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1. Introduction.

Consider the system xM = ¢ , where M is a nonsingular real-valued
n by n matrix, x 1s a one by n vector of variables, and c 1is a
one by n vector of constants. We wish to solve this system of equations
for x . In many applications, M is a large sparse matrix; that is,
M has many zero elements. If the system is solved using Gaussian
elimination or some other direct method, many of the zeros in M may
become non-zero. To make the solution process efficient, we would like
to avoid having to explicitly examine the zeros of M , and to keep the
number of non-zero elements small.

We can model the zero —non-zero structure of M by a directed
graph and study the effect of a solution method on this graph. This

graph-theoretic analysis has several important benefits, including

the following.

(1) For some sparse matrices, a graph-theoretic representation is a

good one, allowing efficient access of non-zero matrix elements.

(2) We can devise a good solution procedure for an entire class of
matrices (those with the same zero -non-zero structure) at a time.
If several matrices with the same zero -non-zero structure occur
in an application, then spending extra time initially to devise a
good solution procedure may result in later savings as the procedure
is reused.

(3) The approach illuminates the applicability of solution methods for

linear systems to other kinds of graph problems such as those

arising in global flow anayslis and operations research.

This paper surveys several graph-theoretic aspects of the solution of
linear systems. We consider several graph-theoretic methods for choosing a
good ordering scheme for Gaussian elimination. These include bandwidth
minimization, profile minimization, and general sparse techniques. We

" also discuss graph-theoretic block methods based on the strongly-connected
components and dominators of the underlying graph. Finally, we discuss

the problem of choosing a set of pivot positions for Gaussian elimination.



The paper contains seven sections. Section 2 introduces necessary
graph-theoretic notation. Section 3 discusses representation of a
system of linear equations as a graph, a decomposition method which uses
strongly connected components, and a graphical version of Gaussian
elimination. Section 4 discusses methods for choosing a pivot order.
Section 5 discusses a decomposition method using dominators. Section 6
discusses selection of a set of pivot positions. Section 7 contains
further remarks. Results in Sections 3, 4, and 6 are not new, though

some are as yet unavailable in print. Section 5 contains new results.

- 2. Graph-Theoretic Notation.

A directed graph G = (V,E) is a finite set V of n =|V|

elements called vertices and a finite set E € VxV of m = |E|
vertex pairs called edges. An edge of the form (i,i) is a loop.
If (i,j) €E if and only if (j,i) €E , we say G is symmetric.
(A symmetric directed graph corresponds to the undirected graph given
by making {i,j} an undirected edge if (i,j) €eE . We prefer to
use symmetric directed graphs instead of undirected graphs since they
correspond more closely to the computer representation of graphs.)

A graph G' = (V',E') is a subgraph of G if V' <V and
E'CE. If V"c V and G(V") = (V',E(V")) where
E(V") = {(1,3) €E| i, eV"} , then G(V') is the subgraph of G
induced by the vertex set V' . Similarly, if E" € E and
G(E") = (V(E"),E") where V(E") = {ieV | (i,J) ¢B" or &(j,i) eE"} ,
then G(E") is the subgraph of E induced by the edge set E"

A sequence of edges p = (vl,ve),...,(vk,vk+l) is a path from v,
By convention there is a path of no edges from every vertex

to vk+1 .

to itself. If vy = the path is a cycle. Every cycle contains

Vk+1
at least one edge. The path is said to contain vertices VirVps e s ¥y g

and edges (vl,vg), . (vk’vk+l) and to avoid all other vertices and
edges. If vy,Vp, -.e)Vy,y are distinct, except possibly v; = v, .
p is simple.



If there is a path from a vertex v to a vertex w , . v is
reachable from w . If every vertex in a graph G is reachable from

every other vertex, G 1s strongly connected. The maximal strongly

connected subgraphs of a graph G are vertex-disjoint and are called

its strongly connected components. If u, v,w are distinct vertices

of a graph G such that every path from u to w contains v , then
v 1s a dominator of w with respect to u . If G contains no
three distinct vertices u, v, w such that v dominates w with

respect to u, G is strongly biconnected. The maximal strongly

biconnected subgraphs of G are edge disjoint (except for loops) and

and are called the strongly biconnected components of G .

