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We consider a generalized conjugate gradient method for solving

systems of linear equations having nonsymmetric coefficient matrices with positive-

definite symmetric part. The method 1s based on splitting the matrix into its

symmetric and skew-symmetric parts, and then accelerating the associated iteration

using conjugate gradients, which simplifies in this case, as only one of the two

usual parameters is required. The method is most effective for cases in which the

symmetric part of the matrix corresponds to an easily solvable system of equations.

Convergence properties are discussed, as well as an application to the numerical

solution of elliptic partial differential equations.
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0. Introduction

| In a related paper [3] we discuss a generalized conjugate gradient (cc)
iterative method for solving a system of real, linear, algebraic equations

| | Ax =b (1.1)

where A 1s symmetric and positive definite. The method is based on splitting off

from A an approximating symmetric, positive-definite matrix M that corresponds

i to a system of equations more easily solvable than is (1.1), and then accelerating
; the associated iteration using CG. The method appears to be especially effective

: for sparse matrices A arising from the discretization of boundary-value problems

| for elliptic partial differential equations. For these cases, naturally arising
| selections for M often result in iteration matrices possessing eigenvalue distri-

butions for which CG acceleration 1s effective.

| The CG method has a number of attractive properties when used as an iterative

] procedure:

(1) It does not require an estimation of parameters.

(11) It takes advantage of the distribution of the eigenvalues of the iteration

i operator.
i (iii) It requires fewer restrictions on the matrix A for optimal behavior than
i do such methods and successive overrelaxation.
i In this paper we remove the restriction that A be symmetric, and
i require only that its symmetric part (A+AT)/2 be positive definite. We derive

| the generalized CG method for this case, taking for the approximating matrix M the

| symmetric part of A. We find that the method then simplifies, in that the computa-
| tion of only one of the two CG parameters is required.

i 1. Derivation of the Method
We consider the system of linear equations

EL Ax = b , (1.1)
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where A is a given n X n real matrix and b is a given real n-vector. We re-

write (1.1) as the system

T T T T
where M =M = (A + A )/[2 is the symmetric part of A, and N = -N = -(A-A )/2
1s the negative of its skew-symmetric part. We assume that M is positive definite;

In [3],we discuss the solution of equations of the form (1.2) by a generalized CG

method, for the case in which M 1s symmetric and positive definite and N 1s symmetric.

In this paper, we derive the corresponding algorithm for the case in which N is

skew-symmetric.

Our interest is in those situations for which it 1s a simpler computational

task to solve

Mz =d (1.3)

than it is to solve (1.1), and for which, in a sense to be described later, MN is

not too large.

Consider an iteration of the form

(k+1) (k-1) (k) + _(k) _(k-1)
= 4) -x x \ by (OZ x X ) , (1.4)

where

k) k |Mz = r ) , (1.5)
with

Ly (Mx =p - ax ,

the residual at the kth step. The quantities a and ® 4p are scalar parameters.
Many iterative methods can be described by (1.4), e.g., 1f N were symmetric,

the Chebyshev semi-iterative method and Richardson second order method would be of

this form (cf. [5]). The generalized conjugate gradient method described below,

which is also of this form, has the advantage over those two methods that no apriori

information about the spectral radius of Mn 1s needed for estimating parameters.
Furthermore, it takes advantage of the actual distribution of the eigenvalues of

Mn.

From (1.4) and (1.5), we obtain

(k+1) (k-1) (k) (k-1) (kk)
= - Ww + - . ’Mz Mz ol (AZ M(z 2) (1.6)

For the generalized CG method, the parameters (o> ® py) are computed so that
T

(p)-,, (q) :
2 0’ Mz 1 = 0 for » # q and Pr g = O,1,...,n-1 (1.7)

Since M is an n X n, symmetric,positive-definite matrix, (1.7) implies that for

some k<n

, (k) _ é

and hence
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x =X.

That is,the iteration converges 1n no more than n steps.

We derive the above result by induction. Assume

(0), (0) _ y iZz Mz = 0 forp#gqgandp, gq=0,1, . . . , k (1.8)

Since N is skew-symmetric, there holds that for any real n-vector w

T

| ww =20. (1.9)

| From (1.6), we have

T T T T
(k) (k+1) _ (kx) (k-1) (k) (x) +  (k)7,, (k-1) (k

yA Mz = 2 Mz - ©, (oz Az z M(z - 2 )) ’

and thus by (1.8) and (1.9),

T T T
(k) (k+1) Co (k) (k) (k) (k)

| z' Mz ZO 02 Mz" -z 5 Mz)
T N qT

Hence by choosing 0 = 1, we obtain , (i) M 2 (K 1) = 0. Similarly, 5 (k 1) Mg EFL)
for the choice

J T |

° alt) 110)k+l = T T

| LE-1)0 (k-1)  (k-1)7 0 (k).

