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ABSTRACT
We consider a generalized conjugate gradient method for solving
sparse, symmetric, positive-definite systems of linear equations,
principally those arising from the discretization of boundary value
problems for elliptic partial differential equations. The method
is based on splitting off from the original coefficient matrix a
symmetric, positive-definiteonethat corresponds to a more easily
solvable system of equations, and then accelerating the associated
iteration using conjugate gradients. Optimality and convergence
properties are presented, and the relation to other methods is
discussed. Several splittings for which the method seems particularly

effective are also discussed, and for some, numerical examples

" are given.
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0. INTRODUCTION
In 1952, Hestenes and Stiefel [0] proposed the conjugate
gradient method (CG) for solving the system of linear alge-

braic equations

Ag =1,

where A is an n X n,symmetric, positive-definite matrix.
This elegant method has as one of its important properties
that in the absence of round-off error the solution is ob-
tained in at most n iteration steps. Furthermore, the
entire matrix A need not be stored as an array in memory;
at each stage of the iteration it is necessary to compute only
the product Az for a given vector 2.

Unfortunately the initial interest and excitement in CG
was dissipated, because in practice the numerical properties

of the algorithm differed from the theoretical ones; viz. even



for small systems of equations (n < 100) the algorithm did
not necessarily terminate in n iterations. 1In addition, for
large systems of equations arising from the discretization of
two-dimensional elliptic partial differential equations,com-
peting methods such as successive overrelaxation (SOR) re-
quired only Oﬁﬁﬂ iterations to achieve a prescribed accu-
racy [1]. It is interesting to note that in the proceedings
of the Conference on Sparse Matrices and Their Applications
held in 1971 [2] there is hardly any mention of the CG
method.

In 1970, Reid [3] renewed interest in CG by giving
evidence that the method could be used in a highly effective
manner as an iterative procedure for solving large sparse
systems of linear equations. Since then a number of authors
have described the use of CG for solving a variety of
problems (ef. (&1, [5], (6], [7], [8]). Curiously enough,
although CC was generally discarded during the sixties as
a useful method for solving linear equations, except in con-
junction with other methods [9], there was considerable in-
terest in it for solving nonlinear equations (cf. [10]).

The conjugate gradient method has a number of attractive
properties when used as an iterative method:

(1) It does not require an estimation of parameters.

(ii> It takes advantage of the distribution of the
eigenvalues of the iteration operator.

(iii> It requires fewer restrictions on the matrix A

for optimal behavior than do such methods as SOR.

Our-basic view is that CG is most effective when used as
an iteration acceleration techniqueb
In this paper, we derive and show how to apply a gener-

alization of the CG method and illustrate it with numerical

rn
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examples. Based on our investigations, we feel that the gen-
eralized CG method has the potential for widespread appli-
cation in the numerical solution of boundary value problems
for elliptic partial differential equations. Additional ex-
perience should further indicate how best to take full advan-

tage of the method's inherent possibilities.

1. DERIVATION OF THE METHOD

Consider the system of equations
Ax =D , (1.1)

where A is an n X n,symmetric, positive-definite matrix
and b is a given vector. It is frequently desirable to re-

write (1.1) as

Mx = Nx + ¢, (1.2)

where M is positive-definite and symmetric and N is
symmetric. In § 4 we describe several decompositions of the
form (1.2). We are interested in those situations for which

it is a much simpler computational task to solve the system

Mz = d (1.3)

~ ~

than it is to solve (1.1).

We consider an iteration of the form

L T TA L (1)
where
Mg(k) - ¢ -(M-N)g(k) ) (1.5)

Many iterative methods can be described by (1.4); e.g. the
Chebyshev semi-iterative method and the Richardson second
order method (cf. [11]). The generalized CG method is

also of this form.



For the Richardson or Chebyshev methods, the optimal
parameters wﬁfl’ak) are given as simple, easy-to-compute
functions of the smallest and largest eigenvalues of the
iteration matrix M-lN [11]; thus good estimates off these
eigenvalues are required for the methods to be efficient. The
methods do not take into account the values of any of the
interior eigenvalues of the iteration matrix.