A (directed, rooted) tree T is a graph with a distinguished
vertex r such that there is a unique path from r to any vertex.
If v is onthepathfrom r to w, we write v—+*w and say v is
an ancestor of w and w is a descendant of v . If (v;w) is a
tree edge, we write v - w and say v is the_parent of w and w is
a child of v . If v 5w and v £w, 'we write v -w and say v

is a proper ancestor of w and w is a proper descendant of T

If G = (V,E) 1s any graph, the symmetric (or undirected) extension
of G is the graph G' = (v, {(i,3) | (i,3) €E or (j,i) €E}) . If T

is a tree, its symmetric extension is called a symmetric (or undirected)

tree. If G = (V,E) is any graph, its reversal is the graph

R : s -
¢ = (v, {(3,1) | (4,3) €ED) |
For a graph G = (V,E) an ordering o of V is bijection

a: {1,2,...,n} » v . G, = (V,E,@) is an ordered graph.
3. Gaussian Elimination on a Graph.

Let ®*M = ¢ be a set of n linear equations, where M = (mij)
is an n by n non-singular matrix. We can represent the zero -non-zero
structure of the matrix M by an ordered graph Gd = (V,E,a) , where
v={1,2...,n} , E = {(i,j)| m, £0ori=3}, and a(i) = 1
for 1 <i<n . The unordered graph G = (V,E) corresponds to the

set of matrices PMfr , where P is a permutation matrix.



We can represent the system xM = c by assigning to vertex i
the value c(i) = -ci and the variable x(i) = xi and assigning to
edge (i,j) the value m(i,j) = mgy if 1 £ 3, m(i,g) = ml.J.+1 if
i=7J . The system xM = c becomes

Q = { L ox(1)m(i, ) +c(d) = x(J) \lSan}
(ixj)€E
Henceforth we consider the system of equations defined graph-theoretically
in this way. (The variable x(j) appears on the right side of the j-th
equation for reasons to be discussed later.)
Corresponding to any subgraph G' = (V',E') of G is a system

of equations

Q" = 2 x(im(i, ) +e(d) = x(3) ljeV'}
(1,3) €E?

We shall discuss solving the system Q by Gaussian elimination.
First, it is useful to consider a way of decomposing Q into subsystems
Q" such that the solution to the subsystems gives the solution to
the whole system. Let G; = UGfEl)""’Gk = (WgEk)ﬁbe the strongly
connected components of the graph G . These components can be ordered
so that if (v,w) is an edge of G with vev, and wévbl then

i >J . Such an ordering is a topological sorting. [26] of the components.

Given the components in a topologically sorted order, the following method

solves the system Q

SOLVE: ’:E"ovrvi ’=ki@_1%1%m
solve the system Qi;
for (v,w) eE such that eV, Wer with j > i do
c(w) := c(w)+x(v) -m(v,w);

end SOLVE;

This scheme is well-known and its validity is easy to check.
The strongly connected components of G correspond to the irreducible
blocks of the matrix M [43].



We can find the strongly connected components of a graph G and
topologically sort them in O(mm) time using depth-first search [L0].
The running time of SOLVE is thus O(ntm) plus the time to solve the
substystems Qi if the graph G is represented as a set of adjacency
lists [40]. Reference [ 63 contains a more detailed complexity analysis.

One special case of SOLVE is important. If each strongly connected
component of G consists of a single vertex (i.e., G is acyclic
except for loops), each subsystem Qi is a single equation
x(i)a(i)+ c(i) = x(1) . Solving such an equation requires one subtraction
and one division: x(i) = c(:'L)[l--a.(i)]-l . In this case SOLVE requires
O(n+m) time total. This special case is the final step, called
- back solving, of the Gaussian elimination method.

The first step of Gaussian elimination consists of the following

algorithm.