We can simplify (1.10) by noting from (1.6), with (k*1) replaced with (k), that
T T

ol) 5 lk) oz") CS
| so that

T T

Lk) (ke) (k) —y
We obtain

T -1

| k+l = T w ’K- -| + (1) (k-1) k

Then for j < k-2, we obtain from (1.6), (1.8), and (1.9) that

OT 1) _ (DT (kD) DT, 0 OT kel) (x)
| 20 Mz =z Mz - oo(20 (M-N)2 2 Me =z)

T

= © 412 N z . (1.11)

| But, since for a = 1,

Mz (HL) Mg (3-1) -w, (-nz 9) : Mz 9-1)n+l

there holds
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(kK) (+1) kK): (5)
Zz Mz = ©, V4 N z Jd, 12

J+l

Thus , since from (1.8) the l.h.s. of (1.12) is zero, we have for J < k-2

T
(3)29 N 2) = 0 , (1.13)

which implies
AT

+

20 0 Ly J < k-2 .
The desired result (1.7) then follows by induction.

The generalizedCG method for the splitting M = (A + INS 1s summarized
as follows:

Algorithm 0)0 -Let x be a given vector and arbitrarily define { 1) For k = 0,1,...

(1) solve Mz OE) = pe) where 6) = b - ax),

(2) Compute
-1

. (k)", ,) 1
“wr1= |YPT Lb ’ k21

k=) (k-1) Tk

Ww, = .1 1

(3) compute (1) _ (kD) (©) + 6) (kD)k+l) _ k-1 k) + k k-1
X =X N O42 X - X )

(x) (k)
In the computation of ®_., one need not recompute Mz since r can be saved
from step (1).

A simple induction argument shows that for all k, there holds

0 <« Or <1,

T

unlike the case N = N, for which Op +1 > 1.

(®", (a) |Note that since 2 Mz = 0 for p # gq and since by (1.13),
AT

,(P) nz (@) 0 for |p-q| # 1, there holds
T

,(P) az‘ = 0 for lp-q] > 1 .

Remarks concerning alternative forms of the generalized CG algorithm, which can be

more efficient for actual computation, can be found in [3].

-1

The calculated vectors (2%) yt will not generally be M-orthogonal in
practice because of roundoff errors. One might consider forcing the newly calculated

vectors to be M orthogonal by a procedure such as Gram-Schmidt. However, this

would require the storage of all previously obtained vectors.



Cur basic approach 1s to permit the gradual loss of orthogonality and with it

i the finite termination property of CG. We consider primarily the iterative aspects
of the algorithm. In fact for solving large sparse systems arising from the dis-

cretization of elliptic partial differential equations,the application of principal

interest for us and for which the generalized CG method seems particularly effec-

1 tive, convergence to desired accuracy often occurs within a number of iterations

small compared with n.

] X 2. Some Properties of the Method

In [3), there are presented some optimality properties, convergence proper-

ties, and eigenvalue relationships for the case in which A 1s symmetric. We dis-

cuss 1n this section related matters for the case in which M is symmetric and

positive-definite and N 1s skew-symmetric.

| 2.1. From (1.6) with Oh = 1 we obtain

(k+1) _  (x-1) 1 (x), (k-1) (k-1) (k)
2 cop (HN ) =o 25 ve wie a)

which may be viewed as a relaxation of an iteration with iteration matrix

i =u

: We note that L 1s similar to a skew-symmetric matrix and hence that all the eigen-

values of L are either pure imaginary and occur 1n conjugate pairs, or are zero.

| The eigenvalues of L can be determined directly from the generalized CG

] method in the same manner as for the symmetric case. We write (2.1) as

CO SL , (k-1) —__—_
1 k+1 } k+1

or

0 1 -

| 1260) ,@) (me)
oO 1 - —

| w

1 0 1 - Sh
3

| - (0) (1) (n-1,, 2 :
| = lz ’2 yeeesZ J

| 1
w ° ‘

_ 3

3 Ww
1 n

| 1
| Tr 0

®h-1
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In matrix notation, the above equation can be written as

LZ=2J.

Assuming the columns of Z are linearily independent, it follows that

7 =z.

It can be shown that the kth principal minor of J yields very good estimates of

the extreme eigenvalues of I, even in the presence of rounding errors. Note that
although the matrix J 1s not skew-symmetricitis diagonally similar to such a

matrix.

, 2.2 As in 82 of [3], define

K=I-MWN=1I-1.

Then we have, as for the symmetric case,

, - [I - ke, ©12',
where

k-1

Poy(K) = 2 p {b-1)J
j=o0 9

1s a polynomial in K of degree k-1. Correspondingly, we have

(x) _ _(0) (0)
X = x + Pq (K) 2 .

As for the symmetriccase, ye define the weighted error function

EG) = 2 opr) ©)x = 5 ’ (2.2)
where

JE k)

For -the present case, (2.2) becomes

()y _ 1 (05 (x)
E(x") = 5 © Me .

