Stanford Artificial Intelligence Laborator
Memo AIM-275 € Y December 19 75

Computer Science Department
Report No. STAN-CS-75-537

VERIFICATION VISION
WITHIN A PROGRAMMABLE ASSEMBLY SYSTEM:

AN INTRODUCTORY DISCUSSION

by Robert C. Bolles

Research sponsored by

Hertz Foundation
and
Advanced Research Projects Agency
ARPA Order No. 2494

Stanford Artificial Intelligence Laboratory December 1975
Memo AIM-275

Computer Science Department
Report No. STAN-CS-7 5-53 7

VERIFICATION VISION
WITHIN A PROGRAMMABLE ASSEMBLY SYSTEM:
AN INTRODUCTORY DISCUSSION

by

Robert C. Bolles

~ ABSTRACT

This paper defines a class of visual feedback tasks called Verification Vision which includes a
significant portion of the feedback tasks required within a programmable assembly system, It
characterizes a set of general-purpose capabilities which, if implemented, would provide a user
with a system in which to write programs to perform such tasks. Example tasks and protocols
are used to’motivate these semantic capabilities. Of particular importance are the tools required
to extract as much information as possible from planning and/or training sessions. Four
different levels of, verification systems are discussed. They range from a straightforward.
interactive system which could handle a subset of the verification vision tasks, to a completely’
automatic system which could plan its own strategies and handle the total range of verification
tasks. Several unsolved problems in the area.are discussed.

This research was supported by the Hertz Foundation and the Advanced Research Projects Agency
of the Department of Defense under Contract DAHC 15-73-C-0435 . The views and conclusions
contained in this document are those of the autkor(s) and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of Stanford University, Hertz
Foundation, ARPA,or theU. S. Government.

Reproduced in the U.S.A. Available fromthe National Technical Information Service, Springfield,
Virginia 2215 1.

TABLE OF CONTENTS

INTRODUCTION e e
A DEFINITION OF VERIFICATION VISION,
VERIFICATION VISION SYSTEMS

INTRODUCTION - - - - .

A BASIC, INTERACTIVE SYSTEM

A SIMPLE STRUCTURE SYSTEM .

A FANCIER SYSTEM -

AN IDEAL SYSTEM
LIST AND DISCUSS THE SEMANTIC SYSTEMS. s e s e e e e
CUNCLUSION' . L] L] * L] . L] . . .

BIBLIOGRAPHY O T T T

11
11

27
45

. b4

INTRODUCTION

Verification vision, like most visual processing, can be roughly described as the
process of using a model of a scene and a set of pictures of the scene to find ob jects of
interest in the scene. The characteristics which distinguish verification vision from the other
types of visual processing are: (1) the model states EXACTLY WHICH objects will appear,
APPROXIMATELY WHERE they will appear, and APPROXIMATELY HOW they will
appear, and (2) the goal is to determine PRECISELY WHERE they appear. A good
example of a verification vision task is the task of determining the “exact” location of a
pump base which has been placed in a vise. There is no question about what will appear,
only some uncertainty about where.

A slightly more general characterization of verification vision includes the case in
which the presence of one of the objects may be in question. The model states approximately
where and how this object might appear. The goal is to decide if it is present and, if so, to
determine precisely where it is. A typical example is the task of deciding whether or not
there is a screw--on the end of the screwdriver. The model states what will be in the
background, where the screwdriver will probably be, and how the screw will appear, if it is
present.

Verification vision has been used in various ways in the past. Possibly the best known
is within the “hypothesis and test” paradigm. For example, a high-level procedure
hypothesizes an edge at a certain place; the verification step is supposed to verify that the
edge is there and return its position and angle. Notice that the model includes exactly what

. will appear (the edge), approximately where (at such-and-such a place and within a_certain
range of angles), and approximately how it will appear (with an approximate contrast of X).
There are several systems in which this type of verification vision plays a major role (see
[FALK], [SHIRAI], and [TENENBAUM]). Another place where the same idea has been
used is in narrow-angle stereo programs. A model in such a system is a set of correlation
patches from one view of the scene and the goal is to locate these patches in the second view.
Again the model states exactly what (the unnamed features which produce the correlation

- patches), approximately where (near the back-projection of the ray), and approximately how
- (a slight variation from the correlation patch). See [QUAM 1974), [HANNAH], and
[THOMAS] for programs of this type.

More recently there has been considerable interest in visual perception within a
programmable assembly system. Such systems provide complex but predictable environments.
For example, a task such as “insert a screw in a hole” can be reduced to a few subtasks, each
of which could involve verification vision:

(1) locate the hole without the screw being in the picture (see ﬁgl_lre 1),

-

(2) move the screwdriver and screw into the picture and locate them
against the now. known background (see figure 2),
and (3) decide how to move the screw closer to the hole, move it, stop,
locate ‘it again, etc.
Notice that there isn’t a question of WHAT will appear in the pictures, only WHERE and
HOW. Also notice that there are several pieces of information which can be used to give
approximate answers to these questions: the expected tolerances on the positions for the
ob jects, the precision of the arm, previous views of similar scenes, etc. This is exactly the
type of information that a verification vision system should be able to make use of. The
whole purpose behind verification vision is to use this information to determine the cheapest
and most reliable way of locating an object to within the desired precision. Thus, cost,
efficiency, and confidence considerations play major roles in this discussion. A potential
feature is judged by what its expected cost is and what it is expected to contribute toward
locating the object.

There have been a few special-purpose programs written which perform verification
vision tasks within programmable assembly environments (eg. [BOLLES] and [DEWARY)),
but there has been no conscientious attempt to isolate and identify techniques which are
generally applicable to such tasks or any effort made to incorporate these capabilities into a
system for programming verification vision tasks. The purpose of this report is to do
essentially that. It will attempt to define verification vision, motivate the facilities required to
accomplish such tasks, outline various levels of verification vision systems, and finally
discuss several of the unsolved problems in the area Some of the more theoretical
discussions consider verification vision in general, but the examples and suggested systems
concentrate on the more restricted environment of programmable assembly.

There are two basic assumptions behind this paper: (1) there is a large class of useful
tasks which fit the verification vision paradigm and (2) there are GENERAL techniques
which can be used to solve such problems. Programmable assembly provides an almost
unlimited number of tasks which are suitable for verification vision. For example, consider
the task of assembling a hinge on a doorjamb. A high-level description of the task might be
as follows:

(I) Pick up the first hinge piece and align it with the holes on the
door jamb.

(2) Pick up the screwdriver and screw in the four screws.

(3) Replace the screwdriver.

(4) Pick up the second hinge piece and align its pin holes with the
first piece.

(5) Pick up the pin and insert it to complete the assembly.

Possible verification vision sub-tasks for this assembly include:

3

!

Y _.]

igure 1

F

r.:..
I

OO0
1
[

igure 2.

F

e

(1) aligning the first hinge piece with the holes on the doorjamb,
(2) checking to make sure that the (magnetic) screwdriver picks up a
screw from the dispenser,
(3) inserting a screw in a hole,
(4) aligning the second piece with the first,
and (5) inserting the pin in the hole.

In conjunction with these “basic™ subtasks there are others which could be usefully
accomplished by vision. Many of them fall into the category of “implicit” inspection, ie.
doublechecking an assumption. Some examples are:

(I) make sure the first piece is present,
(2) make sure that there are holes on the doorjamb and in the hinge
pieces,
(3) make sure that the screwdriver is there,
and (4) make sure the pin was inserted completely.

In addition to being widely applicable visual feedback has other (potential) advantages
in comparison with touch and force feedback. It is passive. That is, information can be
obtained about a part without disturbing it. This may be important for small, delicate parts.
Vision offers a potential speed advantage because it functions at electronic speeds versus the
mechanical speeds which limit touch and force. It also offers a speed advantage because of
the possibility of doing the visual checking in parallel with the mechanical operations. For
example, if the screwdriver almost always picks up a screw from the dispenser, it would be
possible to take a picture of the end of the screwdriver as it was leaving the dispenser and
do the verification processing as the arm continues to move toward the hole. If the
verification system decides that the screw is there, the arm is free to continue along its path.
However, if the screw is not there, the verification system can signal the arm to return to the
dispenser to try again. The key phrase in this description is that “the screwdriver ALMOST
ALWAYS picks up a screw.” How economical this parallel checking is depends upon how
often the screw is missed.

Vision also offers a more global view of a situation than is generally possible from
touch or force. This is rather vague, but the task of inserting a screw in a hole helps clarify
it. Using force feedback it is virtually impossible to decide which way to proceed after one
decides that the screw is not in the hole. A mechanical spiral search is time consuming and
unesthetic because it is not clear when the arm should give up. Vision, on the other hand,
has the potential of determining the dynamic corrections needed to avoid such searches.

This list of advantages should not be taken as an argument for the exclusive use of
visual feedback. In fact, vision is most effective when it is used in conjunction with touch

B

and force sensing. The different systems can check each other. For example, if visual
feedback is supposedly servoing a screw into a hole, force feedback can indicate that the
screw has missed the hole.

There is one other general remark which should be made at the beginning of this
discussion. Although most of the examples and systems described here are based upon
conventional television cameras and their images, there ISno reason why the same or similar
techniques could not be used within systems based upon direct range devices, laser trackers,
or multiple touch sensors.

A DEFINITION OF VERIFICATION VISION

Baumgart has recently distinguished three types or modes of visual information
processing: description, recognition, and verification (see [BAUMGART 1974b]). These
terms designate general approaches used to solve visual tasks. These approaches can be
roughly characterized as follows:

DESCRIPTION ---
almost strictly bottom-up, information is gleaned from the picture to
grow a larger and larger model of the scene

RECOGNITION ---
a controlled mixture of bottom-up and top-down, heterarchical, the
models suggest what to look for, any features that are found restrict
the set of possible models, etc.

VERIFICATION ---
almost strictly top-down, the model is strong enough to dictate
exactly what to look for.

Each of these terms implicitly determines a range of tasks for which its approach is
appropriate. These ranges can be conveniently defined in terms of three factors: how much
the system knows about WHAT can be in a scene (and hence apptar in a picture of the
scene), how much the system knows about WHERE things might be with respect to the
camera (and hence where they might appear in a picture), and what the GOAL of the task
is. The types of tasks are:

DESCRIPTION --
the system only knows the types of features which the ob jects are
composed of and how to build complex models from these features;
it has no idea of what the objects are or where they are; the goal is
to build a ‘model which describes the scene

RECOGNITION ---
there is a fixed set of possible object models and some weak
. constraints on their position; the goal is to identify which object (or
objects) are in the scene and possibly fill in a few parameters about
t h e m

VERIFICATION ---
the system knows the identity of all objects in the scene and
approximately ‘where they are; the goal is to determine the precise
location of one or more of the objects.

These distinctions are not absolutely clear-cut. A classification may depend upon what
is defined to be a feature and what is defined to be an object. For example, the intended
interpretation is that features are such things as planes and corners, whereas objects are such
things as blocks. In this interpretation the standard scene analysis program for the blocks
world would be classified as a recognition program. It uses features to recognize objects from
a fixed set of prototypes. However, if one considers blocks as primitive features, a similar
program might be classified as a descriptive program. It locates features and constructs a

model of the scene out of these features.

A more cryptic characterization of these types of tasks is:
DESCRIPTION - grow a model from scratch
‘RECOGNITION - pick one of several models
VERIFICATION - locate a particular model.

In order to clarify these terms further, consider the following list of visual tasks and

their classifications.

Build a model of the engine casing so it can be recognized as it comes
down an assembly line (possibly up-side-down) --- DESCRIPTION

Locate a pump base (model XXX) which is sitting upright on the
conveyor belt --- RECOGNITION because the various rotations present
significantly different views of the object to the camera

Locate a pump base after it has been placed in a vise which is at a known
position --- VERIFICATION if the base is placed at approximately the

same place in the vise each time

Locate the gasket after the arm has positioned it 1 cm above a pump base
which was just been located --- VERIFICATION

Locate the objects on top of the table so an arm can dust around them ---
DESCRIPTION because the ob jects are described in terms of the volume
" they occupy without any concern for what they are

Describe what is on the table --- RECOGNITION if the types of ob jects

are all known in advance

Locate the corner of the table --- VERIFICATION if it is a known table
and almost at its expected position

Describe an unidentified flying ol;ject --- DESCRIPTION because one
has to revert back to a composition of features: “it was grey, generally
oval, with a bump on top”

Find the road in a picture (which contains a normal driver’s view of an
uncluttered road) --- RECOGNITION, unless the type of road and the
view art standardized enough to predict where the edge of the road is,
what it looks like, etc.

Having found the road in one scene, locate it again in a picture taken a
few feet further along the road --- VERIFICATION because the previous
picture provides an excellent model of the new view

Notice the frequency of such subjective words as: approximately, normal, standard,
and predicted. These especially occur in the discussion of verification vision tasks. They
occur because the distinction between recognition and verification is often pragmatically
defined. If there is no significant question about what is being looked at and the available

operators can locate the important features, the task can be considered a verification task..

However, if the views (even of a known ob ject) are sufficiently different that different sets
of features have to be used, then the problem is a recognition problem.

This suggests that verification is easier than recognition. In fact, verification is often a
subtask of recognition; after a prototype has been chosen, a verification subtask is set up to
verify that prototype.‘The idea is that if there is enough information available to restrict the
problem so that the features are reasonably distinct and there aren’t many surprises, then the
problem can be approached in a more direct way. So how is this done? What information
can turn a problem into one of checking as opposed to choosing? What structures should bt
available in a verification system so that this information can be integrated in the most

effective way?

