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ABSTRACT

We consider a generalized conjugate gradient method for solving

sparse, symmetric, positive-definite systems of linear equations,

principally those arising from the discretization of boundary value

problems for elliptic partial differential equations. The method

i 1s based on splitting off from the original coefficient matrix a

symmetric, positive-definiteonethat corresponds to a more easily

solvable system of equations, and then accelerating the associated

iteration using conjugate gradients. Optimality and convergence

properties are presented, and the relation to other methods 1s

discussed. Several splittings for which the method seems particularly

effective are also discussed, and for some, numerical examples i

"are given.
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0. INTRODUCTION

In 1952, Hestenes and Stiefel [0] proposed the conjugate

] gradient method (CG) for solving the system of linear alge-
| braic equations

Ax =D

where A is an n X n,symmetric, positive-definite matrix.

| This elegant method has as one of its important properties

: that in the absence of round-off error the solution 1s ob-
{

tained in at most n iteration steps. Furthermore, the

entire matrix A need not be stored as an array 1n memory;

at each stage of the iteration it 1s necessary to compute only

| the product Az for a given vector gz.
! Unfortunately the initial interest and excitement in CG
: was dissipated, because 1n practice the numerical properties

of the algorithm differed from the theoretical ones; viz. even

:

I
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for small systems of equations (n < 100)the algorithm did

not necessarily terminate in n iterations. In addition, for

| large systems of equations arising from the discretization of

two-dimensional elliptic partial differential equations, com-

| peting methods such as successive overrelaxation (SOR) re-
| quired only 0m) iterations to achieve a prescribed accu-
| racy [1]. It is interesting to note that in the proceedings

| of the Conference on Sparse Matrices and Their Applications
held in 1971[2] there is hardly any mention of the CG

method.

| In 1970,Reid [3] renewed interest in CG by giving

| evidence that the method could be used in a highly effective

manner as an 1terative procedure for solving large sparse

systems of linear equations. Since then a number of authors

| have described the use of CG for solving a variety of
| problems (ef. (41, [5], [6], [7], [8]). Curiously enough,

although CC was generally discarded during the sixties as

| a useful method for solving linear equations, except in con-

| junction with other methods [9], there was considerable in-
| terest 1n it for solving nonlinear equations (cf. [10]).

: The conjugate gradient method has a number of attractive
| properties when used as an iterative method:

(1) It does not require an estimation of parameters.

| (11> It takes advantage of the distribution of the
| eigenvalues of the iteration operator.

(111> It requires fewer restrictions on the matrix A

for optimal behavior than do such methods as SOR.

| Our-basic view is that CG is most effective when used as

| an iteration acceleration technique6

In this paper, we derive and show how to apply a gener-

alization of the CG method and illustrate 1t with numerical



! examples. Based on our investigations, we feel that the gen-

5 eralized CG method has the potential for widespread appli-

cation in the numerical solution of boundary value problems

for elliptic partial differential equations. Additional ex-

perience should further indicate how best to take full advan-

| tage of the method's inherent possibilities.

| 1. DERIVATION OF THE METHOD
Consider the system of equations

Ax =1B > (1.1)

i where A is an n X n,symmetric, positive-definite matrix

1 and b is a given vector. It is frequently desirable to re-

2 write (1.1) as

I Mx = Nx + C (1.2)

} - where M 1s positive-definite and symmetric and N 1s

: symmetric. In§ 4 we describe several decompositions of the
i form (1.2). We are interested 1n those situations for which

] it 1s a much simpler computational task to solve the system

i than it is to solve (1.1).
} We consider an iteration of the form

i | (k+1) _ _ (k-1) (k) _ _(k) (k-1)i = + W + - 1.4x * k+1 lo 2 xX x ) 2 \ )

; where
f ug, = ¢ - (u-w)gE) : (1.5)

: ~ Many iterative methods can be described by (1.4); e.g. the
g Chebyshev semi-iterative method and the Richardson second

i order method (cf. [11]). The generalized CG method is

1 also of this form.
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For the Richardson or Chebyshev methods, the optimal

| parameters @, q 00) are given as simple, easy-to-compute
functions of the smallest and largest eigenvalues of the

iteration matrix MIN [11]; thus good estimates of these
eigenvalues are required for the methods to be efficient. The

methods do not take into account the values of any of the

interior eigenvalues of the iteration matrix.

