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[1] INTRODUCTION

Two recent trends in artificial intelligence research have been applications of Al to

‘real-world’ problems, and the incorporation in programs of large amounts of task-specific

knowledge. The former is motivated in part by the belief that artificial problems may prove in the

long run to be more a diversion thar, a basz to build on, and in part by the belief that the field has

developed sufficiently to provide techniques capable of tackling real problems.

The move toward what have been called ‘knowledge-based’ systems represents a change from
previous attempts at generalized problem solvers (as, for example, GPS). Earlier work on such
systems demonstrated that while there was a large body of useful general purpose techniques (e.g.,
problem decomposition into subgoals, heuristic search in its many forms), these did not by

themselves offer sufficient power for high performance. Rather than non-specific problem solving

power, knowledge-based systems have emphasized both the accumulation of large amounts of

knowledge in a single domain, and the development of domain-specific techniques, in order to

develop a high level of expertise.

There are numerous examples of sysitems embodying both trends, including efforts at symbolic
manipulation of algebraic expressions [MACSYMA 1974), speech understanding [Lesser1974),
chemical inference [Buchanan1971), applications of advanced ai::omation techniques to industrial
assembly [Finkel1974, Rosen1975, Nilsson1975), some work on natural language (Woods1972), and
the creaticn of computer consultants as interactive advisors for various tasks [Hart1975,
Shortliffe1975a).

In this paper we discuss issues of representation and design for one such knowledge-based

apphication program - the MYCIN system developed over the past three years as an

interdisciplinary project at Stanford Univers‘lty.l We examine in particular how the implementation
of various system capab'iities is facilitated or inhibited by the use of production rules as a knowledge
representation. In addit.on, the limits of applicability of this methodology are investigated.

We begin with a review of features which were seen to be essential to any knowledge-based
consultation system, and suggest how these imply specific program design criteria. We note also the
additional challenges offered by the use of such a system in a medical domain. This is followed by

an explanation of the system structure, and its fundamental assumptions. The bulk of the paper is

then devoted to a report of our experience with the benefits and drawbacks of production rules as a

knowledge representation for a high performance Al program. \
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[2] SYSTEM GOALS

The MYCIN system was develnped originally to provide consultative advice on diagnosis of
and therapy for infectious diseases — in particular, bacterial infections in the blood 2 From the start,
the project has beer shaped by several important constraints. The decision to cunstruct a high
performance Al program in the consultant model brought with 1t several demands. First, the
program had to be useful if we expected to attract the interest and assistance of experts in the field
The task area was thus chosen partly because of a demenstrated nezd. for example, in a recent year
one of every four people in the U.S. was given penicillin, and almost 907 of those prescriptions were
unnecessary {Kagan1973). Problems such as these incicate the need for more (or more accessible)
consultants to physicians selecting anumicrobial drugs. Usefulness also implies competence,
consistently high performance, and ease of use. If advice is not reliable, or is difficult to obtain, the
utility of the progran1|skeverdy impaired.

A second constraint was the need to design the program to accommodate a large and ckanging
body of technical kuiowledge. It has become clear that large amounts of task-specific knowledge are
required for high performance, and that this knowledge base is sub ject to significant changes over
time [Buchananl971, Finkel1974, Green1974). Our choice of a production rule representation was
significantly influenced by such features of the knowledge base.

A third demand was for a system capable of handling an interactive dialog, and one which
was not a "black box.” This meant that it had to be capable of supplying coherent explanations of
its results, rather than simply printing a collection of orders to the user. This was perhaps the ma jor
motivation for the selection of a symbolic reasoning paradigm, rather than one which, for example,
relied totally on statistics. It meant also that the “flow” of dialog ~ the order of que¢ t.ons — sheuld
exhibit the sense of purposefulncss of the domain, anu not be determince by programming
considerations. Interactive dialog reguired, in addition, extensive human engineering features
designed to make interaction simple for someone unaccustomed to computers.

The choice of a medical domain brought with it additional demands (Shortliffel974b]. Speed,
access, and ease of use gained additional emphz.is, since a physician’s time is typically limited. The
program also had to fill a need well-recognizedt by the clinicians who would actually use th. system,
since the lure of pure technology is usually insufficient. Finally, the program had to be designed
with an emphasis on its supportive role as a tool for the physician, rather than as a replacement for
his own reasoning process.

Any implementation selected had to meet all these demands. Predictably, some have been met
more successfully than others, but all have been important factors in influencing the system’s final

design.
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[3] SYSTEM OVERVIEW

The system is written in INTERLISP, runs on a DEC KI-10 with approximately 130K of
nonshared code, and is fast enough to permit convenient real-time interaction. The consultation
system (with the required data structures) requires approximately 50K, the explanation system 10K,
the question answering system 15K, the rule acquisition system 20K, and the rules themselves
approximately 8K (the remainder includes a dictionary, information on drug properties, and various
system utility features).

[8.1] THETASK

The fundamental task is the selection of therapy for a patient with a bacterial infection.
Consultative advice is often required in ihe hospital because the attending physician may not be an
expert in infectious diseases, as for example, when a cardiology patient develops an infection after
heart surgery. Time considerations compound the problem. A specimen (of blood, urine, etc.) drawn
from a vatient may show some evidence of bacterial growth within 12 hours, but 24 to 48 hours (or
more) are required for positive identification. The physician must therefore often decide, in absence
of complete information, whether or not to start treatment and what drugs to use if treatment is
required. Both of these may be difficult questions.

The task will become clearer by reviewing =~ nitial and final parts of a sample dialog with
the MYCIN system, shown in Figures 1 and 2 (italicized comments at the right are for explanatory
purposes, and are not part of the actual dialog). A great deal of attention has been paid to making
the interaction easy and natural. Questions have been carefully worded, for example, so as to set up
expectations of responses without making thera as uninteresting as multiple choice questious.
Currently the dialog is airected primarily by the system — patient information can be entered only
by answering each question in turn?

There are several options available to make the interaction more informative. The user can,
for instance, ask for a rephrasing of the question or a display of some (or all) of the acceptable
responses. If a requested item of information is unavailable, he can respond with UNKNOWN (U, or
UNK for short). The uszr can also modify any answer which ke is unsure of by attaching a number
indicating his degree of certainty (as, for example, in questions 13 and 15).

The main purpose of the system is to provide advice, and it does so via the consultation
system (Figure 3). In addition to this performance program, there are three adjunct programs that
increase system utility and flexibility: (a) a question answering system which handles simple natural
language inquiries about either the specific consultation, or about the general knowledge base of the
program; (b) an explanation program for giving reasons why the performance program has
requested an item of information or has drawn a particular conclusion; and (c) a knowledge
acquisition system for extending the knowledge base through a dialog with an expert.

As described below, each of these four interrelated programs m:ets one or more of the goals
outlined above.
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-------- PATIENT-1---ceee-
1) Patisnt’s nams: (first-last)
«xFRED SMITH {background data}
2) Sex:
xxMALE
3) Ags:
*x55
4) Havs you been abls to obtain positive cultures from a site at which Fred
Smith has an infection?
xxYES
-------- INFECTION-1------—--
S) What is the infection?
»xPRIMARY-BACTEREMIA
6) Please give the date and approximate time when signs or symptoms of the
primary-bacteremia (INFECTION-1) first appeared. (mo/da/yr)
=x MAY 5, 1975
The most recent positive culture associated with the primary-pbacteremia
(INFECTION-1) will be referrsd to as:
-------- CULTURE-1--------
7) From what site was the specimen for CULTURE-1 taken?
=xBLOOD
8) Please give the date and tims whsn this blood culture (CULTURE-1)
was obtained. (mo/da/yr)
= MAY 9, 1975
The first significar’ organism from this blood cul ture (CULTURE-1)
Will be referred to as:
-------- ORGANISM-1--------
8) Enter the identity of ORGANISM-1:
xxUNKNOWN
{typically the identity is not known and must be inferred}
18} Is ORGANISM-1 a rod or coccus (atc.):
=xROD
11) The yram stain of ORGANISM-1:
x»xGRAMNEG
12) Have there been POSITIVE cultures from sites which are NOT
associated with infections about which you are seeking advice?
»xxNO
13) Did ORGANISM-1 grow aerobically?
««YES (8)
14) Oid ORGANISM-1 grow anasrobically?
=xYES
15) What is the suspectsd portal of entry of ORGANISM-1
into this sterils site?
xxGl (6)
{more questions follow, to gather sufficient information to infer possible identities of
the infecting organisms}

FIGURE |
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My ther-py recommendation will be based on the following probable infection(s)
and potential causative organismis):

