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1. Introduction.

Consider the system xM = ¢ , where M 1s a nonsingular real-valued

n by n matrix, x 1s a one by n vector of variables, and c¢c 1is a

one by n vector of constants. We wish to solve this system of equations

: for x . In many applications, M 1s a large sparse matrix; that is,

M has many zero elements. If the system 1s solved using Gaussian

elimination or some other direct method, many of the zeros in M may

become non-zero. To make the solution process efficient, we would like

to avoid having to explicitly examine the zeros of M , and to keep the

number of non-zero elements small.

We can model the zero —non-zero structure of M by a directed

graph and study the effect of a solution method on this graph. This

; graph-theoretic analysis has several important benefits, including
the following.

| (1) For some sparse matrices, a graph-theoretic representation 1s a
good one, allowing efficient access of non-zero matrix elements.

| (2) We can devise a good solution procedure for an entire class of
matrices (those with the same zero -non-zero structure) at a time.

If several matrices with the same zero -non-zero structure occur

in an application, then spending extra time initially to devise a

: good solution procedure may result in later savings as the procedure
| 1s reused.

(3) The approach illuminates the applicability of solution methods for

linear systems to other kinds of graph problems such as those

| arising 1n global flow anayslis and operations research.

This paper surveys several graph-theoretic aspects of the solution of

linear systems. We consider several graph-theoretic methods for choosing a

good ordering scheme for Gaussian elimination. These 1nclude bandwidth

minimization, profile minimization, and general sparse techniques. We

also discuss graph-theoretic block methods based on the strongly-connected

components and dominators of the underlying graph. Finally, we discuss

the problem of choosing a set of pivot positions for Gaussian elimination.



The paper contains seven sections. Section 2 introduces necessary

graph-theoretic notation. Section J discusses representation of a

system of linear equations as a graph, a decomposition method which uses

strongly connected components, and a graphical version of Gaussian

elimination. Section 4 discusses methods for choosing a pivot order.

Section 5 discusses a decomposition method using dominators. Section 6

discusses selection of a set of pivot positions. Section 7 contains

further remarks. Results in Sections 3, 4, and 6 are not new, though

some are as yet unavailable in print. Section 5 contains new results.

2. Graph-Theoretic Notation.

A directed graph G = (V,E) 1s a finite set V of n = |v|

elements called vertices and a finite set E C VxV of m = |E]

vertex pairs called edges. An edge of the form (i,i) is a loop.

If (i,j) €eE if and only if (j,i) €eE , we say G is symmetric.

(A symmetric directed graph corresponds to the undirected graph given

by making {i,j} an undirected edge if (i,j) eE . We prefer to

use symmetric directed graphs instead of undirected graphs since they

correspond more closely to the computer representation of graphs.)

A graph G' = (V',E') is a subgraph of G if V' cV and

E'CE. If VWc Vv and G(V') = (V',E(V")) where

E(V') = {(i,3) €E | i,j ev}, then G(V') is the subgraph of G

induced by the vertex set V' . Similarly, if E"C E and

G(E") = (V(E"),E") where V(E") = {ieV | 5(i,j) cE" or (j,i) ¢E"} ,

then G(E") is the subgraph of E induced by the edge set E" .

A sequence of edges p = (VysVp)s eves (Vivi q) is a path from v,
to Viet] By convention there 1s a path of no edges from every vertex

to itself. If Vy = Vig the path 1s a cycle. Every cycle contains

at least one edge. The path is said to contain vertices VisVos sees Vig
and edges (VysV5) > J. (ViVi 1) and to avoid all other vertices and
edges. If VisVps ces Vy,q are distinct, except possibly Vi = Vig
p 1s simple.



; If there 1s a path from a vertex v to a vertex w , . v 1s

3 reachable from w . If every vertex in a graph G 1s reachable from
every other vertex, G 1s strongly connected. The maximal strongly

connected subgraphs of a graph G are vertex-disjoint and are called

its strongly connected components. If u, v,w are distinct vertices

of a graph G such that every path from u to w contains v , then

v 1s a dominator of w with respect to u . If G contains no

three distinct vertices u, v,w such that v dominates w with

| respect to u, G 1s strongly biconnected. The maximal strongly
| biconnected subgraphs of G are edge disjoint (except for loops) and
| and are called the strongly biconnected components of G .