The CG method, on the other hand, needs no a priori

information on the extremal eigenvalues and does take into

| account the interior ones, but at a cost of increased compu-

tational requirements for evaluating © and Q.- In 9 3,
we describe a technique to provide directly from the CG

method good estimates for the extreme eigenvalues of the

iteration matrix.

From equations (1.4) and (1.5),we obtain the relation

- (k+1) _, (k-1) (k) (k-1) (x)
= -W - -

| Mz Mz, ry (On (M Nz" + M(z z ')). (1.6)
F h 11or the generalized CG method the parameters (og s® 14)
are computed so that

T

, (P) Mz (2) = 0 (1.7)

for p # gq and py q=0,1,...,n-1.

| Since M is n X n positive-definite, (1.7) implies that for

some k <n

2 - 0

and hence

That 1s, the iteration converges 1n no more than n steps.



We derive the above result by induction. Assume

T

for p # q and p,q = 0,1,..., k.
Then 1f

ve op = 2 mW wm®
there holds

T

 (k) Mg (EFL) - 0,
and if

T -1

(kL) ng
w =! 1 = EE (1.11)k+l Me T

z (k-1) wy (K-1)

then T

We can simplify the above expression for Cry as follows.
From (1.6) we obtain

(x) (k-2) (k-1) (k-2) _(k-1)
Mz ~ =Mz -o (or, (M-N)g + M(z -Z )),

and then from (1.9)

T T

, (0) ng (1) _ 2 Me / or)
Since

T T

2K 1) Ng _ , (8) ng 61)
it follows
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3 T ~-1
| a z {) _— .

Oe-1 z le-1) vg (K-21) k

| Fran (1.6), for j < k-1

| T T
(3)7,,, (k+1) _ (3). (k)

: But,

i+1 i -1) j -

~ ~ J+L J ~ ~ ~

so that

T .

gz () ach “0.
T

| Thus, since N = N°,
: T
| k+1

| 243) 4g ) = 0 for J <k-1.
| Hence by induction we obtain (1.7) and (1.8).

The generalized CG method is summarized as follows.

Algorithm

| \ Let (0) be a given vector and arbitarily define] (1 . Fork =0,1, ...
| (1) Solve mg =c - (M-N)x .

| (2) Compute x)? (x)
| z Mz

X% = T ’

| te (u-w)g

!

!

!
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ok) (k)
CU a. —_— , (k> 1),

| k-1 2 k-1) mg (6-1) k

EE

i (3) Compute

(k+1) _ _ (k-1) () , _(k)  _(k-1),
¥ x = wD -—

3 eS * rr (OZ TX X .
i Note that the algorithm can be viewed as an acceleration
} of the underlying first order iteration (® = 1),

(+1) Ge). Ck) kl
pd =%X to2z . As with other higher order methods, the

1 storage requirements of the algorithm are greater than those
4 of the underlying first order iteration being accelerated.
3 The algorithm presented above 1s given primarily for

; expository purposes. For actual computation, the following
i equivalent form can be more efficient in terms of storage [3].

I Algorithm (alternative form)
{ Let , (0) be a given vector and arbitrarily define
: p1). For k=0, 1, . . .

! (1) solve mg = c - (MW)
: (2) Compute

, (6) (6)
| bp, = ———— ,  k>1

] k T ET

: | (1) Mg (5-1)

: k-
: pl) p00), op pel)
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(3) Compute
T

, () _
3, = ———,
k T

k k

pt ) (MN )p )

(k+1) (x) (k)| % =X + aR ‘
In the computation of the numerators of a, and ob, one
need not recompute mg since 1t can be saved from step

(1). Also, instead of computing the right hand side of step

(1) explicitly at each iteration, 1t 1s often advantageous to

\ compute it recursively from
+

[¢ - (M1) 1); = [¢- (M1) E) - a, (v-w)p , (1.12)
which equation 1s obtained from step (3). The quantity

- (M-n)p appearing in (1.12) may be saved from the computa-

tion of ay - Similar remarks hold for the algorithm in its
first form as well. There 1s evidence that the use of (1.12)

1s no less accurate than use of the explicit computation

(see [18], [3] for particular examples).