It is intuitively clear what makes a task easier, but it’s not clear how all of the
information should be combined. For example, consider the servo-a-screw-into-a-hole
problem mentioned earlier. The steps involved are:

(I) locate the hole without the screw being in the picture,

-

(2) move the screw into the picture and locate it against the now
known background,
and (3) decide how to move the screw closer to the hole, move it, locate it
again, etc.
Assume that the arm picks up the part with the hole in it and places it in a vise (whose
position is reasonably well known). In that case the hole may appear displaced in a picture at
step (I) because of several reasons:)
(a) the arm is not exact,
(b) the arm does not know exactly where to go, even if it could
position itself precisely (it doesn’t know where the part is to be
picked up or exactly where the vise is),
(c) the part does not seat in the vice exactly as planned,
and (d) the calibration between the arm and the camera is not exact.
Having found the hole in step (1) there is enough information to reduce the problems
caused by (c) and (d). Thus, there are fewer uncertainties for step (2). And for step (3) the
main factor contributing to the error should be (a) since the problem will have been reduced
to an analysis of the relative displacement between the tip of screw and the hole.

Also notice that more and more information about the expected appearance of the
ob jects can be brought to bear as the system progresses from step to step. For step (I) the
system may have a picture of this same step during a previous assembly and possibly a
synthetic picture generated from its model of what is expected in the scene. For step (2) the
picture taken at step (1) is available. It contains the background that will appear throughout
the task. For step (3) the system has all of the earlier pictures which show the actual glares,
shadows, light levels, etc. as the screw approaches the hole.

Thus, the three steps offer three different sets of tolerances and levels of knowledge
about the appearances of the objects. The increased information should make each
.~ successive step easier and faster. The next sections investigate various semantic systems
which would make it possible to take advantage of this type of information.

«=10---

VERIFICATION VISION SYSTEMS

INTRODUCTION

The overall goal of this section is to motivate and describe the capabilities for a
system which can be easily “programmed,, to verify visually the presence and location of a
desired object within a complex scene. One possible way to approach this would be to
describe a completely automatic system. But this is unrealistic because most of the basic
facilities would be overshadowed by fancy subsystems, all of which are beyond the current
state of the art. Therefore this section presents an ordered set of verification vision systems,
starting with a simple, interactive one and ending up with the fully automatic one.

Each system introduces new semantic structures to make the system more powerful
and/or easier to use. These facilities are motivated out of need. That is, successively harder
tasks are described, the current “best” solution Is analyzed, and new capabilities are
suggested. In this way new facilities are derived to solve problems in weaker systems.
Protocols are also presented to give a unified view of the the capabilities of the system under
discussion.

Throughout the discussion some solutions (le. possible implementation ideas) will be
suggested, but there is no claim that all possible solutions have been considered or that the
ones mentioned are necessarily the best. The “best” solutions depend upon tht situation, the
available equipment, and the goal.

A _BASIC, INTERACTIVE SYSTEM

The format for this subsection consists of: (1) a description of a task and a proposed
solution, and (2) critiques which suggest new capabilities.

TASK: DETERMINE WHETHER OR NOT THERE IS A
SCREW ON THE END OF THE SCREWDRIVER ---
(ASSUME THE SCREWDRIVER MOVES IN FRONT
OF A CLEAR (IE. UNCLUTTERED)
BACKGROUND AND THAT THE ARM CAN
POSITION THE SCREWDRIVER WITHIN 5
DEGREES OF VERTICAL AND WITHIN A
SPHERE OF RADIUS 1 CM)

SOLUTION: USE A. SPECIAL-PURPOSE SCREW FINDER AND
SCAN THE WHOLE PICTURE

W hy scan the whole picture?
Sometimes the screw will appear at one point in the picture, sometimes at another. If

the total range of possible positions is only a small portion of the picture, there is no reason
to scan the whole picture. But how can the region of possible positions be determined? One
way would be to move the screwdriver manually around within its range of possibilities and
keep track of where it appears in the picture. The system could provide the user with a
representation for 2-D regions (such as rectangles or convex polygons) and a way of creating
such regions. Finally the system should include a way of restricting the search to one of these
regions. In this way the relevant region can be interactively determined and used.

The region of possible positions for a feature is called the “tolerance region” about
that feature. The assumption is that the camera is at afixed position and orientation. A
feature’s tolerance region is specified in terms of the camera’s screen coordinate system. In
order to find the feature one must only search that region. What appears in that part of the
picture changes depending upon where the object (eg. the screw) happens to be during that

assembly.

The tolerance region must be determined only once, but it is used each time the test
for a screw is made. This distinction between advanced planning and execution is an
important one in verification vision. The advanced planning or “training” session is
designed to predict as much about the events during an execution as possible. The
information gained in this process is used to make the execution phase more efficient.

TASK: LOCATE A SCREWHOLE IN A LARGE OBIJECT
(EC. AN ENGINE CASING) --- (ASSUME THAT
THE OBJECT IS SITTING UPRIGHT ON THE
TABLE AND ITS LOCATION IS KNOWN TO
WITHIN %3CM IN X AND Y AND $10 DEGREES
ABOUT Z); THE GOAL IS TO LOCATE THE
HOLE WITHIN A TOLERANCE OF #2CM IN X
AND Y.

SOLUTION: USE A SPECIAL-PURPOSE HOLE FINDER -AND
SCAN THE NECESSARY REGION

12

Generally the reason for scanning a special-purpose operator over a tolerance region is to locate
a particular feature. In this case it would be nice to know jn_advance if there are other parts of
the picture that appear similar to the desired feature and might appear within that region,
especially if the operator may confuse one of them with the actual feature. If an operator
happens to match several of these confusing “decoys, its discrimination should probably be
improved (eg. by changing thresholds, or by -using a larger local context) or it should be
replaced. Since the operators are not foolproof, there is no way to guarantee that an operator
won’t locate an unforeseen decoy during an actual assembly Therefore, the execution system
will have to be able to handle erroneous matches. But it would also be nice to have an estimate
of how unique and reliable an operator is so that it can be improved or so that special steps can

“be taken to disambiguate the situation. Thus, another piece of information a training. session
might try to approximate is the set of possible decoy matches for an operator. How can this be
done?

First, it is important to understand how confusions may be formed. In the previous
task the background stays. fixed since it is formed by stationary objects on the table. The
uncertainty about the position of the’screw makes it possible for the screw to move about in
front of the backg-found. The only ways a decoy match might arise are that (1) some part of
the background looks like a screw (see figure 3) or (2) some part of the boundary of the
screw and the background appears like the screw. Notice, however, that if the goal feature
(eg. a hole) is part of a larger object which moves, the confusions only arise because some
other part of the larger object looks like the goal.

One way of locating possible decoys is the following:

(1) determine the tolerance region about the hole (as in the previous
example),

(2) set up several example scenes such that the hole appears at
different places within the tolerance region (in accordance with the
constraints on the part),

and (3) scan the operator over the whole tolerance region in each of the
resulting pictures, seeking decoys.

Figure 4a shows the camera’s view of an abstract scene. A potential feature is
indicated by the arrow. Figure 4b shows the tolerance region for that feature overlayed on
top of the picture. Notice the screen coordinates, X and Y. Figure 4c shows the camera’s view
after the object has been moved and figure 4d includes the same tolerance region. Since the
tolerance region is defined in terms of the camera’s screen coordinate system it stays fixed
while the features move around underneath it; it is at the same place in figures 4b and 4d.
In both cases the desired feature appears within the tolerance region (as it is must). However,
notice that there are other portions of the picture that resemble the feature and, in fact, one

T

Ay e

Figure 3.

v

(e)

Figure L.

w4

(d)

such decoy shows up inside the tolerance region in figure 4d. This means that if the ob ject
happens to be in that position during an actual assembly and if the operator is scanned over
the tolerance region, it may locate either one of these matches first. The algorithm mention&
above would locate both the desired feature and the decoy and alert the system that there is
a possible confusion for that operator

This algorithm would work, but it would rquire the analysis of several different
pictures in order to cover all possible situations. There i another way of checking for
confusions which. only rquires one training picture, but it rquires two simplifying
assumptions:

(1) Any feature matched by an operator remains essentially the same
throughout the range of possible views of the scene (ie. no
perspective-induced changes of appearance).

and (2) Translational uncertainties dominate rotational uncertainties; all
views of a scene can be approximated as two-dimensional
translations of one canonical view. This is called the translation
assumption.

The goal of the training for decoys is to locate any portions of the scene that may
appear inside the tolerance region for a feature and look similar to that feature. Figure 4
shows that different features appear inside the tolerance region depending upon where the
object is in the scene. The idea for a new training algorithm is this: consider only one
picture of the scene, but check all points in the picture that might be moved into the
tolerance region by some movement of the objects in the scene (in accordance with their
constraints). For example, figure 5 graphically develops the necessary region in the case that
the tolerance regjon is a rectangle. If the feature appears in the upper right-hand corner of
the tolerance region (see figure 5a), the portion of the picture that is included in the
tolerance region is shown in’ figure 5b. If the feature appears in the upper left-hand corner,
the portion of the picture (with respect to the feature) that would show up in the tolerance
region is outlined with dashes in figure 5d. The complete region to be checked is four times
the size of the original region and is centered about the feature. Figure 6 develops the case
when the tolerance region is a triangle. Notice that the new region is six times as large. A
circle rquires that a circle with twice the diameter be checked. Non-convex regions can
produce regions which are any number of times the size of the original (see figure 7).

If the translation assumption i$ not true, the methods mentioned above do not work.
For example, consider the case (shown in figure 8) where there is only am angular
uncertainty. The featurecan appear anyplace along the indicated arc. If rectangles are being
used to represent tolerance regions, the appropriate region i shown in figure 8b. Using the
translation assumption the area to be checked for possible confusions would be the one

ee]Beme

|

(b)
(£)

Fr———--

(a)
(e)

— emn — o

e e

(h)

oee 16~

Figure 5.

(8)

(e)

(£)

(8)

(h)

B S |

(1)

(3)

(k)

Figure 6.
e} Teeu

(b)

(a)

()

(e)

(£)

I"L

(8)

(k)

(1)

Figure7 .

oee }8eee

(b)

Lot

o D

Figure 8.

oo} 9eee

shown in figure 8c. However, in fact, anything in the dotted region of figure 8d might
appear in the tolerance region. Fortunately, the translation assumption usually holds If not,
it is always possible to use the first algorithm mentioned above.

If the hole is found, what is the precision (in 3-D) of the result?

There are two keys to answering this: (1) a calibration of the camera with respect to
the part and (2) an estimate of the precision of the hole-finding operator in terms of pixels
(ie. picture units). The (planned) distance to the hole can be computed from the calibration.
From this distance it is possible to compute the resolution of one pixel in a plane parallel to
the image plane passing thru the center of the goal feature (eg. the hole). This resolution can
be converted into a combination of equivalent resolutions along the axes of any other
coordinate system. In the task mentioned above the desired coordinate system is the table.
These new resolutions for one pixel can then be combined with the precision of the
hole-finding operator to give the desired result.

If the goal tolerances are in a plane (as they are for this example) it is possible to
compute the precision along the two coordinates of that plane even if the calibration only
consists of a collineation matrix between the plane of the goal and the image plane. A
collineation matrix is a one-to-one mapping between the image plane and some other plane.
It does not indicate where the camera’s lens center is or the distance between matching
points. However, since the precision of the operator defines a region about the feature it
matches, the collineation matrix can be used to map the extreme points of this region (eg. the
corners of a rectangle) onto the goal plane. A region in the goal plane with these extreme
points forms the basis for deciding the expected precision in that plane.

If the hole ts found, how can useful 3-D information be determined? For example, what is the
XY correction required by the arm to accommodate to the actual position of the Me?

If the object with the hole is constrained in some way so that the hole must lie within
a plane (eg. the part is sitting upright on the table or held in the plane of a vise) the hole’s
position in the image can be directly converted into a point on that plane. The equation of
the plane and the point on the plane determine a unique point in S-space. Since this planar
assumption is true for the example task, the hole’s position in the image can be easily
converted into a useful quantity such as “the hole is displaced .2em in X and 1.0cm in Y
from its. planned position.”

If the planar assumption is false (eg. because the ob ject is being held by an arm), one
possibility is to use stereo vision. Stereo vision involves locating features in the images of two
calibrated cameras and computing their 3-D location by triangularizatien. If stereo is used,

20---

there is also a method for computing the expected precision of the result.

A third way of determining the 3-D information required by an arm is to use a 3-D
model of the object to locate several feature points on the ob ject. The model indicates the
points on the object that match the visual features being located in the image. Given this
model and the 2-D image locations of the feature points it is possible to compute a new $-D
position for the whole object. This is essentiaiiy the same problem as calibrating a camera. A
variation on this idea is to use stereo to locate several features in the two views, compute
their 3-D locations, and then do a least-squares fit on these new 3-D positions to determine
the best estimate for the ob ject’s position.

There are several other ways of determining the 3-D location of a point; such as
motion parallax, direct range finding, and laser tracking.

T he suggestion which uses several feature points requires several different operators, Is there
an easy way of setting up several operators?

Cross-correlation is one of the easiest and most flexible. It is generally easy to set up:
interactively point out a promising patch in a training picture and let the system check its
distinctness. Correlation offers normalization to compensate for an overall brightness change
and it is easy to design special shapes and even add weights. It requires a previous picture
of the scene. In programmable assembly this can easily be provided by taking a picture of an
example assembly (ie. during a training session). The main limitation on correlation is that it
does not work well when the new picture includes a rotation with respect to the traiping
picture. It would be possible to use several operators, each designed to handle a part of the
rotation range, but any one of the operators is limited to a small angular range. Quam has
carried out some analysis to determine the effects of non-translational differences between
the two pictures (see [QUAM 1971)), but the limits are still not well determined. Functionally
it seems possible to set the acceptance thresholds so that reasonably sized correlation patches
(eg. 15x 15 pixels) correctly match whenever the rotation is less than ten degrees. More
analysis (both theoretical and practical) needs to be done.

