractive properties when used as an iterative
procedure:
(i) It does not require an estimation of parameters.
(ii) It takes advantage of the distribution of the eigenvalues of the iteration
operator.

(iii) It requires fewer restrictions on the matrix A for optimal behavior than

do such methods and successive overrelaxation.

In this paper we remove the restriction that A  be symmetric, and
require only that its symmetric part (A+AT)/2 be positive definite. We derive
the generalized CG method for this case, taking for the approximating matrix M the
symmetric part of A. We find that the method then simplifies, in that the computa-~

tion of only one of the two CG parameters is required.

1. Derivation of the Method

We consider the system of linear equations

Ax =b, (1.1)




where A is a given n X n real matrix and b is a given real n-vector. We re-
write (1.1) as the system
Mx= Nx + b , (1.2)

where M = MT = (A + AT)/E is the symmetric part of A, and N = -NT = -(A-AT)/E

is the negative of its skew-symmetric part. We assume that M is positive definite;
Tn [3],we discuss the solution of equations of the form (1.2) by a generalized CG
method, for the case in which M is symmetric and positive definite and N is symmetric.
In this paper, we derive the corresponding algorithm for the case in which N is
skew-symmetric.

Our interest is in those situations for which it is a simpler computational

task to solve
Mz =d (1.3)

than it is to solve (1.1), and for which, in a sense to be described later, M-Iy is
not too large.

Consider an iteration of the form

L) (k1) T () + () (e-1)y , (1.1)
where
g ) (k) , (1.5)
with
A0 p L e ) =y - ax ) ’

the residual at the kth step. The quantities o and ® are scalar parameters.

Many iterative methods can be described by (l.ll:;,l e.g., if N were symmetric,
the Chebyshev semi-iterative method and Richardson second order method would be of
this form (cf. [5]). The generalized conjugate gradient method described below,
which is also of this form, has the advantage over those two methods that no apriori
information about the spectral radius of M-lN is needed for estimating parameters.
Furthermore, it takes advantage of the actual distribution of the eigenvalues of
v 1.

From (1.4) and (1.5), we obtain

o L), (-1) ) (k-1) _(k)yy

Mz + M(z (1.6)

- Oy (A2 (k

For the generalized CG method, the parameters [gk, wk*-l] are computed so that

)T (@)
) @ _ o for o # 4 and P, g = 0,1,...,0-1 . (1.7)

Since M is an n X n, symmetric,positive-definite matrix, (1.7) implies that for
some k<n

(k) - ¢

and hence



'That is,the iteration converges in no more than n steps.

We derive the above result by induction. Assume

@7, (@ _ 4 ]
z Mz =0 forpfqandp, =20, 1, . . ., k (1.8)

Since N is skew-symmetric, there holds that for any real n-vector w

T
wiw =20 . (1.9)

From (1.6), we have

T T T T
L05 er) ()T (k-1) ()7 )+ ()% (k1) (k)

- O (g2

'and thus by (1.8) and (L.9),

)T

T
() Ty 5 (k+1) “”k+1‘°‘kz(k -

T
() _ ()7 )y

)Ty, (1) (k-1)T (er2)

Hence by choosing O = 1, we obtain 0. Similarly, z

for the choice

T
z(1;-1) M z(1:-1)

o (1.10)
k+l = T T
z(k-l) M z(1:.1) } z(k-l) . z(k).

We can simplify (1.10) by noting from (1.6), with (k+1) replaced with (k), that

T T
OO wkz(k) v 2%,
so that T T
)T (k) (k) Mz(k)/mk .
We obtain
T -1
. . N ORVIY L1
k+l = + z(k-l)TM L1 %k

Then for j < k-2, we obtain from (1.6), (1.8), and (1.9) that

T T T T
27y ) ()7 (1) a,kﬂ(z(:)) ez &) L 0Ty ) (k)
T

(x)

cw W) Ty ) (1.11)

k+1

But, since for oy = 1,

g 0L gy (3-1) mﬁﬂ(_Nz(J) . gy

there holds



T . T .
5 (k) Mz(J"’l):w. L&)y ) L1
Jj*l
Tus , since from (1.8) the l.h.s. of (1.12) is zero, we have for j < k-2
)T
z(j N z(k) =0, (1.13)

which implies

T
0 2 Ly e 5 ke

The desired result (1.7) then follows by induction.
The generalized CG method for the splitting M = (A + AT')/E is summarized

as follows:

Algorithm
Let x(o) be a given vector and arbitrarily define X(-l)' For k = 0,1,...
(1) solve Mzkk) = r(k), where r(k) =b - Ax(k).
(2) Compute
IO R
wk+1 _ 1+ T o 3 k>1
L1 (k-1) Tk
wl =1.