A (directed, rooted) tree T 1s a graph with a distinguished

| vertex r such that there 1s a unique path from r to any vertex.If v 1s onthepathfrom r to w, we write v aw and say Vv 1s

| an ancestor of w and w is a descendant of v . If (v,w) is a
| tree edge, we write v —»w and say v 1s the parent of w and w 1is

a childof v . If v Sw and Vv £#w, 'we write vw and sayv
| 1s a proper ancestor of w and w 1s a proper descendant of T .
| If G = (V,E) 1s any graph, the symmetric (or undirected) extension
| of G is the graph G' = (Vv, {(1,3) | (1,3) €E or (j,i) €E}) . If T

| 1s a tree, 1ts symmetric extension 1s called a symmetric (or undirected)

tree. If G = (V,E) is any graph, its reversal is the graph

GY = (V, {(3,1) | (4,3) €E})

| For a graph G = (V,E) an ordering & of V is bijection
a: {1,2,...,n} » Vv . G, = (V,E,&) is an ordered graph.

| 3, Gaussian Elimination on a Graph.

| Let xM = c be a set of n linear equations, where M = (my 5)
1s an n by n non-singular matrix. We can represent the zero -non-zero

| structure of the matrix M by an ordered graph G,, = (V,E,&) , where
v= {1,2,...,n} , E = {(i,]) | mm, 5 £#0ori=3}, and a(i) = 1
for 1 <i <n . The unordered graph G = (V,E) corresponds to the

set of matrices PMP" , where P 1s a permutation matrix.



; We can represent the system xM = ¢ by assigning to vertex 1

| the value c(i) = -C. and the variable x (i) = Xs and assigning to

| edge (i,j) the value m(i,j) = mg, if 4 £9, m(i,j) = m.. +1 if
i =7J . The system xM = c becomes

Q = ( ZL x(i)m(i,3) +c(i) = x(3) EERE(i,J)€E

| Henceforth we consider the systemof equations defined graph-theoretically

in this way. (The variable x(3j) appears on the right side of the j-th

equation for reasons to be discussed later.)

Corresponding to any subgraph G' = (V',E') of G is a system

| of equations

| Q = ( TD x(i)m(i,3) +e(d) = x (9) er)| (i,j) cE?

We shall discuss solving the system Q by Gaussian elimination.

First, 1t 1s useful to consider a way of decomposing Q 1nto subsystems

0' such that the solution to the subsystems gives the solution to

| the whole system. Let Gy = (VoE) sees Gy, = (VE) be the strongly
connected components of the graph G . These components can be ordered

| so that if (v,w) is an edge of G with veV, and wev. then
| i >J . Such an ordering 1s a topological sorting. [26]of the components.

Given the components in a topologically sorted order, the following method

| solves the system Q .

SOLVE: for i i= k step -1 until 1 do begin

solve the system Qs

for (v,w) ¢E such that vev, wev, with j > i do
c(w) := c(w)+x(v) m(v,w);

end SOLVE;

This scheme 1s well-known and its validity 1s easy to check.

The strongly connected components of G correspond to the irreducible

blocks of the matrix M [43].



| We can find the strongly connected components of a graph G and

| topologically sort them in O(mtm) time using depth-first search [LO].
] The running time of SOLVE is thus O(mtm) plus the time to solve the

| substystems Qs if the graph G is represented as a set of adjacency
lists [40]. Reference [ 63 contains a more detailed complexity analysis.

One special case of SOLVE 1s important. If each strongly connected

component of G consists of a single vertex (1.e., G 1s acyclic

except for loops), each subsystem Qy 1s a single equation
| x(i)a(i)+ c(i) = x(i) . Solving such an equation requires one subtraction

| and one division: x(i) = c(1)[1-a(i)]"t . In this case SOLVE requires
| O(ntm) time total. This special case 1s the final step, called

- back solving, of the Gaussian elimination method.

| The first step of Gaussian elimination consists of the following

algorithm.