INFCCTION-1 is PRIMARY-BACTEREMIA {possible identities)

<ltem 1> The identity cf ORGANISM-1 may be PSELDOMONAS-AERUGINOSA
<ltem 2> The identity of ORGANISN-1 may be KLEBSIELLA-PNEUMONIAE
<ltem 3> The identi*u of ORGANISN-1 may be E.COLI

<Item 4> The identity of ORGANISH-1 may be SACTEROIDES-FRAGILIS
<item 5S> The identity of ORGANISM-1 may be ENTEROBACTER

<l tem 6> The identity of ORGANISM-1 may be PROTEUS-NON-MIRALILIS

46) On a scale of B8 to 4, where higher numbers indicate increasing severity
how would you riate Fred Smith's degree of sickness?
*x3 :
47) Does Fred Smitr. have a clinically significant allergic reaction to any
antimicrobial agent?
*xxNO
48) Fred Smith's weight in kilograms (or <number> POUNOS):
*xx70
{note that 2 drugs cover for 6 potential organisms}
{Rec 1) My preferred therapy recommendation is a8 follous:
In order to cover for Items <1 2 3 S 6>
Give: GENTAMICIN
Oose: 119 mg (1.7 mg/kg) q8h IV [or IM] for 18 days
Comments: Modify dose in renal failure
I1n order to cover fcr ltem <4>:
Give: CLINDAMYCIN
Dose: 5935 mg (8.5 mg/kg) q6h IV lor IM] for 14 days
Comments: If diarrhea or other Gl symptoms develop, patient
should be evaluated for possible pseudomembranous colitis.

Do you Wish to see the next choice therapy? {alternative choices ar’ available}
xx Y

Which, if any, of the above drugs do you Wwish eliminated from consideration?
»xCLINDAMYCIN

{Rec 2) Next best therapy recommendation:

In order to cover for ltems <2 3 4 5 6>:
Give: CHLORAMPHENICOL
Dose: 1 gm (15 mg/kg) gbh IV for 14 days
Comments: Monitor patient’s white count

In order to cover for ltem <l>:
Give: GENTANMICIN
Dose: 119 mg (1.7 mg/kg) q8h 1V [or IM] for 18 days
Comments: Modify dose in renal failure

FIGURE 2
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[3.2] THE RULES
The primary source of domain specific knowledge 15 a set of some 200 production rules,

each with a premise and an action (Figure 4).

PREMISE (SAND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES)
(SAME CNTXT PORTAL GI)

ACTIGN (CONCLUDE CNTXT IDENT BACTEROIDES TALLY )

¢ 1) the infection s primary-bacteremia, and
2) the site of the culture is one of the sterilesites, and
3) the suspected por‘al of entry of the organism is the gastro-
intestinal tract,
Then there is suggestive evidence (.7) that the identity of the organism is
bacteroides.

Figure 4

The PREMISE 1s a Boolean combination of predicate functions on associative triples. Thus each
clavse of a premise has the following four components:
<predicate function> <object> <attribute> <value>

There 1s a standardized set of 24 predicate functions (¢ - SAME, KNOWN, DEFINITE), some §0
attributes (eg. IDENTITY, SITE, SENSITIVITY), and |1 objects (eg. ORGANISM, CULTURE,
DRUG), curently available for use as primitives in constructing rules. The premise is a con junction
at the top level (top level disjunctions are put into separate rules), but may contain arbitrarily
complex con junctions or disjunctions at lower levels. (We have not found it necessary in practice to
use more than two levels) The ACTION part indicates one or more conclusions which can be
drawn if the premises are satisfied, hence the rules are (currently) purely inferential in character.

It 1s intended that each rule embody a single, modular chunk of knowledge, and state
explicitly in the premise all necessary context. Since the rule uses a vocabulary of concepts common
to the domain, it forms, by itself, a comprehensible statement of some piece of domain knowledge. As
will become clear, this characteristic 1s useful in many ways.

Each rule 15, as 1s evident, highly stylized, with the IF/THEN format and the specified set of
available primitives. While the Lise form of each 1s executable code (and, in fact, the premise 1s
simply EVALuated by LISP to test its truth, and the action EVALuated to make its conclusions), this
ughtly structured form makes possible the examination of the rules by other parts of the system.
This 1n turn leads to some important capabilities, to be described below. For example, the internal
form can be automatically translated into readable English, as shown in Figure 4.

Despite this strong stylization, we have not found the format restrictive, as evidenced by the
fact that of nearly 200 rules on a vanety of topics, only 8 employ any significant variations of
methodology. The limitations we have encountered arise primarily out of the fact that the use of a
simple predicate in the premise forces a pure problem reduction approazh (see section [6.1.2]). We
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have thus found 1t necessary, for instance, to use a shightly different technique to implement the few
rules which say things like "For each organism such that .. conclude that ", but this has been done
in a way which 1s closely related o the standard forma..

[3.3) JUDGMENTAL KNOWLEDGE

Since we want to deal with rexi-world domains in which reasoning 1s often judgmental and
inexact, we require some mechanism for being able to say that "A suggests B”, or "C and D fend to
rule out E." The numbers used to indicate the strength of a rule (e.g. the .7 in Figure 4) have been
termed Certainty Factors (CFs). The methods for combining CFs are embodied in a model of
approximate imphcation. Note that while these are derived from and are related to probabilities,
they are distinctly different (for a detailed review of the concept, see [Shortliffe1975b]). For the rule
in Figure 4, then, the evidence 1s strongly indicative (.7 out of '), but not absolutely certain.
Evidence confirming an hypothesis is collected separately from that which disconfirms it, and the
truth of the hypothesis at any tume is the algebraic sum of the current evidence for and against it.
This 1s an important aspect of the truth model, since it makes plausible the simultaneous existence
of evidence i1n favor and against the same hypothesis. We believe this is an unportant characteristic
of any model of inexact reasoning.

Facts abour the world are represented as ¢-tuples, with an associatve triple and its current CF
(Figure 5). Positive CFs ind:cate a predominance of evidence confirming an hypothesis, negative

CFs indicate predominance of disconfirming evicence

(SITE CULTURE-1 BLQOU 1.8)

(IDENT ORGANISM-2 KLEBSIELLA .25)
(IDENT ORGANISM-2 E.COLI .73)
(SENSITIVS ORGANISM-1 PENICILLIN -1.8)

Figure 5

Note that the truth model permits the coexistence of several plausible values for a single
chinical parameter, if they are suggested by the evidence. Thus, for example. after attempting to
deduce the identity of an arganism, the system may have concluded (correctly) that therc is evidence
that the identity 1s Ecoli and evidence that it is Klebsiella, despite the fact that they are mutually
exclusive possibilities.

As a result of the preeram's medical origins, we also refer to the attribute part of the triple as
a ‘clinical parameter, and use the two terms interchangeably here. The object part (e.g.
CULTURE-1, ORGANISM-2) is referred to as a context. This term was chosen to emphasize their
dual role as both part of the associative triple and as a mechanism for establishing scope of variable
bindings. As explained below, the contexts are organized during a consultation into a tree structure

whose function 1s similar to those found in ‘alternate world’ mechanisms of languages like ans.
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[3.4] CONTROL STRUCTURE

The rules are invoked in a backward unwinding scheme that produces a depth-first search
of an AND/QR goal tree (and hence 1s similar in some respects to PLANNER'S consequent theorems):
given a goal to establish, we retrieve the (pre-computed) list of all rules whose conclusions oear on
the goal. The premise of each is evaluated, with each predicate function ieturning a number
between -1 and 1. $AND (the muitivalued analogue of the Boolean AND) performs a minimization
operation, and $OR (similar) does a maximization. For rules whose premise evaluates successfully
(1e. greater than .2, an empirical threshold), the action part 1s evaluated, and the conclusion made
with a certainty which is

<prenise-value> % <certainty factor>

Those which evaluate unsuccessfully are bypassed, while a clause whose truth cannot be determined
from current information causes a new subgoal to be set up, and the process recurses. Note that
‘evaluating’ here means simply invoking the LisP EVAL function — there is no additional rule
interpretel necessary, since $§AND, $OR, and the predicate functions are all implemented as Lis?
functions.

Unlike pLAwER, however, the subgoal which is set up is a generalized form of the original goal.
If, for example, the unknown clause 1s ‘the identity of the organism is E.coli’, the subgoal which is
set up 1s ‘deternine the identity of the organism.’ The new subgoal is therefore always of the form
‘determine the value of the <attribute>' rather than ‘determine whether the <attribute> is equal to
<value>". By setting up the generalized goa! of collecting all evidence about a clinical parameter, the
progiam effectively exhausts each sub ject as 1t 1s encountered, and thus tends to group together all
questions about a given topic. This results 1n a system which displays a much more focussed,
methodical approach to the task, whici 1s a distinct advantage where human engineering
considerations aie important. The cost is the effort of deducing or collecting information which s
not stiictly necessary However, since this occurs rarely — only when the <attribute> can be deduced
with certainty to be the <value> named in the original goal — we have not found this to be a
problem in practice.

