
Stanford Artificial Intelligence Laboratory December 197 5
Memo AIM-276

Computer Science Department
Report No. STAN-CS-75-539

A NEW APPROACH TO RECURSIVE PROGRAMS

by

ZOHAR MANNAx AND ADI SHAMIR»*

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

pL___

Stanford Artificial Intelligence Laboratory December 19 7 5
Memo AIM-276

Computer Science Department
Report No. STAN-B-75-539]

A NEW APPROACH TO RECURSIVE PROGRAMS

by

ZOHAR MANNA* AND ADI SHAMIR#+

_ ABSTRACT

In this paper we critically evaluate the classical least-fixedpoint approach towards recursive
programs. We suggest a new approach which extracts the maximal amount of valuable
information embedded in the programs. The presentation is informal, with emphasis on
examples.

xFormerly of the Weizmann Institute of Science, Rehovot, Israel Present Address:Artificial
Intelligence Laboratory, Stanford University, Stanford, California 94305 #«Formerly of the
Weizmann Institute of Science, Rehovot, Israel Present AddressComputer Science Department,
University of Warwick, Warwick, England

T his research was supported by the Advanced Research Projects A gency of the Department of
Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in this
document are those ofthe author(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University, ARPA, or theU. S$.
Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 22151.

I. Introduction

The classical stack implsmsntation of recursive programs does not always give

results that correspond to our naive intuitive expectations. For instance, one

might expect the program

F (x) <== 8°'F (x)

over, say, the natural numbers, to be identical to the program

F(x) <ss § |

8 i nce for any number y, 8°y=y. Simi iariy, the program

Fix) <== if F (x) =0 then8 else 8

would be expected to yield the zero function. Since the testF(x)=8is

irrelevant, nothing but@® canbe produced as an output. However, stack

implementations and the conventional theory of programs dictate that both of

these programs be undefined for allinputs. Users of recursion are so accustomed

. to this implementation that they are no longer surprised at this unintuitive

interpretation, and never stop to consider any alternative meanings of recursive

programs.

A recursive program, such as those above, looks like an implicit functional

equation relating the values of the function variable F. Such an equation may in

general have many possible solution functions (fixedpoints) .Since there is no unique

solution, the semantics of recursive programs, is selected rather than implied.

The classical stack implementation yields one soiutlon, the least defined fixedpoint
. of the program. As we have seen above, the blind selection of the least defined

solution is inadequate, because a recursive program often contain8 more
information than this solution exhibits.

In this paper we suggest the selection of a different and more defined solution,

which always exists and which contain8 as much information as possible,

In Section II we discuss various possible approaches towards recursive programs,

in an attempt to characterize the “best” one. On the basis of, this discussion ue

introduce our new optimal fixedpoint approach in Sect ion III, which ie exemp lifiedin
Section IV. Various tschnlquss for proving properties of optimal fixedpoints are

presented in Section V.

Th is paper is an informal exposition of the optimal fixedpoint thsory, More

formal treatment is given in Manna and Shamir [1975] and Shamir [1976].

II. Recursive Programs and Their Fixedpoints

Consider, as a typical example, the following recursive program Pl over the
natural numbers [see note (i)]:

Pl: F (x,y) <== if x=8 then y else F(F{x,y-1),F{x-1,y)).

Any solution function to this program must satisfy the relations dictated by the

program, i . e.,

(a) F(B,y) =y for all y, and

(b) Fix,y) = F(F(x,y-1), Fix-1,y)) for all x=B8 and ail y.

Let us analyze what functions satisfy these two conditions.

The main part of this program is the functional

T (Fl: if x=0 then y else F(F(x,y-1),F(x-1,y)),

in which the symbol F is considered as a function variable. Given any partial

function fix,y), the result of substituting f for F yields a neu partial

function, denoted by T[fl. For example, if us substitute the function

fix,yl= vy

for Fi(x,y) , we obtain the function

. Tiflix,yl=if x=B then y else f(fix,y-1), f(x-1,y))

=if x-8 then y else f (y-1,y)

» Ye. .

Thus, "the function f(x,y) has the interesting property that f{x,y)=r[f] (x,y),

| that is, fis a solution function to the functional equation F(x,y)=?[F] (x,y).

Since f does not change under the app i ication of ,itis said to be a fixedpoint

of the given recursive program.

An entirely different function which is a fixedpoint of the program is:

gix,y) = max(x,y) .

Substituting g for Fin TIF], we obtain:

rig) (x,y) = £f x=B then y clse max(max(x,y-1),max{x-1,y)).

By the def ini tion of max, this can be simpi ified to:

7 [g) (x,y) = if x=B theny else max (x,y-1,x-1,y)

wif x-0 then max(x,y) else max (x,y)

- = max(x,y) .

Thus g(x,y) is a fixedpoint of the recursive program Pl,

Yet another example of a fixedpoint is the partial function:

[(x,y) = if x-O then y else undefined .