ELIMINATE: forj := 1 until n-1 do

for (j,k) €eE with k > j do begin
ai elk) i= c(k)+e(d) [1-m(3,3) 1" om(s,k) ;

for (i,j) ¢E with i > j do begin

if (i,k) £E then add (i,k)
with value m(i,k)= 0 to E;

| m(i, k) := m(1,k) +m(1,3)-[1-m(3,3) 1 n(3,k);

| end end ELIMINATE;

It is well-known and easy to verify that when ELIMINATE terminates,

the solution to the original equation set Q can be found by applying

SOLVE to the graph G' = (V,E') defined by EB' = {(i,j) eEUF | 1 > 3},

where F is the set of added edges (i,k) , called fill-in edges,

created by ELIMINATE. The values on edges when ELIMINATE terminates

give an LU decomposition of M [1h].

; ELIMINATE requires O(n+ |EUF|) numeric storage and

of n+ 2 1 + 2 1 arithmetic operations.
(1,3) €eEUF (j,k) eEUFi>] k>j J
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SOLVE requires 0, nt 2 1 time once ELIMINATE 1s applied.

| ( (5,5) eBUF

Solving the system Q for a new set of constants requires O(n+t |IEUF|)
time given the LU decomposition computed by ELIMINATE. For a more

detailed complixity analysis, see [ 6].

Implementing ELIMINATE to achieve the bounds above for total storage

and total operation count 1s not simple. Two methods of implementation

| suggest themselves.

(1) Representation of m(i,j) using a hash table [25].

(2) Representation of m(i,j) using adjacency lists for G [Lo].

| It 1s straightforward to implement ELIMINATE using a hash table
| to store edge values. This representation will achieve the desired

| storage bound 1n the worst case and the desired operation bound on

| the average (but not 1n the worst case). Because the hash table must

| be stored, the storage requirements will exceed the storage necessary

| for adjacency lists, but the average running time is apt to be faster

| than using adjacency lists.

| Careful implementation of ELIMINATE using adjacency lists allows

| us to achieve the desired storage and time bounds in the worst case.

| Gustavson [19] discusses many of the ideas important in such an

implementation. We use a two-pass method. First, we compute the

set F of fill-in edges. An algorithm described in [34] is adequate

for this step. Next we use the following modification of ELIMINATE

for the LU decomposition. We assume that, for each vertex k , a list

B(k) of vertices J such that (j,k) eEUF is available, and that

these vertices J are in order by number, smallest to largest, in

the list B(k) . Associated with each entry j eB(k) is the value

m(j,k) . The procedure below carries out the computation column~-by-

column. This method of elimination 1s sometimes called the Crout

method or the Doolittle method [14].

|



CELIMINATE: begin

fori := 1 untiln doarray(i):= 0;

fork :=2 until n do begin
for j eB(k) do-array(j) := m(j,k);

for j eB(k) with j < k do begin
e(k) t= c(k)+ e(d)-[1n(3,3)1 n(3,K) ;

b: for ieB(j) with i > J do_
array (i) := array(i)+m(i,3)-[1-n(3,3)1" n(3,%);

end;

for (j>k) eEUF do m(j,k) := array (J);
end end CELIMINATE;

Variable array 1s used here to-make the computation in Step Db

easy. It 1s easy to see that this procedure works correctly and

achieves the desired storage bound and operation count. The correctness

of CELIMINATE depends on the fact that the entries in each list B(k)

are in order by number. This representation seems to require that the

fill-in F be precomputed.

So far, little is known about the efficiency of using adjacency

lists versus using a hash table. Most likely, the hash table method

uses less time, and the adjacency list method uses less space. See

[8,19,23] for details concerning implementation of Gaussian elimination

using adjacency lists.

The time and storage requirements of ELIMINATE depend only on

the structure of G and on the ordering & . By reordering the

vertices of G , we may greatly improve the efficiency of ELIMINATE.

The next section discusses the problem of choosing a good ordering.

Because of the complexity of implementing ELIMINATE for sparse graphs,

various researchers have studied special methods which handle certain

types of sparse graphs. Two such methods, the bandwidth method, and

the profile method, are discussed 1n the next section, in addition to

“the general sparse method.

Symmetry plays an important role in the solution process. If

the matrix M is symmetric (i.e., Mery = mg ), it is possible to
save a factor of two in storage and computing time by using the
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symmetry [ 19]. If the matrix M is structurally symmetric (i.e.,

G is symmetric), 1t 1s much easier to compute the fill-in and other

properties of the elimination order [33]. In some applications it

may be usefulto make G symmetric by adding an edge (j,i) for each

edge (i,j) . This may simplify the implementation of ELIMINATE and

decrease the time necessary to find a good elimination ordering.