ELIMINATE: for j := 1 until n-1 do
for (j,k) €E with k > j do begin
2 e(k) := (k) +e(3) [1m(3,5) 1 m(s,K);
for (i,j) ¢E with i > do begin
if (i,k) £E then add (i,k)
with value m(i,k) = 0 to E;

. . s s s syl o
m(i, k) := m(i,k) +m(1,3)-[1m(3,5)] m(J,k);
end end ELIMINATE;

It is well-known and easy to verify that when ELIMINATE terminates,
the solution to the original equation set Q can be found by applying
SOLVE to the graph G' = (V,E') defined by E' = {(i,j) eEUF | i >_j},
where F is the set of added edges (i,k) , called fill-in edges,
created by ELIMINATE. The values on edges when ELIMINATE terminates
give an LU decomposition of M [1h4].

ELIMINATE requires O(n+-‘ELJF|) numeric storage and

Of n+t Z 1+ Z 1 arithmetic operations.
(i,3) eEUF (35kK) €eEUF
i>] k>j



SOLVE requires 0, n+ 2 1 time once ELIMINATE is applied.
( (i,3) €eEUF

i>3
Solving the system Q for a new set of constants requires O(n+ |[EUF|)
time given the LU decomposition computed by ELIMINATE. For a more
detailed complixity analysis, see [ 6].
Implementing ELIMINATE to achieve the bounds above for total storage
and total operation count is not simple. Two methods of implementation

suggest themselves.

(1) Representation of m(i,j) using a hash table [25].

(2) Representation of m(i,j) using adjacency lists for G [Lo].

It is straightforward to implement ELIMINATE using a hash table
to store edge values. This representation will achieve the desired
storage bound in the worst case and the desired operation bound on
the average (but not in the worst case). Because the hash table must
be stored, the storage requirements will exceed the storage necessary
for adjacency lists, but the average running time is apt to be faster
than using adjacency lists.

Careful implementation of ELIMINATE using adjacency lists allows
us to achieve the desired storage and time bounds in the worst case.
Gustavson [19] discusses many of the ideas important in such an
implementation. We use a two-pass method. First, we compute the
set F of fill-in edges. An algorithm described in [34] is adequate
for this step. Next we use the following modification of ELIMINATE
for the LU decomposition. We assume that, for each vertex k , a list
B(k) of vertices j such that (j,k) eEUF is available, and that
these vertices j are in order by number, smallest to largest, in
the list B(k) . Associated with each entry j eB(k) is the value
m(j,k) . The procedure below carries out the computation column-by-
column. This method of elimination is sometimes called the Crout
method or the Doolittle method [14].



CELIMINATE: begin
for i := 1 until n do array(i) := 0;

for k := 2 until n do begin

for j eB(k) do-array(j) := m(j,k);
for j eB(k) with j < k do begin
c(k) := c()+ c(d)-[1-m(3,3) ] m(3,k);

b:  for ieB(j) with i > j do_
array (i) := array(i) +m(1,3)-[1m(3,3) 1 m(3,k) ;
end;
for (j,k) €EUF do m(3,k) := array(3);
end end CELIMINATE;

Variable array is used here to-make the computation in Step b
easy. It is easy to see that this procedure works correctly and
achieves the desired storage bound and operation count. The correctness
of CELIMINATE depends on the fact that the entries in each list B(k)
are in order by number. This representation seems to require that the
fill-in F be precomputed .

So far, little is known about the efficiency of using adjacency
lists versus using a hash table. Most likely, the hash table method
uses less time, and the adjacency list method uses less space. See
[8,19,23] for details concerning implementation of Gaussian elimination
using adjacency lists.

The time and storage requirements of ELIMINATE depend only on
the structure of G and on the ordering & . By reordering the
vertices of G , we may greatly improve the efficiency of ELIMINATE.
The next section discusses the problem of choosing a good ordering.
Because of the complexity of implementing ELIMINATE for sparse graphs,
various researchers have studied special methods which handle certain

types of sparse graphs. Two such methods, the bandwidth method, and

the profile method, are discussed in the next section, in addition to

“the general sparse method.
Symmetry plays an important role in the solution process. If

the matrix M is symmetric (i.e., mﬁb = mji ), it is possible to
save a factor of two in storage and computing time by using the



symmetry [ 19]. If the matrix M is structurally symmetric (i.e.,

G is symmetric), it is much easier to compute the fill-in and other
properties of the elimination order [33]. In some applications it

may be useful to make G symmetric by adding an edge (j,i) for each
edge (i,j) . This may simplify the implementation of ELIMINATE and
decrease the time necessary to find a good elimination ordering.