(3) Compute

L) (k-1) &) + () (-1,

+ %kn

(k)

. k .
In the computation of ®, ., one need not recompute Mz( ) since r can be saved
from step (1).

A simple induction argument shows that for all k, there holds

b

[¢V)
0O<w <1

unlike the case N = NT, for which ® > 1.

k+1
@7 (q)

Note that since z L =0 for p ;{ g and since by (1.13),

T
z(p) Nz(q) 0 for |p-q| ;( 1, there holds

Az =0 for |p-q| > 1 -

Remarks concerning alternative forms of the generalized CG algorithm, which can be
more efficient for actual computation, can be found in [3].

-1 ) )
The calculated vectors [z(k)}z=o will not generally be M-orthogonal in

practice because of roundoff errors. One might consider forcing the newly calculated

vectors to be M orthogonal by a procedure such as Gram-Schmidt. However, this
would require the storage of all previously obtained vectors.



Cur basic approach is to permit the gradual loss of orthogonality and with it
the finite termination property of CG. We consider primarily the iterative aspects
of the algorithm. In fact for solving large sparse systems arising from the dis-
cretization of elliptic partial differential equations,the application of principal
interest for us and for which the generalized CG method seems particularly effec-

tive, convergence to desired accuracy often occurs within a number of iterations

small compared with n.

2. Some Properties of the Method

In [3], there are presented some optimality properties, convergence proper-

ties, and eigenvalue relationships for the case in which A is symmetric. We dis-
cuss in this section related matters for the case in which M is symmetric and
positive-definite and N is skew-symmetric.

2.1. From (1.6) with o = 1 we obtain

L) (k1) +1(_M-1Nz(k) P A

k ' z(k"l) +wk+lM’]-Nz(k)’ (2.1)

k+l

which may be viewed as a relaxation of an iteration with iteration matrix
L=uly .

We note that L is similar to a skew-symmetric matrix and hence that all the eigen-
values of L are either pure imaginary and occur in conjugate pairs, or are zero.
The eigenvalues of I can be determined directly from the generalized (G

method in the same manner as for the symmetric case. e write (2.1) as

RGN Y _wl 5 (k1) +w1 , 1)
k+1 4 k+1
or
L[Z(O)’z(l),”')z(n-l)]= ) L
0 1 - =
w
)
1 0 1 -5)1—
3
= 0
) (1) (n-1 2
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1
@3




In matrix notation,

Assuming the columns of 7 are linearily independent,

the above equation can be written as

LZ=7J.
it follows that

1

J =271z .

It can be shown that the kth principal minor of J yields very good estimates of

the extreme eigenvalues of [, even in the presence of rounding errors. Note that
although the matrix J is not skew-symmetricitis diagonally similar to such a

matrix.

, 2.2 As in B2 of [3], define

Then we have,

where

is a polynomial in

As for the symmetriccase,

K=I-MW-1-1.

as for the symmetric case,

)~ 1. KPk_l(K)]z(O),

k-1
(k) = Z ng'l)lcj

P,
k-1 j=0
K of degree k-l. Correspondingly, we have
(k) _ _(0) (0)
=x +p Kz

we define the weighted error function

T
E(x(k)) - % e(k) (M-N) e(k) ,
where
) ()
For -the present case, (2.2) becomes
)y _ 1 0T ()
E(x ) = 5 e Me .
/
Assuming that (M-N) is nonsingular, we obtain, using
20) _ (0

and

the expression

e(k) =[I - KPk_l(K)] e(P) ,

(2.2)



T
Ex¥)) = % (o) (1-Kp, lu{)]T MT - KP__,\K)] e (2.3

The result for the symmetric case, that the polynomials P l\K) generated
s -

k .
by CG minimize E(x\ ) over the choice of 8ll polynomials of degree k-1, does
not hold here in general. Widlund {7} has shown, however, that there does hold

(k))

E(x gmax(l+7\§) E(y) (2.b

J

for any y of the form

where Sk»l(K) is a polynomial in K of degree k-1. Here i}}., j = 1,2,...,n, are the
eigenvalues of L.