These savings must be balanced against the time and storage costs for

handling the added edges.

If one of the pivot elements m(j,J) equals one the j-th iteration

of the main loop in ELIMINATE cannot be carried out. Furthermore if

any of the m(j,j) are close to one, the method is numerically

unstable [14]. For certain types of matrices, however, ELIMINATE is

guaranteed to work and to be numerically stable. These include the

diagonally dominant matrices and the symmetric positive definite

matrices[ 143. Henceforth we shall not worry about numeric stability

but shall assume that ELIMINATE using any vertex ordering will produce

an acceptable answer. In practice, however, 1t 1s important to

verify stability.

| 4, Elimination Schemes.

One method used to avoid the complexity of implementing ELIMINATE

for general sparse graphs 1s the bandwidth method. If @ is an

ordering of the vertices of G , we define the bandwidth b of G

to be max |@(i) -a(j)|. The bandwidth method finds a band of
(1,3) €E

width 2btl about the main diagonal outside of which all entries are

zero, and performs Gaussian elimination within the band. The bandwidth

version of Gaussian elimination appears below.



BELIMINATE: for J = 1 until n-1 do.

c(k) t= c(k)+ e(3)-[1-m(3,5)]17 m(3,k);
fori := jl until Jtbdo

m(i,k) := m(i,k) + m(i,3) -[1-m(3,3) 1" m(3,k) ;
end BELIMINATE;

Bandwidth elimination requires O(bn) storage using array

storage and 0(b°n) time. The difficulty with the bandwidth method
1s finding an ordering which produces a small bandwidth. A graph for

which there 1s an ordering such that all edges within the bandwidth

are present 1s called a dense bandwidth graph. It 1s easy to test in

O(n+m) time whether a graph G is a dense bandwidth graph. If 1t 1is,

the ordering which makes G a dense bandwidth graph is easy to compute.

A graph with an ordering which produces bandwidth one 1s

tridiagonal [14]. (Edges within the bandwidth may be missing, so a

tridiagonal graph need not be a dense bandwidth graph.) It 1s easy

to test in O(mtm) time whether a graph is tridiagonal. Garey and

Johnson [16] have devised an O(n+m) time method to find a bandwidth

two ordering 1f one exists. We know of no efficient method to test

for bandwidth three.

Various heuristics exist for finding orderings with small

bandwidth. A breadth-first search method proposed by Cuthill and

McKee [11] works well on some examples.

Unfortunately, the problem of determining whether a given graph G

has an ordering which produces a bandwidth of a given size b or

less belongs to a class of problems called NP-complete. The NP-complete

problems have the following properties.

(1) If any NP-complete problem has a polynomial-time algorithm, then

all NP-complete problems have polynomial-time algorithms.

(2) If anyNP-complete problem has a polynomial-time algorithm, then

any problem solvable non-deterministically 1n polynomial time

has a deterministic polynomial-time algorithm.
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5 Such well-studied problems as the travelling salesman problem, the

tautology problem of propositional calculus, and the maximum clique

problem are NP-complete. It seems unlikely that any NP-complete

algorithm has a polynomial-time algorithm. Papadimitriou [29]

| first proved the minimum bandwidth problem NP complete; Garey and
Johnson [16] proved the problem NP complete even for trees! This

| negative result reduces the appeal of the bandwidth scheme except

for problems for which a good choice of ordering 1s explicit or

| implicit in the problem description.

| An extension of the bandwidth method 1s the profile method.
If @ 1s an ordering of the vertices of G , the profile b(j) of

, vertex j is max{a(j) -a(i) | (1,J) €E or (j,i) €E and a(j) >a(i)} .