To show that this function is indeed a fixedpoint of our recursive program, we

substitute ! in ?, treating undefined as any other value. For this purpose we make

the general assumption that all functions and predicates appearing in © are

“natural ly extended,” in the sense that they are undefined whenever at least one

. of their arguments is undefined. Thus,We have:

[0 (x,y) =if x=B then y else lll(x,y-1),l(x-1,y))

= If x=Btheny élse
Lif x=8 then y-1 else undefined, 1{x=1,y))

= if x= then y else l (undefined, | (x1, y))

wif x-0 then y else

if undefined=8 then l{x-1,y) else undefined

) = if x=@theny else undefined .

These three functions do not exhaust the set of all fixedpointe of the program.

An example of an ‘infinite c1888 of fixedpoints (indexed by the function a over

the natural numbers) iss

hy (x,y) = if x=@ then y elsea(x).

A function h, (x,y) can be shown to be a f ixedpoint of the program, provided that

the function a(n) satisfies:

a(n)w@ and ala(n))=a(n) for ail n >80.

3

Examples of functions’ satisfying this condition are the identity function, any

non-zero constant function, or the function which assigns to any natural number n

its greatest prime factor.

There are actual ly infinitely many more distinct fixedpoints, the exact

characterization of which is quite complicated. We can thus see that the set of

all fixedpoints of the program may contain many functions with extremely

diversified behavior. All these functions can be considered as "solutions" to the

equation represented by our recursive program.

Some of these f ixedpoints are related by the “less defined or equal” relation. We

say that a function rx,y) is less defined or equal to s(x,y), or that six,y) is more

defined or equal to rix,y), if for any pair of natural numbers (a,b), if r(a,b) is

defined than s{(a,b) is also defined and has the same value; thus, either r (a,b)

is undefined or else r(a,bl=s(a,bl. Note that a function r{x,y} may be neither

“less defined or equal” nor “more defined or equal” to s(x,y).

This relationintroduces some structure into the set of ail fixedpoints of a

recursive’ program. A fixedpoint is called least (defined) if it is less defined or

equal to any other fixedpoint of the program. Dually, a fixedpoint is called

greatest (defined) ifitis more def ined or equal to any other f i xedpoi nt.

Among the f ixedpoints of the program Pl , the fixedpoint:

[(x,y)=m if x=B then y else undefined

stands out. Since any f ixedpoint of Pl must be defined as y for x=8, itis

clear ly the program’s least f ixedpoint.

Least fixedpoints of recursive programs have long attracted the attention of

computer science, theoreticians for three main reasons (see, e.g., Manna [1374)):

(a) Any recursive program must have a (unique) least

f ixedpoint. Thus the least fixedpoint can be used to

unambiguousiy define the "meaning" of recursive programs,

(b) The classical stack implementation of recursive programs

computes the least fixedpoint of the program.

(c) There are powerful method8 for proving properties of the

least fixedpoint of programs.

As a result, the least fixedpoint was chosen as the “proper” solution of

recursive programs and other fixedpoints were absolutely discarded by researchers

from further consideration. However, we have an important objection to thie

choice; it contradicts the intuitive concept that the more defined the solution,

4

the more valuable itis. Indeed, there are many recursive programs for which the

least fixedpoint does not contain all the useful information embedded in the

program, information which is contained in more defined fixedpoints.:

Consider, for example, the following recursive program P2 for solving the

discrete form of the Laplace equationwhere Fix,y) maps pairs of integers in
: [0,100] x [8,108] into reals:

P2: Fx,y) = if x-8 then 2y
elseifx-180 then 3y+308

else if y=0 then 3x

else if y-108 then 4x+200

else [F (x=1,y)+F (x, y-1)+F (x+1,y) +F (x, y+1)1/74 .

This recursive program has exactly two fixedpointst

| | 2y i f x=0
3y+3880 if x-100

flx,y) = 3x i f y=B

| 4x+200 i fy-108

undefined ot herw i se
and |

. glix,y) = 3x+2y+(x.y)/188f o r @sx,yslég

There is no doubt that the second (totally defined) fixedpoint g{x,y) contains

much more valuable information than the (mostly undefined) function f(x,y).

Moreover, it is quite obvious that any programmer writing such arecursive

program unconsciously thinks about the function g(x,y) as the “solution” of the

functional equation represented by the program, Thus, the arbitrary select ion of

the least ‘fixedpoint as the “proper solution" seems a poor choice in thie case.

This example might suggest a turn to the other extreme ~ considering greatest

fixedpoints rather than least fixedpoints. Unfortunately, there are many programs

| for. which there is no such greatest fixedpoint, as program Pl shows: Thereis no
function which is more defined than aii the fixedpoints exhibited,

A more modest approach could be the selection of a maximal fixedpoint,i.e.,a

fixedpoint which is not less dsf ined than any other fixedpoint. However, there

are difficulties with ‘this choice too. While any recursive program has such a

: f ixedpoint, i t may have more than one. This is demonstrated b y programPl, i n

| which the functions f(x,y), g(x,y) and hg (%:4) are al i examples of total, and

therefore maximal, fixedpoints of Pl. This indicates that Pl is a n "underdefined"

recurs i ve program - the relations stated between values of F for various

arguments (x,y) are not sufficient to uniquely determine one defined value of the

5

fixedpoint. Thus a randomly chosen maximal fixedpoint is by no means superior to

the least fixedpoint !{x,y) in this case.