The CG method, on the other hand, needs no q_priori
information on the extremal eigenvalues and does take into
account the interior ones, but at a cost of increased compu-
tational requirements for evaluating a&#l and ak.In § 3,
we describe a technique to provide directly from the CG
method good estimates for the extreme eigenvalues of the
iteration matrix.

From equations (1.4) and 0“5), we obtain the relation

e gD o o ez oY K (e)

For the generalized CG method the parameters {Okfwk+l}

are computed so that

(p)T

z Mg(q) =0 (1.7)

for p # g and p, a=0,1,...,n-1.

Since M is n X n positive-definite, (1.7) implies that for

some k < n

(k)

Z =
~

H{e)

and hence

L X . (1.8)

~

That is, the iteration converges in no more than n steps.



We derive the above result by induction. Assume

T
i(p) Mz(q)

~

=0 (1.9)

forp#qand Psq = o,l,nao, k.

Then if
o = g(k)TMg(k)/g(k)T(M-N)i(k) ’ 10,
there holds
g(1<:)TM£(1:+1) -0,
and if z(k_l)TNﬁ(k) 1
Oepr | 1 -0y z(k-l)TMz(k-l) (1.11)
e (e-1)T (k1)
- Z Mz =0
We can eimplify the above expression for wk+l as follows.

From (1.6) we obtain

(k) (k-2)

v =g 52 o o mg Y

(k-2) _ z(k-l) ) )

& 2

+ M(z
and then from (1.9)

T T
£(k) Nﬁ(1:-1) _ %(k) k)/ @0 1)

Since

. (k'l)TN?. ) _ (k)TNZ~ (k-1)

)

it follows



T -1
()", (k)
Z Mz
Cprr T\ L - 2 T <I>l—
Q-1 i(k-l) M£(1<-1) k
Fran (1.6), for j < k-1
T T
(3)7,, (k+1) _ (3)" . (k)
27 Mz =¥ a2 N2
But,
3 3 -1 - .- 3
i O i G0y aeme ) 4 0D Gy
so that
T
’%(k) Ng(']) =0.
. T
Thus, since N = N,
T
+
LT N

Hence by induction we obtain (1.7) and (1.8).

The generalized CG method is summarized as follows.

Algorithm

Let (o)

W

be a given vector and arbitarily define
5(-1). For k = 0, 1, .

(1) Solve ME’(k) =c - (M-N)},s(k)

ﬂ2) Compute




2

T
. o g(k) Mz(k) . ( .
@ .= 1- — =), k1),
k1 Oy Z(k-l)TMz (k-1) %k

o =1 .

1

(3) compute

(k1) | (k-1)

. . “’k+1(°‘k5(k) N 5(k) ) '}S(k-l))

Note that the algorithm can be viewed as an acceleration

of the underlying first order iteration (@ =1),

g_('(kﬂ') =J£(k)+akg%k). As with other higher of:i.elr methods, the

storage requirements of the algorithm are greater than those

of the underlying first order iteration being accelerated.
The algorithm presented above is given primarily for

expository purposes. For actual computation, the following

equivalent form can be more efficient in terms of storage[3).

Algorithm (alternative form)

Let 5(0) be a given vector and arbitrarily define
R('l). For k = 0, 1,
(L) solve Mg(k) =c- (M-N)x(k) .
(2) Compute
T
a(k) Ma(k)
b, = k>1
k T ’ = ’
i(k-l) M%(k-l)
bo =0,
R(k) _ a(k) . bk:e(k-l) .



(3) compute

T
z(k) Mi(k)
¥k T T
R(k) (M-N)R(k)
£(k+l) _ 2S(k) N akR(k) .