The profile method assumes that all entries are within an envelope of

| varying width about the main diagonal. For implementation of the

profile method, see [38]. Profile elimination requires

: n n

4 of 2 05) | storage and of 2 b()2 | time. As with the
= \=

| bandwidth method, there 1s still the problem of finding an ordering

with small profile.

| A graph G for which there 1s an ordering such that all edges
within the profile are present 1s called a dense frofiléh grapha t

is, G = (V,E) is a dense profile graph if and only if G is

| symmetric and there 1s an ordering @. of the vertices such that if
| (i,j) €E with (i) <a(j) , and k satisfies a(i) <a(k) <a(j) ,

then (k,j) €E .

| There 1s a nice characterization of dense profile graphs which
| has apparently not appeared in print before. We call a graph
| G = (V,E) an interval graph if there is a mapping I of the vertices

of G into sets of consecutive integers such that (i,j) ¢ E if

and only if I(i)NI(J) # @ .

| Theorem 1. G 1s a dense profile graph if and only if G dis an

interval graph.

| 11
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Proof. Suppose G = (V,E) is dense profile with appropriate

ordering @& . For each vertex veV , let I(v) = {a(w) | (w,v) ek and
a(w) < a(v), . By the dense profile property, each set I(v) is a

set of consecutive integers. Suppose (i,j) €E with a(i) <a(j) .

Then a (i) e€I(i) NI(j). Suppose a(k) €I(i)NI(j) . Then

(ky 1), (kJ) €E , a(k) < a(i) , a(k) < a(j) . Without loss of

generality, suppose (i) <a(j) . Then by the dense profile

property, (i,j) €eE. Thus the intervals I(v) faithfully represent

the edges of G .

Conversely, suppose G 1s an interval graph with appropriate

intervals I(v) . G is symmetric since I(i)N I(j) = I(j)NI(i) .

Let a(j) be an ordering such that a(j) <a(i) implies the largest

integer in I@(73)) 1s no greater than the largest integer in

I(a(i)) . Let (i,j) €eE with a(i) <a(j) and suppose

a(i) < afk) < a(j) . Then I(a(i)) NI(x(J)) # ¢, so I(a(3))
contains all integers between the largest integer in I@(i)) and

the largest integer in I(Q(j)) . This set includes the largest

integer in I{a(k)) . Thus I(x(j)) NI(a(k)) #¢ , and (k,j) eE . O

Lueker and Booth [28] have devised an O(mtm) -time test for the

interval graph property. The test 1s constructive, so an appropriate

ordering for a dense profile graph can be found in O(mm) time.

The breadth-first search method of Cuthill and McKee produces

small profile on some examples. A reverse breadth-first search based

on the Cuthill-McKee method does as well or better [27]. Little is

known theoretically about the behavior of such heuristics. The

problem of finding an ordering to minimize > b(j) (or > b(3)° )
i=1 i=1

has not yet been proved NP-complete. For results on the NP-completeness

of a similar problem, see [15]. See [10] for further discussion of

bandwidth, profile, and related ordering schemes.

It 1s easy to generalize the definitions of bandwidth and profile

to allow different envelopes on either side of the diagonal. See [10].

In view of the difficulty of finding good orderings for minimizing

symmetric bandwidth and profile, we do not pursue this idea further.
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Several facts reduce the appeal of the bandwidth and profile

schemes except on problems for which a good choice of ordering is

explicit or implicit 1n the problem description. First, it is not

easy to find a good ordering. Second, and more important, the band-

width and profile schemes may be overly pessimistic in that they may

examine many matrix elements which are in fact zero. This will happen

with sparse graphs having large bandwidth or profile. A practical

example 1s the square k by k grid graph, which arises in finite

difference solutions to partial differential equations [14]. Any

bandwidth or profile method for this problem requires 0 (kJ) storage
and 0x") time [22,30], whereas the nested dissection method [17,36]
a special type of general sparse ordering, requires only

0(k" log k) storage and 0 (k3) time.
We consider now the general sparse method. A graph 1s a

perfect elimination graph if there 1s an ordering which produces no

fill-in. We can test for the perfect elimination property in O (nm)

time [34]. This property is computationally at least as hard as

testing a directed graph for transitivity, so improving the time

bound beyond O (nm) would be a significant result. Given any

ordering, we can compute its fill-in in O(nm) time [34]. Such an

algorithm is useful 1f we wish to precompute the fill-in before

performing the numeric calculations. Computing the fill-in is at

least as hard as computing the transitive closure of a directed

graph [34].

The problem of finding an ordering which minimizes the size of

the fill-in is NP-complete [34]. However, a related problem has a

polynomial time algorithm. We call a set of fill-in edges F

minimal if no ordering produces a fill-in F'CF . If a is an

ordering which produces fill-in F , a is a minimal ordering.

