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Proof of Termination within a Weak Logic of Programs
by
David Luckham and Nori Suzuki

1. INTRODUCTION.

A weak logic of programs is one in which statements that “a program halts”
cannot be expressed. Such a logic has been given by [Hoare69,71] and its proof
theory has been defined and studied in [lgarashi, London & Luckham](referred to as
ILL), [Hoare & Lauer], [Cook]. Other recent papers have been devoted to
strengthening this logic so that questions of termination are expressable; e.g.
Dijkstra’s notion of weakest precondition [Dijkstra], and various suggestions for
introducing well-orderings into the assertion language.

Here we give a simple application of the method of Virtual Programming which
permits strong statements of termination (e.g. program A halts and Q is true) to be
deduced from weak statements (if A halts then Q is true) by means of the good old
law of excluded middle. (Remark: the notion of virtual program in intuitive terms is
simply code added to an actual program which has no effect on the actual values of
the result parameters.) The method requires no change whatever in the weak logic,
and employs exactly the same automated techniques that are currently used to verify
all manner of properties of programs [ILL, Suzuki 75a,b, von Henke & Luckham]. This

permits strong proofs of correctness (i.e. termination and consistency with
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specifications) to be obtained using the present verification systems based on the
weak logic, Similar ideas have been put forward -by Knuth [Knuth], in which he
showed how one can prove the termination of extended Euclid’s algorithm as the
byproduct of the correctness proof using Floyd’s method.

Virtual program has been used previously to document programs in certain
tricky situations (e.g. where the documentation uses data structures not used by the
actual program, such as history sequences [Clint], or data structures destroyed by
the actual program [v.Henke & Luckham]). More recently it has been used to prove
complexity bounds on program computations [Farmwald]. The technique seems to
present a natural approach to proving dynamic properties of programs (i.e. properties
of the computations themselves as distinct from the final results). Termination is one
of these dynamic properties.

Essentially, most programs halt for simple reasons, and the programmer usually
knows those reasons. What is needed is a natural way of permitting him to state his
reasons, Our proposal here is simply to introduce virtual program counters into the
program. The function of these counters is to “count” the number of computation
steps that are executed. Each path in the program must have added to it an
assignment statement which increments the counter proportionally to the length of
the path. The programmer must also add inductive assertions stating in effect that
the values of the counters are bounded. Presumably he has an idea of a reasonable
upper bound, and that is all that is necessary. The problem of proving termination
within the usual weak logic then becomes merely another verification problem

~-namely the proof of the boundedness of the counters in the augmented program.
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There is one’ “catch”. The counters must account for every possible loop and
recursion (i.e. every potential source of infinitely long computation), otherwise a
correct weak statement will not imply termination. A test for this provision can
easily be automated.

In section 2 we illustrate the method and the ‘“catch” by simple examples. An
outline of a rigorous justification is given in Section 3, and actual results using our
present verifier [ILL, Suzukil5a,b] are included in Section 4.

To, simplify matters, we have restricted the discussion to Pascal programs
containing Assignment, Conditional, and While statements, function calls, and
recursive procedure calls. The extension of the method to GoTo’s and other
statements is obvious. Also, we have assumed that the reader has an acquaintance
with some of the literature on verifiers based on the weak logic of programs (see the

references).



2. THE METHOD.

Our method involves the use of very simple virtual programs. Virtual program
is defined rather loosely as a set of instructions imbedded into the program to be
verified so that it does not interfere with the original program (often called the
actual program). We shall .use only virtual assignment statements, and their left
hand-sides will be required to be ghost variables--variables which are not used in the
original program. No other kind of modifications will be allowed. It is clear that the
addition of such instructions cannot change the behaviour of the actual program on
the actual program variables.

Asan example let us look at the following program for multiplication by
addition.

Program 1.

ENTRY: a,b:INTEGER;
X€a;
y«d;
while x#0 do
begin
xex-1;
yey+b
end.
EXIT: y=aXb;

If we want to measure the time taken to compute multiplication with the assumption
that the assignment statement and testing both take a unit computation time, we can

modify the program by introduction of virtual program as follows,



Program 2.

ENTRY: a,b:INTEGER,;

x€a;
y<0;
counter«l;
while x#0 do
begin
xex-1;
yey+b;
counterecounter+3
end.

