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~ Proof of Termination within a Weak Logic of Programs

=u by

| David Luckham and Nori Suzuki

1. INTRODUCTION.

A weak logic of programs 1s one in which statements that ‘a program halts”

cannot be expressed. Such a logic has been given by [Hoare 69,71] and its proof

i | theory has been defined and studied in [lgarashi, London & Luckham](referred to as
ILL), [Hoare& Lauer], [Cook]. Other recent papers have been devoted to

strengthening this logic so that questions of termination are expressable; e.g.

| Dijkstra’s notion of weakest precondition [Dijkstra], and various suggestions for

| ) introducing well-orderings into the assertion language.

| Here we give a simple application of the method of Virtual Programming which
permits strong statements of termination (e.g. program A halts and Q is true) to be

| deduced from weak statements (if A halts then Q is true) by means of the good old

| law of excluded middle. (Remark: the notion of virtual program in intuitive terms 1s

simply code added to an actual program which has no effect on the actual values of

the result parameters.) The method requires no change whatever in the weak logic,

and employs exactly the same automated techniques that are currently used to verify

all manner of properties of programs [ILL, Suzuki 75a,b, von Henke & Luckham]. This

permits strong proofs of correctness (i.e. termination and consistency with
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specifications) to be obtained using the present verification systems based on the

weak logic, Similar ideas have been put forward by Knuth [Knuth], in which he

showed how one can prove the termination of extended Euclid’s algorithm as the

byproduct of the correctness proof using Floyd's method.

Virtual program has been used previously to document programs in certain

tricky situations (e.g. where the documentation uses data structures not used by the

actual program, such as history sequences [Clint], or data structures destroyed by

the actual program [v.Henke& Luckham]). More recently it has been used to prove

complexity bounds on program computations [Farmwald]. The technique seems to

present a natural approach to proving dynamic properties of programs (i.e. properties

of the computations themselves as distinct from the final results). Termination is one

of these dynamic properties.

Essentially, most programs halt for simple reasons, and the programmer usually

knows those reasons. What 1s needed is a natural way of permitting him to state his

reasons, Our proposal here 1s simply to introduce virtual program counters into the

program. The function of these counters 1s to “count” the number of computation

steps that are executed. Each path in the program must have added to it an

assignment statement which increments the counter proportionally to the length of

the path. The programmer must also add inductive assertions stating in effect that

the values of the counters are bounded. Presumably he has an idea of a reasonable

upper bound, and that is all that is necessary. The problem of proving termination

within the usual weak logic then becomes merely another verification problem

~--namely the proof of the boundedness of the counters in the augmented program.
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There 1s one’ “catch”. The counters must account for every possible loop and

. recursion (i.e. every potential source of infinitely long computation), otherwise a

| correct weak statement will not imply termination. A test for this provision can

easily be automated.

In section 2 we illustrate the method and the “catch” by simple examples. An

outline of a rigorous justification 1s given in Section 3, and actual results using our

present verifier [ILL, Suzukil5a,b] are included in Section 4.

To, simplify matters, we have restricted the discussion to Pascal programs

containing Assignment, Conditional, and While statements, function calls, and

recursive procedure calls. The extension of the method to GoTo’s and other

statements 1s obvious. Also, we have assumed that the reader has an acquaintance

| with some of the literature on verifiers based on the weak logic of programs (see the

references).
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2. THE METHOD.

Our method involves the use of very simple virtual programs. Virtual program

1s defined rather loosely as a set of instructions imbedded into the program to be

verified so that it does not interfere with the original program (often called the

actual program). We shall .use only virtual assignment statements, and their left

hand-sides will be required to be ghost variables --variables which are not used in the

original program. No other kind of modifications will be allowed. It is clear that the

addition of such instructions cannot change the behaviour of the actual program on

the actual program variables.

As an example let us look at the following program for multiplication by

addition.

Program 1.

ENTRY: a,b:INTEGER;
X¢a;

y<d;
while x#0 do

begin
xex-1;
yey+b
end.

EXIT: y=aXb;

If we want to measure the time taken to compute multiplication with the assumption

that the assignment statement and testing both take a unit computation time, we can

modify the program by introduction of virtual program as follows,



Program 2.

ENTRY: a,b:INTEGER;

X€a;

y<0;
counter;
while x#0 do

begin
xex-1;
yey+b;
counterecounter+3

end.