Minimal orderings are not necessarily close to minimum, but given

any ordering we can improve 1t to a minimal one 1in o(nh) time [34].
These problems are easier for symmetric graphs. We can test a

symmetric graph for the perfect elimination property in O(n+m) time,

compute the fill-in of any ordering in O(ntm) time, and find a

minimal ordering in O(mm) time [35]. These algorithms, especially

the one to compute fill-in, may have important practical uses.

13



In view of the NP-completeness results, we cannot hope to solve

| the general problem of efficiently implementing sparse Gaussian
| elimination. We can only try to solve the problem for special cases.

Approaches include the following.

| (1) Develop and study heuristics for producing orderings with small

| fill-in. Several heuristics have been proposed, including the

minimum degree and minimum fill-in heuristics [31,32]. These methods

seem to work well in practice, but nothing is known about their

1 theoretical behavior.

| (2) Develop good ordering schemes for special types of graphs.

A successful example of this approach 1s the nested dissection

| method [17,36].

(3) Develop methods which avoid the necessity of computing all the

| fill-in. In some cases values on fill-in edges can be stored

| implicitly rather than explicitly, resulting in a savings of

time and storage.

| We consider in the next section a method which combines ideas (3)
| and (4).

Another possible approach would be to study the average behavior

| of elimination methods. This approach is not a good one, however,
for two reasons. (1) Most graphs which occur in practical problems

are highly non-random in their structure. (2) ErdSs and Even [13]

have shown that "most" symmetric graphs with order n log n edges have

a fill-in of order n° (most graphs with less than order n log n edges
are not connected). Thus a dense matrix method is as good (to within a,

constant factor) as any sparse method, on random graphs which are not

| too sparse.

5. A Decomposition Method Using Dominators.

This section presents a decomposition method for solving systems

of linear equations which 1s more powerful than the decomposition

into strongly connected components discussed in Section 3. The idea

of the method is as follows. SupposeG = (V,E) is a directed graph

and there exists a triple u,v,w of distinct vertices such that v

14



dominates w with respect to u . We can partition V into

V = {v}uv, Uv, such that V; contains u and all vertices
reachable by a path from u which avoids v . Let

G; = ({viuvy, E({viuvy)) » 6, = ({v}UV,, E({vJUV,)). Suppose
we are given a set of equations defined on G . We solve the set by

the following method.

Step 1: For each vertex we, , Solve for x(w) in terms of x(v)

using the system of equations defined on Gry . That 1s,
represent x(w) as x(w) = x(v)-.a(v,w)+b(v,w) for some

real values a(v,w) , b(v,w) |.

Step 2: Replace each edge (X,y) with XeV, , ye {v} Uv, , by
an edge (v,y) with value m(v,y) = 0 , if such an edge does

not exist already. Set m(v,y) P= a(v, x) -m(x,y) + m(v,y) .

set c(y) := b(v,x)m(xy)+ c(y) .

Step 3: In the new graph G', solve the system of equations defined

on Gq .

Step 4: using the equations found in Step 1, solve for the values

of the variables x(w) , weV, .

This method solves the system of equations defined on graph G

by solving the two smaller systems defined on Gy and Gy and
combining the solutions. It 1s equivalent to carrying out Gaussian

elimination on G in an order so that all the vertices in Vs

are ordered first, followed by vertex Vv , followed by all the

vertices in V; . For each edge (X,7) with xeV, , y € {v} ¢ UE
this elimination order may create a large number of fill-in edges

(x',y) with x'eV,. None of these fill-in edges are really
necessary to the computation; only the corresponding fill-in edge

(v,y) 1s necessary. By computing the value of this edge directly,

we avoid computing many of the fill-in edges and thus save time and

storage space.

We generalize this scheme as follows. Henceforth we assume

G = (V,E) is Strongly connected. Let r be some fixed, distinguished

vertex of G . If v dominates w with respect to r and no vertex
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dominates w with respect to v , we say v 1s the immediate

dominator of w (with respect to r ). We denote this relationship

by v = idom(w) .