. The calculated vectors 310m0 will not generally
be M-orthogonal in practice because of rounding errors. One

might consider forcing the newly calculated vectors to be

M-orthogonal by a procedure such as Gram-Schmidt. However,

this would require the storage of all the previously obtained

vectors.

Our basic approach 1s to permit the gradual loss of

orthogonality and with it the finite termination property of

CG. We consider primarily the iterative aspects of the algo-

rithm. In fact, for-solving large sparse systems arising from

g | the discretization of elliptic partial differential equations,
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i | the application of principal interest for us and for which the

| generalized CG method seems particularly effective, conver-
{ gence to desired accuracy often occurs within a number of
J | iterations small compared with n.

:

1 ). OPTIMALITY PROPERTIES
x

i From (1.6), we obtain

i (k+1) _ _ (k-1) oy (k) | (k-
2 = glea argHs 00)Cg

! Define
iI
| _ -1

(1 0)
{ We have z = (I - 0 Kz! » and there follows by induction
| that (gai £+1

: where
i
i 4 .

| P,(K) = 54) . (2.4)i s_y J

i | J=0

| We denote
|i {
H 2). 3

| p,(A) = X 3 J (2.5)

| and from (2.1) we have for k = 2, 3, ... , {
\

| p AV) =o, arly, 0) -@ Lp, 0) + ae, ,
il and

{i = = + - .| oN) =a py (A) 5 (og + ay = aonMN) |

Ji The coefficients (Ps Lo cah be generated directly.
if By

fl From (2.3) and the relation 2 (1+1) = 20) t k(x 0)
i

fi there follows

5
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x £1) _ x0) i p, (x)z'%)
Then 1f

0) _ (0
4 = (2 xz , SRR k'2'%] ’ (2.6)
(2+1) (0) {

x 0 0) 2.7)
Consider the weighted error function:

(2+1), 1
E(x = (x - x EIN oy ny (x - (141) 5.5)

Assuming that (M—w) is nonsingular, we obtain, using

7 (0) _ K(x _ (0)
the relations

T
£+1 1 -

B(x! )y = > 20) (T-xp, (k))* M(M-1v) M(I-KP, (k))z ©
1 (0)! T (0)

“ze (I-KP (RK) (M-N) (1-KP, (K))g =’, (2-9)
where

e (0) “x - (0)

Equivalently, we can use (2.7) and re-write (2.8) as

(2+), 1 ,.-1 (0 -
E(x ) = 5 (x 20) 26) (vem) (x L, (0) _ 5 (2))

(2.10)

The quantity E(x (O1)) is minimized when we choose 54)
so that

apt) _—
where -

c= 2'(Mumz, & = 22'0)
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Let

K = .Aga KIA(K)

Then using arguments similar to those given in [12], the

following can be shown:

+ ;

E(x 1) N 2 (g+1)
(a) —e—< | B= : 2.11)

E(x") VE+ 1

(B) The generalized CG method 1s optimal 1n the class of all

algorithms for which

£+1

— (£+1)
That 1s, the approximation X generated by the

generalized CG method satisfies

T
+1 T

E(x )) cin ¢ 0) (1-kP,(K) ) (4-1) (1-kP, (k))g ©’ :
P,

where the minimum 1s taken with respect to all poly-

| nomials P, of degree f.
Recall that we have assumed that M and (M-N)

| are positive definite and symmetric. Thus the eigenvalues
| of K = (1-M"1) are all real and K is similar to a di-

: agonal matrix. Hence, if K has only p € n distinct

eigenvalues, there exists a matrix polynomial Q, (kK) so that

Q,(K) = 0 .

| In this case, £ (xP) = 0 and hence

xP) =X
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so that the iteration converges 1n only p steps. The same

result also holds if K has a larger number of distinct

eigenvalues but ¢ (0) lies in a subspace generated by the
eigenvectors associated with only p of these eigenvalues.