/

Assuming that (M-N) is nonsingular, we obtain, using

(0) _ a (0)

and

k

et) qr kp, ,(K)] ep) ,
the expression



;

E( (ic), - 1 ©); kp (K)]F MI - KP, 1K) e 0) 2.3p. 4 - O e - k 1 1S k-1 ° [a I

The result or the symmetric case, that the polynomials Pe LK generated{. —

| by CG minimize E(x") over the choice of all polynomials of degree k-1, does
not hold here in general. Widlund [7] has shown, however, that there does hold

Bc") < max (1422) E(y) (2.4
J

for any y of the form

(0) (0)
y =X + 5,1 (K) Z ,

where Sy , (K) is a polynomial in K of degree k-l. Here ih. j = 1,25...,n, are the
eigenvalues of L.

We remark that, as for the symmetric case, the generalized CG method converges

in only p steps if K has only p < n distinct eigenvalues. this Same result0

| holds also if K has a larger number of distinct eilgenvalues but ¢€ lies in a

subspace generated by the eigenvectors associated with only p of these eigenvalues.

2.3. Let us consider the polynomials Sp-1 (K) generated by the Richardson

| second order method, for which® = 1 and ®p 4 = Ww, a fixed parameter, for k> 1.

For this case, (1.4) with Ole =] becomes

| + - -

| Cer) Geen) (ke) Ge) (k-1)y k> 1,
| and we have

| (k) (0) _ (0)

le seek a value of ® for which the spectral radius of Toll) 1s a minimum.
Denote by p(X) the spectral radius of a matrix X. By using an argument

similar to that given in [4, pp. 18-24], it can be shown that for

Se2

| 1+ V1 + 0°(1)

there holds

o(T, 4 (1) > plz (1),
] k ,®

where

-6

| p(r (L)) = ok 1 + 1-95 k (2.5)
i Kk ,W 1+6

and
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{11 ~

J C5. 7 Ja J 6) 5.
1 + \/1 + 0°(L)

'Co carry out the Richardson second order method we would need to have an

estimate of P(L). It is interesting to note that here also 0 < ® ~ 1. ag for

CG, underrelaxation is preferred for the case of skew-symmetric N.

2.4. One can use for y in (2.4) the optimal kth Richardson second-order

| iterate to obtain an asymptotic error estimate for the generalized CG method.
Doing so yields, with the use of (2.5) and (2.6),

I )

(k) 2k 1 - 6° (0)
E(x") < c6 L+=—=k| Ex),

1 + 6

where CC is a constant independent of Xk.

5. An Example

To illustrate the method, we give here a simple example for which one can

easily estimate the spectral radius of L. Consider the problem

- Ay + ou = f(x,y) (x,y) € R

u = glx,y) (x,y) € OR ,

where 0 1s a constant and R is the unit square ( «¢ x,y < 1. We discretize

on a uniform mesh of width h, using for 4 the standard five-point, approximation

'y, and for wu, at the point 1,J the approximation (U4, 5 - Ui, )/ (2h), where
Ui corresponds to uflx,y) at x = ih, y = jh.

We consider solving the discrete problem by the algorithm of 81, for which

= =A

i "7%
and

D 0 0 1D -1 0 1 0
-J ! ’ °

N = , where D = on

-1 0
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] "A fast direct method (cf. [1)) can be used in this case for the solution of the

system of equations ve (KD LK) (Of course, a fast direct method could be used,
| without iteration, to solve the entire problem for this simple example.)

1 To estimate the rate of convergence, We wish to determine the extremal

| eigenvalues of 1 = MN, that is

| Np = IAM . (3.1)

For the corresponding differential operators, the equivalent eigenproblem is

op = iNlp + @ ) (x,y) € R
| X x yy (3.2)

i p= 0 (x,y) € oR ,

: "for which one readily finds, by separation of variables, the eigenvalues to be

o :

A, = + ————— j=14L2 .... 1=1,2,....
| Jb = 2 2

omic +

] The first eigenvalues Ay 5 provide the uniform estimate for the spectral radius: ’

1 o(L),

| vr V2 ||p(L) Il p= ’ (3.3

= for which -1

op ~NElol], + © .
br 87

f Direct computation of the eigenvalues of (3.1), which is somewhat more cumbersome

i than for (3.2), shows (3.3) to be good asymptotically to within 0(n) as h -0.
We remark that for the symmetric problem with ou, replaced by Uu, and the

| splitting M = - By and N = =-0I, the estimate corresponding to (3.3) is (2]
i IAL, = lal/ (en) } Numerical experiments illustrating the behavior of the
g modified CG method on related examples can be found in [7].
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The pos sibility of using CG on nonsymmetric matrices in the manner presented

here first occurred to us while listening to a presentation by T. Manteuffel of his

] dissertation research [fi]. We wish to thank 0. Widlund for making available to us

f his results to appear in [7] and to thank both 0. Widlund and T. Karasalo for thei r

| helpful comments. This work was supported in part by the Energy Research and

Development Administration and by the National Science Foundation.
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