EXIT: y=aXb A counter=3%axb+2;

Suppose we can prove within the weak logic-of programs that program 2 augmented
by the new assignment instructions satisfies the new EXIT condition. The value of
the counter in the EXIT is a function of the input parameters only. So, we will have
proved that whenever the augmented program stops the counter is bounded by a
bound that is given before the computation starts. Now assume that we have put the
virtual assignments “in all the right places” so that every possible computation path
contains an assignment which increments the counter by the number of instructions
on the path. Then we will have proved that either the actual program 1 will stop
within a number of steps less than the bound, or it will compute forever. This would
give us a tool for proving bounds on the complexity of computations of programs
using standard verification techniques.

There is one problem: the user is responsible for putting virtual assignments of
the form counter«f(counter) that increment the counter correctly in a sufficient
number of places. Having done this, verifying the computation bounds becomes a

problem of verifying a statement about the augmented program in the weak logic, and
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the verifier can be used to aid in solving it.. Note that we do not have to extend the
weak logic in any way.
We might ask whether we cannot prove termination at the same time. This

simple thought presents another problem. See the following example,

Program 3.

ENTRY TRUE;

x<0;

counterel;

while x20 do
begin
x«-x+1;
counterecounter+2
end.

EXIT counter<l;

This program certainly does not terminate. But it is easily proved to be weakly
consistent with the -output assertion, COUNTER<1. And the counter is clearly
counting all possible computation steps. The weak correctness proof goes as follows.
We take the inductive assertion X30 as invariant of the loop. Then, three verification
conditions are generated corresponding to three paths in the program,

(1). TRUE=030.

(2). X30nX30 - X+150.

(3). X50A-~X30- COUNTER<L.

They are all valid. Condition (1) requires . that when the control reaches the
while-statement, the invariant will be satisfied intially. And (2) guarantees that X>0 is
the invariant of the loop. Condition (3) is valid since the antecedent, namely

X30A-X30, is a contradiction; that is, the path to the EXIT is never executed.
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The question of proving termination is really asking under what conditions a
weak statement about a program with a virtual counter (“if P stops then counter<h")
implies a strong statement (“P must stop in €b steps”). As is evident from the above
example such implications are not always valid. In order for a weak statement to
imply a corresponding strong statement all iterative statements must have an
invariant assertion stating that the counter is bounded. We shall call these “bound
assertions”.

In our example, the inductive assertion about the while loop does not even
contain the counter., If we try to force the proof above to be a proof of termination,
we have to give a stronger loop assertion so that if the program does not terminate
and the control repeats the loop indefinitely, this assertion eventually becomes false.
Then, the verification condition corresponding to the loop is no longer valid.

The question is, “can we always find such strengthening of the loop invaliant?”
And the answer is ,"yes." The expression which we have to add is COUNTER<g(X),

where X is a set of input values of program ‘parameters. This assertion gives the

upper bound for the value of COUNTER.

T he method for W hile Statements:

Each while statement is associated with a variable, COUNTER, which does not
appear in the actual program. A COUNTER may be associated with many while
statements. For each while statement, the user must add to the while body a counter
assignment, COUNTER«f(COUNTER,X0), where f is a strictly increasing integer

valued function and X0 is a set of variables not occurring in the actual program. The
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user must also add an inductive assertion, COUNTER<g(X0), where g is a well defined

function of X0, to the While statement.

The same kind of technique can be used to prove termination of procedures
with recursive calls. Here, the potential source of infinite computation is the
execution of arbitrarily many calls. The role of the counter will be to “count” the
number of recursive calls by being incremented by COUNTER « {(COUNTER,X0), f a
strictly increasing integer valued function, each time a call occurs. So we have to
place the counter assignments where they will be executed whenever procedures are
evoked. One place which meets that requirement is the beginning of the procedure
body. Also we need to add bound assertions that will become false if the depth of
procedure calls exceed a certain level. The best candidate is the ENTRY condition of
the procedure. The counter is introduced as an additional VARIABLE parameter of
. the procedure since it must be global to every call.

We note that the bound assertion, say COUNTER < g(X0) , must be fixed for
all calls; therefore X0 must not contain any parameters appearing in procedure calls
otherwise the bound would change with the actual values of those parameters. We
can think of X0 as being initial values of parameters of the outermost procedure call.