A second deviation from the standard rule unwinding approach is tha' every rule relevant to
a goal 1s used. The premise of each rule is evaluated, and If successful, its conclusion is invoked.
This continues until all 1elevant rules have all been used, or one of them has given the result with
certainty This use of all rules 1s in part an aspect of the mode! of judgmental reasoning and the
approximate implication character of rules — unless a result 1s obtained with certainty, we should be
careful to collect all positive and negative evidence. It Is also appropriate to the system's cusrent
domain of apphcation, clinical medicine, where a conservauve strategy of considering all possibilities
and weighing all the evidence 1s preferred.

If, atter trying all relevant rules (referred to as ‘tracing’ the subgoal), the total weight of the
evidence about a hypothesis falls between -2 and .2 (again, empirically determined), the answer 1s

regarded as still unknown. This may happen if no rule were applicable, the applicable rules were too

weak, the effects of several rules offset each other, or if there were no rules for this subgoal at ail. In
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any uf these cases, when the system 1s unable to deduce the answer, it asks the user for the value
(using a phrase which 1s stored along with the attribute itself). Since the legal values for each
attnibute are also stored with at, the vahdity (or spelling) of the user's 1esponse is easily checked.
(This alse makes possible a display of acieptable answers in response to a " answer fiom the user)

The strategy of always attempting to deduce the value of a subgoal. and asking only when
that tals, would msuie the minimum number of questions It would also mean, liowever, that wor b,
nughit be expended searching for a subgoal, ariving perhaps at a less than cetunte answer, when
the nser alieady knew the answer with certainty. In response to this, suime at the attributes have
been Tatwlled as LAGDATA, indicating that they represent quantities which aic often available as
quantitative vesults of laboratory tests. in this case the deduce—then—ask proceduie is reversed, and
the systein will attempt to deduce the answer only 1f the user cannot supply it. Given a destie to
munmize both tiee search and the number of juesiions asked, there 15 no guaranteed optinal
solution tu the problem of deading when o ask or information, and when to tiy to deduce 1t. But
the LABDATA — climcal data distinction used here has performed quite well, and seems to embody
a Very appropiiate ciitenion

Thiee other recent additions to the tree search procedure have helped wipiove performance.
Fust betoie the entire ist of 1ules tor a subgoal 1s retrieved, the system aitainpis to find a sequenice
ot tules which would establish the goal with certainty, based only on what is cinrentiy known. Siace
thus is a search for a sequence of rules with CF=1, we have termed the 1esult a wnity path. Besides
ety considerations, this process uiiers the advantage of allowing the systeni to mane ‘common
enee’ deductions with a nunimum of effoit (rules with CF=1 are laigely defuntional). Since it also
bedps muze the number of  questions, this check 15 perfoimed even befuie asiing about
I ADDATA type attributes as well. Because theie aie few such rules i the <ysvm, the seaich s
cally vory hriet

Second, a straghtforwarc  booskeeping mechanism notes the 1ul s that have failed
[rivviously, ana avords ever trying to reevaluate any of them. (Recall that a tule may have more
“han one conclusion, may conclude about more than a single atnbute, and lence may get
tetie e anone than once)

Fiially, we have implemented a partial evaluation of rule premuses Since ma. y attributes
ate oG i several rules, the value of one clause (perhaps the last) i a prennse may already
have Leen estiabhished, even while the rest are sull unknown. If this clause alone wunld make the
pierase talse, theye s clearly no reason to do ali the search necessary to tiy to establish the others.
Eoach puenuse as thus ‘previewed’ by evaluating it on the basis of currently available information.
Thie produces w Boolean  combmanon  of TRUEs, FALSEs, and UNKNOWNs, and
sondirtorwand simphitication (eg. F A U = F) indicates whether the rule 1s guaranteed to fail.

Tine last techiuque 1s implemented in a way which suggests the utity oi <tylized coding in the
ales it alwg fonms wn example of what was alluded to earlier, where it was noted that the rules may
beovsaained by vanions elements of the system, as well as executed. We requiie a way to tell i any

che e che prenase s known "o be faise. We cannot simply EVAL each individually, since a
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subgoal which had never been traced before would send the system off on its recursive search.
Inhibiting search by means of some global switch will not work, since a null result could mean either
that the subgoal had never been traced, or that it had been but the system was unable to deduce an
answer. Even maintaining lists of previously successful or unsuccessful clauses would be an
incomplete solution, since the current clause might differ only 1n 1ts predicate function.

However, if we can establish which attribute is referenced by the clause, it is possible to
determine (by reference to internal flags) whether it has been traced previously. If so, the clause can
be EVALed to obtain the value. This is made possible by the TEMPLATE which each function

name has on its property list (Figure 6).

Function Template Sample function call
SAME (SAME CNTXT PARM VALUE) (SAME CNTXT SITE BLOGD)
Figure 6.

The template indicates the generic type and order of arguments to the predicate function, much like
a sumplified procedure declaration. By using it as a guide, the previewing mechanism can extract the
attribute from the clause, and determine whether or not it has been traced.

There are two points of interest here — first, part of the system is ‘reading’ the code (the rules)
being executed by another part; and second, this reading is guided by the information carried in
components of the rules themszlves. The ability to 'read’ the code could have been accomplished by
requiring all predicate functions to use the same format, but this is obviously awkward. By z!lowing
each function to describe the format of its own calls, we peimit ccde which is stylized without being
constrained to a single form, and hence is flexible and much easier to use. We require only that each
form be expressable in a template built from the current set of template prinutives (eg, PARM,
VALUE, etc). This approach also insures that the capability will persist in the face of future
additions to the system. The result is one example of the general idea of giving the system access to,
and an "understanding” of its own representations. This idea has been used and discussed
extensively in [Davis1975b]

We have also implemented antecedent-style rules. These are rules which are invoked iIf a
conclusion is made which matches their premise condition. They are currently limited to
common-sense deductions (i.e. CF=1), and exist primarily to improve system efficiency. Thus, for
example, if the user responds to the question of organism identity with an answer he 1s certain of,
there 1s an antecedent rule which will deduce the organism gramstain and morphology. This saves
the trouble of deducing these answers later via the subgoal mechanism described above.
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[3.5] META-RULES
With the system's current collection of 200 rules, exhaustive invocation of rules would be
quite feasible. since the maximum number of rules for a single subgoal is about 30. We are aware,
however, of the problems that may occur if and when the collection grows substantially larger. It
was partly in response to this that we developed an alternative to exhaustive invocation by
implementing the concept of meta-rules. These are strategy rules which suggest the best approach to
a given subgoal. They have the same format as the clinical rules (Figure 7), but can indicate that
certaimn clinical rules should be tried first, last, before others, or not at all. .

PREMISE: ($SAND (MEMBF SITE CNTXT NONSTERILESITES)
(THEREARE 00,JRULES (MENTIONS CNTXT PREMISE SAMEBUG))

ACTION: (CONCLIST CNTXT UTILITY YES TALLY -1.8)
I¢ 1) the site of the culture is one of the nonsterilesites, and
2) there are rules which mention in their premise a previous

organism which may be the same as the current organism

Then it is definite (1.8) that ea:: of them is not going to be useful.

Figure 7

Thus before processing the entire list of rules applicable to any subgoal, the meta-rules for that
subgoal are evaluated. They may rearrange or shorten the list, effectively ordering the search or
pruning the tree. By making them specific to a given subgoal, we can specify precise heuristics
without imposing any extra overhead in the tracing of other subgoals.

Note, however, that there 1s no reason to stop at one level of meta-rules. We can generalize
this process so that, before invoking any list of rules, we check for the existence of rules of the next
higher order to use 1n pruning or rearranging the first list. Thus, while meta-rules are strategies for
selecting clinical rules, second order meta-rules would contain information about which strategy to
try, third ~der rules would suggest criteria for deciding how to choose a strategy, etc. These higher
order rules represent a search by the system through "strategy space”, and appear to be powerful
constraints on the search process at lower levels. (We have not yet encountered higher order
meta-rules In practice, but neither have we actively sought them).