EXIT: y=axb A counter=3%axb+2;

Suppose we can prove within the weak logic-of programs that program 2 augmented

by the new assignment instructions satisfies the new EXIT condition. The value of

the counter in the EXIT is a function of the input parameters only. So, we will have

proved that whenever the augmented program stops the counter 1s bounded by a

bound that 1s given before the computation starts. Now assume that we have put the

virtual assignments “in all the right places” so that every possible computation path

contains an assignment which increments the counter by the number of instructions

on the path. Then we will have proved that either the actual program 1 will stop

within a number of steps less than the bound, or it will compute forever. This would

give us a tool for proving bounds on the complexity of computations of programs

using standard verification techniques.

There 1s one problem: the user 1s responsible for putting virtual assignments of

the form counter«f(counter) that increment the counter correctly in a sufficient

number of places. Having done this, verifying the computation bounds becomes a

problem of verifying a statement about the augmented program in the weak logic, and
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the verifier can be used to aid in solving it.. Note that we do not have to extend the

weak logic in any way.

We might ask whether we cannot prove termination at the same time. This

simple thought presents another problem. See the following example,

Program 3.

ENTRY TRUE;

x0;

counter«l;
while x>0 do

begin
xex+l1;
counterecounter+2
end.

EXIT counter<l1;

‘This program certainly does not terminate. But it 1s easily proved to be weakly

consistent with the output assertion, COUNTER<L. And the counter is clearly

counting all possible computation steps. The weak correctness proof goes as follows.

We take the inductive assertion X30 as invariant of the loop. Then, three verification

conditions are generated corresponding to three paths in the program,

(1). TRUE=030.

(2). X30nX30 => X+150.

(3). X30A-~X30->COUNTER<I.

They are all valid. Condition (1) requires . that when the control reaches the

while-statement, the invariant will be satisfied intially. And (2) guarantees that X39 is

the invariant of the loop. Condition (3) 1s valid since the antecedent, namely

X>0A-~X30, is a contradiction; that is, the path to the EXIT is never executed.
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| The question of proving termination is really asking under what conditions a

] weak statement about a program with a virtual counter (“if P stops then counter<h")

| implies a strong statement (“P must stop in €b steps”). As is evident from the above
example such implications are not always valid. In order for a weak statement to

imply a corresponding strong statement all iterative statements must have an

invariant assertion stating that the counter is bounded. We shall call these “bound

| assertions”.

| In our example, the inductive assertion about the while loop does not even

contain the counter., If we try to force the proof above to be a proof of termination,

| we have to give a stronger loop assertion so that if the program does not terminate

and the control repeats the loop indefinitely, this assertion eventually becomes false.

Then, the verification condition corresponding to the loop is no longer valid.

| The question is, “can we always find such strengthening of the loop invaliant?”

| And the answer is ,"yes." The expression which we have to add is COUNTER<g(X),

| where X 1s a set of input values of program ‘parameters. This assertion gives the

| upper bound for the value of COUNTER.

T he method for While Statements:

Each while statement 1s associated with a variable, COUNTER, which does not

appear in the actual program. A COUNTER may be associated with many while

| statements. For each while statement, the user must add to the while body a counter

| assignment, COUNTER«f(COUNTER,X0), where f is a strictly increasing integer
. valued function and XO 1s a set of variables not occurring in the actual program. The



| user must also add an inductive assertion, COUNTER<g(X0), where g is a well defined

| function of X0, to the While statement.

: The same kind of technique can be used to prove termination of procedures

| with recursive calls. Here, the potential source of infinite computation is the

| execution of arbitrarily many calls. The role of the counter will be to “count” the

| number of recursive calls by being incremented by COUNTER « {(COUNTER,X0), f a

| strictly increasing integer valued function, each time a call occurs. So we have to

| place the counter assignments where they will be executed whenever procedures are

| | evoked. One place which meets that requirement is the beginning of the procedure
body. Also we need to add bound assertions that will become false if the depth of

| procedure calls exceed a certain level. The best candidate is the ENTRY condition of

| the procedure. The counter is introduced as an additional VARIABLE parameter of

. the procedure since it must be global to every call.

| We note that the bound assertion, say COUNTER < g(X0) , must be fixed for

| all calls; therefore X0 must not contain any parameters appearing in procedure calls

| otherwise the bound would change with the actual values of those parameters. We

can think of X0 as being initial values of parameters of the outermost procedure call.

| Below we give an example.