An artificial example which illustrates this problem is:

P3: F(x) <= F(x)

over, say, the set of the natural numbers. Any partial function over the natural

numbers is clearly a fixedpoint of this extremely "underdefined" program. The

least fixedpoint of P3 is the total ly undefined function, and every total

function over the natural numbers is a maximal fixedpoint. In such a case, the

least f ixedpoint seems the most appropriate solution, since no other fixedpoint

can be considered a more “valuable” solution of this program.

III. The Optimal Fixedpoint

Thus far we have objected to the classical least fixedpoint and the proposed

greatest and maximal _fixedpoint approaches to recursive programs. We now suggest

a new approach -- the “optimal fixedpoint approach”. It combines the nice

properties of all the above approaches in that the fixedpoint selected always

uniquely exists, and it suppl ies the maximal amount of valuable information

embedded in the program. Thus in the three examples considered so far, the new

approach wi | | select the least fixedpoint in the “underdef i ned" programs Pl and

P3 , but wi llselect the desired total fixedpoint (which differs from the least

fixedpoint) in the Lap!ace program P2 .

In order to develop the new approach we first Introduce the notion of

"consistency". Two functions are said to be consistent if they have identical values

for any argument for which both are defined. For example, let

. 8 if x-0

f(x) =&undefined if x-i

8. otherwise

9 i f x=08

fax) =41 if x-1

undefined otherwise

if x-0

fax) = if x-1

ndefined otherwise

Then f, and f, are consistent, as are f and fz . However, fa and fg are not

consistent, since for x-1 both are def insd and have different values. Note that

6

no two of these functions are related by the "less defined or equal” relation.

Two consistent functions can be regarded as being "approximately the same”: One

function may be defined for several arguments at which the other is undefined,

and vice versa; but the two functions cannot have contradictory defined values.

They can be considered as two incomplete representations of the same knowledge,

| and one can define a function which is moré defined than both of them, thus being
super ior to both partial representations.

We now ‘def i ne a fi xedpoi nt f of a program P to be fxp-consistentiffi e cone latent

with any other fixedpoint g of P. That i 8, whenever f i e defined, eay f (x) «a,
then for any other fixedpoint g , ei ther g(x) is undefined or g{x) =a . Thus the
value a is implicitly defined by the program as the only possible defined

solution at x. Every recur8ive program has at least one fxp-consistent

f ixedpoint, since the least fixedpoint of the program is less defined than (and
thus consistent with) any other fixedpoint of the program. Thus, the classical

least fixedpoint is one of these valuable fixedpoints, but only one of many.

The fxp-consistent fixsdpointe can be considered as the only genuine solutions of

arecurs i ve program, since only they contain uniquely determined values.Ws can
thus concentrate our attention on the subset of fxp-consistent fixedpoints rather

. than on the eet of al i fixedpoints of the program. In this restrictedset of

solutions we are natural ly intereeted in maximal ly defined eolutione of. the

program. Whi le the greatest fixedpoint approach wae not applicable to the set of

all fixedpoints of the program, we now fortunately have fees note (ii):

Basic Theorem: The set of all fxp-consistent fixedpoints always contains a (unique) greatest element.

Let us how look at the set of fixedpoints from a different point of view.

. Previously, we discussed the possibility of selecting a maximal fixedpoint ae the

“proper” solution of the program. This approach wao not applicable, since the

program may have infinitely many such solution8 with no information common to all

of them, and no one of which eeeme superior to the others. A natural way to

resolve this problem is to find a fixedpoint which extracts the unanimity among
these maxim& fixedpoints, thus being a satisfactory representative of all of

them. Such a fixedpoint can be obtained by considering the fixsdpointe which are

lees defined than al | the maximal fixedpoints. For theee fixedpointe we again
have [see note (iii)):

: Basic Theorem: The set of fixedpoints which are less defined than all maximal fixedpoints of the
program, has a (unique) greatest element.

lle have thus arrived at two possible definitions of the “most desired solution”

of a recursive program, the first by ascending as much as possible from the least

fixedpoint in the set of fxp-consistent fixedpointe, and the second by descending

from the maximal f ixedpointe.

It is quite natural to relate these. two “desired solutions” of a recursive

program. Surprisingly enough, these two fixedpoints always coincide, and we call

the f ixedpoint thus defined the optimal fixedpoint of the program.