T he use of several features means that each feature must be checked for possible confusing
matches. As mentioned earlier the setting up of tolerance regions and checking could be done
manually, but what is required to do it automatically?

To answer this there has to be a system for describing the tolerances and constraints
which apply to the various objects in a scene. Typical constraints are: plane P of the ob ject
contacts the XY plane of the table, the angle of the shaft is known to within % 15 degrees,
and point T lies within the rectangular box B. To state constraints of this sort, the S-D point

D]eee

modelling system would at least have to be enriched to include some form of a surface patch
(eg. a polygon) and a volume (eg. a rectangular box) plus predicates for saying that a point
“lies-in” a polygon; etc. Then there would have to be a method to take a list of constraints
and produce the appropriate volume within which the goal point must lie. The camera
model could then be used. to project that 3-D range onto the image. This projection could
even take into account the precision of the camera calibration by making the projection of a
point be a small region. Thus, the constraint model, the constraint solver, and the projector
form a complete system for automating the determination of tolerance regions.

Taylor (see [TAYLOR]) has investigated a few types of constraints and various ways
of representing them. He also has a system for producing the resulting constraints on the

positions of features of interest.

There is one more thing required. to check for possible erroneous matches
automatically: a method to produce the region of possible confusions from the feature’s
planned position and tolerance region. The complexity of this algorithm depends upon the
generality of the representation for tolerance regions and the model of changes from one
view of the scene to the next. If tolerance regions are represented by rectangles and the
changes are assumed to be translational, the algorithm mentioned earlier would be sufficient.

This completes the facilities which make up the “basic” verification vision system. In
fact, the automatic tolerance checking capability should probably be considered optional for,
the most basic system. The semantic mechanisms required by these facilities are given below

as areview.

CAMERAS AND A METHOD FOR CALIBRATING THEM
WITH RESPECT TO THE TABLE (OR OTHER
OBIJECTS)

A REPRESENTATION FOR 2-D TOLERANCE REGIONS

A METHOD OF SEARCHING A 2-D TOLERANCE
REGION

A METHOD TO COMPUTE A 3-D POSITION FOR A
FEATURE GIVEN TWO SETS OF COORDINATES FROM
STEREO VIEWS

METHODS TO DETERMINE THE EXPECTED

>3

PRECISION OF A MONOCULAR OR STEREO
LOCALIZATION

A SYSTEM FOR 3-D POINT MODELS OF OBJECTS

METHODS TO DETERMINE THE BEST ESTIMATE FOR
THE NEW POSITION OF AN OBJECT GIVEN THE
IMAGE COORDINATES FOR SEVERAL FEATURES
(BOTH 2-D AND 3-D)

AN INTERACTIVE SYSTEM FOR SETTING UP
RELIABLE CORRELATION OPERATORS AND
INDICATING THE MATCHING FEATURE ON THE 3-D
POINT MODEL OF THE OBJECT (THE CORRELATION
SYSTEM MIGHT INCLUDE AN AUTOMATIC WAY OF
SETTING THE THRESHOLDS REQUIRED TO DECIDE
IF THERE IS A MATCH OR NOT)

A SYSTEM FOR DESCRIBING CONSTRAINTS
A REPRESENTATION FOR TOLERANCE VOLUMES

A METHOD FOR PRODUCING THE TOLERANCE
VOLUME FROM A SET OF CONSTRAINTS

A METHOD FOR PRODUCING THE CORRESPONDING
. 2-D TOLERANCE REGION IN .AN IMAGE FOR A
TOLERANCE VOLUME

A METHOD FOR PRODUCING THE 2-D REGION TO BE
SCANNED FOR POSSIBLE CONFUSIONS

In order to present a better idea of how a system with these capabilities might
function, protocols are given below showing how a user might “program’ solutions for a few
tasks, including the two example tasks.

(1) CHECK °‘FOR THE SCREW ON THE END OF THE
SCREWDRIVER

23

2)

(a) Position the arm, screwdriver, and screw at the
expected location.

(b} Aim the camera so that the screw is visible.

(c) Take a reference picture.

(d) Manual |y move the arm so that the screw covers its
range of uncertainty and mark the extremes.

(s} Produce a 2-D tolerance region for the screw.

(f) Visually check the background for homogeneity
over thisregion.

{(g) Assume that one correlation operator is
sufficient. Interactively define a correlation
operator to locate the screw.

(h) Move the screw to another position within the
al lowed tolerances.

(i) Take another picture and check the effectiveness
of the correlation operator. Can it find the
matching point in ths region of poesibilities?

(j) Take a picture without the scrsu on the end.

(k) Apply the correlation operator and make sure that
i t doesn’t find any srronsous matches.

(1} The ‘program’ is essentially: take a picture,
apply ths operator throughout the necessary
region. If it finds a match, assume that the screw
i s there, otherwise, assume that i tisn’ t.

(m) If there are confusing points in the background,
the user can try a new position for checking the
screw, a hew camera position, or increase the
number of operators and check for consistency as
mentioned in the next example.

LOCATE THE HOLE IN THE ENGINE CASING

(a) Position the object at the expected position.

(b} Aim the camera so that the hole and several
other features on the object are visible.

(c) Cal ibrate the camera.

(d) Check the potential precision at that camera
location.

(e) Take a reference picture.

(f) Interactively choose reliable correlation
operators.

{g) Set up a 3-D point model which includes the
points that correspond to the features being
matched by the operators.

04

(h) Extend the point model to include the plane of
the base and a ptane for the table top. Add a
palygon, P, to the representation of the
table’8 surface so that it can be used to state
the X and Y constraints on the uncertainty of
the casing.

(i) State the constraints on. the casing:

(1) The plane of the base contacts the

" plane of the table top.

(2) The Z of ‘the basepoints in the same
direction as the Z of the table.

(3) The main reference point on the casing
lies within the polygon, P, on the
table,

and (4) The rotation about the Z axis is
| imi ted to'plus or minus 18 degrees.

(j) Have the constraint solver produce the 3-D volume
that represents the range of possibilities for

~feature Fl. Since the casing is known to be
sitting upright, this volume will only be a 2-D
- patch.

(k) Produce thecorresponding 2-D tolerance region,

(1) Produce the region t o bescanned for other
matches.

(m) Scan that region with the appropriats operator to
8ee if there are any possiblie ambiguities. If
there are, throw that operator away or change it
so that it is unique.

(n) Do this for all of the operators.

(o) The ‘program’ would then be: take a picture of the
object, search for the operators within their
regions, for each one that is found use the
feature’s known height and the collineation
matrix to determine the corresponding 3-D
position, map the new 3-D positions onto the plane
of the table top, compute the bestestimate for
the new position of the object (throwing out
inconsistent points), and final Iy check the
precision of the result to make sure it is within
the desired tolerances

(3) DETERMINE THE RELATIVE DISPLACEMENT OF A
SCREW FROM A KNOWN HOLE

T3

The program would be essentially the same, but
stereo image8 would be used to determine the
new 3-D positions. The best estimate for the
new position would be carried out in 3-D.

A SIMPLE STRUCTURE SYSTEM

The ‘basic system’ described in the last subsection has several problems and
limitations. For example, it assumes that correlation works. That is, it assumes that one
correlation operator can be set up to locate each feature in a new picture. This is not always
a good assumption, especially if the objects in the scene can rotate more than 15 or 20
degrees. The features change their appearances too much. It may be possible to locate a
feature by setting up several correlation operators, each of which is tuned to a certain
portion of the total range of angles. Sometimes even this is not possible because small
rotations and translations can cause large changes in appearances when one part of an ob ject
is occluding another.

There is no attempt made in the basic system to try to use the location of one
correlation point to help find other points. Intuitively it seems possible to predict more
precisely where a feature point might appear after a few others have been located. For
example, if the object being looked at is rigid and if the main effect of the uncertainties is
an unknown translation in the picture, once one point has been found the observed
translation for that point can be used as an estimate for the displacement of the other points.

The basic system does not make use of any ‘extended’ features which may be easier to
find and can be used to limit the amount of effort required to find correlation points. Since
a correlation feature is essentially a point, the whole tolerance region has to be scanned to
locate a match. A search for a line segment, on the other hand, might consist of only a few

linear searches across the tolerance region.

Most of these limitations are concerned with the use of structure: the structure of the
objects which are being looked at. This subsection investigates what is necessary to take
advantage of some of this structure. Again the method is to state a task and enumerate the
basic requirements needed to accomplish the task.

TASK: LOCATE A SHAFT WHICH HAS BEEN PLACED
IN A VISE --- ASSUME THAT THE SHAFT LIES IN
THE PLANE OF THE VISE, THAT ITS
ORIENTATION IS KNOWN TO WITHIN #20
DEGREES, AND THAT THE POSITION OF ITS
END IS KNOWN TO WITHIN £I1CM. THE GOAL IS
TO DETERMINE THE POSITION OF THE END OF
THE SHAFT TO WITHIN .15 CM ALONG EACH
AXIS AND DETERMINE THE ANGLE OF THE
SHAFT (IN THE PLANE OF THE VISE) TO

2.

‘WITHIN 12 DEGREES.

SOLUTION: SINCE A SINGLE CORRELATION OPERATOR
DOES NOT WORK RELIABLY OVER A 40
DEGREE RANGE, SET UP THREE CORRELATION
OPERATORS FOR EACH FEATURE. APPLY ALL
OF THEM AND USE ANY OF THEM THAT
MATCH IN THE COMPUTATION OF THE
OBJECT’S LOCATION.

T his solution does not take full advantage of the object’s structure to reduce the amount of work
required or toinsure a consistent set of matching features. The structure is only used to check
consistency and to compute a new estimate for the object’s position after all of the features have
been located. Are there incremental approaches for locating an object? W hat other types of
Sfeatures besides correlation are there and what can they contribute toward the localization of an
obj.ect?

There are several other types of features, such as line segments, curve segments,
homogeneous regions, and textured regions. They are all ‘extended’ features, but they have
quite different functional characteristics. For example, a rotation changes the orientation of a
line segment, but it still appears as a line segment. One of the standard edge operators can
be used to locate a point on such a segment. And in addition to returning the position of the
point, it can produce an estimate for the orientation of the line. Since line segments are
extended, they should be easier to find than a point. The longer the better. Instead of
scanning a whole region, a few linear scans across the region are generally sufficient. These
characteristics would be very useful for the shaft location example. Consider the following
strategy for locating the shaft:

(1) locate a couple of points on the side of the shaft,
(2) use these to determine the shaft’s orientation,
and (3) use that to choose between three training pictures and the
associated correlation operators (which now only have to cover 13
to 14 degree ranges).
In addition to choosing the right correlation operators, a point or two on a line segment can
reduce the region the operators have to cover.

Notice that this strategy is an ordered set of steps (ie. a program). The basic system did
not provide for a user-defined program. There was only a fixed control structure: locate as
many of the correlation features as possible and use them to compute a new estimate for the
ob ject’s position. The ‘simple structure’ system, on the other hand, needs some way of
representing a user-defined program. The idea is that a much larger range of tasks can be
handled by a system which provides a way for the user to take advantage of a few pieces of

98—

structural information (as in the example of the shaft). The programs are expected to be
simple and straightforward. Hence the name for this type of verification system.

A trace of one of these programs will take the following form:
(1) try to locate a feature
(2) make an inference about the position of the next feature andfor the
position of the object "
(3) try to locate another feature
(4) make an inference

(n) compute the final estimate for the object’s position

There are several forms that the program itself may take: a set of routines which can
be called from some general-purpose language, a set of processes that communicate with each
other, or a graphstructure of features that an interpreter looks at and decides what to do
next. No matter what the form actually is there are a few capabilities which should be
included. There should be some way of continuing a search if one ‘location’ for a feature is
later determined to be inconsistent. There should be a direct way of incorporating the fact
that a feature has been missed. Misses are important. Knowing that some feature is NOT in
some region helps restrict the possible positions for the object in much the same way that
knowing a point is in a region does.

Each extended feature has its own ‘structure’ (eg. straight edges appear to be straight
lines in a picture). But there is also a structure which relates one feature to another (eg. the
screw hole is 2 cm from the edge). In the basic system this structural inter-relationship of the
features is only used at the very end of the process when it computes a new estimate for the
position of the object. That is, the basic system does NOT use one feature’s position to help
locate another one. The simple structure system should have some way of doing that. For
example, consider figure 9. If two points have been located on the side of the shaft not only
can they be used to choose which set of correlation operators to use, they can reduce the
tolerance region about the end of the shaft. Figure 9a shows the planned position of the
shaft, its side, and its end. Figure 9b shows two points that have been located on the side of
the shaft. The uncertainty of their position is represented by the small rectangles about the
points. This uncertainty carries over to the computation of the angle of the side of the shaft.
Since both points are known to be on the line segment which is the bottom of the shaft, they
restrict the linear motion of the shaft as shown in figure 9¢. The combination of these two
uncertainties (ie. the angular and the linear) generates the small region shown in figure 9d
which represents the total range of possibilities for the position of the end-of the shaft. This

—29.

(a)

- (b)

(c)

(d)

. Figure 9.

80—

region is considerably smaller than the tolerance region which would have been used within

the basic system.

Notice that the reasoning done above assumes that the relative position of the end of
the shaft with respect to the side is fixed. This is certainly true in 3-D, but in a 2-D picture
this may not be the case. Some camera angles are worse than others. Thus the ‘correct’” way
of making this implication is to work with a 3-D model. Unfortunately, that is considerably
harder than a 2-D model. Therefore, the simple structure verification vision system only
deals with 2-D models which approximate the 3-D situation. The open question is “when are

2-D models sufficient?”

Notice that the use of 2-D models for the tolerance reduction implications does not
mean that everything is 2-D. After the features have been found, the final computation of
the object’s position is still carried out in 3-D (if necessary).