Program 4

i procedure factorial (var Xi;N};
ENTRY N28;
EXIT X=N!;

if N=B then X ¢ 1 else

begin

| factorial (X,N=1):



X « NxX

end.

This 1s a procedure which calculates factorial N and returns the result in X, The

entry and the exit conditions are N 3 0 and X = N! respectively. We change the

| program with COUNTER assignments.

| Program 5

procedure factorial (var X,COUNTER; NJ};
ENTRY N28 a COUNTER<N@ a COUNTER+N=NB;

EXIT XaN!;
begin

COUNTER« COUNTER + 1;
if NO then Xelelse

begin
factorial (X,COUNTER,N-1);
X « NxX

end. |

i Notice the new entry condition contains not only a bound assertion, COUNTER<N®,

| but also an inductive assertion stating an invariant relationship between COUNTER
and values of the parameter N in successive calls. Notice also that NO has been

|

| introduced so that the bound contains no parameter of the procedure; NO 1s the
| p p
| initial value of N at the outermost procedure call. So what we are going to prove 1s

N28 aA COUNTER+N=N8 a COUNTER<N®

{ COUNTER « COUNTER t 1;
if N-O then X « 1 else

begin
factorial (X,COUNTER,N-1);
X « NxX

end, |}
X = N

| with the assumption that

| Y28 A COUNTER+Y=N@ An COUNTERsNG { factorial (X,COUNTER,Y) } XY!

| Using techniques for proving weak correctness of procedure call [Hoare?l, ILL,

| Suzuki?5b], verification conditions are
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| (I) NSOACOUNTER+N=NOACOUNTER<NO 5(N=9 > 1=0!).
(IT) N3OA(COUNTER+N=NOACOUNTER<N® 5(N#0 © N-150ACOUNTER+1+N-1=NoOA

| COUNTER<NOA(X00=(N-1)! > NxX00!=N!))

| which are all valid. So the actual program 4 1s correct and also terminates.

The Method for Recursive Procedures |

| Each procedure declaration is associated with a variable, COUNTER, not

| appearing in, the actual program. Then (1) COUNTER is introduced as a new

| VARIABLE parameter of the, procedure, and all calls are correspondingly modified;

| (2)the user must place at the beginning of the procedure body, a counter assignment,

| COUNTER « {(COUNTER,X0), where { is strictly increasing and X0 is a set of

variables not appearing in any procedure body; (3) the user must add a bound

| assertion, COUNTER < g{X0), to the ENTRY condition of the procedure.
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| 3. JUSTIFICATION OF THE METHOD,

| We are going to show that this method of adding virtual program counters to

| while statements and procedures with recursive calls 1s sufficient to prove

| termination, That 1s, a proof of weak correctness of the augmented program

| guarantees the termination of the actual program. We have omitted the case for goto

| statements but we can treat them likewise.
(i) While statements.

| The augmented program for while statements

| WHILE C 00 S
; 18

| WHILE C 00
( COUNTER « f (COUNTER,X0) ; S).

where f(COUNTER,X0) is an integer valued strictly increasing function, that is

| COUNTER <f(COUNTER,X0),

| and X0 is a set of new variables not occurring in S. The form of the invariant of the

| loop ( or the inductive assertion ) must be
| IA COUNTER <g(X0) where Iis any Boolean assertion.

| Now we are going to prove that if the augmented program of this form with

the given inductive assertion 1s verified then the actual program terminates. Various

proofs of the soundness (1.e. semantic -consistency) of the weak logic of programs

have been given (see [Hoare& Lauer], [Igarashi, London & Luckham], [Cook]). These

proofs construct a model (essentially an abstract interpreter for the programming

language) with the property that any statement about a program that 1s provable In

| - 11 -



this logic 1s true when the program is “run” on the interpreter. This means for

example, that if we can prove

[{ while L do A }I in the logic of programs,

] being a Boolean assertion invariant of the loop, then when “while L do A” is run on

the abstract machine, the computation state at the end of every execution of the

loop will satisty I.

We shall show that the provability of weak statements about programs

augmented by counters according to our method implies that the computations of

those programs on the abstract machine halt. We present our argument with some

degree of informality since we do not wish to burden the reader with the formal

details of the model here. We shall simply refer to a “standard machine” which the

reader can 1magine 1s an interpreter for the axiomatic semantics of Pascal,

Proof

Suppose the augmented program for a simple while statement as shown with the

given inductive assertion is proved. Suppose also that the program does not terminate

when run on the standard machine. We are going to show that this assumption

produces a contradiction. We are going to number the values of COUNTER so that

COUNTER 1s the value of COUNTER when the control goes around the loop 1 times.