Note also that since the system’s rule unwinding may be viewed as tree search, we have the
appearance of a search through a tree with the interesting property that each branch point contains
information on the best path to take next. Since the meta-rules can be judgmental, there exists the
capability of writing numerous, perhaps conflicting heuristics, and having their combined judgment
suggest the best path. Finally, since meta-rules refer to the clinical rules by their content rather than
by name, the method automatically adjusts to the addition or deletion of clinical rules, as well as
modifications .0 any of them.

The cxpability of meta-rules to order or prune the search tree has proved to be useful in
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| deahing with another variety ul knowledge as well For the sake of human engmeering, for example.
it makes pood sense to ask the uter first about the positive cultures (those showing bacterial growth),
betore ashing about negative cub-ures. Formerly, this der.gn choice was embed<ec 1 the ordeting of
a hist bunied  the system code. Vet 1t can be stated quite easily and explicirly i a meta-rule,
yielding the significant advantages of making it both readily explainable and modifiable. Meta-1ules
have thus proved capable of expressig a lnaited subset of the knowledge formerly embedded in the
control structure code of the system

Meta-rules may also be used to control antecedent rule invocation Thus we can write
st a.egies which control the depth and breadth of conclusions drawn by the systemn in response to a

new PII?CP of information.

| A detailed overview of all of these mechanisms 1s in-luded 10 the Appendix, and indicates the
way they function together to insure an efficient search for each subgoal
| The final aspect of the control structure 1s the tree of contexts (recall the dual meaning of the
{ term, section (2.3)). constructed dynamically from a fixed hierarchy as the consultation proceeds
l (Fignre 8) Th serves several purposes First, bincing: of free variables in a rule are established by
the context m which the rule s mnvoked, with the standard access to contexts which are its ancestors.
Second, since this cree 18 intended to reflect the relationships of objects i the domain, it helps
stiuctuie the consiltation th ways famihiar to the user In the current domam, a patient has one or
more micctions, each ot vhich may have one or more associated cultures, each of which 1n turn may
have One Of MOre Organisms growing in i, and so on. Firally, we have found 1: useful to select one
or note of the attributes of ech context type and establish these as its MAINPROPS, or primary
properies Each ume a new contex: of that type is sprouted, these MAINPROPS are automatically
traced ° Since many of them are LA BDATA type attributes, the eftect is to begin cach new context
with a set of standard questions appropriate 0 that context, which serve to 'set the stage’ for

subsequent questions. This has proved to be a very useful human engineering feature in a domain

which has evolved a heavily stylized format for the presentation of information

P R—
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PATIENT-1
INFECTION-1 INFE T
CULTURE-1 CULTURE-2 CULTURE-3
ORGANISH-1 ORGANISH-2 ORGANISM-3  ORGANISNH-4

FIGURE 8
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[4] RELATION TO OTHER WORK

We outline briefly in this section a few programs that relate to vatious aspects of our work.
Some of these have provided the intellectual basis from which the present system evolved, others
have employed techniques which are similar, while still others have attempted to solve closely related
problems. Space himitations preclude detailed comparisons, but we indicate scme of the more
important distinctions and similarites

There have been 2 large number of attempts to aid medical decision making (see
(Shorthiffe1974a] for an extensive review). The basis for some programs has been simple 1lgorithmic
processes, often implemented as decision trees ((Meyer1972], (Warner1972]). or more complex control
structures in systems tailored to specific d.orders [Bleich1971] Many have based their diagnostic
capabilities on variations of Bayes' theorem [Gorry1958, Warner1964], or on techniques derived
from utiity theory of operations research Gorry1972]. Models of the patient or disease process
have been used successfully in [Silverman1974], [Pauker1975), and [Kulikowsk11474). A few recent
efforts have been based on some form of symbolic reasoning. In particular, the glaucoma diagnosis
system described n [Kuhkowski1974] and the diagnosis system . ¢ [Pople1972] can also be viewed as
rule-based.

Carbonell's work [Carbonell1970] represents an early attempt to make unceitain inferences in
a domain of concepts that are strongly hnked, much as MYCIN's are. Although the purpoce of
Carbonell's system was computer-aided instruction rather than consultation, much of our initial
design was influenced by his semantic net model.

The basic production rule methocology has been applied in many different contexts, in
attempts to solve a wide range of problems (see, for example, (Davis197%a] for an overview) The
most directly relevant of these 1s the DENDRAL system (Buchanan1971], which has achieved a
high level of performznce on the task of mass spectrum analysis. Much of the initial design of
MYCIN was influenced by the experience gained in building and using the DENDRAL system.
Earlier attempts to bwild general and powerful production rule based systems have included
[Waterman1970] and [(Moore1972]

There have been numerous attempts to create modeis of mexact reasoting Among the more
vecent 1s [LeFavirel974), which reports on the implementation of a language to facilitate fuzzy

reascr.ng It deals with many of the same issues of reasoning under uncertainty that are detailed in

[Shorthiffe1375b].
The approach to natural language used In our sysiem has been thus far quite elementary,

primatily keyword-based Some of the work reported in {Colbyl1974] suggesied to us umtially that
this might be a sufficiently powerful approach for our purposes. This has proven generally true
because the technical language of this domain contains relatively few ambiguous words.

The chess playing program of [Zobrist1973] employs a knowledge repiesentation which 15
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functionally quite close to ours. The knowledge base of that system consists of small sequences of
code which recognize patterns of pieces, and then conclude (with a variable weighting factor) the
vaiue of obtaining that configuration. They repott quite favorably on the ease of augmenting a
knowledge base organized along these lines.

The natural language und-rstanding system of [Winograd1972] had some basic explanation
capabilities sumilar to those described here, and could discuss its actions and plans.

A's we have noted above, and will explore further below, part of our work has been involved
tn making 1t possible for the system to understand its own operation. Maiiy of the explanation
capabiliiies were designed and implemented with this in mind, and it has significantly influenced
design of the knowledge acquisition system as well. These efforts are related in a gereral way to the
long sequence of attempts to build program-understanding systems. Such efforts have been
motivated by, among other things, the desire to prove correctness of programs (as in
(Waldinger1974] or [Manna1969)), and as a basis for automatic programming (as in (Green1974)).
Most of these systems attempt to assign meaning to the code of some standard programming
language like L1sp, or ALGoL. OQur attempts have been oriented toward supplying a semantics for wha:
amounts to a high level language — the production rules and their associated components. The task
15 uf courze made easier by ipproaching it at this higher conceptual level — we attempt only to
assign semantics to conceptual primitives of the domain like the function SAME, rather than the
Lisp code 1n which they are implemenied. We cannot therefore prove that the implementation is
correct, but can use the representation of mearing in other powerful ways. It forms, for example, the
basis for much of the knowledge acquisition system (see section [6.3]), and permuts the explanation
system to be quite precise in explaning the program's actions (see [Davis1975b) for details). A
similar sort of high level approach has been explored by Hewitt in his proposed INTENDER
system [Hewitt1971).

Finally, similar efforts at computer-based consultants have recently been developed in different
domains. The work detailed in [Nilsson1975) and [Hart1975) has explored the use of a consultation
system similar to the one described here, as part of an integrated vision, manipulation, and problem

solving system. Recent work o an intelligent terminal system (RAND1975) has been based in part

on a formahsm which grew out of early experience with the MYCIN system.
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(5] FUNDAMENTAL ASSUMPTIONS OF THE METHODOLOGY

{ We attempt here to examine some of the explicit and implicit assumptions which are part of
the methodology described above. We believe this will help to suggest the range of application for
these techniques, and indicate some of their strengths and limitations. Because such a listing 1s
potzntially open-ended, we include here the assumptions essential to the methodology used in
M'YCIN, but not necessarily applicable to every interactive program.

There are several assmptions implicit in both the character of the rules and the ways in
which they are used. First, it must be possible to write such judgmental rules. Not every domain will
support this. It appears to require a fizid which has attained a certain level of formahizat.on, which
includes perhaps a generally recognized set of primitives and a minimal understanding of basic
processes. It does not seem to extend to one which has achieved a thorough, highly formalized level,
however. Assigning certainty factors to a rule should thus be a ressonable task whose results would
be repeatable, but not a trivial one in which all answers were 1.

Second, we require a domain in which tkere is a limited sort of interaction between conceptual
primutives. Our e<perience has suggested that a rule with more than about six clauses in the premise

becomes conceptually unwieldy. The nuinber of factors interacting in a prenuse to trigger an act.on
therefore has a practical (but no theoretical) upper limit. Also, the AND/OR goal tree mechanism
requires that the clauses of a rule premise can be set up as non-conflicting suobgoals for the purposes

| of establishing each of them (just as in robot problem solving; see [Fahlman1974] and the comment
on side effects in [Siklossy1973)) Failure of this critericn causes results which depend on the order in
which evidence is collected. We are thus making fuiidamental assumptions concerning two forms of
interaction — we assume (a) that only a small number of factors (about 6) must be consicered
simultaneously to trigger an action; and (b) that the presence or absence of each of those faciors can
be established without adverse effect on the others.