Below we give an example.

Program 4

procedure factorial (var XsN)s
ENTRY N28;
EXIT X=N!j
if N=B then X ¢« 1 else
begin
factorial (X,N-1);
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X « NxX
end.

This is a procedure which calculates factorial N and returns the result in X. The
entry and the exit conditions are N 3 0 and X = N! respectively. We change the
program with COUNTER assignments.

Program 5

procedure factorial (var X,COUNTER; N);
ENTRY N2@ A COUNTER<N@ a COUNTER+N=NB;
EXIT XeN!;
begin
COUNTER « COUNTER + 1;
if NO then Xelelse

begin
factorial (X,COUNTER,N-1);

X « NxX
end. '

Notice the new entry condition contains not only a bound assertion, COUNTER<N®,
but also an inductive assertion stating an invariant relationship between COUNTER
and values of the parameter N in successive calls. Notice also that NO has been
introduced so that the bound contains no parameter of the procedure; NO is the

initial value of N at the outermost procedure call. So what we are going to prove is

N28 A COUNTER+N=N@ A COUNTERsNB
{ COUNTER ¢ COUNTER t 1;

if NO then X « | else

begin

factorial (X,COUNTER,N-1};
X « NxX
end, |
X = N

with the assumption that

Y28 A COUNTER+Y=N8 n COUNTERsN@ { factorial (X,COUNTER,Y) } X-Y!
Using techniques for proving weak correctness of procedure call [Hoarell, ILL,

Suzuki75b], verification conditions are
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(1) N>OACOUNTER+N=NOACOUNTER<NO o5(N=9 > 1=0!).
(II) N30A(COUNTER+N=NOACOUNTER<N® o(N#0 > N-130ACOUNTER+1+N-1=NoA
COUNTER<NOA(X00=(N-1)! > NxX00!=N!))

which are all valid. So the actual program 4 is correct and also terminates.

The Method for Recursive Procedures

Each procedure declaration is associated with a variable, COUNTER, not
appearing in, the actual program. Then (1) COUNTER is introduced as a new
VARIABLE parameter of the, procedure, and all calls are correspondingly modified;
(2)the user must place at the beginning of the procedure body, a counter assignment,
COUNTER ¢« f(COUNTER,X0), where f is strictly increasing and X0 is a set of
variables not appearing in any procedure body; (3) the user must add a bound

assertion, COUNTER < g(X0), to the ENTRY condition of the procedure.
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3. JUSTIFICATION OF THE METHOD,

We are going to show that this method of adding virtual program counters to
while statements and procedures with recursive calls is sufficient to prove
termination, That is, a proof of weak correctness of the augmented program
guarantees the termination of the actual program. We have omitted the case for goto
statements but we can treat them likewise.

(i) While statements.

The augmented program for while statements

WHILE C 00 S
is
WHILE C 00
( COUNTER « f (COUNTER, X0) ; S).
where f(COUNTER,X0) is an integer valued strictly increasing function, that is

COUNTER <(f{(COUNTER,X0),
and X0 is a set of new variables not occurring in S. The form of the invariant of the
loop ( or the inductive assertion ) must be

IACOUNTER <g(X0)  where I is any Boolean assertion.

Now we are going to prove that if the augmented program of this form with
the given inductive assertion is verified then the actual program terminates. Various
proofs of the soundness (i.e. semantic -consistency) of the weak logic of programs
have been given (see [Hoare & Lauer], [Igarashi, London & Luckham], [Cook]). These
proofs construct a model (essentially an abstract interpreter for the programming

language) with the property that any statement about a program that is provable in
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this logic is true when the program is “run” on the interpreter. This means for
example, that if we can prove

I{ while L do A }1 in the logic of programs,
I being a Boolean assertion invariant of the loop, then when “while L do A” is run on
the abstract machine, the computation state at the end of every execution of the
loop will satisfy I.

We shall show that the provability of weak statements about programs
augmented by counters according to our method implies that the computations of
those programs on the abstract machine halt. We present our argument with some
degree of informality since we do not wish to burden the reader with the formal
details of the model here. We shall simply refer to a “standard machine” which the

reader can imagine is an interpreter for the axiomatic semantics of Pascal,

Proof

Suppose the augmented program for a simple while statement as shown with the
given inductive assertion is proved. Suppose also that the program does not terminate
when run on the standard machine. We are going to show that this assumption
produces a contradiction. We are going to number the values of COUNTER so that

COUNTER is the value of COUNTER when the control goes around the loop i times.