Since the program does not terminate, we are going to have an infinite sequence of

values,

COUNTER yo COUNTER os

- 12 -



| } Because of the assignment statement

COUNTER « {(COUNTER,X0),

i. which takes place between two successive values of COUNTER’s, we have the

relation

- COUNTER | o {(COUNTER,X0).I+

However, f 1s strictly increasing and also it 1s an integer function; therefore,

COUNTER 3 COUNTER + 1.
i+]

From the above relation

COUNTER 3 COUNTER +n

So for any integer k we can select m such that COUNTER > k. This contradicts the

fact that the loop invariant 1s of the form

I ACOUNTER <g(X0), which is true for every iteration and

g(X0) must remain constant throughout the computation.

So the program must terminate.

(11) Recursive procedures.

The augmented program for procedure

- procedure ki{X); B

1S

procedure k (X; var COUNTER) y
begin

COUNTER « f (COUNTER, X0);
B

end.

The function f must be strictly increasing as was the case in (i). The bound assertion
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is now added to the entry condition of the procedure , which must take the same

form as in the case of while statements.

| Proof N

Assume first that B contains no while loops nor calls to procedures other than

k. Suppose the augmented program with input assertions of the form

| I A COUNTER < g(X0)

can be verified. That is

I A COUNTER § g¢ (X0) { begin COUNTER « f ( COUNTER, X0);Bend}O

is provable with the assumption that

I A COUNTER < g(X0) ( kiX))o.

Suppose also the program does not terminate. Then the depth of recursive calls to

this procedure is infinitely large. In this case, we are going to number the values of

COUNTER at the beginning of the procedure so that COUNTER 1s the value of

COUNTER at the i-th level of procedure call in the current calling sequence. So we

have a sequence of values

COUNTER ye COUNTER yo

Because of the assignment statement

COUNTER « f(COUNTER,X0)

at the beginning of the procedure body so that it 1s alwaysexecuted after a call, we

have the following relation |

COUNTER o [(COUNTER X0),

for all-i. As in the previous case, for any integer k, we can choose m such that

- 14 -.



| = —nm

i COUNTER > k.
m

| This 1s a contradiction because at each procedure call

| IA COUNTER <g(X0)

| must hold just at the entry to the body. Note that g(X0) must remain constant over

all calls because X0 does not contain any program variables.

The above arguments for a single loop and a single recursive procedure can be

generalized for nested loops and mutual recursive procedures. Essentially, if there 1s

an infinite computation of an augmented program with n counters, one of those

| counters will be incremented infinitely many times.
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4, EXAMPLES.

All proofs below were obtained using the Stanford Pascal Verifier. This system is

implemented in LISP and runs on a PDP-10 in about 580K words of memory. The main

references for details of this verifier are [lgarashi, London & Luckham, Suzuki a,b].

The first example 1s Dijkstra’s square root program which computes square root of N.

The problem here is to verify both that the program halts and computes an integer

approximation to the square root of N. The program has been augmented by

operations on the virtual variable COUNTER. Termination of the square root

program 1s verified by proving the bound assertion on COUNTER for the augmented

program. The ‘documentation 1s expressed in terms of user-defined concepts such as

"B2 is a power of four” and “the integer logarithm base 4 of B2". Notice that the

EXIT condition implies that the loop is executed at most ILOG4(B20) times, where

B20 1s the intial value of parameter B2.

PASCAL

ENTRY (N>8) a (B2>N) a POWER_OF_FOUR(B2) A (B2=B828) ;
EXIT (8 < A) A (AxA s N} A (N < (A+1)%(A+1))

n (COUNTER s [LOG4 (B28));

BEGIN

A2 1= 0;
AB i= 0;
COUNTER:=8;
I NVARI ANT POWER_OF _FOUR (B2)A (ABxAB = A2xB2)A(AB28) A (B2>8)

n (A2+2%AB+B2>N) n (A25N)

n (1LOG4 (B2) +COUNTER=ILOG4(B28))

n (COUNTER s 1LOG4 (B28))
WHILE 1 = B2 OO :

BEGIN

AB := A6 DIV 2;
© B2 :=B2 DIV 4;

© =16 -



| T := A2 + 2%AB + BZ:

COUNTER: =COUNTER+1
IF T s N THEN

BEGIN

1 A2 = T; |
§ AB := AB + BZ

END;
| A := AB:
: E N D .