We remark also that Statement (B) implies CG 1s optimal

i for the particular eigenvector mix of the initial error 0)
taking into account interior as well as extremal eigenvalues.

As will be discussed in the next section, the extremal eigen-

| values are approximated especially well as CG proceeds, the
iteration then behavingasif the corresponding vectors are

1 not present. Thus the error estimate (2.11), which is based

on the extremal eigenvalues,tends to be pessimistic asymptoti-

i cally. One often observes, in practice (see § 5), a super-

linear rate of convergence for the CG method.

3, EIGENVALUE COMPUTATIONS

! The CG method can be used in a very effective manner for

computing the extreme eigenvalues of the matrix K = I-Mn.
We write (see (2.1))

(k+1) (k-1) . (k) (k-1) _(k)

” (k) (k) (k+1)k (k-1) k k+1
Kg = cp2 Taz y begk ’

[ or

: (0) (1) (n-1)

n-1)

RA1% 4

“n-2

| 0 bh-1 h-1
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thus defining a, by, and ¢,. In matrix notation, the above
equation can be written as

KZ= ZJ . (3.2)

Assuming that the columns of Z are linearly independent,

there follows from (3.2) that

A,

hence the eigenvalues of K are equal to those of J. As

pointed out in §2, if K has repeated eigenvalues or 1f the

vector , (0) is deficient in the direction of some eigen-
vectors of K, iteration (3.1) will terminate in k < n steps.

The process described by (3.1) is essentially the Lanczos

algorithm [ 13]. It has been shown by Kaniel [14] and by Paige

| [15] that good estimates of the extreme eigenvalues of K

often can be obtained from the truncated matrix

a, Cs

| P1 & - G 0
| Tx =

0 Ct k=2
| Pra1l mk-1
|

| where k is considerably less than n. This result holds
| even in the presence of round-off error [16].

It was pointed out in 81 that the equation describing

the CG method is of the same form as that describing the

Chebyshev semi-iterative method and Richardson second order

: method, but that a knowledge of the extreme eigenvalues of K
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1s required for obtaining parameters for the latter two

methods. Thus one could construct a polyalgorithm in which

the CG method 1s used initially to obtain good approximations

to the solution and to the extreme eigenvalues of K, after

which the Chebyshev semi-iterative method (say) 1s used,

thereby avoiding the additional work of repeatedly calculating

CG parameters. This technique has been used in an effective

manner by O'Leary [17].

4, CHOICE OF M

For the splitting M = I, N = I-A one obtains the basic,

unmodified CG algorithm, for which

, E) _ (0) -p - ax)
1s simply the residual at the x Ch step. Since the rate of con-
vergence of the generalized CG method, as given by the esti-

mate (2.11), decreases with increasing

K = NgIN (KD,

it 1s desirable to choose a splitting for which Kk 1s as

small as possible. If A= L + D + U, where D consists of

the diagonal elements of A and L(U) 1s a strictly lower

(upper) triangular matrix, then it 1s reasonable to consider

the choice

M=D, N=- (L+U).

This M, which is equivalent to a rescaling of the problem,

1s one for which (1.3) can be solved very simply for 2. It

has-been shown by Forsythe and Straus [19] that if A is

two-cyclic then among all diagonal matrices this choice of

M will minimize K.

In many cases, the matrix A can be written in the form
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| " 0
A = ’ (4.3)

pl M,

where the systems

ME Th and 2= SH
are easy to solvejand for such matrices, it is convenient to

| choose

My 0 0) -F
M = and N = .