By the definition of, the optimal fixedpoint, it follows that any recursive

program has a unique optimal fixedpoint. If the program hae only one fixedpoint

which, is fxp-consistent, the optimal fixedpoint coincides with the classical

least f ixedpoint. On the other hand, if the program has a unique maximal

f ixedpoint, the optimal fixedpoint coincides with. it. In all other cases, the

optimal fixedpoint “floats” somewhere in the set of al I ff ixedpointe. We

illustrate this with the following diagram (see Fig. 1), which eummar izes some of

the structural properties of the set of fixedpoints of recursive programs. In

this diagram an upper section (Fig. 2A) represents the set of al | fixedpointe
which are more defined or equal to. f; similarly, a lower section (Pig. 2B)

represents the set of all fixedpoints which are lees defined or equal to f . The

"strategicposit ion” of the optimal fixedpoint is clearly visible.

IV. A Detailed Example

Consider the following family of recursive programs over the natural numbers:

Pyt F(x)<==if x=B8 then i else j°F(F(x-1)).

We shal | investigate the structure of the set of fixedpoints for a few recursive

pcograme in this family, thus illustrating the behavior of the optimal fixedpoint

approach in various eituatibns. In order to systematically analyze the possible

values of fixedpoints for some x-a , we evaluate the term F(a) by repeatedly

substi tut ing 7[F] for var ioue occurrences of F . Note that we make use of the

fact that F represents a fixedpoint of the program, but not neceeeari ly the least

fixedpoint or the optimal fixedpoint.

Programs Pgs

F(x) <am if x=@ then 8 else j*F(F (x-1)).

Let us analyze the possible values of F for successive arguments x ¢

8

) The maximal fixedpoints

\ = The optimal fixedpoint

\ =/"f xp - Consistent fixedpoints
| Co : The least f ixedpoint

Fig. 1. The fixedpoints of a recursive program . |

Fig. 2A Fig. 2B

F(8) = if 8=8 then 8 else j*F(F(8-1))= 8

F(1) =if 1=8 then® else j°F(F(1-1))

«= j*F(F(@)) = j°F(Q) = j°0 = B

F(2)=if 2-0 then Belse j*F(F(2-1)) =

« j*F(F(1l)) = j*F(B) = j°8 = 0

It can be eaei ly shown (by induction) that F(x)=0 for any natural number x , Thus

for any j , the prbgram Pg; has exactly one fixedpointt

f(x) = @ for any natural number X.

It is clearly the program’s least fixedpoint as well as the program’s optimal

f ixedpoint.

The behavior of the programs changes draet ically when we take i to be 1 rather

than 0 .

Program P| gt

F(x) <== if x«8 then 1 else 8°F (F(x=1)3 .

The value of F(@) is clearly 1 , by a direct application of the recursive

definition. For x-1 , however, we get:

F(1)=if 1-0 then 1 else @*F(F(1-1}) |

«= B°F(F(B)) = BF (1) .

We now have exactly two possible values for F(1):

"F(l)= undefined or F(1)=8

Selecting the first poeeibi lity,F{1)= undefined, we obtain:

F(2) = if 2=0 then 1 else @°F (F(2-1))

= B°F(F(1)) =8'F (undefined)

© = B lif undefined-0 then1 else BF(F (undefined-1)))

= @* undefined= undefined .

Continuing in this way, we get the fixedpoint:

18

) 1 if x-0

fix) =¢ |

undefined otherwise .

However, if we select the second poesibility,F(1)=8, we havo to con t | nuo in the

fol lowing way:

F(2) =if 2«8 then 1 else BF (F(2-1))

= B°F(F(1)) = B°F(@) . B°1 = B,

and so on. We thus get the fixedpoint:

1 if X-8

gix) =
otheruiee .

The functions fix) and g(x) are clearly the only possible fixedpoints of the

program. Since fi(x)is lees defined than g(x) , f(x) ist h e program's least

f ixedpoint whi leg{x)is the program’s optimal fixedpoint.

Program Py:

Fix) <== |i { x=@ then | else F(F(x-1)) .

The value of F(8) is necessarily 1 . Evaluating F(1), ue get:

F(1)=if 1B then 1 clse F(F(1-1))

= F(F(B)) « F(1) ,

and thus any natural number (asweilas the value undefined)is @a solution of this

equation. If we choose F (1) =undefined, we get (exactly as in program Pig) the
f ixedpointt

1 if x=8

f(x) =

ndefined otherwise .

Since any other fixedpoint of Py;must also be 1 for x-8 , f{x)is clearly the

: program’s least f ixedpoint.

Suppose we choose F(1)=0 . We then continuewi th:

11

F(2) =if 2=8 then 1 else F (F(2-1))
= F(F(1)) «= F(B) = 1

F(3) = if 3=B then 1 else F (F(3-1))

= F(F(2)) = F(1) = 8 |

and so on. We thus get the fixedpoint:)

| 1 if x ieeven

g(x) =
@ if x is odd .

If we take F(1)=1, we obtain:

F(2) = if2=0 then 1 else F(F(2-1))

=F(F(1))=«F(l)= 1 |,

and so on. We thus obtain the fixedpoint:

hi{x) = | for any natural number x .

If we take F(l)= 2 | we get:

F(2) = if2=0then 1 else F (F (2-1))

« F(F(1)) = F(2)

and again we may choose any desired value for F(2) (including the value

undefined) .