Also, certain characteristics of the domain will influence the continued utility of this approach
as the hnowledge base of rules grows. Where there are a limited number ot attributes for a given
ob ject. the growth in the number of rules in the knowledge base will not produce an exponential
growth in search ume for the consultation system. Thus as newly acquired rules begin to reference
only established attributes, use of these rules in a consultation will not produce further branching,
since the attributes mentioned in their premises will have aiready been traced.

There are essential assumptions as well in the use of this methodology as the basis for an
iteractive system First, our explanation capabilities (reviewed below) rest on the assumption that
display of either a rule or some segment of the control flow is a reasonable explanation of system
behavior. Second, much of the approach to rule acquisition is predicated on the assumption that
experts can be “debriefed”, that 1s, they can recognize and then formalize chunks of their own
knowledge and experience, and express them as rules. Third, the IF/THEN format of rules must be
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t can provide a useful language for expressing

ntly simple, expressive, and intuitive that i
modus ponens chaining) must

ons. Finally, the system's mude of reasoning (a simple
along. We offer below (section (6]) arguments

sufficie
such formalizati
appear natural enough
that all these are plausible assumptior s.
There is an important assumption, too,
Since the domain experts who educate
s. vocabulary, and knowledge base, we must be s

that a user can readily follow

in the development of a system for use by two classes
the system so strongly influence its conceptuai

of users.
ure that the naive users who come for

primitve
advice speak the same language.

The approach we describe does not, therefore, seem well suited to domains requiring a great

goals, or those for which it 1$ difficult to compose sound
potentially useful applications, we have found that
in, antibiotic therapy selection, we have met

deal of complex interaction between

judgmental rules. As a general indication of

cognitive tasks are good candidates. In one such doma

with encouraging success.
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[6] PRODUCTION RULES AS A KNOWLEDGE REPRESENTATION

In the introduction to this report we outl:ned three design goals for the system we are

developing: us:fulness (including competence), maintenaiice of an evolutionary knowledge base, and

support of an interactive consultation. Our experience has suggested that production rules offer a
knowledge representation that greatly facilitates the accomplishment of these goals. Such rules are

straightforward enough to make feasible many interesting features beyond performance, yet powerful
enough to supply significant probl»m solving capabilities. Among the features discussed below are
the ability for explanation of system performance, and acquisition of new rules, as well as the

general ‘understanding’ by the system of its own knowledge base.

[6.1] COMPETENCE

[6.1.17 idvantages of production rules
Recent pioblem solving efforts in Al have made it clear that high peiformance of a system is

often strongly correlated with the depth and breadth of the knowledge base. Hence, the task of

accumulation and management of a large and evolving knowledge base soon poses problems which

dominate those encountered in the initial phases of knowledge base construction. Our experience

suggests that giving the system itself the ability to examine and manipulate its knowledge base

provides some capabilities for confronting these problems. These are discussed in subsequent

sections belcw.
The selection of production rules as a knowledge representation is in part a response to this
fact. One view of a production rule is as a modular segment of code [Winograd1975), which 1s

heavily stylized [Waterman1970, Buchanan1971). Each of MYCIN's rules is, as noted, a simple

conditional statement: the premise is constrained to be a Boolean expression, the action contains one

or more conclusions, and each is completely modular and independent of the others. Such modular,

stylized coding 15 an important factor in building a system that is to achieve a high level of

competence.

For example, any stylized code 1s easier 10 examine. This 1s used in several ways in the system.
Initial integration of new rules into the knowledge base can be automated, since their premise and
action parts can be systematically scanned, and the rules can then e added to the appropriate
internal lists. In the question answering Ssystem, inquiries of the form ‘Do you recommencd
damycin for bacter oides? can be answered by retrieving rules whose premise and action contain

detection of straightforward cases of contradiction and subsumption

chin
the relevant items. Similarly, the
is made possible by the ability to examine rule contents. Stylized code also makes feasible the direct
manipulation of individual rules, facilitating automatic correction of such undesirable interactions.

The discussion below of the use of TEMPLATES demonstrates yet another use, 1n which this
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capabulity 1s used to help provide explanations of system behavior.

The benefits of modularized code are well understood. Especially significant in this case are
‘he easc of adding new rules and the relatively uncomplicated control siructure which the modular
rules pernut. Since rules are reirieved because they are relevant to a specific coal (1e., they mention
that goal in their action part), the addition of a new rule requires only that it be added to the
appropriate internal hist according to the chinical parameters found in 1ts action. A straightforward
depth tirst search (the result of the backward chaining of rules) 1s made possible by the lack of
interactions among rules.

These benefits are common to stylized code of any form. Stylzation i the form of
production rules in particular has proved to be a useful formalism for seveial reasons. In the
domam of deductive pioblems, especially, it has proven to be a natnal way of expressing
Anowledge It also supplies a clear and convenient way of expressing modular chunks of
knowledg e since all necessary context is stated explicitly in the premise This i turn makes it
easier fo insure proper retrieval and use of each rule. Finally, in common with similar formalisms,
one rule never directly calls anothe.. This 1s a significant advantage in integrating a new rule into
the systam - 1t can simply be ‘added to the pot' and no other rule need be changed to insure that
it 18 called (compate this with the addition of a new procedure to a typical ALGOL-type program).

[6.1.2] Shorecomings of production rules

Styhzation and modularity also result in certar: shoricomings, however It is, of course,
somewhat harder to express a given piece of knowledge if it must be put nto a predetermined
format. The intent of a few of the rules in our :ystem are thus less than obvious to the naive user
even when translated into English. The requirement of modularity (along with the uniformuty of the
knowledge base), means all necessary contextual information must be stated exphctly in the premise,
and this at rimes leads to rules which have awkwardly long and complicated premises.

Shortcomings 1n the formalism arise also in part from the backwaid chaining control
structute, and from the restriction to a pure predicate in the premise. it is not always easy to map a
sequence of desired actions or tesis into a set of production rules whose goal-duected invocation will
provide that sequence. Thus, while the system's performance 1s reassuringly simular to some human
reasoning behavior, the creation of appropriate rules which result in such behavior is at times
non-trivial. This may in fact be due more to programming experience oriented primarily toward
ALcoL-hike tanguages, rather than any essential characteristic of production rules. After some
experience with the system we have improved our skill at ‘thinking backward’

A final shoitcoming arises from constraining rule premises to be simple predicates. This forces
a pure problem reduction mode in the use of rules. each clause of a premuse 1s set up as an
independent goal, and execution f the action should be dependent solely on the success or failure of
premise evaluation, without referencing its precise value. It 1s at tinies, however, extremely

convenient to write what amounts to a ‘for each’ rule, as in 'for each organism such that ... conclude

- A few rules of this form are present in the system (including, for example, the meta-rule in

F R TR .
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Figure 7), and they are made to appear formally like the rest by allowing the premise to compute a
value (the set of items that satisfy the premise), which is passed to the action clause via a global
variable. While this has been relatively successful. the violation of the basic formalism results in
other difficulties — in particular, in the explanation system, which produces somewhat murk®

ex planations of such rules. We are working toward a cleaner solution of this problem.
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[6.2] EXPLANATION

Augmentation or modification of any knowledge base 1s faciutaled by the ability to
discover what knowledge 1s curcently in the system and how it is usea. The system's ac ptance
(especially to a medical audience) will be strongly dependent upon the extent to which its
peiformance is natural (1e, human-like) and transparent. Lack of acceptance of some applications
progranis can be traced to their obscure reasoming ..cchanisms which leave the user forced to
accept or 1eject advice without a chance to discover i.> basis. One of our origimal design critenia,
then, was 1o give the system the abily to provide explanations of its behavior and knowledge. It
soon became evident that an approach relying on some form of symbolic ieasoming (rather than,
for vxarmple, statistics) would make this feasible This was one of the primary reasons behind the
chowe ot the production rule representation, and has continued to intluence the program's
developinent.