In the computation of the numerators of ak and bk one
need not recompute Mz k , since it can be saved from step
(1). Also, instead of computing the right hand side of step
(1) explicitly at each iteration, it is often advantageous to

compute it recursively from

(k) (k)

) (k+1)]—[ ]-a (M-N)p™" (1.12)

[¢ - (M-M)x = [¢- (M-N)x
which equation is obtained from step(5).The quantity
(M-N)g(k) appearing in (1.12) may be saved from the computa-
tion of ay - Similar remarks hold for the algorithm in its
first form as well. There is evidence that the use of (1.12)
is no less accurate than use of the explicit computation
(see [18], [3] for particular examples).

The calculated vectors [g}{ 3i=0 will not generally
be M-orthogonal in practice because of rounding errors. One
might consider forcing the newly calculated vectors to be
M-orthogonal by a procedure such as Gram-Schmidt. However,
this would require the storage of all the previously obtained
vectors.

Our basic approach is to permit the gradual loss of
orthogonality and with it the finite termination property of
CG. We consider primarily the iterative aspects of the algo-
rithm. In fact, for-solving large sparse systems arising from

the discretization of elliptic partial differential equations,



the application of principal interest for us and for which the
generalized CG method seems particularly effective, conver-
gence to desired accuracy often occurs within a number of

iterations small compared with n.

2. OPTIMALITY PROPERTIES

From (1.6), we obtain

E'(kﬂ.) . (k-1

~

) -wk+l(ak(I'M-lN)£(k) + E,(k-l) - ﬁ(k))' (2 .l)

Define
K=1-M1. (2.2)
1l
We have g( ) = (I - aOK)Q(O), and there follows by induction
that
E.(h-l) - [I - KPE(K)].%(O) (2.5)
where
£ .
p,(x) = L gl . (2.1)
s J
j=0
We denote
)4
2) 3
p,(\) = X Bj( 1A (2.5)
Jj=0

and from (2.1) we have for k = 2, 3, ..., 1{

e ) = 0 Mooy ) - -1, )+ a8y,
and

po(k) = Qy» pl(X) = &é(ao+'a1-aoalk) .
u)]z
j F=0
From (2.3) and the relation £(1+1) = g}O) + K(§f£+l)- §(O>),

The coefficients (B can be generated directly.

there follows



0
?S(“l) _ ?5( ) ?, (K)g(O)
Then if
(0) . (o
Z = [,% )Kﬁ( ), s 0y KI,Z.,(O)] ] (2.6)
(2+1) (0) Z
g - 0 ) 2.7)
Consider the weighted error function:
(1+1) 1
EGx 7= (x - §(£+l))T(M—N)(§ - 5(1+l)) . (2.8)
Assuming that (v-N)  is nonsingular, we obtain, using
2O e - O

the relations

E(§(1+1)) 3 (0)7T

) %% (I-KPE(K))T M(M-N) M(I-KP, (K))%(O)

T
¢ (e, 00) T het) (ke (1)) @), (2.9)

N}

where

L(0) _ x - 5(0) ‘

~

Equivalently, we can use (2.7) and re-write (2.8) as

2
(2.10)
. o+
The quantity E(g( l)) is minimized when we choose Q(l)
so that
(2)

G =h,

where -

10



Let

K = xmax(x)/xm.n(x) .

Then using arguments similar to those given in [12], the

following can be shown:

E(x(£+1)) 2 (g+1)
() —:@'—<1‘ k-1 . (2.11)
( )

(B) The generalized CG method is optimal in the class of all

algorithms for which

z(“l) _ . (0) (0),

+P,(K)z

(2+1)

That is, the approximation x generated by the

generalized CG method satisfies

BG4 cnin L S(O)T(x-xplm )T e-w) (z-kp, (1))
Py

where the minimum is taken with respect to all poly-

nomials E} of degree (.