It- is possible to continue this detailed analysis and find infinitely many more

fixedpoints of P;;. But in order to characterize the optimal fixedpoint of this

program it suffices to consider just one more fixedpoint:

- k(x) = x+1 for any natural number x .

Since the optimal fixedpoint should be less defined than both maximal fixedpoints

h(x) and k(x), it cannot be defined for any x>8 (for any such x both h(x) and

k(x) are defined and hi(x)=k(x)) . Therefore the program’s optimal f ixedpoint

coincides in this case with the program’s least fixedpoint f(x).

Program Py at

F (x) <u= if x=B then 1 else 2°F(F (x-1)).

12

As before, al | f ixedpoints of P , are defined a8 1 for x-0 . For x=1 we have

i F(1) mw if 1=8 then 1 else 2°F(F(B)) = 2°F(1) .

We have arrived at an equation (for thevalueof F(1)) which has exactlytuo
solutions:

F (1) =» undefined or F (1) . 8,

: If we decide to take the value F(l) = undefined, ue again get the fixedpoint:

1 If x-e

f(x) =

undefined otherwise

which is the program’8 least fixedpoint.

Choosing the other possibility,i.e.,F(1)=86 ue get:

F(2) = 2°F(F(1)) = 2°F(08) = 2

F(3) « 2°F(F(2)) =» 2°F(2) = 4 ,

and final ly:

F(4) « 2°F(F(3)) = 2:F(4) , |,

The values ‘for F(2) and F (3) were implied, once we chose F(1)=8 . But for F(4) ,
Wwe again havd to choose betusen the t w 0 poesible solutions of the squation,

namely,

F (4) = undefined o r F(4)=0 .

I f we. choose F (4)sundefined, then an argument similar to the one used previously

shows that for any x>4 , F (x) =undefined. Thus we have the f i xedpoi nt

| if x-0

3 | CJ if x-1

glx) = 2 if x=2
4 if x-3 °°

\ undefined otherwise

1 3

However, if we choose F(4)=8 , we must continue as follows

F(5) = 2°F(F(4)) = 2°F(B) = 2

F(6) = 2'F(F(5)) = 2°F(2) = 4

F(7) = 2°F(F(B)) = 2°F{4) = 8 |

and so on. The periodic function thus obtained is defined for any natural number

X as:

if x=0

8 if x=l43i

4 If x=343i

Tosum up, the recursive program Py, has exactly three fixedpoints, each

generated by a differ&it selection of a solution to the above equations:

I’ if x-8

f (x) =

ndefined otherwise

i f x=0

8 i f x=]

g(x) = 2 if x=2

4 if x-3

undefined other wi se

| i f x=0
) if x=143i)

4 i f x=34+3i | |

Note that f is less defined than 9g and g is less defined than h . The only

maximal fixedpoint of this program is h , and thus itis also-the program’s

optimal fixedpoint.

Program P| 3:

F (x) <== if xu@ then 1 else 3'F(F (x-1)).

As before, F(@)=1, and there are exactly two possible values for F(1):

14

—

F(1) = undefined oarF(l)=8

The f’irdt possibi | ity leads to the same least fixedpoint as before:

1 i f x=0:)
fix) =

undefined otherui se

The second possibility leads to:

F(2) m 3'F(F(1))= 3'F(8)= 3,

F(3) = 3*F(3) .

Here we have the same choice once more,

F(3) = undefined or F(3)=90 .

If we choose F (3) =undefined we get the fixedpoint

| if X-0
8 if x=1

gix) = {3 if X-2

undefined otherwise

However, if we choose F(3)=80 we continue with

F(4) = 3°F(F(3)) = 3°F(B) = 3 |

F(5) = 3°F(F(4)) = 3°F(3) = 8 ,

and so on, and we obtain the third possible fixedpoint:

| if x-8

3 i f x=242i3

The optimal fixedpoint of Pjgis clearly hix).

Program Pg:

| F(x) <== if x-0 then 1 else 4°F(F(x-1)) .

15

This program behaves entirely differently from the cases considered previously.

For x-0 , we still get F(B)=l. For x-1 , we gett

F(1) = 4°F(F(B)) = 4°F (1) |,

and we have the same choice as before,

F(1) = undefined or F (1)=0

If we take F(1)=8 , we continue with:

F(2) = 4°F(F(1)) = 4°F(8) = 4

and therefore:

F(3) = 4°F(F(2)) = 4*F(4) =» 16°F (F(3)) .

Here we encounter a new problem! We do get an equation for the value of F (3),

but F(3) is contained in another occurrence of F on the righthand side of the

equation. Since we do not know the global behavior of this function, we cannot

simply solve this equation. However, based upon results in number theory, | t can

be shown that any fixedpoint of this program must be undefined for x23,

Therefore, the program P;4 has exactly two fixedpoints:

I if X-8

fix) =

| undefined other-u i se

and

| 1 i f X-0

| 18 i f x=]

gx) =N4 if X-2

| undefined otherwise .