1 KKK KK

FOR THE MAIN PROGRAM

THERE ARE 3 VERIFICATION CONDI TI ONS

| #1

; (B<N &

N<B2 & |
POWER_OF_FOUR(BZ) &

; B2=B28
-p

| POWER_OF _FOUR (B2) &
| Bx0=0%B2 &

<8 &

B<B2 &

| N<B+2%B+B2 &

BN &

P<IL0OG4 (B2B) &

[LOGS (B2)+8=1L0G4(B28) &

| (~~1=B2060 &
| POWER_OFFOUR (B288) &

ABOB%ABBB=A200%B280 &
B<ABRG &

| B<B2B8 &

| N<A200+2%ABBQ+B208 &

A208<N &

| COUNTERBB<ILOGS(B28) &

1L0G4 (B208) +COUNTERBRB=1L0G4(B28)

B<ABBB & -

ABBB%ABOO<N &

N< (AB@B+1)x (ABBB+1) &

COUNTERB88s1 LOG4 (B28) ))

#2

| (-A2+2% (AB DIV 2)+B2 DIV 4sN 6
-1=B2 &

POWER_OF _FOUR (B2) &

-17 -



ABxAB=AZxB2 & .

B<AB &

B<B2 &

N<AZ+2xAB+B2 &

A2:N &

COUNTER<ILOG4 (B28) &

1LOG4 (B2) +COUNTER=1L0G4 (B28)

POWER_OF _FOUR(B2 DIV 4) é&
(AB DIV 2)%(AB DIV 2)=A2%(B2 DIV 4) &
g<AB DIV 2 8

8<B2 DIV 4 &

N<AZ2+2x(AB DIV 2)+B2 OV 4 &

A2<N 6

COUNTER+1<1 LOG4 (B28) &
1LOG4 (B2 DIV 4) +COUNTER+1=1L0G4% (B28) )

#3 |
(A2+2x (AB DIV 2)}+B2 DIV 4sN &
-1=B2 &

POWER_OF _FOUR(B2) &
ABxAB=A2xB2 &

B<AB &

g<B2 &

N<AZ2+2%AB+BZ &

A2<N &

COUNTER< I LOG4 (B28) &

ILOG4 (B2) +COUNTER=1L0G4 (B28)
-»

~ POWER_OF_FOUR(B2 DIV 4) 8
(AB DIV 24B2 DIV 4)%{(AB DIV 24B2 DIV 4)=

(AZ+2% (AB DIV 2)+B2 DIV 4)%(B2 DIV 4) &
@<AB DIV 24B2 DIV 4 &

8<B2 DIV 4 &

N<AZ+2x%(AB DIV 2)+B2 DIV 4+2%(AB DIV 2+B2 DIV 4)+B2 DIV 4 &
A2+2% (AB DIV 2) +B2 OIV 4sN &

COUNTER+1< 1 LOG4 (B22) &

ILOG4 (B2 DIV 4)+COUNTER+1=1L0G4 (B28) )

These verification conditions all simplify to TRUE using the SIMPLIFIER with the

lemmas (AXIOMS and GOALS) in’ the GOALFILE below. The total time for the

complete verification is 39 CPU seconds. |

The lemmas describe properties of POWER-OF-FOUR(X), X DIV Y, EVEN(X), and

ILOG4( X), and are supplied by the user. They are written in a form which indicates
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how they are to be used by the SIMPLIFIER [Suzuki al. To read them as logical

' statements simply ignore all occurrences of “8”. A lemma of the form “AXIOM AeB"

means "A=B". “GOAL A SUB B" means "B=2A",

With this advice readers should be able to understand the lemmas (while those

aquainted with our previous reports will also understand how they are used by the

Fo SIMPLIFIER 1n the proofs). Only three of these arithmetical lemmas (those marked

by a "x%") are needed to prove that the program halts within ILOG4(B20) executions

, of the loop. This reflects the fact that the loop 1s controlled by a single instruction,

B2:=B2 DIV 4. So termination is a much simpler problem than correctness of the

output in this case, and can be checked almost “for free”.