The use of extended features demonstrates an interesting trade-off between the ease of
finding a featureand the amount of information provided by the feature. The difficulty in
finding a feature is defined to be the amount of searching involved to locate it. A point
feature such as a correlation operator is the hardest to find, but produces the most
information (a point to point match). It is easier to find a point on a line segment, but less
information is gained (one point is restricted to aline segment). It is easier still to locate a
point in a region, but the larger the region the less information is gained about the location
of the object. This trade-off doesn’t mean that it is useless to find extended features. It just
means that one of these features may not pin down the location of the ob ject as well. Two or
three may. And as shown in the example strategy for finding the shaft, extended features
may be important stepping stones toward afinal location.

So far this discussion assumes that there are operators which can locate a part of an extended
feature. W hat operators are there and what is involved in using them?

The standard edge operator (eg. the Hueckel operator) can be used to locate a point on
a line. Edge operators often return the angle of the line in addition to the coordinates of the
point. This angle is important because it can be used to filter out bad matches (ie. the edge
point is not within the expected 40 degree range) and it can help locate the line (ie. it is an
estimate of the shaft’s orientation).

The edge operator can also be used to locate points on a curve. Curves are particularly
useful when they are known to be invariant (ie. their shape does not change throughout the
range of possible images) or almost invariant. For example, the curve (ie. the ellipse) which
is the image of” a large machined hole appears invariant if the only rotat_ion is in the plane

ee8eme

of the hole. For an invariant curve the angle returned by the edge operator can be used to
locate a particular point (or set of points) on the curve with the matching slope. This means
that an invariant curve is almost as good as a point operator even though it is extended,
and hence easier to find. Unfortunately invariant curves are not as common as they might
be.

The standard point properties of regions (eg. intensity and color) can be used to locate
a point in a homogeneous region and the standard texture operators can be used to locate
points within textured regions. These are especially useful for constraining searches,

Any feature can be found by scanning the appropriate operator over the tolerance region for the
feature. But one scanning technique may be better than others when looking for an extended
feature. W hat types of searches are there and when should they be used?

There are several types of scanning techniques: raster scan, spiral scan, linear scan,
alternating linear scan (ie. start at one point on a line, try a point on one side, then a point
on the other, etc.), random scan, etc. (see figure 10). The choice of scan depends upon the
type of feature and how much is known about where it is expected to be. For example, if
one is searching for a region, a random scan may be the technique to try. If the feature is a
line, one might use a series of alternating linear scans that are perpendicular to the expected
line. If there is an estimate of where the feature is and it is likely that the feature is close to
this estimate, a spiral scan is probably the best choice. The upshot of this discussion is that
the system should provide several different types of scans and a way of evaluating how

effective they are.

Remember that the user is expected to write the program to do the verification. This
means that he has to decide which feature to look for, what operator to use, where it should
be tried, and what to do if nothing is found. In particular, this means that the user has to

“choose the scanning technique and fill in the details of where to start, which way to go first,
and how far to go. In order to do this there should be an interactive subsystem for designing
searches. The term ‘system’ may sound too impressive for such a seemingly small task, but
the task isn’t as small as dne might think. Such a system is essentially a graphics drawing
program which can talk about tolerance regions, lines, angles, and all the parameters for the
various techniques. It should provide a way of overlaying a proposed search on top of a
picture and moving it around to see what might be encountered. There are two reasons for
this overlaying: (1) to make sure that a scan is guaranteed to find one point on the feature
and (2) to check for possible confusing matches.

Consider figure 11. Figure 1 la shows a line segment feature and the tolerance region
about its center. Figure 1 Ib shows various positions of the line for different- apparent

32

23 45678491013

1304 15 6 17—y

(e)

(e)

Figure 10.

-38---

N NV R
>0 — R 33
VPN WSH

SIS

i

(b)

(d)

Figure ll.

—34...

positions for the center (remember that the center can wander around inside the tolerance
region). Since the line segment is an extended feature a few linear scans are sufficient to
guarantee one intersection with the line. The whole region does NOT have to be scanned. In
this example the two scans shown in figure 1 Ic are all that is needed. If the line is expected
to be close to its planned position, it would be more efficient to break these lines up into an
ordered set of smaller scans. One possibility is shown in figure 1 1d.

" Intuitively it appears that there is a much smaller chance of matching an erroneous
point if the operator is only scanned along these two lines than if it scans the whole region.
But that is not-true. The area which might contain erroneous matches is almost as large for
the two linear scans as it is for the whole region. Figure 1 le shows the region of the picture
which would be encountered at point A if the center of the line segment wanders over the
whole region. Notice that A’s region is sort of a left-to-right and top-to-bottom mirror image
of the original region. Figure 1 If shows the region of possible points encountered if the
operator is scanned along the segment AB. And finally, figure 1 lg shows ‘the total area
which might be encountered along either linear scan. Notice in figure 1 lh that this area is
almost the same size as the region used in the basic system.

Even after careful planning there may ve ambiguous matches or the operators may find some
small piece of the picture that they like even though it is not the ‘correct’ match. W hat can be
done to insure that the correct matches are being made?

There are two different levels at which a feature can be checked: local and global.
Local checking means that the portion of the picture near the possible match is checked for
a structure which is consistent with the initial match. For example, if a line is being searched
for and an edge operator has located one point on the line, the line can be followed (by the
edge operator) to make sure that there really is a line there with the correct contrast across it
and at the right angle. Similarly correlation patches can be increased in size or surrounded
by several other small patches that match. Texture operators can grow larger regions about a
possible point. Thus the confidence in a match can be increased by increasing the sire of the

local match.

Global checking involves the use of the S-dimensional structure of the ob ject being
looked at and the constraints on that object to make sure that the features being matched are
consistent with respect to each other. This 3-D checking can often be approximated by
checking the 2-D consistency. For example, when trying to match a point on the lower side of
a shaft it is possible to check a point by locating an edge point on the upper side. The
position and angle of the upper can be predicted from the thickness of the shaft. If such a
point is found one can be reasonably sure that the first operator is correctly matching a
point on the lower side. In a fancier verification vision system these ideas-about confidence

-85

may be formalized into an automatic system of confidences, but keeping in line with the
design of the ‘simple structure’ this type of checking has to be explicitly stated in the
conditional statements of the program.

There are several thresholds associated with the various operators; suck as the range o f
contrast, the confidence of the edge, and the range of colors. The operators also produce an
answer within some precision. How can all of these parameters be determined?

The easiest way of deciding what the value should be for a certain threshold is to look
at several training pictures (which hopefully ‘cover the range of possibilities). The operators
can be interactively applied on important portions of the picture and the range of contrasts,
angles, etc. can be directly computed. For example, the precision of the edge operator’s
estimate for the slope of the line greatly depends upon the type of edge being looked at. The
edge operator can be used to follow example edges in two or three pictures and its precision ° |

can be measured.

There is also a-theory about how to set the thresholds for certain operators such as
edge operators (see [BINFORDIJ) and correlation operators (see [QUAMI). These should
certainly be used when available.

Training sessions like these can also be used to determine how the location of one
feature can help to locate another. After the two features have been located in several
training pictures it is possible to set up a tolerance region about the implied position of one
with respect to the other. Consider figure 12. Figures 12a through 12d show four different
training pictures and the’locations of two features A and B. Having found A, these four
examples imply that B would be at one of four places (as indicated in figure 12e). If we
assume that these represent four extreme points in a connected region of possibilities, we can
surround them with such a region (see figure 12f). The claim is that this region is the
conditional tolerance region for B having found A. How correct this is depends upon
whether or not the training ‘pictures actually cover the range of possibilities.

. Notice that programmable assembly provides an opportunity to have this type of
training session. Other application areas may be able to provide training sessions, but not
with such accurate details. For example, a training session for the task of navigating down a
road may be conducted on one road, but not on all of the roads that the vehicle is supposed
travel on. This restriction means that training sessions for such tasks can not possibly

produce as specific results as in programmable assembly.

TASK: LOCATE THE SCREW ON THE END OF THE

Y. .

ox

(a)

Ao
B,
()

A

(e)

Figure 12.

U)

(d)

SCREWDRIVER AND VISUALLY SERVO IT INTO
THE HOLE --- ASSUME THAT THE HOLE HAS
ALREADY BEEN LOCATED, AND THAT
PROCESS PROCEEDS AS FOLLOWS: THE ARM
MOVES AND STOPS, PICTURES ARE TAKEN,
THE SCREW IS LOCATED, A CORRECTION IS
DETERMINED, AND THE ARM MOVES AGAIN.

SOLUTION: SET UP ONE SPECIALLY SHAPED
CORRELATION OPERATOR TO LOCATE THE
SCREW FOR EACH OF THE STEREO CAMERAS.
APPLY THESE AND USE THE STANDARD
TRIANGULARIZATION TO COMPUTE THE
SCREW’S 8-D LOCATION.

If the bachground is relatively complex, the correlation operator is restricted to the internal
portion of the screw. Any part of the operator that stuck out might make the position of the
match dependent upon what is in the background. This restriction i fine as long as the screw
has enough internal information to produce a crisp match. If not, other information Aas to be
used. Picture differencfng may help accentuate the change, but what other types of information
are there?

There are two types of additional information: internal features of other ob jects rigidly
affixed to the object of interest (eg. the screwdriver or hand) and boundary features which
are formed by the interaction (or occlusion) of some part of the object which is moving and
a part of the background.

The system described so far is powerful enough to take advantage of the other
internal features, but what about the boundary features? A match of a boundary feature
Elcpends upon what is in the background next to the screw. Thus if a boundary feature is
missed, the system should NOT assume that the screw is not there, but rather that the screw
is currently in front of something that makes the boundary hard to see. The idea is that a
boundary feature should be believed when it is located, but totally ignored if not. In some
sense’ it is an optional feature; it only contributes information if found. The simple structure
system can certainly handle this type of feature. The programmers just need to be aware of
it.

When stereo is being used, is there some way of using the locations of the features in one image
to help locate them in the other image?
There is. Quam and Hannah have made extensive use of the well-known- idea that

---38---

once a point has been located in one stereo view, the corresponding ray can be
back-projected into the second view, and the feature must be on (or close to) this line (see
[SOBEL),[QUAM] and [HANNAH]). The back-projected line, or actually a narrow region
about the line, can be intersected with the normal tolerance range for the feature to produce

a smaller region to be searched.

A similar benefit can be derived from the motion of the arm. After making the latest
move along the path to the hole, the arm can be interrogated to find out where it thinks it
moved. This positidn in S-space can be projected onto an image and a region about that
point can be formed from an estimate of how precise the arm measurements are. The errors
due to an inaccurate camera-to-arm calibration can be easily eliminated by considering the
RELATIVE motion made by the arm from one point in the image to another.

The following is a summary of the semantic mechanisms required for the ‘simple
structure’ verification vision system.

-~

A VARIETY OF “EXTENDED” FEATURES: LINES,
CURVES, & REGIONS --- 2-D REPRESENTATIONS FOR
THEM (NOT 3-D CURVED SURFACE MODELS . . .
REMEMBER THAT THE BASIC ASSUMPTION OF THE
SIMPLE STRUCTURE SYSTEM IS THAT 2-D FEATURES
AND TOLERANCE IMPLICATIONS ARE SUFFICIENT . . .
3-D IS ONLY USED TO COMPUTE THE ACTUAL
LOCATION OF AN OBIJECT)

OPERATORS TO LOCATE PARTS OF THESE
FEATURES .. EG. EDGE OPERATORS WHICH CAN
LOCATE A POINT ON A LINE OR A CURVE, TEXTURE
OPERATORS, ETC.

AN INTERACTIVE WAY OF DETERMINING THE
VARIOUS THRESHOLDS AND LIMITS ASSOCIATED
WITH THESE OPERATORS

SEVERAL SEARCH STRATEGIES TO CHOOSE FROM . . .
EG. SPIRAL, LINEAR, & RANDOM

AN INTERACTIVE WAY OF SETTING UP AND
EVALUATING SEARCH STRATEGIES TO LOCATE A

-39...

PARTICULAR FEATURE

METHODS TO DO LOCAL CHECKING ABOUT EDGE
POINTS, CORRELATIONS, AND REGION POINTS

A 2-D SYSTEM FOR PREDICTING THE RANGE OF
POSITIONS FOR A FEATURE ONCE ANOTHER
FEATURE HAS BEEN FOUND

AFORM FOR VERIFICATION VISION PROGRAMS’

Notice that the simple structure system is designed around an interactive training
session. In one session the user can do everything necessary to program a verification vision
task: ,

(1) set up example assemblies
(2) takepictures -
(3) define features by interactively drawing them on top of an example
picture
4) decide what operators to use and interactively set their thresholds
5
6) design a search to locate a point on a feature

determine the tolerance region about a feature point

~

(
(
(
(7) check for undesirable matches

(8) decide upon the amount of local checking to be used

(9) set up the 2-D conditional implications from one feature to another

and (10) write the program which uses all of these pieces.
This type of interactive system is demonstrated in the protocols that follow.

(1) LOCATE THE SHAFT (ITS END AND ITS ORIENTATION)

(a) The user decides that the 480 degree range can
NOT be handled directly by correlation. How
much of ‘this range can be reliably handled by
correlation?

{(b) Take several picture8 uith the shaft at
different angles. The glare on the shaft and
the shadows increase the change in appearance
from one position to the next.

(c) Try several correlation operators to determine
the size of the subranges. Assume that the
range can be safely divided up into three

w--40---

slightly overlapping ranges.

(d) The user decides to try to locate the lower edge of
the shaft and use that to decide which sub-range
is appropriate. What is required to determine the
angle of the shaft well enough to choose the right
sub-range? Is one point on the side enough? two
points? .