Since f is less defined than g, f is the program’8 least fixedpoint and g is the

program’e optimal (and. maximal) fixedpoint. In contrast to programs P10sPy2 and

P,3, the optimal fixedpoint Is not a total function, even though it isstill more
defined than the least fixedpoint.

Final ly, we consider

16

Program P| gt

F (x) <== if x=@ then 1 else 5'F (F (x=1)) .

For x=B8 we c | ear | y have F (8) -1 . For x=1, ue have, as usua |, the choice between

F (1) -undefined and F(1)=B. If we take the second possibility, ue get F(2)=5,The

difficulty arises when considering the possible values of F(3):

F(3) = 5°F(F(2)) = 5:F(5) = 25°F(F(4)) =» 25F(5°'F(F(3))) .

This equation is too difficult to be immediately solved.

Based upon cons | dsrat ions uhich are beyond the scope of this paper, ue

can find the fol lowing two fixedpoints of Py gt
| if X-0

gp (x) =48 i f x=l42i

5 — i f x=242i i=8,1,2,.04
and

| | f x=9

8 if x=l43i

S i f x=3+3i

The optimal f ixedpoint must be less defined than both of these two total (and

therefore maximal) fixedpoints, so it can be defined only at argument8 of the

form x=146i and x=2+486i , for i=8,1,2,.... However, the function thus obtained is

not a fixedpoint of the program (e.g., try x-7). It can be shown that the only

two fixedpoints of P;g uhich are less defined than this function are:

[1 if x-0
. f (x) -

undefined otherwi se

and

1 if X-8

0 i f x=1

hix) = {5 if X-2

undefined other ui se

The function f(x) is clearly the program’8 least fixedpoint. The fixedpoint h(x)

i s fxp-consistent, since all it8 values are uniquely determined by the equations.

Since the optimal fixedpoint must be either f(x} or hix) , and the more dsf ined

function hix) is fxp-consistent, h(x) is the program’s optimal fixedpoint. Note

17

EN

the similarity betueen the optimal fixedpoints of Pia and Ps- both are defined

only for X-0 , x=1 and x=2; in P;4 this is due to the lack of possible

f ixedpoints, whi lo in Pig it is due to their multiplicity.

One could continue to check al | programs Py With j greater than 5. However, we

believe that the preceding examples sufficiently illustrate the variety of

possible cases in the new optimal fixedpoint approach. It is especial ly

interesting to note that al though the least fixedpoint of al | programs Pjis the

same, the sets of al | fixedpoints, as well as the optimal fixedpointe, of these

programs differ widely. We summarize this situation in Fig. 3, where we exhibit

. the sets of fixedpoints of programs Pjgto P15 . The least fixedpoint of any such

program is represented by the lowest dot, while the optimal f ixedpoint is

represented by the dot surrounded by a circle.

In the example8 considered so far, various techniques were used to find the

correct value of the optimal fixedpoint. Some of these techniques are east ly

mechanizable, uhi le others require deep mathematical knowledge. Unlike the least
fixedpoint of a recursive program, the optimal fixedpolnt need not be a
computable function. Thus there cannot be a “complete” computation rule which

always computes the optimal fixedpoint, but we can still hope to find good

computation technique8 ‘uhich are applicable to large subsets of common|y used

programs. The examples discussed in this section give the flavor of a few such

techniques.

V. Proof Techniques

Inthis section ueillustrate several techniques for proving properties of

optimal f Ixedpoints. We wish to show that optimal fixedpoint f of a given

recursive program P has some property Q{fluithout actually computing the

fixedpoint. The property Q is a functional predicate, uhich may characterize the
overall behavior of f . For example, Q{f] can state that f is a total function,

or thatf equals some given function g, or that f is monotonically increasing
over some ordered domain, etc.

General ly speaking, there are three elements involved in the process of proving

properties of fixedpointst A function f , a domain D, and a desired property Q.

Any one of these three elements can be used as the basis for induction,

The two classical method8 for proving properties of least fixedpointsuse

induct ion on the function and on the domain, In the computational induction met hod

(deBakker and Scott [1963]), one first proves the property Q over D for a very

simple function fg, and then successively treats better approximations f; of f.

18

I

2 ©
© e< R=z 2. ©
= “= 31 qo
= cc] oO8 S89 o= slo 7
Pa a =

- 30
=

2x
re | aL

] | E
| o 5
= S

| | QO. Ae| <
| : | ==

| - | .
| IC SE
| | O- £
| | £

: QQ.

ki

| | a +
| | S
| -| |

| i

oe— | p=
[| =

~

I |
| a.

O— | =
; | -i | 1 & 0

pauiyep ON © ipLi

I

| n the structural induction method (Bursta ll EI9691) one uses i nduc tion over the

elements of the domain D, leaving f and Q unchanged.