Qur untial efforts at explanation and question-answering were based o thiee capabihities:
(1) display on demand during the consultation the rule currently being invoked, (i1) record rules
which were invoaed, and after the consultation, be able to associate < ecific rules with specific
events (questions and conclusions) to explain why each of them happened, and (i) search the
anowleczr base for a speafic type of rule in answer to inquiries of the user The first of these
could be easily implemented via the single-word command format described below

The latter two were intended {or use after the consultation, and hence were provided with
a sunple natwal language tfront end Examples are shown in Figure 9 (aaditional examples can be
tound i [Shoithife1975a)). Note that the capability for answering questions of type (1) has been
extended to include inguiries about actions the program failsd to take (exampls [}, Figure @) Thas
1s based on the ability of the explanation system o simulate the control structuie of the consultation
systeim, and can be extremely usetful in deciphering the prograin’s behavior. For questinas of type
a, (el Figure 9) the search through the knowledge base 1s directed by a umple parsing of the
question 1to a request for a set of rules, with constraints on premise and/or action contents. The
retrieval of relevant rules 1s guided primarily by pre-established (but automatically generated) hists
which indicate premise and action contents.

<insert figure 9 about liere>
Some generalization of and ex'ensions to the methodolo; y of (1) and (1) have been motivated

by two shortcomings Displaying the current rule 1s not pe:ficularly iniormanve if the rule is

essentially definitional and hence conceptually trivial. The problem here is the lack of a good gauge

for the amount of information 1n a tule
Recording individual rule invocations, questions, and conciusions s usetul, but, as 3 record of
individual events, 1t fails to capture the context and ongoing sequence It s .ufticult therefore to
explain any event with reference to anything but the speaific information 1ecorded with that event.
Two related techniques wer= developed to solve these problems. Furst, to provide a metric for
the amount of information 1n a rule, we use (in a very rough analogy with information theory)

-(log CF) Rules which are definitional (CF = 1) have by this measure no information, while those
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«+ HOW DID YOU DECIDE THAT ORGANISM-1 MIGHT BE AN ECOLI?

1 used RULEB2! to conclude that the identity of DRGANISM-1 is e.coli.

This gave a cumulative CF of (.47).
Then | used RULEB84 to conclude that the identity of ORGANISM-1 is

e.coli. This gave a cumulative CF of (.55).
Finally, | used RULEB@3 to conclude that the identity of ORGANISH-1

This gave a cumulative CF of (.74},

(a)

is e.coli.

+x DID YOU USE RULE 163 TO FIND OUT ANYTHING ABOUT ORGANISM-1?

ext of ORGAMISH-1, but it failed because
d » genito-urinary tract manipulative

(b)

RULE163 was tried in the cont

it is not true that the patient has ha
arocedure (clause 3).

(¢) ** DID RULE 116 TELL YOU ANYTHING ABOUT INFECTION-1?

No. RULE116 would be relevant to the primary-bacteremia when applied

to ORGANISH-1.
But clause 2 {

“the gram stain of the organism is not knoun") was
already knoun to be false for ORGANISM-1

, so the rule was never tried.

«x WHY DIDN'T YOU CONSIDER STREPTOCOCCUS AS A POSSIBILITY FOR ORGANISM-1?

The following rule could have been used to determine that the identity
of ORGANISM-1 was streptococcus: RULEB33

But clause 2 ("the morphology of the organism is coccus") was
already knoun to be false for ORGANISM-1, so the rule was never tried.

(d)

(¢) x+ DO YOU RECOMMEND CLINDAMYCIN FOR BACTEROIDES?

Yes.
RULEDGS

1f the identity of the organism is bacteroides
Then | recommend therapy be chosen from among the follouing:
CHLORAMPHENICOL, CLINDAMYCIN, RIFAMPIN, ERYTHROMYCIN, CARBENICILLIN

TETRACYCLINE, LINCOMYCIN

(f) =+ 1S BLOOD A STERILE SITE?

Yes, blood is one of those aites that are normally sterile.

(g) *+ WHAT ARE THE ORGANISMS ASSOCIATED WITH THE GASTRO-INTESTINAL TRACT?

The likely pathogens azsociated with the gastro-intestinal tract are:
ENTEROCOCCUS, CLOSTRIDIUM-GANGRENE, BACTEROIDES, KLEBISELLA, PSEUDOMONAS,

£.CO.1, ENTEROBACTER, PROTEUS.
Figure 9
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which express less obvious implications have progressively more information. The measure is clearly
imperfect, since first, CFs are not probabilities, and there is thus nu formal jusufication that -(log
CF) 1s a meaningful measure. Second, any sophisticated information content measure should factor
in the state of the observer's knowledge, since the best explanations are those which are based on an
understanding of what the observer fails to comprehend. Despite these shortcomings, however, this
heuristic has proven to be quite useful

To solve the second problem (explaining events in context) the piucess of vecording individual
rule vocations has been generalized: all the basic control functions of the system have been
augmented to leave behind a history of each of their executions. This internal trace is then read by
various parts of the explanation system to provide a complete, in-context explanation of any part of
the system's behavior.

Because the consultation process is essentially one of search through an AND/OR goal tree,
inquiries during the course of a consultation fall quite naturally into two types: WHY a question
was asked, and HOW a conclusion was (or will be) reached. The fust of these lvoks "up” the trce, in
examining higher goals, while the second looks "down"” in examining rules which may help achieve
a goal. This part of the system's explanation capability can thus be viewed in general as a process of
tree traversal. By combining this concept with the information content metiic, we make possible
explanations in varying levels of detail: the tree may be traversed in steps whuse information content
size 1s specified by the user, rather than simply stepping from goal to goal At the start of the
traversal process, “information distance” from the current goal to the top of the tice is normalized to
9. The argument to the WHY command (an integer between one and ten, assumed to be one if
absent) 1s then taken to indicate some part of that distance. Thus, WHY 3 indicates an explanation
which encompasses approximately one-third of the total “conceptual” distance. Repeated WHY
questions have the effect of stepping up the goal tree. Examples are shown below; additional
examples are found in [Shorthffe1975a)).

In this series, how many of the cultures were positive for the
e.coli (ORGANISM-1)? {typical system prompt}
xxWHY

{request from user to determine motivation for question}

{i.e. WHY is is important to determine the number of cultures which uere
positive for the organism?]

{system's rephrasing of the WHY question, and answer}

{1.8) This wili help to determine whether there is significant disease
associated with this occurence of the organism.
1t has already been established that
{1.1] the culture was taken from a sterile source
{1.2] the number of cultures in the series is greater than 2
Therefore, if
[1.3} the number of cultures which were positive for ORGANISHM-1
is greater than 2
Then there is suggestive evidence (.5) that there is significant disease
associated With this occurrence of the e.coli (ORGANISM-1).
(RULEB43]
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- WHY
_ . {rc“tn'a:c:l l‘-‘l!)’ faletervioie velecance of previous explanation,
{i.c. HHY is it important to determine if there is signiticant diceace

~

aasociated with this occurrence of the organism?]

(2.81 This will heip to determine a diagnos:s for which the infection should

| be treated.
{ 1t has already been established that
{2.1] the infection is not one nt: primary-bacteremia, meningitis
(2.2] for some current culture uf the patient it is true that the
site of the culture is blood
Therefore, if
(2.3] there is significant disease assnciated With this occurrence

of the organi«m

Then

it is definite (1.0 that the diagnosis for which the infection should
he treated is secordary-bacteremia

' (RULE1@3)

Figure {0

Swularly, HOW commands step "down" the rree This can resull i examming either LUanches

which have already been traversed tasn the e cample below) or thote which have yet to be tried (in

which case the question becomes 'HOW will you cietermine )

»xHOW 1.1
{the 11 repers to the informatien in the line lakelled [11] in Fig 10

[i.e. HOW was it determined that the culture uas taken from a sterile source?]
(3.1) RULEBB! was used to conclude that there 18 sugestive evidenc
(.7) that the culture was taken froam a ~terile “curce.
(3.2) RULEB22 was used to conclude that there is stronaly suggestive
evidence (.7) that the culture was taker from a sterile source.

»xHOW 3.1 lanother request from the user}

[i.e. HOW was RULEBBL used?]

| It has already been established that
(4.1) the site of the culture is one of: those sites from which the

sterility of cullures depends upon the method of coliection

(4.2] the method of coliection of the cullure 15 one ouf: the
recognized methods oi collection associated wilh the site
of the culture, and

(4.3) it is not known whether care was taken in collecting the culture

Therefore
there is strongly suggestive evidence (.8) that the cuiture was taken

from a sterile source

(RULEB22)

Figure 11

The system's fundamental approach to explanation 1s thus ta display somw recap of ats internal

he _m s e B e

Y P T N e —————
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actions. a trace of its reasoning. The success of this technique is predicated on the claim that the
system’s basic approach to the problem 1s sufficiently intuitive that a summaiy of thosw actions is at
least a 1casonable basis from which to start. While 1t would be difficult to prove the claim 1n any
formal sense, there are several factors which suggest its plausibihity.