Since the program does not terminate, we are going to have an infinite sequence of

values,

COUNTER . ., COUNTER ...
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Because of the assignment statement
COUNTER « f(COUNTER,X0),

which takes place between two successive values of COUNTER’s, we have the

relation

COUNTER = f(COUNTERI,XO).

+]
However, f is strictly increasing and also it is an integer function; therefore,

COUNTER > COUNTER + 1.

i*]
From the above relation

COUNTER 3 COUNTERo +n

So for any integer k we can select m such-that COUNTER > k. This contradicts the

m
fact that the loop invariant is of the form
I ACOUNTER <g(X0), which is true for every iteration and
g(X0) must remain constant throughout the computation.
So the program must terminate.
(i1) Recursive procedures.

The augmented program for procedure
procedure k(X); B
is
procedure k (X; var COUNTER) P
begin
COUNTER ¢ f (COUNTER, X0);

B
end.

The function f must be strictly increasing as was the case in (i). The bound assertion
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is now added to the entry condition of the procedure , which must take the same
form as in the case of while statements.
Proof
Assume first that B contains no while loops nor calls to procedures other than
k. Suppose the augmented program with input assertions of the form
I A COUNTER < g(X0)

can be verified. That is

I ACONTER s g (X0) { begin COUNTER « f (COUNTER, X0);Bend} O
is provable with the assumption that

I A COUNTER < g(X0) ( k(X))o.
Suppose also the program does not terminate. Then the depth of recursive calls to
this procedure is infinitely large. In this case, we are going to number the values of

COUNTER at the beginning of the procedure so that COUNTER is the value of
I

COUNTER at the i-th level of procedure call in the current calling sequence. So we
have a sequence of values

COUNTE'.Ro Yo COUNTERn y o

Because of the assignment statement
COUNTER « f(COUNTER,X0)
at the beginning of the procedure body so that it is alwaysexecuted after a call, we

have the following relation

COUNTER " f(COUNTERi,XO),

for all-i. As in the previous case, for any integer k, we can choose m such that
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COUNTER > k.
m

This is a contradiction because at each procedure call

1A COUNTER <g(X0)
must hold just at the entry to the body. Note that g(X0) must remain constant over
all calls because X0 does not contain any program variables.

The above arguments for a single loop and a single recursive procedure can be
generalized for nested loops and mutual recursive procedures. Essentially, if there is
‘an infinite computation of an augmented program with n counters, one of those

counters will be incremented infinitely many times.
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4. EXAMPLES.

All proofs below were obtained using the Stanford Pascal Verifier. This system is
implemented in LISP and runs on a PDP-10 in about 50K words of memory. The main

references for details of this verifier are [lgarashi, London & Luckham, Suzuki a,b].

The first example is Dijkstra’s square root program which computes square root of N.
The problem here is to verify both that the program halts and computes an integer
approximation to the square root of N. The program has been augmented by
operations on the virtual variable COUNTER. Termination of the square root
program is verified by proving the bound assertion on COUNTER for the augmented
program. The ‘documentation is expressed in terms of user-defined concepts such as
"B2 is a power of four” and “the integer logarithm base 4 of B2". Notice that the
.EXIT condition implies that the loop is executed at most ILOG4(B20) times, where

B20 is the intial value of parameter B2.

PASCAL
ENTRY (N>8) A (B2>N) A POWER_OF_FOUR(B2) A (B2=B28) ;
EXIT (B8 < A) A (A%A s N) A (N < (A+l)x(A+1))

A (COUNTER s 1L0OG4 (B28))

BEG N
A2 = (;
AB = (;
COUNTER: =83
I NVARI ANT POWER_OF_FOUR (B2) A (ABX%AB = A2%B2)A(AB28) A (B2>8)
A (A2+2%AB+B2>N) A (A2<N)
A (1LOG4 (B2) +COUNTER=ILOG4 (B28) )
A (COUNTER s ILOG4 (B28))
WHILE 1 = B2 DO .
BEGI N
AB := A6 DIV 2;
B2 := B2 DIV &;
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T := A2 + 2%AB + B2Z:
COUNTER: =COUNTER+1
‘IF T £ N THEN