These savings must be balanced against the time and storage costs for
handling the added edges.

If one of the pivot elements m(j,Jj) equals one the j-th iteration
of the main loop in ELIMINATE cannot be carried out. Furthermore if
any of the m(j,j) are close to one, the method is numerically
- unstable [14]. For certain types of matrices, however, ELIMINATE is
guaranteed to work and to be numerically stable. These include the

diagonally dominant matrices and the symmetric positive definite

matrices [ 143. Henceforth we shall not worry about numeric stability
but shall assume that ELIMINATE using any vertex ordering will produce
an acceptable answer. In practice, however, it is important to

verify stability.

4, Elimination Schemes.

One method used to avoid the complexity of implementing ELIMINATE

for general sparse graphs is the bandwidth method. If @ is an

ordering of the vertices of G , we define the bandwidth b of G

to be max |(i) -a(j)|. The bandwidth method finds a band of
(1,3) €E

width 2btl about the main diagonal outside of which all entries are

zero, and performs Gaussian elimination within the band. The bandwidth

version of Gaussian elimination appears below.



BELIMINATE: £2£ j := 1 until n-1 QQJ
for k := j+l until j+b do begin

(k) = c()+ (d)-[1m(3,3) 1 m(3 k%)
for i := J+1 umbil j+b do_
m(1,%) := m(i,k) +m(1,3)-[1m(3,3) 1" om(3,k);

end BELIMINATE;

Bandwidth elimination requires O(bn) storage using array
storage and O(ben) time. The difficulty with the bandwidth method
is finding an ordering which produces a small bandwidth. A graph for
which there is an ordering such that all edges within the bandwidth

are present is called a dense bandwidth graph. It is easy to test in

O(n+m) time whether a graph G is a dense bandwidth graph. If it is,
the ordering which makes G a dense bandwidth graph is easy to compute.
A graph with an ordering which produces bandwidth one 1is
tridiagonal [14]. (Edges within the bandwidth may be missing, so a
tridiagonal graph need not be a dense bandwidth graph.) It is easy
to test in O(mtm) time whether a graph is tridiagonal. Garey and
Johnson [16] have devised an O(n+m) time method to find a bandwidth
two ordering if one exists. We know of no efficient method to test
for bandwidth three.
Various heuristics exist for finding orderings with small
bandwidth. A breadth-first search method proposed by Cuthill and
McKee [11] works well on some examples.
Unfortunately, the problem of determining whether a given graph G
has an ordering which produces a bandwidth of a given size b or
less belongs to a class of problems called NP-complete. The NP-complete

problems have the following properties.

(1)  If any NP-complete problem has a polynomial-time algorithm, then
all NP-complete problems have polynomial-time algorithms.

(2) If any NP-complete problem has a polynomial-time algorithm, then
any problem solvable non-deterministically in polynomial time

has a deterministic polynomial-time algorithm.

10



Such well-studied problems as the travelling salesman problem, the
tautology problem of propositional calculus, and the maximum clique
problem are NP-complete. It seems unlikely that any NP-complete
algorithm has a polynomial-time algorithm. Papadimitriou [29]
first proved the minimum bandwidth problem NP complete; Garey and
Johnson [16] proved the problem NP complete even for trees! This
negative result reduces the appeal of the bandwidth scheme except
for problems for which a good choice of ordering is explicit or
implicit in the problem description.

An extension of the bandwidth method is the profile method.

If @ is an ordering of the vertices of G , the profile b(j) of
vertex j is max{a(j) -a(i) | (1,3) €E or (j,i) €E and a(j) >a(i)} .
The profile method assumes that all entries are within an envelope of
varying width about the main diagonal. For implementation of the

profile method, see [38]. Profile elimination requires

O( % b(J).\ storage and O( % b(J)z\ time. As with the
=) (5=
bandwidth method, there is still the problem of finding an ordering
with small profile.