0 M, Fo 0

Using (4.3), we can write the system (1.1) in the form

| = h.ha)Mg) tp Ry (

| I (4.4b)
TE TNX TR

| CL Co (0) |
Let the initial approximation for xy be Xy and obtain

| ~~ as the solution to (4.4b) so that
| (0) _ T_ (0)

No “Rh -FEH

| This implies that
| (0)

2 = Q

| ~2
; and hence by (1.10)

| ag = 1

| and thus



(0) . , (0)

(1) C ~ )~ (0)
~2

A short calculation shows that 2 = 0 and hence Oy = 1.
Using (1.6), a simple inductive argument then yields that for

j=0,1,2, ...

oy = 1, 2 29H) = 0, 2.29) 0. (4.5)

This result was first observed by Reid [8] for the case in

which M1 and M, are diagonal, 1i.e., in which the matrix
A has "Property A" and is suitably ordered. Other cases for

elliptic boundary value problems in which matrices of the form

(4.3) arise will be discussed in § 5. For these cases con-

vergence can be rapid because K has only a few distinct

eigenvalues, even though «k is not especially small.

Various other splittings of the matrix A can occur

quite naturally in the solution of elliptic partial differ-

ential equations. For example, if one wishes to solve

-AU + o(x,y)u = f (x,y) € R

u=g (x,y) € OR ,

where R 1s a rectangular region,it is convenient to choose

M as the finite difference approximation to a separable

operator, such as the Helmholtz operator -4 + C, for which

| fast direct methods can be used [23].A numerical example for

| this case is discussed in § 5. If one wishes to solve a
separable equation, but on a nonrectangular region S, then

by extending the problem to one on a rectangle R in whichOU

1s embedded, M can be chosen as the discrete approximation to

the separable operator on R, for which fast direct methods



| can be used. Such a technique provides an alternative to the
| related capacitance matrix method [25] for handling such prob-
| lems. Forms of this method utilizing CG, but ih a different

manner than here, are described in [26] and [27].

Several authors [4], [20], [21] have used CG in combina-

: tion with symmetric successive overrelaxation (SSOR). For

this method the solution of the equation nz) =o (ew) (E)
reduces to the solution of

(D+wL) pL (pan) = o(pw)r K)

| where D, L, and U are as described previously in this sec-
tion (although D may be block diagonal), 8) pat)

| and @ is a parameter in the open interval (0,2). SSOR is
particularly effective in combination with CG because of the

distribution of the eigenvalues of K (cf. [22]).

Meijerink and van der Vorst [7] have proposed that the

following factorization of A be used:

A= FFL + Ey

| so that

| M = FF°, N=-E .
The matrix F 1s chosen with a sparsity pattern resembling

that of A. This splitting appears to yield a matrix K with

| eigenvalues that also are favorably distributed for CG. A
block form of this technique recently developed by Underwood

Ph ] achieves a more accurate approximate factorization of

A with less computer storage and about the same number of

| arithmetic operations per iteration.
| Generally, in addition to the requirement that (1.5) be

-"easy" to solve, M should have the following features 1f the

| generalized CG algorithm is to be computationally efficient.

For rapid convergence one seeks a splitting so that
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: (1) MIN has small or nearly equal eigenvalues
: or (11) My has small rank.
: Oftena choice for M satisfying these restrictions comes

: about naturally from the inherent features of a given problem.

| >. NUMERICAL EXAMPLES
|

| For the first example, we consider the test problem dis-
cussed in [23]

-div(a(x,y)pu) = f (x,y) € R

_ n 1 ly by zwhere a(x,y) = [1 > x" +y)] and R is the unit square
0 < X,y < 1. After a transformation the problembecomes

Ow + 0(x,y)w = 21/2 (x,y) € R
(5.1)

1/2

w =a / & (x,y) € OR,
~ 2where 0(x,y) = 6(x° + y ) fall? As in [23] we discretize

| (5.1) —on a uniform mesh of width h, using for & the

standard five-point approximation Oy and we choose the
splitting

M=A+N=-A+CI

N 1
with C=0=0., or C=3=Z(0 +0 ).

min 2 max min

In [23] Chebyshev acceleration was used, which requires

an estimate of the ratio of the extremal eigenvalues of the

lteration matrix. Here we use the modified CG algorithm of
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i

| 3 1. For an initial guess 0) = Q and choice or' f and
| g corresponding to the solution w = of (x-1/2)° + (y-1/2)1,
A the results are given in Table 1 for h = 1/6k4. The results

obtained for h = 1/32 were essentially identical, as the

iteration 1s basically independent of h for this problem

(see [23]).