GOALFILE

AXIOM @Pl<aP2 « Pl+1sPZ; |
GOAL ePl<eP2 SUB (P1seP3)A(@P3sP2);
GOAL 8 s eX + @Y SUB (8 s X) A (8 5 Y);
GOAL ePlsaP2 SUB (P1<aP3)A(aP3=P2);

” AXI OM IF (I»J) THEN al2ad «1>J;

GOAL POWER_OF_FOUR(ell OIV 4)SUB POWER_OF _FOUR(I1);
GOAL 1 s (el OIV 4) SUB POWER_OF_FOUR(I)}A(1<l);

AXIOM (eKxelL)DIV eK o L:
AXIOM IF M+1<sK THEN ((eKxelL)+eM )DIVeK eo L;
GOAL 9sePl DIV @P2 SUB (P2 2 8)A(Pl1 2 8);

GOAL EVEN (eZ) SUB (ZxZ=A2xeX)APOWER_OF_FOUR (X) ;
AXIOM IF EVEN(X) THEN (eX DIV 2) (eX DIV 2)e (XkX)DIV 4;
AXI OM IF POWER- OF- FOUR(X) THEN @Yx{(eXDIV4)e (YxX)DIV 4;

GOAL (@X DIV el)=(eY DIV @l) SUB XaY;
AXIOM IF EVEN(X) THEN é4x(@X OIV 2) « 2xX;
AXI OM TF POWER- OF- FOUR(1) THEN é&x(@l DIV4)eT:

GOAL eXxeY=a@ZxeY SUB (Y=8)>(X=Z);

OX GOAL 1L0G4 (@X)28 SUB X21;

xX AXIOM ILOG4 (eX DIV 4) «- ILOG4 (X) -1;
x GOAL ILOG4 (eX)21 SUB (X>1)APOWER_OF_FOUR (X);

-13’ -



The next example shows how the termination of a recursive procedure can be

proved using a counter and the entry assertion which states a bound on the value of

the counter. The procedure PCCD computes the greatest common divisor of M and N

and returns the value as R. This is stated as the exit assertion,

PASCAL

PROCEDURE PGCD (VAR COUNTER,R: INTEGER;M,N: INTEGER):
ENTRY (M28)A(N>8) A(COUNTERsSNG)A(COUNTER+NsSNB)
EXIT R=GCD(M,N):
BEGIN

COUNTER : = COUNTER+1: |
| «= MOD(M,N); |
IF 1=8 THEN R : = N ELSE PGCD (COUNTER,R, N, 1)
END:

KAHNK

FOR PGCD

THERE ARE 2 VERIFICATION CONDITIONS

#1

. (MOD (M,N) =8B &
B<M &

B<N &

COUNTERsSNG &

COUNTER+NsN@

N=GCD (M, N} )

#2

(-MOD (M,N) =8 &
g<sM &

B<N &

COUNTER<NG &
COUNTER+NsN@

ey

g<sN &

g<MOD (M, N} &
COUNTER+1 sN8 &

COUNTER+1+MOD (M, N) sN@ 6
(R88=GCD (N, HOD (M, N) )

RAB=GCD (M, N} })
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| These verification conditions are simplified to TRUE using the following arithmetic

lemmas and lemmas describing properties of GCD(X,Y). The computation took 8 CPU

seconds.

GOALFILE

| AXIOM8 s MOD (aM, aN) -' TRUE:
| ‘AXIOM MOD (eM, eN) +1 <eN « TRUE:

AXIOM IF X=YxeQ THEN MOD (eX,@Y) e 8;

GOAL @P3 sePl+aP2 SUB (P3sPl)a(BsP2):
| AXIOM @ePl<aP2 « P1+1<P2;

GOAL @X se@Y SUB (X-1l=Y)A(X-15Y);

| GOALFILE
AXIOM IF Y«MOD(e@R,X) THEN GCD(eX,eY) « GCD(R,X):

: AXIOM IF MOD (X,Y)=8 THEN GCO(eX,aY) o Y;
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| The last example is the procedure SIFTUP used in the TREESORTS algorithm.

| The properties that the output array 1s ‘ordered and the output array 1s a

permutation of the input array have been proved for the whole TREESORT3

| algorithm by this verifier [Suzuki 15a}. We verify here that SIFTUP terminates and

| the computation time required is proportional to the logarithm of the size N/10,

| PASCAL

| PROCEDURE SIFTUP(18, N: INTEGER) ;
ENTRY (K=ILOG2(DIV(N,18)))A(COUNTER=8)A(K28) ;

| EXI T COUNTERsK+1 ;