Theorem 2 [ 1]. Fach vertex w # r has a unique immediate

dominator. The rooted tree T = (v, {(idom(v),v) |v # r)) , called
the dominator tree of G , has the property that, for every vertex w,

its dominators with respect to r are exactly its ancestors in T .

Our solution method works as follows.

Step 1: Choose a fixed vertex r of G . Compute the corresponding

dominator tree T .

Step 2: Working from the leaves of T to the root, solve for each

variable x(v) 1n terms of x (1dom (Vv) ) .

Step 3: Solve for x(r) and for all other variables x(v) by

backsolving using the equations computed 1n Step 2.

Step 2 will compute, for each variable x(v) , a pair of numbers

a(v) and b(v) such that x(v) = x(idom(v))-a(v)+Db(v) . As we work

through the tree in Step 2, we must compose such affine functions. We

will assume the existence of two primitive instructions for this

purpose. Given two ordered pairs (a,b) and (c,d) , let

(a,b) (c,d) = (ac, betd) (this operation corresponds to forming the

composition of the affine functions ax+b and ecy+d .

The two operations will construct T and place ordered pairs of

real numbers on its edges. Initially T has no edges constructed.

The operation LINK(idom(v) , Vv, (a,b)) adds the edge (idom(v),v) ,

with associated value c(idom(v),v) = (a,b) to T . The operation

EVAL(v) returns the ordered triple (uw,X,y) such that

(x, y) = c(e;)-c(e,). . .. ® c(e;) , where ej ey, ...,e, is the longest
path to vertex v in the part of T so far constructed by LINK

instructions, and this path starts at vertex u . (If wv has no

| entering edge yet constructed, EVAL(v) returns the triple (v,1,0) ;

the pair (1,0) corresponds to the identity function.)

Now we give the details of the algorithm.
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Step 1: Choose a fixed vertex r of G . Compute the corresponding
dominator tree T of G . Number the vertices of T from

| 1 to n in postorder. For each vertex v , let s(v) be
the set of children of v in T .

| Step2: for u := 1 until n do begin
| initialize E(u) = §;

for ve s(u) do

| for each edge (w,v) of G do begin
| (z,a,b) := EVAL(W);

| if (z,v) is not an edge of E(u) then
| add (z,v) with value m(z,v) = m(w,v).a to E(w)
| else m(z,v) := m(w,v)-a+m(z,v);
| e(v) := m(w,v)-b+ c(v);
j end;

find the strongly connected components of the graph

| cw =({v}Us(u),E(u)) and topologically sort them;

| solve the system of equations

Qu) = ( 2 m(w,v) x(w)+ c(v) = x(v) res| (wy v) €E (uw)

| to give an equation x(v) = a(v)-x(u)+b(v) for
each ves(u) , by using Gaussian elimination and

the strongly connected components decomposition

as discussed in Section 3;

for ves(u) do LINK(u, v, (a(v),b(v)));

Step 3: for each edge (w,n) of G do begin

| (z,a,b) := EVAL(w);

m(n,n) := m(w,n).a+m(n,n);

| c(n) := m(w,n) b+ c(n);

| x(n) = ¢(n).[1-m(n,n)]"%;
end;

for 1 :=n-1 step -1 untill do
x(i) := x(idom(i))-.a(i)+c(i);
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This method uses Gaussian elimination on the strongly connected

components of the graphs G(u) and combines the solutions to give

the solution to the entire problem. The time to combine solutions

1s almost-linear 1n the size of Gj thus 1f the method breaks the

graph 1nto several parts 1t 1s certainly faster than Gaussian

elimination applied to the whole graph.

More precisely, the running time of Step 1 is O(m a(m,n)) [41],

where Q(m,n) is a very slowly growing function related to a

functional inverse of Ackermann's function. Step 1 requires O(m)

storage. Step 2 requires O(m &(m,n)) time and O(m) storage for

, the LINK and EVAL instructions [41]. Step 2 requires O(m) time

and storage except for the Gaussian elimination steps and the LINK

and EVAL instructions. Step 5 requires O(n) time and storage.

Thus the entire algorithm requires O(m @(m,n)) time and O (m)

storage exclusive of the Gaussian elimination steps.