Note that the Chebyshev method 1s sensitive both to the

value of C and to the accuracy of the eigenvalues from

| which the parameters are calculated. The parameters used for
the middle column were based on Gerschgorin estimates

] from the Rayleigh quotient, which gave a ratio of largest to

smallest eigenvalue about three times too large. The CG

method appears to be less sensitive to the value of C. After

several iterations CG begins to converge more rapidly than

| does the optimal Chebyshev method, which behavior 1s typical
of the CG superlinear convergence property discussed in § 2.

This example 1s one for which rapid convergence results ‘be-

| cause the eigenvalues of MN are small.

| Chebyshev (from [23]) Cr
: | c-=o0 Cc =3 C= 3

exact approximate exact

f .teration|leigenvalues | eigenvalues [eigenvalues|| C = O C=3

; 1 1.6(-2) [[4.5(-2)[1.6(-2)

: 2 T.4(-4) |2.6(-3)[6.7(-)
| 3 1.1(-5) |[[3.0(-5)[1.0(-5)
| ly 2.7(-7) |[5.7(-7)|1.2(-7)
i 5 2.14 (-6) 1.1(-6) 4.3(-9) |[5.1(-9)[8.2(-10
: 6 1.2(-10) [l4.5(-11)5.7(-12

i TABIE 1
i Maximum error vs. iteration number for first example
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We give as the second example

-Au = f (x,y) € T

u=g (x,y) € OT

where T 1s the domain shown in Fig. 1. For a uniform square
-1

| mesh of width h, and 0 < £ < (2h) a whole number, so that

all boundary segments are mesh lines, the coefficient matrix

A for the standard five-point discretization and natural

ordering has the form (4.3).

Ey tn, 1+2m)
2

(1,1)

1

i!

(0,0)
| FIGURE 1

T-shaped domain

My and M, correspond to the mesh points in each of the two

| squares, Ty and TL, and F to the coupling between them.
F has non-zero entries in only p = 21 - 1 of its rows.

| According to the discussion following (4.3) we choose



;
! 21
Es

|
|

|

{ My 0
i M =

| ° 1%
{ and for initial approximation

I goo (=
| 1 T (0)4 -My (hy = FT)
|
i | |

4 Then for the generalized CG algorithm, there holds Oty = 1
|

i and that z, and 2, are alternately zero, thereby reducing
i computational and storage requirements. We use a fast direct

{ Poisson solver for the jystems involving My and M,.
A The results for {© uniformly distributed random num-
1 bers in (0,2) and f(x,y) and g(x,y) such that u=x° +y°
q

1 is the solution are given in Table 2. Here the average error

{ per point, the two norm of the error divided by the square
root of the number of interior mesh points, is given for each

1 of the test problems.! -1

] For this example, the eigenvalues of M 'N are not

especially small in magnitude, however since M "N has rank

4 of only 2p, convergence 1s obtained in only a moderate number

4 of iterations. For Case I and Case II the last row represents

1 full convergence to machine accuracy subject to rounding
| errors, as would be expected since 2p = 14 for these cases.

3
4

i

4

|
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Case I' Case II Case III

h 1/32 1/64 1/64

7 L 4 8

P I 7 15

lteration ave. error/pt ave. error/pt ave. error/pt
1 8.58(-2) 3.70(-2) 1.08(-1)

2 7.05(-2) 3.13(-2) 9.82(-2)

2 1.30(-2) 6.66(-3) I. 9 (-2)

4 3.35(-3) 2.53(-3) 1.80(-2)

5 2.71(-h) 6.03 (lt) 4. 28(-3)
10 2.65 (-T) 5.13(-8) 7.35(-5)

15 1.14 (-13) 5.60(-13) 4.71(-8)

TABLE 2

Average error per point vs. iteration number
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