While these two general methods, appropriately modified, can also be used to

prove properties of the optimal fixedpoint in some cases, we suggesta new

induction method (called assertion induction) which uses the property Q am the basis

for induction. Even though this third type of induction ha8 been totally ignored

in the least fixedpoint approach, i t turns out to be a very useful technique in

the optimal fixedpoint approach.

What we actually prove in the assertion induction method is that any fixedpoint ¢

of the program belonging’ to some given subsetS of partial function8 ham the

property QIfl. The fact that the optimal fixedpoint g possesses the desired

property is derived either as a special case {ifgeS), or as a result of some

further argumentation (based on the definition of g as the greatest f ixedpoint

which Is fxp-consistent).

Note that S may contain functions which are not fixedpoints of the program, and

these functions need not have the property Q. The assertion induction method

only shous that al | functions in S which are fixedpoints of the program have

proper ty Q . The role of the subset Sis to rule out certain unwanted fixedpoints
Which do not have the desired property Q.

T he Assertion Induction Method

Given: A recursiveprogram P :F(x)<==T[Fl(x), a property QF] , and a subsetS

of partial functions.

Coal: To prove that Q(f] holds for any fixedpoint f of P such that f¢S.

Method: Find a sequence of predicates Q;(F],i=0,1,2,... such that:

(a) Qf] holds for any feS .

(b) If Q;(flholds for some feSand 7[fleS , then Q,(rif]]

holds.

(¢) For any fe¢S, if Q,{f] holds for all i , then Q[f] aieo

holds.

This method can be justified by the following argument: By part (a), any

fixedpoint f¢S ha8 property Qglfl . By part (b), if a function feS ham property

28

0,(f) , and T[fl¢S, then r[f) ha8 property OyIr[fl]l. But if f is a fixedpoint,

then f=r[f) 80 T7[fl¢S, and f has property Q,;{f)] . By induction, any fixedpoint

feS hast h e properties Q;(f] for i=8,1,2,... . Thus, part (c)implies that f hae

property Q[f] . Note that since f is replaced by [fl in the induction step, any

f which is not a fixedpoint of T is not guaranteed to have all the properties;.

We illustrate this method with the foilouing recursive program over the natural

numbers:

P4: F(x) <== if F(x+1})>0 then Fix+1l)+1 else 8 .

The least fixedpoint of this program is everywhere undefined. le would | ike to

prove that the optimal flxedpoint of this program is the constant function

f (x)=0 for any natural number x .

We first prove two~ propertiee of the fixedpointe of P4uhich enable us to
properly choose the subset S of partial functionat

(i) For any fixedpointf of P4 and for any natural number x,

fix+l) is undefined if and only if fix)is undefined.

To show this, assume that f (x+1) is undefined; then clearly Tlf} {x)= if f (x+1)>8

then f (x+1) else 8 cannot be defined. Since f(x)=T[fl(x), f(x)is also undefined.

On the other hand, if, f(x+1) is defined, then Tf] (x) is also defined, and since

f (x)=[fl(x) , f(x)is defined.

(ii) For any fixedpointf of P4 and for any natural number x,

- flx+1)=0if and only if f(x)=0.

Th is can be shown in exactly the same way a8 in part (i) above.

These two, properties characterize two possible fixedpoints of the programPé4 sf
which i a everywhere undefined and g which i 8s everywhere zero. Our aim now i 8 to

shou that the recursive program ha8 no other fixedpoints, and therefore whilef
is the program’sieast fixedpoint, gis the program’s optimal fixedpoint.

The above two proper t ies imply that a ny fixedpoint of P4 is either totally

defined or total ly undefined, and that for any total fixedpoint h , either h(x) =0
for all x or h(x)#@ for all x « Therefore we define S as the set of al | total

functions which are everywhere greater than zero, and try to prove that P4 has no

: fixedpoint in S .

21

In order to achieve this, we formal ly define the predicate Q(f] to be always

"false". The sequence of intermediate predicates we use isr

Q.(f) is true if and only if f(x)>i for all natural numbers x .

Step a: By the definition of S , any f¢S is everywhere greater than
zero, and therefore Uglf] holds.

Step bs: Suppose Q;[f) holds for some i and feS . Then by definition,

f(x)>i for all natural numbers x . Using this property, we

can simpl ify the expression Tif]l(x):

TIf1 (x) =if f(x+1)>8 then fix+l)+l else8

Since f(x+l)>i, we have 7T[fl(x)>i+l. Therefore Q(T [f]]
also holds.

Step ¢: Suppose that some total function feS satisfies Q;[f] for all

i . Then for any natural number x , fi{x)>i for alli, and

this Is clearly a contradiction. Therefore any such f also

satisfies Q{f] which is always “false”.

This completes the induction step, and the method thus guarantees that S does not

contain any fixedpoint of P4.

Thus far we have introduced the new assertion induction method. As mentioned

above, the two classical proof method8 can also be used to prove properties of

the optimal f ixedpoint. We show here an appropriately modified version of the
structural induction method.