BEGI N
A2 1= T;
AB := AB + B2
END
END;
A := AB;
E N D
HKHKKK

FOR THE MAIN PROGRAM

THERE ARE 3 VERIFICATION CONDITI ONS

#1

(B<N &

N<B2 & .
POWER_OF_FOUR(B2) &
B2=B28

-

POWER_OF_FOUR(B2) &

PxB=0%B2 &

P<B &

B<B2 &

N<B+2%8+B2 &

B<N &

B<IL0OG4(B2B) &
1LOG4 (B2) +8=1L0G4 (B28) &
(-~1=B200 &
POWER_OF _FOUR (B298) &
ABBOB*ABRG=A200%B208 &
B<AB2SG &

0<B288 &
N<A208+2xAB00+B208 &
A208<N &
COUNTERBB<ILOG4 (B28) &
[LOG4 (B268) +COUNTER@8=1L0G4 (B2@)

0<ABRB & -
ABBBxABBOBsN &

N< (AB28+1) x (ABBB+1) &
COUNTER®@8s< 1 LOG4 (B28)))

# 2

(~A2+2% (AB DIV 2)+B2 DIV 43N 6
=1=B2 &

POWER_OF _FOUR(B2) &
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ABxAB=A2xB2 &

B<AB &

g<B2 &

N<AZ2+2%AB+B2 &

A2<N &

COUNTER<ILOGS (B28) &

1L0G4 (B2} +COUNTER=I1L0G4 (B28)
POWER_OF_FOUR (B2 DIV 4) &

(ABDIV 2}%(AB DIV 2)=A2%(B2 DIV 4) &
B<AB DIV 2 8

8<B2 DIV 4 &

N<A2+2%(AB DIV 2)+B2 OIV 4 &

A2<N 6 .
COUNTER+1<1LOG4 (B28) &

ILOG4 (B2 DIV 4)+COUNTER+1=1L0G4 (B28) )

# 3
(A2+2x (AB DIV 2)4B2 DIV 42N &
-1=B2 &
POWER_OF_FOUR(B2) &
ABxAB=A2xB2 &
g<AB &
B<B2 &
N<A2+2%AB+B2 &
A2<N &
COUNTER< I LOG4 (B28) &
1LOG4 (B2) +COUNTER=ILOG4 (B28)
-
~ POWER_OF_FOUR(B2 DIV 4) 8
(AB DIV 24B2 DIV 4)%(AB DIV 24B2 DIV 4)=
(A2+2x(AB DIV 2)+B2 DIV 4}%(B2 DIV 4) &
B<AB DIV 2+B2 DIV 4 &
B<B2 DIV 4 &
N<AZ2+2%(AB DIV 2)4B2 DIV 4+2%(AB DIV 2+B2 DIV 4)+B2 DIV 4 &
A2+2%(AB DIV 2)+B2 OIV 4sN &
COUNTER+1< 1 LOG4 (B20@) &
ILOG4 (B2 DIV 4)+COUNTER+1=1L0G4 (B28))

These verification conditions all simplify to TRUE using the SIMPLIFIER with the

lemmas (AXIOMS and GOALS) in’ the GOALFILE below. The total time for the

complete verification is 39 CPU seconds.
The lemmas describe properties of POWER-OF-FOUR(X), X DIV Y, EVEN(X), and

ILOG4( X), and are supplied by the user. They are written in a form which indicates
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how they are to be used by the SIMPLIFIER [Suzuki al. To read them as logical
statements simply ignore all occurrences of “8”. A lemma of the form “AXIOM A«B"
means "A=B", “GOAL A SUB B" means "B2A".

With this advice readers should be able to understand the lemmas (while those
aquainted with our previous reports will also understand how they are used by the
SIMPLIFIER in the proofs). Only three of these arithmetical lemmas (those marked
by a "x") are needed to prove that the program halts within ILOG4(B20) executions
, of the loop. This reflects the fact that the loop is controlled by a single instruction,
B2:=B2 DIV 4. So termination is a much simpler problem than correctness of the

output in this case, and can be checked almost “for free”.