If each strongly connected component of every graph G(u) consists

of a single vertex, then the algorithm runs in O(m Q(m,n)) time

total. A graph G for which this happens 1s called a reducible

graph [29] (not to be confused with a reducible matrix). Though

reducible graphs do not seem to arise 1n numerical problems, they

often arise 1n global optimization of computer code, to which the

ideas 1n this paper also apply. Thus this decomposition method may

have considerable practical value. Indeed, similar methods for

reducible graphs have been extensively studied by computer scientists

[ 2, q, 18,21,24k2 7 ,

If no root r can be found for which G breaks 1nto several

pleces using this decomposition scheme, the same idea can be applied

to the reverse of G . The algorithm must be changed somewhat, but

the idea 1s similar. In fact, a more general algorithm which divides

G into strongly biconnected components and solves a set of equations

on each component can be developed. The trouble with such an algorithm

1s that at present no efficient method exists for dividing a graph

into strongly biconnected components. Research is in progress in this

area.
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0. Selection of a Set of Pivot Positions.

When considering orderings for Gaussian elimination 1n Section 4,

we restricted our attention to simultaneous row and column permutations,

represented by a renumbering of vertices in the graph representing the

system of equations. Thus we always used the positions on the main

diagonal as pivot positions. In numeric problems, there 1s no reason

to restrict our attention to such reorderings, however. We can easily

allow independent row and column permutations, and thus use an arbitrary

transversal of the matrix as a set of pivot positions (a matrix

transversal 1s a set of n matrix elements, no two 1n the same row

or column).

There are two reasons for selecting a transversal other than the

malin diagonal.

(1) To improve the stability of Gaussian elimination.

(2) To improve the resource requirements of Gaussian elimination.

The well-known partial and complete pivoting methods [14] choose

a transversal to improve stability. They choose a set of matrix

elements of large absolute value as pivots. These methods depend on

the actual numeric entries and not on the zero -non-zero structure of

the matrix.

If we do not know the actual entries of the matrix, but only its

zero =non-zero structure, then any transversal consisting of non-zero

elements 1s as good as any other for purposes of stability. Such a

transversal may be found in 0(n/? m) time by using a bipartite matching
algorithm of Hoperoft and Karp [44]. Dulmage and Mendelsohn [12]

extensively discuss this and related problems. Essentially no research

has been done on the problem of picking a non-zero transversal which

minimizes resource requirements. One theorem is known however.

Theorem 2. LetM be any matrix. Let Q be any permutation matrix

‘such that MQ has a non-zero main diagonal. Let G(Q) be the directed

graph corresponding to MQ . Then the vertex partition induced by the

strongly connected components of G(Q) 1s 1ndependent of Q.
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This theorem follows from results of Dulmage and Mendelsohn [12].

Howell has given a nice proof [45]. The theorem implies that the

strong component decomposition method discussed in Section 3 produces

the same number of components independent of the transversal chosen,

though the components themselves may be different.

Ignoring questions of stability, there 1s no reason not to choose

a transversal some of whose elements are initially zero and only become

non-zero as the elimination proceeds. Such a choice may result 1in

substantial computational savings. Bank and Rose [ 4 ] have provided

a practical example of this idea. Though their method is numerically

unstable, it can be modified to make it stable without degrading its

, efficiency too much [ 5 ].

In summary, the problem of choosing the best set of pivot positions,

for stability or efficiency or both, 1s very poorly understood. The

results of Bank and Rose indicate that allowing only transversals

which are initially non-zero 1s too restrictive. It is likely that

the problem 1s too hard for a general solution, and the most promising

areas for research seem to be the development of heuristics and

special-case algorithms.

To Remarks.

Though we have assumed throughout this discussion that the matrix

M consists of numbers, there 1s no reason to do so. The techniques of

linear algebra, such as Gaussian elimination, apply to other algebraic

structures having two operations + and .. Thus the methods discussed

in this paper can be used to compute path sets in labelled graphs [3,37]

(a problem of automata theory), find shortest paths and other kinds

of optimal paths in directed graphs [7 ], and to do global flow

analysis of computer code [2,9,18,24,42]. The algorithms remain the

the same; only the interpretation changes.

We must assume the existence, for any a , of an element a* such

that, for all b , a” +b 1s a solution to the equation x = a-x+b .

For numbers, a* = [1-a] ? exists whenever a # 1 , and Gaussian
elimination requires non-unit pivots.
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