(e) Define the line feature which is associated with
the bottom of the shaft. This can be done by
pointing out the two ends of the segment in one of
the training pictures.

(f) Set the thresholds for the edge operator so that
it accepts almost all edges and use it to-follown
the line. Possibly follow the side in three or
four training pictures.

(g) Gather statistics on the actual values for the
contrast, confidence, etc. and use them to set
tighter (ie. more discriminating) thresholds for

-the operator. Fit a | ine through al | of the points
found on the segment. Compare the slope of this
| ine’wi th the estimates from the operator and
compute the precision of the edge operator’s
estimate of the slope.

(h) Project the tolerance region for the midpoint of
the line onto the picture of the shaft at its
planned position. Set up a search technique which
guarantees one point on the side.

(i) Check for possible confusing points and plan for
disambiguation (possibly by following the line,
or by using a second edge operator to find a point
on the other side of the shaft). Assume that one
point on the side is enough, ie. the operator’s

' estimate of the angle is good enough to decide
which of the three situations the shaft is in.
Notice that shaft’s orientation may still not be
determined well enough to meet the goal of %2
degrees.

(j) Each of the three situation8 is a straightforward
problem of applying the correlation operators and
determining the best estimate for the shaft’s
position and orientation, But there is more
information that could be used. When the edge
operator locates a point on the side of the shaft
(or two such points are combined to determine the
apparent angle of the shaft) there is eome

et]oee

precision associated with that computation, That
precision may indicate that the angle is known to
within 3 degrees; If that is the case, the
tolerance region surrounding the end of the shaft
could be determined with a total angle uncertainty
of 6 degrees instead of 14. It is not clear whether
or not that is a significant reduction, but it
might be.

(k) The program would be: Apply the edge operator
along the predetermined search’ path. When it
locates an appropriate edge point, check it by
following the edge or whatever was decided. If it
isn’t the correct one, continue along the search
path. If no edge point is located, complain to the
human operator. When a good edge point is located,
use its estimate for the angle to choose one of the
three subproblems. Use the precision of the angle
and a 2-D model of the line segment to produce a
region of possible location8 of the end of the
shaft. Locate the matching correlation points and
compute the shaft’s position and orientation.
flake sure that the values are within the desired
tolerances. If not, complain to the human
operator.

(1) LOCATE THE SCREW ON THE END OF THE
SCREWDRIVER AND VISUALLY SERVO IT INTO THE -
HOLE

(a) Assume that stereo is going to be used to
determine the relative displacement of the
screw tip from the hole. Stereo has already
located the hole and told the arm to correct
accordingly. Where do you look to find the
screw? This can be treated | ike a2-D
conditional tolerance implication. Set up an
example assembly, locate the hole, and locate
the tip of the screuw.Do this for a few
different situations and combine the relative
positions of the tip from the hole into a2-D
region which covers the range of possibilities,

, In order to do this, however, there has to be a
way of locating the screw tip.

"5 S

(b) Assume that the screw is not very distinct.

(c)

That is, the correlation operator ha8 narrow
tolerances and even if it finds a match, the
resulting precision is low. If the screw is in
front of a background which makes the outl ine
quite distinct, the user can set up a few
correlation operators_ to key off of the
outline. During execution, if they are
successful, their results are used. Otherwise,
the correlation on the screw is used as the
last resort.

Another possibi | i ty is to use an edge operator to
locate a point on the side of the screwdriver.
Assume that the boundary correlations are
sufficient so that this is not necessary.

(d) After locating the screw once, use the portions of

the picture matched by the correlation operators
as the basis for future correlations. These new

~operators should be even better correlation

operators than the ones set up during the training
phase because they are based upon the way the
scene actually appears during this particular
assembly. Each assembly may have sl ightly
different objects, object positions, lighting and
camera ca |l i brat ions. Extracting informat ion for
future correlations assumes, of course, that you
are sure that you know what you have matched. It
would be unfortunate to locate the screw
incorrectly and then extract ‘good’ correlation
patches based on that match.

(e) Another point: since you are tracking the screu

(f)

(g)

(ie. looking at it every .2 cm or something) it
should not be disastrous to miss it once in a
whi le. Sometimes the background is going to be bad
and sometimes the operators are going to miss
things.

There should also be a special check for
termination. Often the background and local
changes in the appearance of a screw (or any part)
are most pronounced when i t i s approaching the
goal, Therefore, with the screw, when the tracking
indicates that the screw is close to the hole, the
key feature should be shifted away from the tip to
some point near the top of the screw.

The program might be:

48

(A)

LOCATE THE HOLE . . . usual stereo training
etc.

(B) LOCATE THE SCREW THE FIRST TINE . . . plan to

(C)

locate a point on each side of the
screwdr i ver and then correlate on the
screw and the boundaries of the screw . .,
this location is especially important
because the rest of the tracking wi | | use
correlation patches derived from this
picture.

TRACK THE SCREW UNTIL I T IS ONE CM OVER THE
HOLE ... use the arm’s estimate of how far
it has traveled to predict the posl tion of
the screw. Try the boundary correlations
first. If they are found check for global
consistency . . . ie. that they are in the
correct relative positions (within
‘tolerances). If the screw is found in one
of the stereo views, backproject its
position into the other view and use that

to compute the prediction of where it is.

If it is found in both views compute its
relative 3-D position with respect to the
hole and decide the next move of the arm.
If ‘the screw is not found, continue to move
the arm in the same direction etc. as last
time. If the screw is lost for more than
two successive times or it is getting too
close to the hole, stop. It would also be

‘possible to stop the arm and concentrate

(D)

on re-acquiring the screw.

TRACK THE TOP OF THE SCREW UNTI L THE TIP
CAN BE IMPLIED TO BE IN THE HOLE . . . this
just means start the location process by
looking for features that are near the top
and ars lesslikely to be altered by being
near the hole.

A FANCIER SYSTEM

The aim of this ‘fancier’ verification vision system is to (1) reduce the amount of work
required of the user to accomplish a task and (2) increase the precision and reliability of the
final result. The simple structure system provides interactive tools so the user can
conveniently try out different operators and approaches. However, all of the decisions about
how good an operator is or what operator to try next are left up to the user. The fancier
system tries to automate some of these decisions. For example, instead of requiring the user
to point out the good features, the system tries to suggest and locate good features on its own.
This section presents a list of potentially automated subtasks and discusses some of the key

implementation issues.

SUGGEST GOOD FEATURES

Probably the easiest way of automatically determining ‘good’ operators is to scan an
‘interest’ operator over a training picture. This is often done to find good correlation points.
The interest operator tries to determine how distinct the local region is and estimate how
well a correlation patch would work there. Quam, Hannah, and Moravec all have their
favorite interest operators for correlation (see [QUAM]J and [HANNAH]). They range from
variance operators to simple corner operators and from the analysis of autocorrelation
characteristics to an analysis of the directional information. But they all produce the same
result: a list of ‘good’ correlation points to be used to locate corresponding, points in a new
picture of the Scene.

Notice that these correlation points are NOT necessarily associated with parts of an
ob ject or points in, a model of an object. They are simply visually distinct portions of the
picture. The rest of the system has to know what to do with the matches after they have
been found. If the task is to navigate down a road, the matches could be used to determine
how far the vehicle has moved from one picture to the next (assuming that the world is

static and that the apparent change in the position of the points is due to the’ vehicle’s

motion). Within the programmable assembly environment the user may want to identify each
‘good’ correlation operator with the corresponding point on the model of the ob ject, ie. the
point on the object that appears in the picture at the center of the correlation patch. In this
way, after the matching correlation points have been found, the system would know what
parts of the object have been located and thus be able to compute a new estimate for the
object’s position.

It would be possible to do something similar to find good ‘extended’ features such as
lines or regions, but it might require much too much work to find a ‘good’ long line by

—e4beee

checking every possible match that an edge operator might find in a picture. It makes much
better sense to start with some idea of what feature will-appear and where. Then itis a
matter of locating the feature and checking it out. But there is a catch: where do the
predictions of good features come from? They come from the model of the ob jects. Thus,
" instead of scanning a training picture, the interest operator could scan a synthetic picture of
the expected scene and suggest features to be considered. The synthetic picture could be
simply a hidden-line view of the scene or a complet;. synthetic color picture. Thus, to find
good line features an operator might scan the line drawing for lines of a certain length and
then check the expected contrast across the edge by looking at the corresponding point in the
synthetic grey-scale picture. Similarly, corners in the line drawing could be suggested as good
points for correlation.

The process of finding good features to be used in scanning real scenes can be
characterized as follows:

(a) Build a model of the objects
(b} Place the_ rea! objects at their planned position on the
table
(c) Take a training picture
(d) Symbolically place the models at their planned position
with respect to the camera
(e} Produce the expected hidden-line view of the scene and
the complete, synthetic picture
(f) Have the interest operators wander around the line
drawing and synthetic picture picking out potentially
good features
(g) Locate the feature in the training picture
(h) Determine the thresholds for the operator (from the
actual picture data)
. and (i) Decide whether or not the feature is good enough
The success and generality of this approach depend upon several capabilities: the
modelling system, the hidden-line procedure, the synthetic picture generator, the ability to
locate a suggested feature, and the method of describing interesting features. Each one of
these’ tasks is a formidable task indeed. There are partial solutions to all of them. 'As better
solutions are found they can be incorporated into the system. Until then the user can take up
the slack. The user will have to be around for a while anyway to make sure that the process
is proceeding as planned. In particular she may have to make sure that the right features are

being located to match the ones suggested by the automatic system.

Even though the objects are supposed to be in a planned position there are several
reasons why the synthetic picture may be incorrect: an incorrect calibration of the-camera to

..

the table, inadequacies in the light model which produces the expected brightnesses, an
incorrect placement of the object, slight variations in the object with respect to model, and
noise. Thus, step (g) is a verification problem itself. The only difference between it and the
original problem is that the positions of the objects should be better known (since the object
is at its planned position). The result of steps (g) and (h)can be thought of as a secondary
calibration of the camera and the synthetic picture generator. These steps determine the final
corrections for the position and appearance of an object.

Many of the ob jects which appear in programmable assembly tasks are composed of
machined or cast parts. Cylindrical components (eg. shafts and holes) are common.
Cylindrical components. are important because the angular uncertainties of an ob ject are
often aligned with the axis of one its cylinders and this means that the image of the cylinder

“will contain an invariant curve (ie. an ellipse). Recall that invariant curves are convenient
features for verification vision. The point is that in order to predict curves as features the
modelling system has to be able to model curved surfaces.

There are various systems for representing curved surfaces (see computer-aided design
articles), but they are probably too complex for this type of system. There are, however, a
few simpler ways of including curves. One way is to extend the model to allow cylindrical
surfaces in addition to the usual planar surfaces. Unfortunately the hidden-line algorithms
do not handle cylindrical parts directly. A possible way around this is to have the system
maintain a symbolic model of an object which associates a type with each component.
Whenever the hidden,-line algorithm is needed, the cylindrical parts can be approximated by
several planar facets. If the algorithm keeps track of where the various points and lines in
the predicted image come from, it might end up with a series of points that all belong to the
end of a cylinder. An ellipse can be fitted through these points to produce a reasonably
accurate 2-D image of the end of the cylinder. The resulting ellipse can be used as a feature.
Notice that this approximation process is NOT limited to cylinders and ellipses. As long as
the hidden-line algorithm can identify a series of points that belong on a smooth, connected
curve, it would be possible to spline them together to produce a reasonably accurate estimate
of how the real curve would appear in the picture.

The upshot of this section is that it is possible for the system to predict and locate
features itself.
SEARCH PATTERNS

The basic system included a subsystem which could produce the tolerance region about
a feature point. That is, it could outline the portion of the screen where the feature might

S, -

appear. In order to find the feature this region would be searched. As mentioned earlier
there are several techniques for searching such a region. The choice of which technique or
combination of techniques to use in any particular situation is relatively complex. It depends
upon the type of feature being looked for, the size of the feature, the expected distribution of
appearances in the region, the cost of generating the next trial position, and the size and
shape of the region. This choice is especially important for extended features because their
main potential advantage is that they are larger and supposedly easier to find.

Consider the case that the tolerance regions are rectangular (as shown in figure 13).
Figure 13a shows a line segment and the tolerance region about its center. The goal is to
design an efficient search strategy to find a point on the segment. First notice that a search
that is restricted to the rectangle must include two of the corners (see figure 13b) because
they are the only points on the segment that intersect the rectangle. Also notice that the
‘extendedness’ of line segment is maximized when the search is perpendicular to the segment.
Keeping these two ideas in mind a reasonable start might be the linear search shown in
figure 13¢c. The dashed region indicates the portion of the screen where the center of the
segment. could be and-still have this search intersect the segment. Figure 13d shows the
results after adding a similar search from the other critical corner. Figure 13e includes a
third search to cover most of the middle. Unfortunately there are several small areas which
are still not covered. That is, if the center of the segment happens to be in one of them, the
three searches suggested so far will NOT find a point on the segment. One solution is to add
several short searches as shown in figure 13f. Another solution is to forget about the
restriction of staying within the rectangle and extend the existing three searches to cover the’
small areas. This is shown in figure 13g. Notice, however, that the region of possible
confusions should be based upon the larger, dashed region.

Figure 14 showsa very simple method for automatically generating a reasonable
search. The expected orientation of the segment is used to decide whether horizontal or
vertical scans are more efficient and then a series of these are pieced together to cover the
whole region, If one assumes that the closer a point is to the expected position of the segment
the higher the probability is that the segment is there, the searches can the ordered by their
distance from the expected position of the center of the segment (see figure 14f).

Some curve segments can be treated in a similar manner. Figure 15a shows such a
segment. The maximum chord of the segment and its perpendicular bisector are shown in
figure 15b. The tolerance region is about point A. Figure 15¢ shows the portion of the screen
that is covered by the vertical search. Figure 15d shows the suggested search.