Recall that we have assumed that M and (M-N)
are positive definite and symmetric. Thus the eigenvalues
of K = (I-M-lN) are all real and K is similar to a di-
agonal matrix. Hence, if K has only p < n distinct

eigenvalues, there exists a matrix polynomial QP(K) so that

Qp(K) =0

In this case, E(g(p)) = 0 and hence

(p)

X" =%

11



so that the iteration converges in only p steps. The same
result also holds if K has a larger number of distinct
eigenvalues but 2(0) lies in a subspace generated by the
eigenvectors associated with only p of these eigenvalues.

We remark also that Statement (B) implies CG is optimal
for the particular eigenvector mix of the initial error 2(0),
taking into account interior as well as extremal eigenvalues.
As will be discussed in the next section, the extremal eigen-
values are approximated especially well as CG proceeds, the
iteration then behavingasif the corresponding vectors are
not present. Thus the error estimate @.llL which is based
on the extremal eigenvalues,tends to be pessimistic asymptoti-
cally. One often observes, in practice (see § 5), a super-

linear rate of convergence for the CG method.

3. EIGENVALUE COMPUTATIONS
The CG method can be used in a very effective manner for
computing the extreme eigenvalues of the matrix K = I-M-lN.

We write (see (2.1))

(k)

£(k+l) _ E(k-l) -0 (g™ i(k-l) ) £(k) ), (3.1)
as
Kg(k) ez (k-1) akg(k) . bk+1§.(k+l):
or
K (o), (1)’.“,&(n-1)]
- [z(o),ﬁ(l)’.”’%(n-l)] a. c

O bn—l ar1—l



thus defining ak,bk,and.ck.ln matrix notation, the above
equation can be written as
KZ = 2J . (3.2)

Assuming that the columns of Z are linearly independent,
there follows from (3.2) that

K = 2zt

hence the eigenvalues of K are equal to those of J. As
pointed out in §2, if K has repeated eigenvalues or if the
vector Z(O) is deficient in the direction of some eigen-
vectors of K, iteration (3.1) will terminate in k < n steps.

The process described by (3.1) 1is essentially the Lanczos
algorithm [ 13]. It has been shown by Kaniel [14] and by Paige
[15] that good estimates of the extreme eigenvalues of K

often can be obtained from the truncated matrix

1 1 'k—2
0

k-1 "k-1

where k is considerably less than n. This result holds
even in the presence of round-off error [16].

It was pointed out in §1 that the equation describing
the CG method is of the same form as that describing the
Chebyshev semi-iterative method and Richardson second order

method, but that a knowledge of the extreme eigenvalues of K

13



is required for obtaining parameters for the latter two
methods. Thus one could construct a polyalgorithm in which
the CG method is used initially to obtain good approximations
to the solution and to the extreme eigenvalues of K, after
which the Chebyshev semi-iterative method (say) is used,
thereby avoiding the additional work of repeatedly calculating
CG parameters. This technique has been used in an effective

manner by O'Leary [17].

4, CHOICE OF M
For the splitting M = I, N = I-A one obtains the basic,

unmodified CG algorithm, for which

(&) () _ - A;s(k)

is simply the residual at the kth step. Since the rate of con-
vergence of the generalized CG method, as given by the esti-

mate (2.11), decreases with increasing
K= N A (),

it is desirable to choose a splitting for which « is as

small as possible. If A= L + D + U, where D consists of
the diagonal elements of A and L(U) is a strictly lower
(upper) triangular matrix, then it is reasonable to consider

the choice
M=D, N=- (L+0U).

This M, which is equivalent to a rescaling of the problem,
is one for which (1.3) can be solved very simply for z. It
has-been shown by Forsythe and Straus [19] that if A is
two-cyclic then among all diagonal matrices this choice of
M will minimize K.

In many cases, the matrix A can be written in the form

14



A= ’ (4.3)

where the systems

2T and i = G

are easy to solveyand for such matrices, it is convenient to

G- 6P

Using@h}), we can write the system (1.1) in the form

Mx, * P = Ry (4. 4a)

FT:;I + M, = By (4. 4b)

choose

0
Let the initial approximation for X be Xy s and obtain

*éO) as the solution to (4.4b) so that

(0) T, (o)

Mg =k - X

This implies that

0) _
z 25 =

é and hence by (1.10)

and thus




X + 2z
(1) ~1
= (0) '
b4
~2
A short calculation shows that gil) = 0 and hence a = 1.