A graph G for which there is an ordering such that all edges
within the profile are present is called a dense firofiléh grapha t

is, G = (V,E) 1is a dense profile graph if and only if G is
symmetric and there is an ordering «@. of the vertices such that if
(1,j) €E with (i) <a(j) , and k satisfies a(i) <a(k) <a(j) ,
then (k,j) €¢E

There 1is a nice characterization of dense profile graphs which
has apparently not appeared in print before. We call a graph

G = (V,E) an interval graph if there is a mapping I of the vertices

of G into sets of consecutive integers such that (i,j) ¢ E if
and only if I(i)NI(3) #¢ .

Theorem 1. G is a dense profile graph if and only if G is an

interval graph.



Proof. Suppose G = (V,E) is dense profile with appropriate
ordering @ . For each vertex veV , let I(v) = {a(w) |(w,v)eE and
a(w) < a(v) ., . By the dense profile property, each set I(v) is a
set of consecutive integers. Suppose (i,j) €E with a(i) <a(j)
Then a(i) eI(i) NI(Jj). Suppose a(k) €I(i)NI(j) . Then
(ky1)5(ky3) €E , a(k) < a(i) , a(k) < a(j) . Without loss of
generality, suppose &(i) <Q(j) . Then by the dense profile
property, (i,j) €eE. Thus the intervals I(v) faithfully represent
the edges of G

Conversely, suppose G is an interval graph with appropriate
intervals I(v) . G is symmetric since I(i) N I(j) = I(3)NI(i) .
Let a(j) be an ordering such that a(j) <a(i) implies the largest
integer in IQ@(J)) 1s no greater than the largest integer in
I(a(i)) . Let (i,J) €E with a(i) <a(j) and suppose
a(i) < a(¥) < () . Then I(a(i)) NI(I)) # B, so I(a(3))
contains all integers between the largest integer in 1IQ@(i)) and
the largest integer in I(®(j)) . This set includes the largest
integer in I(a(k)) . Thus I(a(j)) NI(x(k)) #¢ , and (k,j) eE . O

Lueker and Booth [28] have devised an O(ntm) -time test for the
interval graph property. The test is constructive, so an appropriate
ordering for a dense profile graph can be found in O(ntm) time.

The breadth-first search method of Cuthill and McKee produces
small profile on some examples. A reverse breadth-first search based
on the Cuthill-McKee method does as well or better [27]. Little is
known theoretically about the behavior of such heuristics. The
problem of finding an ordering to minimize 55 b(j) (or EE b(j)2 )

i=1 i=1
has not yet been proved NP-complete. For results on the NP-completeness
of a similar problem, see [15]. See [10] for further discussion of
bandwidth, profile, and related ordering schemes.

It is easy to generalize the definitions of bandwidth and profile
to allow different envelopes on either side of the diagonal. See [10].
In view of the difficulty of finding good orderings for minimizing

symmetric bandwidth and profile, we do not pursue this idea further.

12



Several facts reduce the appeal of the bandwidth and profile
schemes except on problems for which a good choice of ordering is
explicit or implicit in the problem description. First, it is not
easy to find a good ordering. Second, and more important, the band-
width and profile schemes may be overly pessimistic in that they may
examine many matrix elements which are in fact zero. This will happen
with sparse graphs having large bandwidth or profile. A practical
example is the square k by k grid graph, which arises in finite
difference solutions to partial differential equations [1k4]. Any
bandwidth or profile method for this problem requires O(k3) storage
and O(k4) time [22,30], whereas the nested dissection method [17,36]
a special type of general sparse ordering, requires only
O(k2 log k) storage and O(k3) time.

We consider now the general sparse method. A graph is a

perfect elimination graph if there is an ordering which produces no

fill-in. We can test for the perfect elimination property in O (nm)
time [34]. This property is computationally at least as hard as
testing a directed graph for transitivity, so improving the time
bound beyond O(nm) would be a significant result. Given any
ordering, we can compute its fill-in in O(nm) time [34]. Such an
algorithm is useful if we wish to precompute the fill-in before
performing the numeric calculations. Computing the fill-in is at
least as hard as computing the transitive closure of a directed
graph [3h4].