There are similar, crude methods for deciding where one should look to find a point
in a region. Figure 16 shows one possibility. Figure 16b shows the largest inscribed rectangle

~48---

T R R
(. —_—— e N]
(8)

(b)

(a)

LA
B\
A\
‘{\!

Figure 13.

4.

e e N o -

(b)

(a)

A\

(d)

oo —— ——— a— ——

R

()

|

J

&= — -

dl

M e —

i

A

W

(£)

Figure 14.

(e)

50-oe

(b)

(a)

A

N4

14

(d)
Figure 15.

Y -

() (d)

Figure 16.

within the region. The center of the rectangle is used as the feature about which a tolerance
region is constructed (see figure 16c). The tolerance region is simply ‘tiled over’ with these
rectangles and their centers are ordered to form a search (see figure 16d).

These techniques assume that the major effect of the uncertainties on the ob ject is
translational. Any effects due to angular uncertainties can be covered by checking for the
least beneficial orientation of the segment and using an appropriately conservative estimate
for the portion of the screen covered by one linear scan.

The important point of this section is that there are ways for the system to
automatically set up its own search techniques.

CHARACTERIZE THE BENEFIT OF LOCATING A FEATURE

There are two main benefits of locating a feature: (1) a decrease in the uncertainty
about the ob ject’s position and (2) an increase in the confidence that the correct features are
being located. The basic system and the simple structure system concentrated on the first.
The user was responsible for the second. The earlier systems provided a unified system of
tolerances and tools for acquiring the necessary information. There was no similar system for
confidences. The user had to decide for himself whether the features were consistent or not
and whether another feature should be located just to make sure.

Even though the earlier systems provided tools for gathering tolerance information,
they did NOT automatically determine the parameters required by the tools. For example,
the simple structure system did not automatically decide how much tolerance information is
gained about one feature by locating another feature. The user had to decide what the
extreme cases were and then combine the range of possibilities into an implied tolerance
region for feature two from feature one. This process is a candidate for automation. It
essentially requires a method of representing a range of scenes, in particular, the range of

scenes which are possible, given a set of constraints on the objects in a scene. This is rather

. difficult. It can be approximated by a method which decides the values of the constraints
which determine the extremes of a tolerance region and an assumption that the scenes
change smoothly from one extreme to the next. The synthetic scenes which correspond to the
extremes could be generated and analyzed to produce the implication tolerances from one
feature to the next.

Notice, however, that this is still an approximation. It is quite different from the

following ‘optimum’ process:
(1) Combine the current constraints on the position of the object to

---58---

produce the expected tolerance region about the next feature to be
looked for. -

(2) Locate the feature or part of the feature.

(3) Use the location information to produce another constraint on the
position of the object. For example, an edge point on a line should
produce a constraint which says something like: edge such-and-such
of the object must intersect the 3—D”ray which starts at the lens
center and passes through the appropriate point in the image
plane, and the edge must project into a line with an orientation of
X ty. In fact, instead of intersecting a ray, the constraint should
really be an intersection with a narrow cone centered about the ray
and whose width is determined by the position uncertainty of the
edge operator.

(4) Use the expanded list of constraints to produce the tolerance region
about the next feature, etc.

Unfortunately, this requires a very sophisticated constraint system.

In order to automate the concept of confidence a unified system of confidences would
have to be set up in such a way that each operation on a picture would be accompanied by
an appropriate confidence computation. Each attempt at locating a feature would cause a
reaction within the tolerance system and a reaction within the confidence system. Such a
confidence system would require each operator to report its degree of certainty that it found
what it was looking for. This information could be integrated with the position information
to decide the consistency of a set of features and even possibly indicate which feature is the

least consistent if the whole set appears to be inconsistent.

A NETWORK OF FEATURES INSTEAD OF AN EXPLICIT PROGRAM

So far the system has been provided with tools for automatically choosing potential
features, setting the operators’ thresholds, determining the expected reduction in tolerances,
and_ increasing the confidence in the location process. There is one major area left which
needs to be incorporated before the system can automatically decide which feature to look for
next, This is the cost information. If the system could predict the expected cost of a search, it
could carry out a complete cost/benefit analysis to determine what to do next.

One simple approach to cost is to equate the cost of an operation with the amount of
computer time required to do the operation. Thus, in order to decide the expected cost of a
search for a feature the system would have to be able to determine the expected number of
tries and the cost per try. This is relatively straightforward.

w54

A more complete strategist would have to take into account the amount of core
required by the various operators, the amount of time spent in the strategy module, the
expected amount of real time (for focusing or changing lenses), etc. Feldman and Sproull
have recently made an interesting formulation of this problem (see [FELDMAN]).

Notice that once the system can decide what to do next, there is no longer any need for
an explicit program. The verification vision program reduces to a network of features and
the system takes the form of an interpreter which looks at the network of features and
decides what to do. For example, the interpreter might decide that it needs more position
information and so it suggests locating a point on the bottom of the shaft, or it may decide
that it needs to boost the overall confidence, so it suggests locating a point on the other side
of the shaft. Another possibility would be to invoke the strategist in such a way that it
‘compiles’ a program from one of these networks. The program would be set up to handle
explicitly the various situations which might arise, just like the user’s program was supposed
to do within the simple structure system. The strategist would have to be able to simulate
different situation% and construct a plan which covered a range of possibilities.

A SYSTEM FOR DESCRIBING FEATURES

Ideally there should be language for describing new operators, their costs, weaknesses,
what types of features they find, etc. In this way whenever a new operator has been
perfected it could be easily added to the system. A similar facility should exist for all parts of
the system, including features and searches. This requires a higher level of understanding, It
is one thing to be able to use various operators. It is something else to be able to systematize
their properties in such a way that new operators can be completely described within the

system.

A SUMMARY OF THE FACILITIES NEEDED TO IMPLEMENT THESE IDEAS:

, A 3-D MODELLING SYSTEM WHICH INCLUDES
SURFACE INFORMATION SUCH AS REFLECTANCE . . .
IT SHOULD ALSO BE ABLE TO MODEL SOME
CURVED SURFACES, EVEN IF THEY HAVE TO BE
HANDLED INDIRECTLY

A LIGHT MODEL . . . IE. A POSITION AND INTENSITY
OF THE LIGHT SOURCE

=55

A HIDDEN-LINE ELIMINATION METH

A CURVE FITTING ROUTINE . . . EG. SPLINE
PACKAGE

A SYNTHETIC GREY-SCALED PICTURE GENERATION
METHOD

A SET OF °‘INTEREST’ OPERATORS TO SCAN THE
WIRE-DIAGRAM PICTURES AND SYNTHETIC
PICTURES IN ORDER TO LOCATE POTENTIALLY

USEFUL FEATURES

A METHOD FOR AUTOMATICALLY SETTING UP A
SEARCH PATTERN

A REPRESENTATION FOR A RANGE OF SCENES

A METHOD FOR AUTOMATICALLY DETERMINING
‘IMPLICATION REGIONS’ FROM ONE FEATURE TO
ANOTHER

A METHOD TO DETERMINE THE CONSTRAINTS
THAT APPLY AT THE EXTREMES OF A TOLERANCE
REGION

- A SOPHISTICATED CONSTRAINT LANGUAGE AND
RESOLVING SYSTEM

A SYSTEM OF CONFIDENCES
A SYSTEM OF COSTS

A NETWORK’ OF FEATURES (INSTEAD OF AN
EXPLICIT PROGRAM)

AN INTERPRETER WHICH CAN DO A COST/BENEFIT
ANALYSIS TO DETERMINE WHAT SHOULD BE DONE
NEXT -

A METHOD TO CONVERT A NETWORK OF
FEATURES INTO A COMPILED PROGRAM WHICH
HANDLES THE NECESSARY RANGE OF POSSIBILITIES

A DESCRIPTIVE SYSTEM FOR OPERATORS,
FEATURES, SEARCHES, ETC.

An example protocol:

TASK: LOCATE A WHEEL HUB (SEE FIGURE 17A) ---
ASSUME THAT THE HUB IS THE REAR WHEEL
HUB ON A CAR MOVING DOWN AN ASSEMBLY
LINE. THERE IS A TRIP SWITCH THAT
TRIGGERS THE CAMERA FOR EACH CAR ON
THE LINE. HOWEVER, THE SWITCH IS ONLY
ACCURATE TO WITHIN %5 INCHES (IE. THE
POSITION OF THE HUB ALONG THE ASSEMBLY
LINE IS KNOWN ONLY TO WITHIN 15 INCHES
WHEN THE PICTURE IS TAKEN). THE PLANE OF
THE HUB IS KNOWN BECAUSE THE CARS ARE
ALL POSITIONED ON THE LINE THE SAME.

GOAL: LOCATE THE CENTER OF THE HUB TO
WITHIN #t1/10th INCH AND DETERMINE THE
ROTATION ABOUT THE CENTER TO WITHIN
+2 DEGREES --- ASSUME THAT THESE ARE THE
REQUIREMENTS NEEDED TO ASSEMBLE THE
WHEEL ONTO THE HUB. GIVEN THE TIME
THAT THE PICTURE WAS TAKEN, THE SPEED
OF THE LINE, AND THE POSITION OF THE HUB
IN THE PICTURE, THE SYSTEM CAN FIGURE
OUT WHERE THE ARM MUST GO TO TRACK
THE HUB AND ASSEMBLE THE WHEEL.

The first subtask is to determine the position of the camera and check the potential
resolution. The camera must have a wide enough view of the scene to see several features no
matter where the hub may be (within its constraints) and yet the resolution of the individual

eebeee

3

i alagdor et it
g K¥* N,
:.-.jp__ﬁ ?.__1_‘:,-.]

d
o
2777
//
%
|
&
V2ol
(4/
I

Figure 17.

“‘58"‘

RN
AN RN

pixels must be great enough to produce the desired precision of £1/ 10th inch. If we assume
that the operators and computations are precise enough to locate a point in an image to
within 1/2 a pixel, the resolution of one pixel must be at least 1/5th inch.

The next question is how much of the scene should be in view. There are two steps
involved in answering this: (1) what features should be in view and (2) what is the portion
of the scene that includes the ‘union’ of their tolerance regions. To answer these questions a
model of the object should be built (eg. see figure 18) and the constraints on the ob ject
should be stated (eg. the plane of the hub is parallel to the XZ plane of the work station, the

rotation axis of the object is parallel to the Y axis of the work station, the center of the shaft
may, fluctuate along the X-axis by £5 inches and along the Z-axis (of the work station) by %1
inch). The rotation constraint can be reduced to +36 degrees without lose of generality
because of the symmetry of the five bolts. The user can then point out portions of the model
that should be’ seen (eg. the center of the shaft, a couple of lug bolts, and a part of the
medium-sized curve). This’ is just a rough indication of what should be in the picture. The
automatic system will later decide which features are actually needed.

After the features have been pointed out the system can produce the tolerance regions
about them. The tolerance region for the center of the shaft is shown in figure 17b. Figures
17¢ through 17e develop the tolerance region about the top bolt. All of the tolerance regions
can be combined to produce the total region which should be in view (see figure 17f). In
order to cover this region which is approximately 16” by 4” and still achieve the necessary
precision, the image. must be at least 320 pixels by 80 pixels. If such a camera is available,
everything is fine. The position of the camera can be computed from this information.

However, if the only cameras available have 200 by 200 images, two of them could be
used to take slightly overlapping pictures which could be patched together to form a 360 by
160 picture (see figure 19a). The alignment between the two cameras presents an interesting
verification vision problem in itself. If the user positions the two cameras so they are
approximately aligned, the system could automatically refine the alignment as follows:

(1) Take a picture with each camera

(2) Scan the correlation interest operator over the portion of one
picture which is expected to overlap the other picture. This will
produce a list of interesting correlation patches (see figure 19b).

(3) Locate these correlation patches in the second picture (see figure
19¢).

(4) The differences between the two pictures may appear as an XY
displacement, arotation, and/or a scaling. Use the matching pairs
to determine these values.

-=eh9...

50—

T I S T —

T

—— W - cwwy A —m. wn v

e S amnar aoow ame— m——

— e e Gwvar amm VR W WA e e v m—n o e gm—.

X e
XX ___

b

(b)

(d)

Figure 19.

~6]--

(5) If the rotation or scaling is significant, the user should try to '
improve the position of one camera and try the process again.

(6) When the rotation and scaling are almost the same, the two images
can be logically combined into one, larger image (see figure 19d).

This relatively simple procedure would align the two cameras well enough to produce
one picture which can be searched for features. The final calibrations of the cameras and
the position computations should be done separately to maximize the precision.

At this point assume that there is one large image available. The system could then
AUTOMATICALLY generate synthetic images, pick out potential features, produce their
tolerance regions, set up searches, and check for possible confusions. For example, the model
would predict, a set of invariant curves (ie. the small, medium, and large ones shown in the
figure 20a). Figure 20b shows the tolerance region about one point on the medium-sized
curve. Notice that its tolerance region is smaller than might be expected because the curve is
invariant, which means that the rotation uncertainties do not affect the size of the region.
The suggested search --is shown in figure 20c. Figures 20d through 20f develop the
implication region about the center of the shaft which can be made by finding a point on
the curve. Figure 20d shows a linear search which has located an edge point with a certain
slope. The arrow marks the point on the curve with that slope. Since the edge operator only-
. returns approximate slopes (eg. £5 degrees) the actual matching point may be any place
within the range shown in figure 20e. There is a similar position uncertainty. These combine
to produce the implication region for the center of the shaft shown in figure 20f.

A similar calculation produces the implication region for one of the bolts (see figure
20g). If the system were very smart it would notice that the uncertainty of the edge operator
and the unknown rotation of the hub could be combined in a more compact way as shown
in figure 20h. This would mean that locating one point on the circle could essentially

eliminate the linear uncertainties in X and Y.