Fust, we are dealng with a domamn in which deduction, and deduction in the face of
uncertamty, is a primary task. The use of production rules in an IFITHEN toriat seems therefore
to be a natural way of expressing things about the domain, and the display of such rules should be
compreiiensible. Second, the use of such rules in a backward chaimig mode 1s, we claim, a
reasonably intuitive scheme. Modus ponens is a well-understcod and widely (if not explicitly) used
mode ot mierence. Thus, the general form of the representation and the way 1t 1s employed should
not be untamihar to the average user More specfically, however, consider the source of the rules.
They have been given to us by human experts who were attempting to formalize therr own
knowledge of the domain. As such, they embody accepted patterns of human reasoning, implymg
that they should be relatively easy to understand, especially for those familial with the domain. As
such, they will also attack the problem at what has been judged an appropilate level of detail. That
15, they with embody the night size of "chunks” of the problem to be comprehenisible

We are not, therefure, recapping the binary bit level operations of the machine nstructions
for 4n obscure piece of code. We claim imstead to be working with primiives and a methodology
whose (a) substance, (b) level ot detail, and (c) mechanism are all well suited to the domarn, and to
human cotuprehension, precisely because they were piovided by human experts. This approach
ceems to provide what may plausibly be an understandable explanation of system behavior.

This use of symbohc reasoning 1s one factor which makes the generation of explanations an
casier tash For example. it makes the display of a backtrace of performance comprehensible (as, for
example, n Figure 9). The basic control structure of the consultation system 1s a second factor. The
simple depth-first-search of the AND/OR goal tree makes HOW, WHY, and the tree traversal
approach natural (as m Frgures 10 and 11). We believe several concepts in the current system are,
however, faitly general purpose, and would be useful even in systems which did not share these
advaniazes. Whatever control structure i1s employed, the maintenance of an mternal trace will clearly
be useiul 0 subsequent explanations of sysiem behavior. The use of some witfoimaiion metric will
help to msure that those explanations are at an appropriate level of detail Finally, the explanation
penetating routines tequire some abihity to decipher the actions of the mam system

Three different means of generating explanations are present i our current system. (a)
The tist type 1s used e producing answers to HOW questions which explure branches of the tree
not yet traversed by the consultation system (eg. "HOW will you deternune ihe identity of the
orzanism ™) These are produced by having the explanation system simulate the operation of the
consultation system via special purpose software. This 1s thus a hand-crafted solution. () More
general 1s the use of the goal-tree concept as a basis for explanation — smce the notron of an
AND/OR goal tree models a large part of the control structure, we have a single, uncomplicated

models for much of the system's behavior. As a result, a relatively simple formalism whch equates

T T g T P N
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WHY and HOW with tree traversal offers a reasonably powerful and comprehensive explanatory
capability. (¢) The most general technique has been mentioned earlier — one pa:t of the system
“reads” the code (the rule) that is being executed by another part (The same basic approach s used
to do the partial evaluation described above and the division of rule piemises into known and
unknown clauses shown in the examples above). In this case the explanations are constructed by
reference to the contents of the rules, and this referral 1s guided by information contained in the rule
components themselves.

By way of contrast, we mught try to imagine how a program based on a statistical
approach might attempt to explain itself. Such systems can, for instance, display a disease which
has been deduced and a hist of relevant symptoms, with prior and posterior probabilities. No more
informative detail 1s avatlable, however. When the symptom list is long, it may not be clear how
each of them (or some combnation of them) contributed to the conclusion It 15 more difficult to
imagine what sort of explanation could be provided if the program were mterrupted with mterim
queries while in the process of computing probabilities. The problem, of couite, 1s that statistical
methods are not good models of the actual reasoning piocess (as <hown n psychological
experiments of [Edwards1968] and [Tverskyl974]), nor were they designed 1o bhe While they are
operationally effective when extensive data concerning disease incidence are availole, they are
also for the most part, "shallow”, one-step techniques which capture little of the ongoing process
actually used by expert problem soivers in the domain. v

We have found the presence of even the current basic explanation capabilities to be extrenely
useful, as they have begun to pass the most fundamental test: it has become easier to ask the system
what 1t did than to trace through the code by hand The continued development and generalization

of these capabilties 1s one focus of our present research.

AT —
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{ [6.3] ACQUISITION

Since the field of mfectious disease iherapy is both large and constantly changing, it was
apparent from the outset that the program would have to deal with an evolving knowledge base.
The domain size made writing a complete set of rules an impossible task, so the system was
desighed to facilitate an incremental approach to competence. New research in the domain
produces new results and modifications of old prinaples, so that a broad scope of knowledge-base
managemelnit capabilities was clearly necessary.

As suggested above, a fundamental assumption i that the expert teaching the systemm can
be “"debriefed”, thus transferring his knowledge to the program. That 1s, presented with any
conclusion he makes during a consultation, the expert must be able to state a rule indicating all
relevanut prenuses for that conclusion. The rule must, in and of itself, vepiesents a valid chunk of
clinical xnowledge.

There are two reasons why this seems a plausible approach to knowledge acquisition. First,
chinical medicine appears to be at the correct level of formalization. That 15, while relatively httle
of the hnowledge -an be specified in precise algorithms (at a level comparable to, say, elementary
physics) the judgmental knowledge that exists 1s often specifiable n reasonably firm heuristics.
Second, on the model of a medical student's chnical tramn:ng, we have emphasized the acquisition
of new knowledge in the context of debugging (although the system 1s prepated 1o accept a new
rule from the user at any time). We expect that some error on the system’s part will become
apparent during the consultation, perhaps through an incorrect organism identification or therapy
selection. Tracking down this error by tracing back through the program’s actions i1s a reasonably
straightforward process which presents the expert with a methodical and complete review of the
systein's reasoning. He 1s obligated to either approve of each step or to correct it. This means that
the expert 1s faced with a sharply focussed task of adding a chunk of knowledge to remedy a
specific bug This makes 1t far easier for himn to formahize his knowledge than would be the case
if he were asked, for example, “tell me about bacteremia.”

This methodology has the interesting advantage that the context of the error (1.e, which
conclu.ien was in error, what rules were used, what the facts of this case were, etc) 15 of great
help 1o the acquisition system in interpreting the experi's subsequent instiuctions for fixing the
bug The error type and context supply the system with a set of expectations about the form and
content of the anucipated correction, and this greatly facilitates the acquisition process (details of
this and much of the operation of the acquisition system are found n [Davis1475b)).

The problem of educatng the system can be usefully broken down into three phases:
uncovering the bug, transferring to the system the knowledge necessary to correct the bug, and
integrating the new (or revised) knowledge into the knowledge base. As suggested above, the
explanation system 15 designed to facilitate the first task by making 1t easy to review all of the
program’s actions. Corrections are then specified by adding new rules (and peirhaps new values,

attributes, or contexts), or by modifying old ones. This process is cariied out inh a mixed initiative

dialogue using a subset of standard English (an early example is found in [Shorthiffe}975a)).
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The system’s understanding of the dialog 1s based on what may be viewed as a primitive
form of ‘model-directed’ automatic programming. Given some natural language text describing one
clause of a new rule's premise, the system scans the text to find keywords suggesting which
predicate function(s) are the most appropriate translations of the predicate(s) used in the clause.
The appropriate TEMPLATE for each such function is retrieved, and the ‘parsing’ of the
remainder of the text 1s guided by the attempt to fill this in.

If one of the functions were SAME, the TEMPLATE would be as shown in Figure ©.
CNTNT 15 known to be a literal which should be left as is, PARM signifies a clinical parame :r
(attribute), and VALUE denotes a corresponding value. Thus the phrase “"the stain of the
organism 1s negative” would be analyzed as follows: the word “stain™ in the system dictionary has
as part of its semantic indicators the information that it may be used in talking about the
attribute gramstain of an organism. The word "negative” 1s known to be a valid valve of gramstain
(although 1t has other asscciations as well). Thus one possible (and in faci the correct) parse is
(SAME CNTXT GRAM GRAMNEG), or “"the gramstain of the organism 1s gramnegative.”

Note that this 1s another example of the use of higher level primitives to do a form of
program understanding. It 1s the semantics of PARM and VALUE which guide the parse after the
TEMPLATE 1s retrieved, and the semantics of the gramstain concept which allow us to insure the
consistency of each parse. Thus by treating such cuncepts as conceptual prinmitives, and providing
semantics at this level, we make possible the capabilities shown, using relatively modest amounts of
machinery

Other, incorrect par  are of course possible, and are generated too. There are three
factors, however, which keep the total number of parses within reasonable bounds. First, and
perhaps most important, we are dealing with a very small amount of text. The user 1s prompted
for each clause of the premise individually, and while he may type an abritrary amount at each
prompt, the typical response is less than a dozen words Second, there is a relatively small degree
of ambiguity in the semi-formal language of medicine. Therefore a keyword-based approach
produces only a small number of possible interpretations for each word. Finally, insuring the
consistency of any given parse (eg. that VALUE s indeed a3 vahd value for PARM) further
restricts the total number generated. Typically, between | and 15 candidate parses result.