The Structural induction Method

The structural induction method is intended to prove that a f ixedpoint f of a

recursive program P has some "pointuise" property Qlfl{x) for al | x in the domain

D . The main idea is to partition D into subsets S3,5;,... such that

0

D=U §

j=0

22

A

and to prove that Q(f]l(x) hold8 for al | x¢S; using induction over the indexi.

Thus, one ha8 to show’ that for any i , if Q{fl{x) hold8 for al |

1-1

X€ Uu Ss,

j=8 .

then Q(fl{x) holds for al | xeS;.

This implication is usually proved by freely replacing any occurrence of f by

rif] (since f is a fixedpoint) and applying the induction hypothesis to the

resultant expression’. This method can also be used to prove properties of optimal

f ixedpoints, but one usually has to apply some additional specific reasoning

techniques, such as equation solving or case analysis of possible valuer,

We illustrate this method with the following program PS over the natural numbers:

PS: F(x) <=a if x=0 then © else F (x-F (x)) .

We would like to prove that the optimal fixedpoint f of PSsatisfies:

Glf) (x) : f(x)=0

for any natural number X.

We partition the domain of natural number8 in the follouing way:

Sg=18} S;={1} Sp=i{2} ...

The fact that Qlfl1(8) hold8 (i.e., f(B)=B)i 8 a direct consequence of the
definition of P5.

i-1

Assume that we have already shown that Qlfl(x) holds for all x € US;
j=8

(i.e., for al | @sxsi-1); we now prove that Q{fl(x) holds for all xeS;(i.e.,for

x-i }. Since f is a fixedpoint of P5 and i>8 , we have:

f(i) = £(i-f(i)) .

We use case analysis in order to find all the possible value8 of f(i).

One possible value of f(i) is clearly undefined. In order to check whether f (i)

23

has any possible defined value, assume that f(i)=k for some natural number k.

Substituting this value into the definition of f(i) , we get: |

k = f(i) = f(i-f(i)) = f(i-k) .

We consider tuo possible cases:

(a) If k-8 , we obtain the requirement

8 = f(i)

and this value is clearly consistent with our assumption

that f(i)=k=@ . Thus zero is apossible value of f(i).

(b) If k>@ , we obtain the requirement that

f(i-k)> 8 ,

but since i>8 and k>8, i-k<i , and this contradicts what

we know (in the induction hypothesis) about the optimal

f ixedpoint:

f(x)=8 for all x , Bsx2i .

Therefore f(i) cannot have the value k for any k>8.

We have thus shown’that the only two possible values of fli) are undefined and @ .

By the definition of the optimal fixedpoint, we can now deduce that f (i)=8.

Since this holds for any natural number i , the optimal fixedpoint is everywhere

defined as zero.

V1. Conclusion

In this paper we have presented the optimal fixedpoint approach towards recursive

programs. Whi le it is clearly appealing from a theoretical point of view, it has

a drawback in practi cc: it may be either impossible or extremely hard to find the

optimal f ixedpoint of some recursive programs. While we cannotdevelop perfect

implementations, we can try (perhaps using heuristic techniques) to extract as

much information from the program as possible. Such an implementation wil | yield

the optimal fixedpoint for Certain classes Of recursive programs; it will compute

some intermediate fxp-consistent fixedpoint for other classes; and in the worst

case wi | | yield the least fixedpoint of the program (as computed by the classical

stack implementation). By insisting on finding a more informative solution of a

recursive program than the least” f ixedpoint, it is natural that the efficiency of

24

computation rules is reduced and the complexiity of proof techniques is
increased.

The development of this neu approach is sti | | undsruay, both in its theorstical

and practical aspects. |

RAKAKAROAKKKKKK K

Footnotes

(i) Al | functions in this program map natural numbers into natural numbers; thus,

x-1 is defined to be 8 for x-8.

(ii) The theorem i 8 proved in Manna and Shamir [1975], Theorem 3.

(iif) For a more rigorous statement of this result and its proof see Theorem Sin

Manna and Shamir [13975].

Acknowledgement. We are indebted to Nachum Dershowitz, Steve Ness and Richard

Waldinger for their critical reading of the manuscript.

References

1. BURSTALL [1969] .

Burstal | , R. M. Proving Properties of Programs by Structural Induction.

Computer J., Vol. 12, No. 1 (Feb.1363),pp. 41-48.

2. DeBAKKER and SCOTT [1969].

DeBakker, J. Wl. and Scott, 0. A Theory of Programs.

Unpubl i shed memo (Aug. 1363).

3. MANNA (1974).

Manna, Z. Mathematical Theory ofComputation.

McGraw-Hi | I, N.Y. (1974).

4. MANNA and SHAMIR [1375].

Manna, Z. and Shamir, A. The Optimal Fixedpoint of Recurrive Programs.

Proc. of the Symposium on Theory of Computing, Albuquerque, New hex i co (May13975]).

S. SHAMIR [1376].

Shamir, A. The Fixedpoints of Recursive Programs.

Ph.D. Thesis, Applied Mathematics Dept., Weizmannlnstitute of Science, Rehovot,
lerael (1976).

25

» -. homeo4

- PRE