GOALFILE
AXIOM @Pl<aP2 o Pl+1<P2; ~
GOAL @Pls<eP2 SUB (PlseP3)A(@P3sP2);
GOAL @ s @X + @Y SUB (8 s X) A(B 5 Y);
GOAL @PlgaP2 SUB (P1<eP3)a(eP3«P2);
AXIOM IF (I»J) THEN el2ed «1>J;

GOAL POWER_OF _FOUR (eIl OIV 4)SUB POWER_OF _FOUR(I1);
GOAL 1 s (el OIV 4) SUB POWER_OF_FOUR(1)A(1<l);

AXIOM (eKxeL)DIV eK « L;
AXIOM IF M+1<K THEN ((eKxeL)+eM )DIVeKe L;
GOAL 9sePl DIV @P2 SUB (P2 2 8)A(Pl 2 B);

GOAL EVEN(eZ) SUB (ZxZ=A2x@X)APOWER_OF_FOUR(X) ;
AXIOM IF EVEN(X) THEN (eX DIV 2}x{(@X DIV 2) e (XxX)DIV 4;
AXI OM IF POWER- OF- FOUR(X) THEN @Yx(@XDIV4)e (YRX)DIV 4;

GOAL (@X DIV el)=(eY DIV @l) SUB XsY;
AXIOM IF EVEN(X) THEN 4x(@X OLV 2) & 2%X;
AXI OM IF POWER- OF- FOUR(I) THEN é4x{@l DIVé&)el;

GOAL eXxaY=@ZxaY SUB (YwB)>(X=Z);
GOAL ILOG4 (@X)28 SUB X21;

AXIOM IL0OG4 (eX DIV 4) e 1LOG4 (X) -1}
GOAL ILOG4 (@X)21 SUB (X>1)APOWER_OF_FOUR (X) 3

* ¥ *
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The next example shows how the termination of a recursive procedure can be
proved using a counter and the entry assertion which states a bound on the value of
the counter. The procedure PCCD computes the greatest common divisor of M and N

and returns the value as R. This is stated as the exit assertion,
PASCAL

PROCEDURE PGCD (VAR COUNTER,R: INTEGER;M,N: INTEGER);
ENTRY (M2@)A(N>8) A(COUNTERSNBG)A(COUNTER+NsN®) ;
EXIT R=GCO(M,N);
BEGI N
COUNTER : = COUNTER+1;

:= MOD(M,N); ,

lIEFDI-G THEN R : = N ELSE PGCD (COUNTER,R, N, 1)
NO; '

AR NK

FOR PGCD
THERE ARE 2 VERIFICATION CONDITIONS

#1

. (MOD(M,N) =8 &
B<M &
B<N &
COUNTERsN8 &
COUNTER+NsN@

-
N=GCO (M, N} )~

# 2

(-MOD(M,N) =8 &

gsM &

B<N &

COUNTER<N® &
COUNTER+NsN8
-

BsN &

B<MOD (M, N} &
COUNTER+1 sN8 &
COUNTER+1+MOD (M, N) sN8 6
{RB@=GCD (N, HOD (M, N} )

R@8=GCD (M, N} ))
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These verification conditions are simplified to TRUE using the following arithmetic

lemmas and lemmas describing properties of GCD(X,Y). The computation took 8 CPU

seconds.
GOALFILE

AXIOM 8 < MOD(eM,eN) -' TRUE:
‘AXIOM MOD (eM,eN) +1 <eN « TRUE:
AXIOM IF X=YxeQ THEN MOD(eX,eY) o 8;

GOAL @P3 sePl+aP2 SUB (P3sP1)A(BsP2);
AXIOM @Pl<aP2 « P1+1<P2;
GOAL @X s@Y SUB (X-1m=Y)A(X-15Y);

GOALFILE

AXIOM IF Y=MOD(eR,X) THEN GCD (eX,@Y) « GCD(R,X);
AXI OM IF MOD(X,Y)=8 THEN GCOD(eX,aY) e Y,
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The last example is the procedure SIFTUP used in the TREESORTS algorithm.
The properties that the output array is ‘ordered and the output array is a
permutation of the input array have been proved for the whole TREESORTS3
algorithm by this verifier [Suzuki 75a). We verify here that SIFTUP terminates and

the computation time required is proportional to the logarithm of the size N/10,

PASCAL

PROCEDURE SIFTUP (18,N: INTEGER) ;
ENTRY (K=1L0OG2(DIV(N,18)))A(COUNTER=8)A (K28);
EX1 T COUNTERsK+1 ;