Ranking of possible interpretations of a clause depencs con expectation and internal
consistency. As noted above, the context of the original error supplies expectations about the form
of the new rule, and this 1s used to help sort the resulting parses to choose the most hkely

As the last step in educating the system, we have to integrate the new knowledge into the
rest of the knuwledge base. We have only recently begun work on this problem, but we recognize
two important, general problems. First, the rule set should be free of internal contradictions,
subsumptions, or redundancies. Tive i1ssue 1s complicaied significantly by the judgmental nature of
the rules. While some inconsistencies are imimediately obvious (two rules identical except for
differing certainty factors) indirect con‘radictions, (resulting from chaining rules, for example) are

more difficult to detect. Inexactness in the rules means that we can specify only an interval of
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consistent values for a certainty factor.

The second problem is coping with the secondary effects that the addition of new
knowledge typically introduces. This arises primanly from the acquisition of 2 new value, clinical
parameter or context. After requesting the information required to specify the new structure, 1t is
often necessary to update several other information structures in the system, and these in turn may
cause yet other updating to occur. For example, the creation of a new value for the site of a
culture nvolves a long sequence of actions: the new site must be added to the internal st
ALLSITES, 1t must then be classified as either sterile or non-sierile, and then added to the
appropriate hist; if non-sterile *he user has to supply the names of the organisms that are typically
found there, and so forth. While some of this updating 1s appaient from the stiuctures themselves,
much of 1t 1s not. We are currently invesugating methods for specifying such interactions, and a
methodolozy of representation design that minimizes or simplifies the interactions to begin with.

The choice of a production rule representation does impose some lhmitations in the
knowledge transfer task. Since rules are simple conditional statemments, they can at times provide
power insufficient to express some more complex concepts. In addition, while expressing a single
fact 15 often convement, expressing a larger corcept via several rules 15 at times somewhat more
difficult. As suggested above, mapping from a sequence of actions to a set of rules i1s not élways
easy. Goal-directed chaining is apparently not currently a common human approach to structuring
larger chunks of knowleage.

Despite these drawbacks, we have found the production rule formalism a powerful one. It
has helped to organize and build, in a relauvely short period, a knowledge base which performs
at an encouraging level of competence. The rules are, as noted, a reasonably intuitive way of
expressing simple chunks of inferenual knowledge, and one which requires no acquaintance with
any programming language. While 1t may not be immediately obvious how to restate domain
knowledge 1n production rule format, we have found that infectious disease experts soon acquired
some proficiency in doing this with relatively little experience.

The rules also appear capable of embodying appropriate-sized chunks of knowledge, and
of expressing concepts that are sigmificant statements. They remain, however, straightforward
enough to be built of relatively simple compositicns of conceptual primitives (the attributes, values,
etc.) While any heavily stylized form of coding of course makes it easier to produce code, stylizing
i the form of production rules in particular also provides a framework which is structurally
simple enough to be translatable to simple Enghsh. This means that the experts can easily

comprehend the program's explanation of what it knows, and equally easily specify knowledge to
be added.
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[7] CONCLUSIONS

The MYCIN system has begun to approach its design goals of ccmpetence and high
performance, 7 flexibility in accomodating a i::g® and changing knowledge base, and ability to
explain its own reasoning. Successful applications of our control structure with rules applicable to
other problem areas have been (a) fault diagnosis and repair reccommendations for bugs in an
automobile horn system [van Melle1974), (b) a consultation system for industrial assembly problems
[Hart1975), and (c) part of the basis for an intelligent terminal system (RAND1975).

A large factor in this work has been the production rule methodology. It has proved to be a
powerful, yet flexible representation for encoding knowledge, and has contributed significantly to the

capabilities of the system.
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Capucns
I: [consultation, initial segment]
Initiai segment of a session with the coiisiltation system. User responses are in boldface
and follow the double asterisks. ltalicized comments at the right are not part of the actual
dialog.

12

. [consultation, final segment]
Final segment of a consultation. Alternative choices for therapies are generated 1f requested.

2. [five buxes — 4 systems plus rule base]
The five components of the system: four programs and a single knowledge base. Arrows
indicate the ditection of information flow.

4 {rule]
A rule from the knowledge base. SAND and $OR are the multivalued analogues of the
standard Boolean AND and OR.

5 [quadruples from data base]
Samples of information n the data base curing a consulta’ion.

6: (template]
PARM 1s shorthand for clinical parameter (attribute), VALUE 1s the corresponding value;
CNTXT 15 a free variable which references the context in which the rule is invoked.

~J

: [meta-rule]
‘* meta-rule. A previous infeci.on which has been cured (temporarily) may reoccur. Thus
one of the ways to deduce the idenuty of the current organism is by reference to previous
infections. However, this methiod 1s not vahd if the current infection was cultured from one
of the non-sterile culture sites Thus this metarule says, in eftect, if tic current culture is from
@ non-sterile site, don't bother trying to deduce the current organism identity from identities of
previous organisms.

8: [context tree]
A sample of the contexts which may be sprouted during a consultation

9: [QA natural language examples]
Examples of natural language question answering capabilities. Questions (a)-(d] reference a
specific consultation, while (e)-(g) are general inquiries answered from the system knowledge
hase.

10: {Explanation examples, WHY]
Examples of explanation capabilities. User input 1s In boldface and follows the double
asterisk. Expansion of each WHY or HOW quesuon (enclosed in brackets) 1s produced by
the system, to be sure the user Is aware of the system's interpretation of them.

i1: [Explanation examples, HOW]
INo caption necessary.}

Appendix caption
A detaled overview of the control structure, illustrating the combination of the various
mechanisms used to establish a subgoal.
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NOTES

The MYCIM system has been developed by the authors in collaboration with:

Drs. Stanley Cohen, Stanton Axline, Frank Rhame, Robert llla, and Rudolpho
Chavez-Pardo, all of whom provided medical expertise;

William van Melle, who made extensive revisions to the system code for efficiency
and to introduce new features;

Carlisle Scott, who (with William Clancey) designed and implemented the expanded
natural language question answering capabilities.

We have recentiy begun investigating extending the system. The next medical domain will
be the diagnosis and treatmeni of meningitis infections. This area 1s sufficiently different
to be challenging, and yet similar enough to suggest that some of the automated
procedures we have developed may be quite useful.

The paper by [van Melie1974] reports on an interesting effort at inserting an
entirely different knowledge base into the body of the current system. A small part of an
automobile repair manual was translated into production rules, and the appropriate
attributes, ob jects, contexts, and vocabulary were provided. It then required relatively little
effort to plug this new knowledge base into the standard system code, and a small but
completely functional automobile consultant program resulted.

We are presently working on an interface which will allow the physician to describe the
important facts of the case using an appropriate subset of natural language. This would
allow him to begin by describing the case in standard medical format, and allow the
system to prompt with more general questions like ‘Please describe the second blood
culture.’

Note that, unhke standard probability theory, $AND does not involve any multiplication
over uts arguments. Since CFs are not probabilities, there is no a priori reason why a
product should be a reasonable number. There 1s, moreover, a long-standing convention in
work with multi-valued logics which interprets AND as min and OR as max [Lukasciewicz).
It 1s based primarily on intuttive grounds: if a conclusion requires all of its antecendents to
be true, then it 1s a relatively conservative strategy to use the smallest of the antecedent
values as the value of the premise. Similarly, if any one of the antecendent clauses justifies
the conclusion, we are safe in taking the maximum value.

As a result of this, the control flow is actually shghtly more complicated than a pure
AND/OR goal tree, and the flowchart in the appendix 1s correspondingly more complex.

However, the reasoning process of human experts may not be the ideal model for all
knowledge-based problem solving systems. In the presence of reliable statistical data,
programs using a decision theoretic approach are capable of performance surpassing those of
their hurnan counterparts.

In domains hike infectious disease therapy selection, however, which are characterized
by ‘judgmental knowledge’, statistical approaches may not be viable. This appears to be the
case for many medical decision making areas. See [Gorry1973b] for further discussion of this
point.

A preliminary evaluation of the system (Shorthiffel974a) demonstrates agreement with a
panel of experts on 73% of a randomly chosen set of patients. A more formal evaluation
study 1s currently being performed.
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