We remark that, as for the symmetric case, the generalized CG method converges
in only p steps if K has only p < n distinct eigenvalues. This same result
holds also if K has a larger number of distinct eigenvalues but e lies in a

subspace generated by the eigenvectors associated with only p of these eigenvalues.

?2.3. Let us consider the polynomials §, , (K) generated by the Richardson

k-1
second order method, for which ® = 1 and @y, =W, a fixed parameter, for k> 1.

For this case, (1.4) with ak = 1 becomes

LD (k1)

)+ ) (k1)) k> 1

and we have

(k)

e® _proxs 01 =1 1) O

k-1 k,

We seek a value of ® for which the spectral radius of Tk,a)(L) is a minimum.
Denote by p(X) the spectral radius of a matrix X. By using an argument

similar to that given in [4, pp. 18-24], it can be shown that for

there holds

p(T, w (1) > el (1)),
Kk,®
where
K 1-6°
p(r (L) = o 1+ 25k (2.5)
k,w 1+6

and



{11 ~
A = L = Yy -w) . .

1+ \1+ OQ(L)

.

'Co carry out the Richardson second order method we would need to have an
estimate of P(L). It is interesting to note that here also 0 < ® -~ 1. ag for

CG, underrelaxation is preferred for the case of skew-symmetric N.

2.4.  One can use for y in (2.4) the optimal kth Richardson second-order

iterate to obtain an asymptotic error estimate for the generalized CG method.

Doing so yields, with the use of (2.5) and (2.6),

where C is a constant independent of k.

3. An Example
To illustrate the method, we give here a simple example for which one can

easily estimate the spectral radius of L. Consider the problem

-bu +oou = £(xy) (x,y) € R

u = gl,y) (x,y) € OR ,

where 0 1is a constant and R is the unit square ( ¢ x,y < 1. TWe discretize
on a uniform mesh of width h, using for & the standard five-point, approximation

)/ (n), where

and for wu, at the point 1i,J the approximation U. .-
X P ’ PP (l+1;J Ui,y

hh
Uij corresponds to uflx,y) at x = ih, y = jh.

We consider solving the discrete problem by the algorithm of 81, for which

= -0
M h
and
D O 0 1
D 20 1 0
-0
N = ) , where DrE
O D O an 1
. " -1 0



-

" A fast direct method (cf. [1]) can be used in this case for the solution of the

(k) (k)
= Tr .

system of equations Mz (0Of course, a fast direct method could be used,

without iteration, to solve the entire problem for this simple example.)
To estimate the rate of convergence, We wish to determine the extremal

eigenvalues of L = M_lN) that is

No = iNMp . (3.1)

For the corresponding differential operators, the equivalent eigenproblem is

op = in( + 9 ) (x,y) € R
% P " By (3.2)
Q= 0 (X:Y) € oR >

'for which one readily finds, by separation of variables, the eigenvalues to be

[+] .
A- :i-—————————‘—'——, J:llzl"" l=l,2,

st
oryfi® + P2

The first eigenvalues )\l 1 provide the uniform estimate for the spectral radius
b

D(L):
_ v V2
p(L) = |7\|ma_x - ’-l»‘"' IGI) (3'3)
for which -1
~ J3lo] @
e = T 1+ 1+ ? .

Direct computation of the eigenvalues of (3.1), which is somewhat more cumbersome
than for (3.2), shows (3.3) to be good asymptotically to within 0(h2) as h -»0.
We remark that for the symmetric problem with qu replaced by Uu, and the
splitting M = -“Ah and N = -0I, the estimate corresponding to (3.3) is (2]
l)"lmax p ‘Ul/(211'2) . Numerical experiments illustrating the behavior of the

modified CG method on related examples can be found in (71.
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The pos sibility of using CG on nonsymmetric matrices in the manner presented
here first occurred to us while listening to a presentation by T. Manteuffel of hir
dissertution research [(i]. We wish to thank 0. Widlund for making available to us
his results Lo nppear in [7] and to thank both 0. Widlund and T. Karasalo for thei r
helpful comments. This work was supported in part by the Energy Research and

Development Administration and by the National Science Foundation.
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