Using (1.6), a simple inductive argument then yields that for
j=01 2

£§23+1) -0, L@I_ g

R % Q. (4.5)

. =1,

This result was first observed by Reid [8] for the case in
which M1 and Mé are diagonal, i.e., in which the matrix
A has "Property A" and is suitably ordered. Other cases for
elliptic boundary value problems in which matrices of the form
(4.3) arise will be discussed in § 5. TFor these cases con-
vergence can be rapid because K has only a few distinct
eigenvalues, even though « is not especially small.

Various other splittings of the matrix A can occur

quite naturally in the solution of elliptic partial differ-

ential equations. For example, if one wishes to solve
-au + 0(x,y)u = £ (x,y) € R
u=g (x,y) € OR ,

where R is a rectangular region,it is convenient to choose
M as the finite difference approximation to a separable
operator, such as the Helmholtz operator -4 + C, for which
fast direct methods can be used [23]. A numerical example for
this case is discussed in § 5. If one wishes to solve a
separable equation, but on a nonrectangular region S, then

by extending the problem to one on a rectangle R in which O
is embedded, M can be chosen as the discrete approximation to

the separable operator on R, for which fast direct methods

16



can be used. Such a technique provides an alternative to the
related capacitance matrix method [25] for handling such prob-
lems. Forms of this method utilizing CG, but in a different
manner than here, are described in [26] and [27].

Several authors [4], [20], [21] have used CG in combina-
tion with symmetric successive overrelaxation (SSOR). For
this method the solution of the equation Mu(k)==g- (M-N)§(k)
reduces to the solution of

(k) r(k)

(p+oL) DL (Dwo0)z 'K = w(ow)

where D, L, and U are as described previously in this sec-
tion (although D may be block diagonal), g(k)=§,-é;(k),
and ® is a parameter in the open interval (0,2). SSOR is
particularly effective in combination with CG because of the
distribution of the eigenvalues of K (cf. [22]).

Meijerink and van der Vorst [7] have proposed that the

following factorization of A be used:

A= FFT + Ej

so that

M= FFT, N=-E .

The matrix F is chosen with a sparsity pattern resembling
that of A. This splitting appears to yield a matrix K with
eigenvalues that also are favorably distributed for CG. A
block form of this technique recently developed by Underwood
B4 ] achieves a more accurate approximate factorization of

A with less computer storage and about the same number of
arithmetic operations per iteration.

Generally, in addition to the requirement that (1.5) be

-"easy" to solve, M should have the following features if the
generalized CG algorithm is to be computationally efficient.

For rapid convergence one seeks a splitting so that
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(i)M_lN has small or nearly equal eigenvalues

or (ii) M-lN has small rank.
Oftena choice for M satisfying these restrictions comes

about naturally from the inherent features of a given problem.

5. NUMERICAL EXAMPLES

For the first example, we consider the test problem dis-

cussed in [23]

-div(a(x,y)yu) = £ (x,y) € R
u — g (X,y) GaR K}
- 1.4, b2 : .
where a(x,y) =[1 + 5‘(X +y )] and R is the unit square

0 < X,y < 1. After a transformation the problembecomes

~Aw + 0(x,y)w = a-l/gf (x,y) € R

(5.1)
w :al/Eg (X:y) S BR)
2
where 0(x,y) = 6(x2 + ¥ )/al/g. As in [23] we discretize
(5.1) -on a uniform mesh of width h, using for & the
standard five-point approximation Ah' and we choose the
splitting

M=2+N=-A +CI

with C =0 = 0_, orc=5=l(c +0 ., ).
min 2 max min

In [23] Chebyshev acceleration was used, which requires
an estimate of the ratio of the extremal eigenvalues of the

iteration matrix. Here we use the modified CG algorithm of



§ 1. For an initial guess W(O) = Q and choice or' r and
g corresponding to the solution w = o[ (x-1/2)% + (y-1/2)°1,
the results are given in Table 1 for h = 1/64. The results
obtained for h = 1/32 were essentially identical, as the
iteration is basically independent of h for this problem
(see [23]).