The problem of finding an ordering which minimizes the size of
the fill-in is NP-complete [34]. However, a related problem has a
polynomial time algorithm. We call a set of fill-in edges F
minimal if no ordering produces a fill-in F'c F . If a is an
ordering which produces fill-in F , & is a minimal ordering.
Minimal orderings are not necessarily close to minimum, but given
any ordering we can improve it to a minimal one in O(nh) time [34].

These problems are easier for symmetric graphs. We can test a
symmetric graph for the perfect elimination property in O(mtm) time,
compute the fill-in of any ordering in O(mtm) time, and find a
minimal ordering in O(mm) time [35]. These algorithms, especially

the one to compute fill-in, may have important practical uses.

13



In view of the NP-completeness results, we cannot hope to solve
the general problem of efficiently implementing sparse Gaussian
elimination. We can only try to solve the problem for special cases.

Approaches include the following.

(1) Develop and study heuristics for producing orderings with small
fill-in. Several heuristics have been proposed, including the
minimum degree and minimum fill-in heuristics [31,32]. These methods
seem to work well in practice, but nothing is known about their
theoretical behavior.

(2) Develop good ordering schemes for special types of graphs.

A successful example of this approach is the nested dissection
method [17,36].

(3) Develop methods which avoid the necessity of computing all the
fill-in. In some cases values on fill-in edges can be stored
implicitly rather than explicitly, resulting in a savings of

time and storage.

We consider in the next section a method which combines ideas (3)
and (k).

Another possible approach would be to study the average behavior
of elimination methods. This approach is not a good one, however,
for two reasons. (1) Most graphs which occur in practical problems
are highly non-random in their structure. (2) Erdds and Even [13]
have shown that "most" symmetric graphs with order n log n edges have
a fill-in of order n2 (most graphs with less than order n log n edges
are not connected). Thus a dense matrix method is as good (to within a,
constant factor) as any sparse method, on random graphs which are not

too sparse.

5. A Decomposition Method Using Dominators.

This section presents a decomposition method for solving systems
of linear equations which is more powerful than the decomposition
into strongly connected components discussed in Section 3. The idea
of the method is as follows. Suppose G = (V,E) 1is a directed graph

and there exists a triple u,v,w of distinct vertices such that v

14



dominates w with respect to u . We can partition V into

VvV = {‘V}UV'lUV2 such that V; contains u and all vertices

reachable by a path from u which avoids v . Let
6, = (WJUV, B((v}UT)) 5 G, = (Iv}UV,, B({v}UT,)). Suppose
we are given a set of equations defined on G . We solve the set by

the following method.

Step 1: For each vertex W€V2 , solve for x(w) in terms of x(v)
using the system of equations defined on G2 . That is,
represent x(w) as x(w) = x(v)-a(v,w)+Db(v,w) for some

real values a(v,w) , b(v,w)

Step 2: Replace each edge (X,y) with XeV, , Ve viuv, , by
an edge (v,y) with value m(v,y) = 0 , if such an edge does
not exist already. Set m(v,y) := a(v,x)-m(x,y)+n(v,y) .
set c(y) := b(v,x)m(x%y)+ c(y)

Step 3: In the new graph G', solve the system of equations defined
on Gi .
Step 4: using the equations found in Step 1, solve for the values

of the variables x(w) , WeV2 .
This method solves the system of equations defined on graph G
by solving the two smaller systems defined on G2 and Gi and
combining the solutions. It is equivalent to carrying out Gaussian
elimination on G in an order so that all the vertices in Vj,
are ordered first, followed by vertex Vv , followed by all the
vertices in V; . For each edge (x,y) with XV, , Y e {vly Vo
this elimination order may create a large number of fill-in edges
(x',y) with x'eVE. None of these fill-in edges are really
necessary to the computation; only the corresponding fill-in edge
(v»¥) 1s necessary. By computing the value of this edge directly,
we avoid computing many of the fill-in edges and thus save time and
storage space.
We generalize this scheme as follows. Henceforth we assume
G = (V,E) is Strongly connected. Let r be some fixed, distinguished

vertex of G . If v dominates w with respect to r and no vertex

15



dominates w with respect to v , we say v is the immediate
dominator of w (with respect to r ). We denote this relationship

by v = idom(w) .