VAR COPY:REAL; J, I: INTEGER:

BEG N
I « 18; COPY « MII];
18: ] « 2 x1:
ASSERT (COUNTER=ILOGZ2 (DI V( I, 1 8)))a(COUNTERsK)A
{(K=ILOG2 (DIVIN,18)))A(Ju2x]);
"COUNTER<COUNTER+1;
IF J § N THEN
BEGAN
IF J < N THEN
BEGAN
IF M{J+l] > M[J] THEN J « J+l
END:
IF M{J] > COPY THEN
BEGIN M1l « M{J); I « J; GO TO 10 END;

END;
M1l « COPY:
END: . :
HAOKKK
FOR SIFTUP

THERE ARE § VERIFICATION CONDI TI ONS

#1
(K=1LOG2(DIV(N,18)) &
COUNTER-0 6
BsK

COUNTER=1LOG2 (DIV(Ig,10)) ‘&
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COUNTERsK &
K=ILOG2(BIVIN, 18}) &
2x[@=2%10)

# 2

(COPY<M [J+1] &

MIJI<M [J+1] &

J<N &

JsN &
COUNTER=ILOG2(DIV(I,18)) &
COUNTER=sK &
K=1LOG2(DIV(N, 18) ) &
Jm2x]

COUNTER+1=]L0OG2 (DIV(J+1, 18)) &
COUNTER+1<K &
K=ILOG2(DIV(N,18)) &

2%( J+l)=2%(J+l))

# 3 :

(COPY<M [J] &

~M [JI<M[J+1]16

J<N &

JsN &
COUNTER=ILOG2(DIV(1,I2)) &
COUNTER=K &
K=]LOG2(DIV(N,18)) &

J=2%]

COUNTER+1=1L0G2(DIV(J,18)) &
COUNTER+1sK &

K=ILOGZ (DIV(N, I8)) &
2xJ=2%J)

#H4

(COPY<MIJ] 6

-J<N &

JsN &
COUNTER=ILOG2 (DIV (I, 18)) &
COUNTERsK &
K=ILOG2(DIV(N,I18)) &
J=2x%]

COUNTER+1=1L0G2(DIV(J,18)) 6
COUNTER+1<K &

K=ILOG2 (DIV(N,13)) &
2xJ=2%J)

# 5

(~COPY<M [J+1] 8
tl [JI<M[J+1) &
“J<N &

JsN &
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COUNTER=ILOG2(DIV(1,18)) &
COUNTERs<K &
K=1LOG2(DIV(N,18)) &

J=2%]

-
COUNTER+1<K+1)

# 6

(-COPY<MI[J] &
sMIJI<MJ+1] &

J<N &

JsN &
COUNTER=ILOG2(DIV(I,I8)) &
COUNTER<K &
K=ILDG2(DIVIN,I9)) &

J=2x%]

COUNTER+1sK+1)

# 7

(~COPY<MI[J] &

-~J<N &

JsN &
COUNTER=ILOG2(DIV(1,18)) &
COUNTER<K & .
K=ILOG2(DIV(N,IB)) &

J=2x]

COUNTER+12K+1)

H# 8

(~JsN &
COUNTER=ILOG2 (DIV(I,I8)) &
COUNTERsK &
K=ILOG2(DIV(N,18)) &
J=2%]
COUNTER+1sK+1)

HKKAKK

The time required to verify these verification conditions is 24 CPU seconds, using the

following lemmas.

GOALFILE -
AXIOM DIV (eX,eX) & 1;

GOALFILE
AXIOM 1L0G2(1) « 83
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YT

AXIOM 1LOG2(DIV (2xeA,eB)) » ILOG2(DIV(A,B)) + 1;
AXIOM ILOG2(DIV(2xeA+1,@B)) » ILOG2(DIV(A,B)) + 1;
GOAL 1L0GZ2(eX)+1 <ILOG2(aY) SUB 2%X < Y;

In these examples here, and in many others, it turns out that termination (and indeed
accurate time bounds) are much easier to verify than the intended properties of the
output. If, as seems frequently to be the case, the halting of the program is
straightforward (and is not the “real” verification problem) this method of virtual

programming presents an easy and natural way to obtain a quick check of

termination and a verification of time estimates.
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