After analyzing the potential features the system would have a small network of
features, the operators to use, their thresholds, the searches to use, and the implications to be
made. For this problem the network would probably include curve segments and correlation
operators to find the bolts. The system could then simulate the complete location process and
doublecheck to make sure that the desired tolerances can be produced from the available

features.

—62---

I
I
|
!
|
|
(I

=

(d)

=1

(£)

(e)

Figure 20.

~B83---

THE IDEAL SYSTEM

The ideal system would not contain any new types of capabilities. But all of its
subsystems would be ‘complete.” For example, it would have a full range of features, such as
textured regions and color. It would have a complete language for describing 2-D and 3-D
constraints and the constraint solver to go with it. Its object modelling system would be able
to handle any complex, textured surface and a synthetic picture routine to produce the
corresponding pictures.

Such a system could play a major role within a general assembly strategist. If a user
wanted to program the work station to place a bearing and seal on a shaft, he would have to
do two things: (1) design the object models and (2) describe the task. Hopefully there would
be a direct way of using the computer-aided design information as the basis for a model.
After the designer has completed a design he could ship the information to the
manufacturing engineer. In the case that there isn’t any CAD information for a part there
should be a descriptive vision system which builds a 3-D model from several views of the
object. In effect this would do most of the geometry required and possibly some of the light
reflectance calculations. The user would have to associate names and symbolic descriptions to
any particular features he wanted to use in the task description.

The task description would be given in a “strategist’s” language. The amount of detail
required would be determined by the smartness of the strategist. For example, if the
strategist were very smart it would know about bearings, seals, shafts, etc. and know that it
would be useful to slip a sleeve over the end of the shaft. The sleeve would protect the seal
and make the assembly easier for the arm. If the system didn’t know this much, the user
would have to suggest the use of the sleeve.

Assuming that the system knows about slipping things over other things, it would
know that one of the most critical parameters is the relative tolerance between the parts. -
Therefore, it would check the diameter of the shaft and the inside diameter of the sleeve
and combine them with the precision of the arm to decide if dead-reckoning is sufficient to
make the alignment. Assume it is not. Then the strategist needs to decide on a type of
feedback. Since there is nothing to touch or push as the sleeve is being positioned off the
end of the shaft, visual feedback is probably the best alternative.

The strategist could even decide where the cameras should be. To do this it would
have to take into account the necessary resolution, the other objects in the work station, and
the room needed by the arms to perform the assembly. Once that has been done the
verification vision system could be called to make sure that there were enough features:

visible to locate the necessary objects.

The ideal system minimizes the work required of a user and maximizes the reliability
of the result. It “understands” assembly operations, tools, parts, tolerances and feedback. It
knows about costs, mistakes, and confidences. And finally it can act as a part of an overall
strategist that provides the user with a high-level task description language. The ideal system
is, indeed, ideal.

J YT

LIST AND DISCUSS THE SEMANTIC SYSTEMS

The purpose of this section is to present a complete list of the desired capabilities and
briefly discuss some of the unsolved problems. The complete list is presented as a
comprehensive collection of the capabilities required by verification vision and to impress
the reader with the magnitude of the problem. The list is reordered and regrouped by topic
for the short discussions about the current status of work on some of the harder problems.

THE COMPLETE LIST OF CAPABILITIES

(from the basic system)

CAMERAS AND A METHOD FOR CALIBRATING THEM WITH
RESPECT TO THE TABLE (OR OTHER OBJECTS)

A REPRESENTATION FOR 2-D TOLERANCE REGIONS
A METHOD OF SEARCHING A 2-D TOLERANCE REGION

A METHOD TO COMPUTE A 3-D POSITION FOR A FEATURE GIVEN
TWO SETS OF COORDINATES FROM STEREO VIEWS

METHODS TO DETERMINE THE EXPECTED PRECISION OF A
MONOCULAR OR STEREO LOCALIZATION

A SYSTEM FOR 3-D POINT MODELS OF OBJECTS

METHODS TO DETERMINE THE BEST ESTIMATE FOR THE NEW
POSITION OF AN OBIJECT GIVEN THE IMAGE COORDINATES FOR
SEVERAL FEATURES (BOTH 2-D AND 3-D)

AN INTERACTIVE SYSTEM FOR SETTING UP RELIABLE
CORRELATION OPERATORS AND INDICATING THE MATCHING
FEATURE ON THE 3-D POINT MODEL OF THE OBJECT (THE
CORRELATION SYSTEM MIGHT INCLUDE AN AUTOMATIC WAY
OF SETTING THE THRESHOLDS REQUIRED TO DECIDE IF THERE
IS A MATCH OR NOT)

A SYSTEM FOR DESCRIBING CONSTRAINTS
A REPRESENTATION FOR TOLERANCE VOLUMES

A METHOD FOR PRODUCING THE TOLERANCE VOLUME FROM A
SET OF CONSTRAINTS

A METHOD FOR PRODUCING THE CORRESPONDING 2-D
TOLERANCE REGION IN AN IMAGE FOR A TOLERANCE VOLUME

A METHOD FOR PRODUCING THE 2-D REGION TO BE SCANNED
FOR POSSIBLE CONFUSIONS

(from the simple structure system)

A VARIETY--. OF “EXTENDED” FEATURES: LINES, CURVES, &
REGIONS --- 2-D REPRESENTATIONS FOR THEM (NOT 3-D CURVED
SURFACE MODELS . .. REMEMBER THAT THE BASIC ASSUMPTION
OF THE SIMPLE STRUCTURE SYSTEM IS THAT 2-D FEATURES AND
TOLERANCE IMPLICATIONS ARE SUFFICIENT . . . 3-D IS ONLY USED
TO COMPUTE THE ACTUAL LOCATION OF AN OBJECT)

OPERATORS TO LOCATE PARTS OF THESE FEATURES . . . EG. EDGE
OPERATORS WHICH CAN LOCATE A POINT ON A LINE OR A
CURVES, TEXTURE OPERATORS, ETC."

AN INTERACTIVE WAY OF DETERMINING THE VARIOUS
THRESHOLDS AND LIMITS ASSOCIATED WITH THESE
OPERATORS

SEVERAL SEARCH STRATEGIES TO CHOOSE FROM . . . EG. SPIRAL,
LINEAR, & RANDOM

AN INTERACTIVE WAY OF SETTING UP AND EVALUATING
SEARCH STRATEGIES TO LOCATE A PARTICULAR FEATURE

METHODS TO DO LOCAL CHECKING ABOUT EDGE POINTS,
CORRELATIONS, AND REGION POINTS

6

A 2-D SYSTEM FOR PREDICTING THE RANGE OF POSITIONS FOR A
FEATURE ONCE ANOTHER FEATURE HAS BEEN FOUND

A FORM FOR VERIFICATION VISION PROGRAMS

(from the fancier system)
A 3-D MODELLING SYSTEM WHICH INCLUDES SURFACE
INFORMATION SUCH AS REFLECTANCE . . . IT SHOULD ALSO BE
ABLE TO MODEL SOME CURVED SURFACES, EVEN IF THEY HAVE
TO BE HANDLED INDIRECTLY

A LIGHT MODEL . .. IE. A POSITION AND INTENSITY OF THE LIGHT
SOURCE

A HIDDEN-LINE ELIMINATION METHOD

A CURVE FITTING ROUTINE . . . EC. A SPLINE PACKAGE

A SYNTHETIC GREY-SCALED PICTURE GENERATION METHOD

A SET OF ‘INTEREST’ OPERATORS TO SCAN THE WIRE-DIAGRAM
PICTURES AND SYNTHETIC PICTURES IN ORDER TO LOCATE

POTENTIALLY USEFUL FEATURES

A METHOD FOR AUTOMATICALLY SETTING UP A SEARCH
PATTERN

A REPRESENTATION FOR A RANGE OF SCENES

A METHOD FOR’ AUTOMATICALLY DETERMINING ‘IMPLICATION
REGIONS’ FROM ONE FEATURE TO ANOTHER

A METHOD TO DETERMINE THE CONSTRAINTS THAT APPLY AT
THE EXTREMES OF A TOLERANCE REGION

A SOPHISTICATED CONSTRAINT LANGUAGE AND RESOLVING
SYSTEM

A SYSTEM OF CONFIDENCES
A SYSTEM OF COSTS
A NETWORK OF FEATURES (INSTEAD OF AN EXPLICIT PROGRAM)

AN INTERPRETER WHICH CAN DO AMCOST/BENEFIT ANALYSIS TO
DETERMINE WHAT SHOULD BE DONE NEXT

A METHOD TO CONVERT A NETWORK OF FEATURES INTO A
COMPILED PROGRAM WHICH HANDLES THE NECESSARY RANGE
. OF POSSIBILITIES

A DESCRIPTIVE SYSTEM FOR OPERATORS, FEATURES, SEARCHES,
ETC.

REORDERED BY TOPIC

MODELLING
(from the basic system)
A SYSTEM FOR 3-D POINT MODELS OF OBJECTS

AN INTERACTIVE SYSTEM FOR SETTING UP
RELIABLE CORRELATION OPERATORS AND
INDICATING THE MATCHING FEATURE ON THE
3-D POINT MODEL OF THE OBJECT (THE
CORRELATION SYSTEM MIGHT INCLUDE AN
AUTOMATIC WAY OF SETTING THE
THRESHOLDS REQUIRED TO DECIDE IF THERE IS
A MATCH OR NOT)

(from the simple structure system)
A VARIETY OF “EXTENDED” FEATURES: LINES,
CURVES, & REGIONS --- 2-D REPRESENTATIONS
FOR THEM (NOT 3-D CURVED SURFACE MODELS
.. REMEMBER THAT THE BASIC ASSUMPTION OF
THE SIMPLE STRUCTURE SYSTEM IS THAT 2-D
FEATURES AND TOLERANCE IMPLICATIONS ARE
SUFFICIENT .. 3-D IS ONLY USED TO COMPUTE

—~-69---

THE ACTUAL LOCATION OF AN OBJECT)

(from the fancier system)
A 3-D MODELLING SYSTEM WHICH INCLUDES
SURFACE INFORMATION SUCH AS REFLECTANCE
.. IT SHOULD ALSO BE ABLE TO MODEL SOME
CURVED SURFACES, EVEN IF THEY HAVE TO BE
HANDLED INDIRECTLY

A LIGHT MODEL . .. IE. A POSITION AND
INTENSITY OF THE LIGHT SOURCE

A HIDDEN-LINE ELIMINATION METHOD

. A CURVE FITTING ROUTINE . . . EG. A SPLINE
PACKAGE

A SYNTHETIC GREY-SCALED PICTURE
GENERATION METHOD

A SET OF ‘INTEREST’ OPERATORS TO SCAN THE
WIRE-DIAGRAM PICTURES

A REPRESENTATION FOR A RANGE OF SCENES

A NETWORK OF FEATURES (INSTEAD OF AN
EXPLICIT PROGRAM)

This list contains several capabilities which are only partially understood: 3-D
modelling, light models, visual features, and ranges of scenes. The general idea is that the
verification vision system will be based upon the currently available techniques and will be
expanded to incorporate new techniques as they are perfected. Three-dimensional modelling
is a typical example. The basic system and the simple structure system only use 3-D point
models of the objects in the scene. When some of the ideas about ‘affix structures’ and
curved surfaces have been better developed they will be included. There are several people
working on these ideas: (see [FINKEL], [TAYLOR], [LIEBERMAN] [AGIN],
[NEVATIA] [MIYAMOTO) [BAUMGART] [COONS], [GORDON], and [GOULD]).

Light modelling and synthetic picture generation techniques are currently being
developed to produce high quality pictures of scenes containing curved ob jects (see

B [)

[GOURAUD] and [RIESENFELD]). The resulting pictures look good to people, but there
are a number of reasons why such pictures are NOT accurate predictions of actual images.
The techniques either do not handle or only partly handle the following: (I) several light
sources, (2) indirect, lighting, (3) shadows, or (4) textured surfaces. Horn has recently
published a collection of the more theoretical ideas concerning light intensities and how they
should be treated (see [HORN1975)).

There is currently no way to represent “all possible views of a scene” given the set of
ob jects in the scene and a set of constraints on those ob jects. The idea is to produce the
“range of pictures” and scan it for interesting features, possible confusions, and abrupt
changes caused by occlusions. A linear movie is not enough. The constraints often produce a
multi-dimensional set of possible images. It may be possible to approximate such a range
with a set of linear sub-ranges.

VISUAL OPERATORS
(from the basic system)

AN INTERACTIVE SYSTEM FOR SETTING UP
RELIABLE CORRELATION OPERATORS AND
INDICATING THE MATCHING FEATURE ON THE
3-D POINT MODEL OF THE OBIJECT (THE
CORRELATION SYSTEM MIGHT INCLUDE AN
AUTOMATIC WAY OF SETTING THE
THRESHOLDS REQUIRED TO DECIDE IF THERE Is
A MATCH OR NOT)

(from the simple structure System)

A VARIETY OF “EXTENDED” FEATURES: LINES, -
CURVES, & REGIONS --- 2-D REPRESENTATIONS
FOR THEM (NOT 3-D CURVED SURFACE MODELS

.. REMEMBER THAT THE BASIC ASSUMPTION OF
THE SIMPLE STRUCTURE SYSTEM IS THAT 2-D
FEATURES AND TOLERANCE IMPLICATIONS ARE
SUFFICIENT .. 3-D IS ONLY USED TO COMPUTE
THE ACTUAL LOCATION OF AN OBJECT)

OPERATORS TO LOCATE PARTS. OF THESE
FEATURES . . . EG. EDGE OPERATORS WHICH CAN
LOCATE A POINT ON A LINE OR A CURVES,
TEXTURE OPERATORS, ETC.