Theorem 2 [ 1]. Each vertex w # r has a unique immediate
dominator. The rooted tree T = (v, {(idom(v),v)|v # r)) , called

the dominator tree of G , has the property that, for every vertex w,

its dominators with respect to r are exactly its ancestors in T

Our solution method works as follows.

Step 1: Choose a fixed vertex r of G . Compute the corresponding
dominator tree T
Step 2: Working from the leaves of T to the root, solve for each

variable x(v) in terms of x(idom(v))

Step 3: Solve for x(r) and for all other variables x(v) by

backsolving using the equations computed in Step 2.

Step 2 will compute, for each variable x(v) , a pair of numbers
a(v) and b(v) such that x(v) = x(idom(v))-a(v)+Db(v) . As we work
through the tree in Step 2, we must compose such affine functions. We
will assume the existence of two primitive instructions for this
purpose. Given two ordered pairs (a,b) and (e,d) , let
(ayb)+(c,d) = (ac, betd) (this operation corresponds to forming the
composition of the affine functions axt+b and cy+d .

The two operations will construct T and place ordered pairs of
real numbers on its edges. Initially T has no edges constructed.
The operation LINK(idom(v) , v, (a,b)) adds the edge (idom(v),v) ,
with associated value c(idom(v),v) = (a,b) to T . The operation
EVAL(v) returns the ordered triple (u,X,y) such that

(%, y) = c(el)-c(ee).. .. o c(e,) , where ej,e,,...,e, is the longest

path to vertex v in the part of T so far construé{ted by LINK
instructions, and this path starts at vertex u . (If v has no
entering edge yet constructed, EVAL(v) returns the triple (v,1,0) ;
the pair (1,0) corresponds to the identity function.)

Now we give the details of the algorithm.
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Step 1: Choose a fixed vertex r of G . Compute the corresponding
dominator tree T of G . Number the vertices of T from
1 to n in postorder. For each vertex v , let s(v) be

the set of children of v in T

Step 2: &uml%ng’gm
initialize E(u) = @;
£Q£ ve s(u) %3
for each edge (w,v) of G do begin
(zya,b) := EVAL(w);
if (2z,v) is not an edge of E(u) then

laarar

add (z,v) with value m(z,v) = m(w,v)-a to E(w)

else m(z,v)_ := m(w,v)-a+mn(z,v);
c(v) := m(w,v):b+ c(v);

end;
find the strongly connected components of the graph
e =({v}Us(u),E(u)) and topologically sort them;
solve the system of equations
Q(u) = { 2 m(w,v) x(w)+ c(v) = x(v) lves(u)
(W, v) €E (u)
to give an equation x(v) = a(v)-x(u)+b(v) for
each ves(u) , by using Gaussian elimination and
the strongly connected components decomposition

as discussed in Section 3;

for ves(u) do LINK(u, v, (a(v),b(v)));

Step 3:  for each edge (w,n) of G do begin
(z,a,b) := EVAL(w);
m(n,n) := m(w,n).a+m(n,n);
c(n) := m(w,n)b+ c(n);
x(n) := c(n).[l-m(n,n)]-l;

end;
for i := n-1 step -1 untill do
x(1) := x(idom(i))-a(i)+c(i);
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This method uses Gaussian elimination on the strongly connected
components of the graphs G(u) and combines the solutions to give
the solution to the entire problem. The time to combine solutions
is almost-linear in the size of G ; thus if the method breaks the
graph into several parts it is certainly faster than Gaussian
elimination applied to the whole graph.

More precisely, the running time of Step 1 is O(m @(m,n)) [41],
where a(m,n) 1is a very slowly growing function related to a
functional inverse of Ackermann's function. Step 1 requires O(m)
storage. Step 2 requires O(m 2(m,n)) time and O(m) storage for
the LINK and EVAL instructions [41]. Step 2 requires O(m) time
and storage except for the Gaussian elimination steps and the LINK
and EVAL instructions. Step 3 requires O(n) time and storage.

Thus the entire algorithm requires O(m @(m,n)) time and O (m)
storage exclusive of the Gaussian elimination steps.