Note that the Chebyshev method is sensitive both to the
value of C and to the accuracy of the eigenvalues from
which the parameters are calculated. The parameters used for
the middle column were based on Gerschgorin estimates
from the Rayleigh quotient, which gave a ratio of largest to
smallest eigenvalue about three times too large. The CG
method appears to be less sensitive to the value of C. After
several iterations CG begins to converge more rapidly than
does the optimal Chebyshev method, which behavior is typical
of the CG superlinear convergence property discussed in § 2.
This example is one for which rapid convergence results ‘be-

cause the eigenvalues of M-lN are small.

Chebyshev (from [23]) C
cC=0 c=23 C=23
exact approximate exact
.teration|leigenvalues | eigenvalues |eigenvalues|| C = 0 | C = 3
1 1.6(-2) |[¥.5(-2)|1.6(-2)

T.4(-4) ||2.6(-3)|6.7(-})
1.1(-5) |[3.0(-5)|1.0(-5)
2.7(-7) ||5.7(-7)|1.1(-7)
2.4 (-6) 1.1(-6) %.3(-9) |[[5.2(-9)[8.2(-10
1.2(-10) [|4.4(-11)[5.7(-12

oON VoW

TABLE 1
Maximum error vs. iteration number for first example



We give as the second example
-Au = f (x,y) €T

g (x,y) € oT

1

u

where T is the domain shown in Fig. 1.

For a uniform square
mesh of width h, and 0 < £ < (2h)™%

a whole number, so that

all boundary segments are mesh lines, the coefficient matrix

A for the standard five-point discretization and natural
ordering has the form (4.3).

1
(5 + fh, 1+2¢h)

(1,1)

(0,0)
FIGURE 1

T-shaped domain

M1 and Mé correspond to the mesh points in each of the two

squares, Tl and T2, and F to the coupling between them.

F has non-zero entries in only p = 21 - 1 of its rows.

According to the discussion following (4.3) we choose



Then for the generalized CG algorithm, there holds o = 1
and that Zy and z, are alternately zero, thereby reducing
computational and storage requirements. We use a fast direct
Poisson solver for thecfystems involving Ml and Mé.

The results for Ql uniformly distributed random num-
bers in (0,2) and f(x,y) and g(x,y) such that u=x2+y2
is the solution are given in Table 2. Here the average error
per point, the two norm of the error divided by the square
root of the number of interior mesh points, is given for each
of the test problems.

For this example, the eigenvalues of M_lN are not
especially small in magnitude, however since MM has rank
of only 2p, convergence is obtained in only a moderate number
of iterations. For Case I and Case II the last row represents
full convergence to machine accuracy subject to rounding

errors, as would be expected since 2p = 14 for these cases.

21
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Case I' Case II Case III

h 1/32 1/64 1/64
I} L L 8
P 7 7 15
iteration ave. error/pt ave. error/pt ave. error/pt
1 8.58(-2) 3.70(-2) 1.08(-1)
2 7.05(-2) 3.13(-2) 9.82(-2)
% 1.30(-2) 6.66(-3) b.94(-2)
4 3.35(-3) 2.53(-3) 1.80(-2)
5 2.71(-k) 6.03 (k) 4.28(-3)
10 2.65(-7) 5.13(-8) 7.35(-5)
15 1.14(-13) 5.60(-13) 4.71(-8)
TABLE 2

Average error per point vs. iteration number

We wish to thank Myron Stein of the Los Alamos Scientific
Laboratory for his careful computer programming of the second
test problem. This work was supported in part by the Energy
Research and Development Administration, by the Hertz Founda-

tion,and by the National Science Foundation.
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