T

AN INTERACTIVE WAY OF DETERMINING THE
VARIOUS THRESHOLDS AND LIMITS
ASSOCIATED WITH THESE OPERATORS

METHODS TO DO LOCAL CHECKING ABOUT
EDGE POINTS, CORRELATIONS, AND REGION
POINTS

(from the fancier system)
A DESCRIPTIVE SYSTEM FOR OPERATORS,
FEATURES, SEARCHES, ETC.

There is a need for a wider variety of visual features and operators to find such
features. Some of the most useful would be operators which could grow textured regions
and/or locate boundaries between two textured regions. There are some promising
techniques being explored (eg. see [BA JCSY], [LIEBERMAN], and [MARRJ), but progress

has been slow.

There should be a general system for describing how effective an operator is under
certain conditions. Such a system could be used by a strategist to determine which operators
should be used. The problem of determining the effectiveness of an operator is closely
related to the automatic methods for setting thresholds for the operators. Such techniques are
available for some of the more common operators (see [BINFORD] and [QUAM]J), but
better characterizations are needed.

CONSTRAINTS
(from the basic system)
A REPRESENTATION FOR 2-D. TOLERANCE
REGIONS

A METHOD TO COMPUTE A 3-D POSITION FOR A
FEATURE GIVEN TWO SETS OF COORDINATES
FROM STEREO VIEWS

METHODS TO DETERMINE THE BEST ESTIMATE
FOR THE NEW POSITION OF AN OBJECT GIVEN
THE IMAGE COORDINATES FOR SEVERAL
FEATURES (BOTH 2-D AND 3-D)

7D

A SYSTEM FOR DESCRIBING CONSTRAINTS
A REPRESENTATION FOR TOLERANCE VOLUMES

A METHOD FOR PRODUCING THE TOLERANCE
VOLUME FROM A SET OF CONSTRAINTS

A METHOD FOR PRODUCING THE
"CORRESPONDING 2-D TOLERANCE REGION IN AN
IMAGE FOR A TOLERANCE VOLUME

A METHOD FOR PRODUCING THE 2-D REGION
TO BE SCANNED FOR POSSIBLE CONFUSIONS

(from the simple structure system)
A-2-D SYSTEM FOR PREDICTING THE RANGE OF
POSITIONS FOR A FEATURE ONCE ANOTHER
FEATURE HAS BEEN FOUND

‘(from the fancier system)
A METHOD FOR AUTOMATICALLY
DETERMINING ‘IMPLICATION REGIONS’ FROM
. ONE FEATURE TO ANOTHER

A METHOD TO DETERMINE THE CONSTRAINTS
THAT APPLY AT THE EXTREMES OF A
TOLERANCE REGION

A SOPHISTICATED CONSTRAINT LANGUAGE
AND RESOLVING SYSTEM

Two-dimensional constraints are relatively straightforward. The completely general
three-dimensional constraint solver, on the other hand, is extremely difficult. Thus, one of
the main concerns of this paper has been the approximation of 3-D constraints and their
implications by a 2-D constraint system. There are several theoretical questions about how
effective this can hope to be. The 2-D approximations are used to reduce the amount of
work required to locate important features. The better the approximations are, the less work
has to be done to find the features. The final positions are always calculated in 3-D.

8

There are a few people working on constraint systems for a limited class of constraints
(see [TAYLOR] and [AMBLERY]). They provide for constraints such as: plane P contacts
plane Q, cylinder C is in V-slot X, and point Y is in box B.

STRATEGIES

(from the simple structure system)
SEVERAL SEARCH STRATEGIES TO CHOOSE
FROM....EG. SPIRAL, LINEAR, & RANDOM

AN INTERACTIVE WAY OF SETTING UP AND
EVALUATING SEARCH STRATEGIES TO LOCATE
A ‘PARTICULAR FEATURE

A ‘FORM FOR VERIFICATION VISION PROGRAMS

(from the fancier system)
A METHOD FOR AUTOMATICALLY SETTING UP
A SEARCH PATTERN

A SYSTEM OF CONFIDENCES
A SYSTEM OF COSTS

A NETWORK OF FEATURES. (INSTEAD OF AN
EXPLICIT PROGRAM)

AN INTERPRETER WHICH CAN DO A
COST/BENEFIT ANALYSIS TO DETERMINE WHAT
SHOULD BE DONE NEXT

A METHOD TO CONVERT A NETWORK OF
FEATURES INTO A COMPILED PROGRAM WHICH
HANDLES THE NECESSARY RANGE OF
POSSIBILITIES

A DESCRIPTIVE SYSTEM FOR OPERATORS,
FEATURES, SEARCHES, ETC.

---14---

Another one of the basic questions about verification vision is “how can the system
take advantage of all of the information that is available?” This requires several subsystems
to handle various types of semantics, but it also requires some organizing principle which
encompasses the whole process. In the basic, system there is only a “fixed” strategy: find as
much as possible and solve for the new position. The simple structure placed the strategy
problem in the user’s lap. The user had to decide what to try to find, when, and what to do
if something is found. Both of these systems are only temporary solutions to the strategy
problem. The ultimate system will know about costs, constraints, and confidences and will be
able to determine a cost-effective plan for locating the desired ob jects. Feldman and Sproull
have developed one of the most comprehensive systems for this type of planning (see
[FELDMAN]). Other systems which do their own planning for visual processing are
[YAKIMOVSKY] and [GARVEY]

.

CONCILUSION

There were two main purposes for this paper: (1) distinguish a sub-class of visual
feedback tasks (in particular, verification vision tasks) and (2) characterize a set of
general-purpose capabilities which, if implemented, would provide a user with a system in
which to write programs to perform such tasks. The example tasks and protocols motivated
the various semantic capabilities which are needed within a verification vision system. The
four different levels of verification systems showed how these capabilities could be
incorporated into working systems. But there are several research questions which have to be
answered before such systems can be implemented. For example, ob ject modelling and
constraint solving are particularly interesting and virtually open-ended problems. In addition
there are several smaller problems whose solutions were only roughly sketched out. In
general the intuitive ideas need to be formalized and the heuristics need to be theoretically
analyzed and converted into algorithms (if possible).

The overall-goal of verification vision is to make visual feedback a viable alternative
within programmable assembly. It is intended to complement touch and force feedback
which are already reasonably well understood. Instead of writing a special-purpose program
from scratch for each visual feedback task, verification vision will offer a structured system
for programming visual feedback operations in a straight-forward way. The system will
know about the costs for different approaches, about the increase in confidence from finding
a feature, and about the reduction in tolerances as more and more information is gathered.
Visual feedback should become a standard part of programmable assembly systems.

16

BIBLIOGRAPHY

Agin, G. J. (1972], “Representation and Description of Curved Objects,"
Stanford Artificial Intelligence Project Memo No. 173, October 1372.

Agin, G. J. and Binford, 7. 0. [1973], “Computer Oescr ipt ion of Curved
Objects, " Proceedings of the Third International Joint Conference on
Artificial Intel | igence, Stanford, August 1973, 629-640,

Ambler, A. P. and Popplestone, R.J. [(1973], “Inferring the Positions of
Bodies from Specified Spatial Relationships,” Dept. of Machine
Intel | igence, University of Edinburgh, Edinburgh, Scotland.

Ba jcsy, R. [1873], “Computer Description of Textured Surfaces,” Proceedings
of the Third International Joint Conference on Artificial
Intel | igence, Stanford, Aug. 1973, 572-578.

Baumgar t, Bruce G. [1974a), “GEOMEO - A Geometric Editor," Stanford
Artificial Intelligence Project Memo No. 232, May 1974.

Baumgart, Bruce G.[1974b}, “Geometric Model ing for Computer Vision,” Stanford
Artificial Intelligence Project Memo No. 243, October 1974.

Binford, T. 0. [1975] “Optimizing the Hueckel Operator, " an internal
memorandum at the Stanford Artificial Intel | igence Project, December
1375.

Bolles, R. C. and Paul, R. (13731, “The Use of Sensory Feedback in a
Programmable Assembly System,” Stanford Artificial Intelligence
Project Memo No. 228, October 1373.

Coons, S. A. [1967], “Surfaces for Computer-aided Design of Space Forms,” MIT
Project MAC, MAC-TR-41, June 1967.

Oeuar, R., Lewis, N. R., Rossol,L., and Olsztyn, J. T. [1973], “An
Application of Computer Vision to Automatic Wheel Mounting,” The First
International Joint Conference on Pattern Recognition, October 1373.

Falk, Gilbert [1978], “Computer Interpretation of Imperfect Line Dataasa
Three-Dimensional Scene,” Stanford Artificial Intel | igence Project
Memo’ No. 132, August 1378.

Feldman, J. ‘A. and Sproul |, Robert [1974], “Decision Theory and Art ificial
wel?---

Intel I igence: An Approach to Generating Efficient Plans,” draft, July
1974.

Finkel.R-. Taylor, RQ,BO'IQS,RQCQ' Paul, R.' and Feldman, J.[1974]’HOAL'
A Programming System for Automation,” Stanford Artificial Intelligence
Project Memo No. 243, November 1374,

Finke!, .R., Taylor, R., Bol les, R. C., Paul, R., and Feldman, J. [1975],"An
Overview of AL, A Programming System for Automation,” Proceedings of
Fourth International Joint Conference on Artificial Intelligence,
Thi l isi, Georgia, USSR, September 1975, pp. 758 - 765.

Garvey, Thomas D. [1975], "PerceptualStrategies for Locating Objects in
Indoor Scenes, " Forthcoming Stanford PhD Thesis.

Gordon, W. J. a n d Riesenfeld, R. F. [1372], "Bernstein-Bezier Methods for
the Computer-aided Design of Free-form Curves and Surfaces,” General
Moters Research Publication GMR1176, March 1972.

Gould, S. S.[1972], “Surface Programs for Numerical Control,” Proceedings of
the Curved Surfaces in Engineering Conference, Cambridge 1972 pp
14-18.

Gouraud, Henr i [1971], “Computer Display of Curved Surfaces,” Universityof
Utah Technical Report, UTEC-CSc-71-113, June 1971.

Hannah, Marsha Jo [1874), “Computer Hatching of Areas in Stereo Images,”
Stanford Artificial Intel | igsnce Project Memo No. 239, July 1974,

Horn, Berthold K. P. (1978], “Shape from Shading: A Method for Obtaining the
Shape of a Smooth Opaque Object from One View,” MAC-TR-73, NIT,
. Cambr i dge, November, 1970,

Horn, BertholdK. P. [19751, "Image Intensity Understanding,” Massachusetts
Institute of Technology AID No. 335, August 1375.

Lieberman, Lawrence [1974), “Computer Recognition and Description of Natural
Scenes, " Moore School of Electrical Engineering Technical Report No.
74-08.

Lieberman, Lawrence |. and Wesley, M.A.[1975a], “The Design of a Geometric
Data Base for Mechanical Assembly,” IBM Research Paper No. RC 5483,
June 1975.

Lieberman, Lawrence . and Wesley, M. A. [1975b], "AUTOPASS: A Very High

a=a8---

Level Programming Language for Mechanical Assembler Systems,” IBM
Research Paper No. RC 5599, August 1975.

Harr, D,(1975], “ANALYZING NATURAL IMAGES: a computation theory of texture

vision,” HIT Artificial Intelligence LaboratoryMemo No. 334, June
1975°.
Hiyamoto, Eiichi and Binford, T.B. EI9751, “Display Generated bya-

Generalized Cone Representation,” Computer Graphics and I mege
Processing Conference, Anaheim, Ca., Hay 1975.

Nevatia, R. and Binford,T. 0. (19731, “Structural Description of Complex
Db jects," Proceed i ngs of the Third International Conference on
Artificial Intelligence, Stanford, August, 1973, pp. 641-647.

Quam, Lynn H.[1971], “Computer Comparison of Pictures,” Stanford Artificial
Intelligence Project Memo No. 144, Hay 1971,

Quam, Lynn H., Sidney Liebes, Jr., Robert B. Tucker, Marsha Jo Hannah, and
Botond G. Eross 119721, “Computer Interactive Picture Processing,”
Stanford Artificial Intelligence Project Memo No. 166, April 1972.

Quam, Lynn H. and Hannah, Marsha Jo [1974), “Stanford Automatic Photogrammetry
Research, " Stanford Artificial Intelligence Project Memo No. 254,
December 1974,

Riesenfeld, Richard [1973],"Applications o f B-spline Approximation to
Geometric Problems of Computer-aided Design," University of Utah
Technical Report UTEC-CSc-73-126,March 1973.

Shirai, Yoshiaki [1973], “A Heterarchical System for Recognition of
Pol yhedra," Artificial Intelligence, Vol. 4, No. 2, 1973.

Sobs!, Irwin [1978] , “Camera Models and Machine Perception,” Stanford
Artificial Intelligence Project Memo No. 121, Hay 1370,

Taylor, Russell H. [1975], “Assembly Robot Program Automation,” Forthcoming
Stanford PhD Thesis.

Tenenbaum, Jay H. (1978), “Accommodation in Computer Vision,” Stanford
Artificial Intelligence Project Memo No. 134, September 1970.

Thomas, Arthur J. and P ingle, Kar | [1974], “A Fast, Feature-Or ivenStereo
Depth Program,” Stanford Artificial Intel | igence Project Memo No. 248

July.1974,

9.

Yakimovsky, Y. [19733]‘. “Scene Analysis using a Semantic Base for Region
Growing, " Stanford Artificial Intelligence Project Memo No. 289,

Yakimovsky, Y. and Feldman, J. [1973b], ‘A Semantics-based Decision Theory

Region Analyzer," Proceedings of the Third International Joint
Conference on Artificial Intel | igence, Stanford, August, 1973, pp.
588'588-

weeB0-e