VAR COPY:REAL; J, 1: INTEGER:

| BEGIN

I « 18; COPY « MUI];
18: J «2 x1:

ASSERT (COUNTER=ILOG2 (OI Y( I, I 8)))A(COUNTERSK]}A
(K=ILOG2 (DIV(N,18)))A(J=2x]);

| 'COUNTER<COUNTER+1;
IF J s N THEN

BEGIN

[FJ] < N THEN

BEGIN

: IF M{J+1] > MJ] THEN J « J+l

| END:

IF M{J] > COPY THEN

“ND BEGIN MI) « MJ); I « J; GO TO 10 END:
| MU) « COPY:

i KHKKK

FOR SIFTUP
THERE ARE 8 VERI FI CATI ON CONDI TI ONS

#1 |

(K=1LOG2(DIV(N,18)) &
| COUNTER-0 6

BsK

COUNTER=1LOG2 (DIV(IB,10)) ‘&

| - 22 -



LC COUNTERsK &
SE K=1LOG2(DIV(N,I8)) &

2%] B=2%]0)

| #2
FL (COPY<M [J+1] &

i MJ] <M [J+1] &
| J<N &

F COUNTER=ILOG2(DIV(I,IB))&
) COUNTERs<K &

Ke ILOG2(DIV(N,18) ) &
1 Jm2%x]

] COUNTER+1=IL0G2(DIY (J+1,108)) &
! COUNTER+1<K &

K=]LOG2(DIV(N,IB)) &

FE 2x( J+l)=2%(J+l))

EE (COPY<M [J] &
-M [JI<M[J+116

J<N &

: JN &

pF COUNTER=ILOGZ2(DIV(I,IB)) &
; COUNTER<K &

Fo K=]LOG2(DIVIN,IB)) &
J=2%1

bo COUNTER+1=IL0G2(DIV(J,18))&
COUNTER+1sK &

K=]LOG2(DIV(N,18) ) &
oo 2%J=2%J)

| | H 4

(COPY<MIJ] 6
oo | ~J<N &

JN &

COUNTER=ILOG2(DIV(I, 18) ) &
| COUNTER=K &

SE K=]LOG2{(DIV(N,18)) &
J=2x%]

COUNTER+1=ILOGZ2(DIV(J,18)) 6
Co COUNTER+1<K &

K=ILOGZ2(DIV(N,18)) &
2%J=2%J)

| AS

(-COPY<M [J+1] 8

tl [JI <M [J+1)&

- “J<N &

: JN &

: -23 =

.



= 0

COUNTER=ILOG2(DIV(I,I8))&
COUNTER<K &

K=ILOG2(DIV(N,18)) &
J=2%]

COUNTER+1sK+1)

#6

(-COPY<M IJ] &

“MJT <M[J+1] &

J<N &

JIN &

COUNTER=ILOGZ (DIV(I,I8)) &
COUNTER<K &

K=ILOGZ(DIV(N,18))&
J=2x]

COUNTER+1sK+1)

7

(-COPY<MI[J] &

| ~J<N &
JN &

COUNTER=ILOG2(0IV(1,18))&
COUNTER<K & .
K=ILOG2(DIVI(N,18)) &
J=2%]

COUNTER+1<K+1)

#8

(~JsN &

COUNTER=ILOG2(DIV (I,I8)) &
COUNTERSK &

K=ILOG2(DIVI(N,18))&
J=2%]

-»

COUNTER+1sK+1)

HHOKKK

The time required to verify these verification conditions 1s 24 CPU seconds, using the

following lemmas.

GOALFILE

AXIOM DIV(eX,aX)« 1;

GOALFILE

AXIOM 1LOG2(1) « @;
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oT AXIOM ILOG2(DIV(2xeA,@B))» ILOG2(DIV(A,B)) + 1;
IEE AXIOM ILOG2(DIV(2xeA+l,@B))» ILOG2(DIV(A,B)) + 1;
oo GOAL ILOGZ (eX) +1 <ILOGZ2(@Y) SUB 2xX < VY;

| Ve

In these examples here, and in many others, it turns out that termination (and indeed

SE accurate time bounds) are much easier to verify than the intended properties of the

| output. If, as seems frequently to be the case, the halting of the program is

| : straightforward (and is not the “real” verification problem) this method of virtual

programming presents an easy and natural way to obtain a quick check of

; termination and a verification of time estimates.
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