If each strongly connected component of every graph G(u) consists
of a single vertex, then the algorithm runs in O(m @(m,n)) time
total. A graph G for which this happens is called a reducible
gzgggj29] (not to be confused with a reducible matrix). Though
reducible graphs do not seem to arise in numerical problems, they
often arise in global optimization of computer code, to which the
ideas in this paper also apply. Thus this decomposition method may
have considerable practical value. Indeed, similar methods for
reducible graphs have been extensively studied by computer scientists
[ 2, g, 18,21,24k2 ] .

If no root r can be found for which G breaks into several
pieces using this decomposition scheme, the same idea can be applied
to the reverse of G . The algorithm must be changed somewhat, but
the idea is similar. In fact, a more general algorithm which divides
G into strongly biconnected components and solves a set of equations
on each component can be developed. The trouble with such an algorithm
is that at present no efficient method exists for dividing a graph
into strongly biconnected components. Research is in progress in this

area.
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6. Selection of a Set of Pivot Positions.

When considering orderings for Gaussian elimination in Section 4,
we restricted our attention to simultaneous row and column permutations,
represented by a renumbering of vertices in the graph representing the
system of equations. Thus we always used the positions on the main
diagonal as pivot positions. In numeric problems, there is no reason
to restrict our attention to such reorderings, however. We can easily
allow independent row and column permutations, and thus use an arbitrary
transversal of the matrix as a set of pivot positions (a matrix
transversal is a set of n matrix elements, no two in the same row
or column).

There are two reasons for selecting a transversal other than the

main diagonal.

(1) To improve the stability of Gaussian elimination.

(2) To improve the resource requirements of Gaussian elimination.

The well-known partial and complete pivoting methods [14] choose
a transversal to improve stability. They choose a set of matrix
elements of large absolute value as pivots. These methods depend on
the actual numeric entries and not on the zero -non-zero structure of
the matrix.

If we do not know the actual entries of the matrix, but only its
zero -non-zero structure, then any transversal consisting of non-zero
elements is as good as any other for purposes of stability. Such a
transversal may be found in O(nl 2 m) time by using a bipartite matching
algorithm of Hoperoft and Karp [44]. Dulmage and Mendelsohn [12]
extensively discuss this and related problems. Essentially no research
has been done on the problem of picking a non-zero transversal which

minimizes resource requirements. One theorem is known however.

Theorem 2. Let M be any matrix. Let Q be any permutation matrix
‘such that MQ has a non-zero main diagonal. Let G(Q) be the directed
graph corresponding to MQ . Then the vertex partition induced by the

strongly connected components of G(Q) is independent of Q.
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This theorem follows from results of Dulmage and Mendelsohn [12].
Howell has given a nice proof [45]. The theorem implies that the
strong component decomposition method discussed in Section 3 produces
the same number of components independent of the transversal chosen,
though the components themselves may be different.

Ignoring questions of stability, there is no reason not to choose
a transversal some of whose elements are initially zero and only become
non-zero as the elimination proceeds. Such a choice may result in
substantial computational savings. Bank and Rose [ 4 ] have provided
a practical example of this idea. Though their method is numerically
unstable, it can be modified to make it stable without degrading its
efficiency too much [ 5 ].

In summary, the problem of choosing the best set of pivot positions,
for stability or efficiency or both, is very poorly understood. The
results of Bank and Rose indicate that allowing only transversals
which are initially non-zero is too restrictive. It is likely that
the problem is too hard for a general solution, and the most promising
areas for research seem to be the development of heuristics and

special-case algorithms.

7. Remarks.

Though we have assumed throughout this discussion that the matrix
M consists of numbers, there is no reason to do so. The techniques of
linear algebra, such as Gaussian elimination, apply to other algebraic
structures having two operations + and .. Thus the methods discussed
in this paper can be used to compute path sets in labelled graphs [3,37]
(a problem of automata theory), find shortest paths and other kinds
of optimal paths in directed graphs [T ], and to do global flow
analysis of computer code [2,9,18,24,42]. The algorithms remain the
the same; only the interpretation changes.

We must assume the existence, for any a , of an element a* gsych
that, for all b , a¥b is a solution to the equation x = a-x+b .
For numbers, a* = [l—a]_l exists whenever a # 1 , and Gaussian

elimination requires non-unit pivots.
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