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Abstract h

We prove that there 1s a function h(k) such that every

undirected graph G admits an orientation H with the following

property: 1f an edge uv belongs to a cycle of length k in G

then uv or vu belongs to a directed cycle of length at most h(k)

in H . Next, we show that every undirected bridgeless graph of

radius r admits an orientation of radius at most ory , and this

bound is best possible. We consider the same problem with radius

. replaced by diameter. Finally, we show that the problem of deciding

whether an undirected graph admits an orientation of diameter

. (resp. radius) two belongs to a class of problems called NP-hard.
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- 0. Introduction.

In 1939, H. E. Robbins [12] proved that an undirected graph G

admits a strongly connected orientation if and only 1f G 1s

— connected and bridgeless. If G isthought of as the system of

two-way streets in a city, then the theorem gives necessary and

- sufficient conditions for being able to make every street in the

: city one-way and still get from every point to every other point.

The theorem, however, asserts nothing about the distance one has to

— travel fromx to y 1n the one-way system as compared to the

distance between x and y in the two-way system. Actually, the

comparison maybe quite discouraging: if G is a cycle of length

k then for each strongly connected orientation H of G , there

are vertices x and y such that x and y are adjacent in G

but it takes k-1 edges to get from x to y in H .

J. A. Bondy and U. S. R. Murty proposedto study quantitative

variations on Robbins' theorem. In particular, they conjectured the

existence of a function f such that every bridgeless graph of diameter

- d admits an orientation of diameter f£(d) . We shall prove their

_ conjecture as a corollary to a rather general theorem. The theorem

asserts that every undirected graph G admits an orientation H with

the following property: if an edge uv belongs to a cycle of length k

in G thenuv or vu belongs to a cycle of length at most

(k-2)2l (k-1)/2] +9

BN inH . It 1s an easy exercise to prove that, in a bridgeless graph G

3 of diameterd , every edge belongs to a cycle of length at most 2d+l .
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Thus our theorem implies that the conjecture is true; in fact,

It implies that

f(d) < a((2d-1)2%+ 1) .

This bound may be drastically improved. Indeed, we shall prove that

every bridgeless graph of radius r admits an orientation of radius

at most rier (and this bound is best possible). It follows immediately

that

£(d) < 2d red .

On the other hand we shall show that

£(d).> 3 d-i-d

and we shall describe graphs of diameter d and arbitrary high

(possibly infinite) connectivity such that every orientation has

diameter at least

Fa“+a

Thus the order of growth of f 1s established; however, to find the

exact values of f seems to be difficult. As a first step in this

_ direction, we show that f(2) = 6 ; the Petersen graph provides the

lower bound. Finally, we shall turn our attention to the general

problem of finding, for an undirected graph G , 1ts orientation with

a minimum diameter (resp. radius). We shall show that this problem

1s very difficult: in a sense, it is as difficult as the problem of

deciding whether G has a hamiltonian cycle or the problem of finding

the chromatic number of G .

In general, we follow the standard graph-theoretical notation and

terminology, see Berge [2] or Harary [7]. In an undirected (resp.
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directed) graph ¢ , the distance dist(u,v;C) fromu to v is

_ the number of edges in a shortest path (resp. directed path) from u

to v . Note that for an undirected graph G , the function

dist (u,v;G) is a metric whereas for directed graphs G , we often

have dist (u,v;G) # dist (v,u;G) . Unlike Moon [11], we postulate

dist (u,u;G) = 0 . The diameter of a graph G is the longest distance

inG 3 the radius of G 1s

min max(mex{dist(u,v;G) , dist (v,u;G))) .
u Vv

Thus the diameter of G 1s at least the radius and at most twice the

radiusof G . Note that the diameter and the radius are defined only

for connected undirected graphs and for strongly connected directed

graphs. Also, if there is no finite upper bound on the distances in G

then the diameter and radius are undefined.

1. From Cycles to Directed Cycles.

In the theorem below, we set

nx) = (xo)ol(x1/21 45

+ for every integer k such that k > 3 .

THEOREM 1. Every graph G admits an orientation H with the following
A

property: 1f an edge uv belongs to a cycle of length k in G

then uv or vu belongs to a directed cycle of length at most h (k)

in H.
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- PROOF. Let Hy be a maximal directed graph such that Hy is an

orientation of some subgraph of G and such that every edge of Hy

1s 1n a directed cycle of length three. (If G 1s infinite then

_ Hy exists by Zorn's lemma.) When Hy 4 has been chosen for some i ,

let Hy be a maximal directed graph such that Hy CH; and Hy 1s

an orientation of some subgraph of G and avery edge of H, 1s 1n a

directed cycle of length at most 1 . The graph

} ® |
ECR

1s not necessarily an orientation of G : the bridges of G do not

B belong to H However, we shall prove that H has the other desired

_ property: 1f an edge uv belongs to a cycle of length k in G then uv

or vu belongs to a directed cycle of length at most h(k) in H .

= Clearly, that 1s all we need: the edges belonging to no cycles of G

(that 1s, the bridges of G ) may be directed quite arbitrarily.

B Let us consider a cycle UpslUys est, Uy in G such that, for
some n , neither U1 4k nor wu, belongs to Ho ; all we have to

prove 1s that n <h(k) .

For each i with 5 < 1 <n, let Xs (resp. Vi ) denote the |

number of those directed edges Us, (resp. usu ) that belong

' to H; but not to H; ; . For each m = 3,4,...,n , we shall prove
that

m

Z (1-2)x, > mt+tl-k (1) y |
1=2)

For this purpose, consider the graph H obtained from Ho by adding

the directed edge Uy Ug and all the directed edges Ul such that

p)
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Ugg WAH . Clearly, all the new edges of H lie on a directed
cycle of length at most

k-1 x m m

1+ Z dist(u, uy, 5H) = | x - 2 x, | + pa (1-1)x,
j=1 i=% i=%

By the maximality of Ho , this number 1s at least mtl and so (1)

follows.

: Next, define m(0) = 2 and, for every positive integer t ,

m(t) = (k-2)2% 142 . For eacht such that m(t)<_n , we shall-

prove that

m(t)

2 Xs >t. (2)
i=5

Let t be the smallest nonnegative integer such that m(t)< n and

such that (2) fails. Trivially, t > 1 ; by the minimality of t ,

we have

m(t-1) mt)t-1< 2 x, < 2, x. < t-1
— . i —- J, 1 -

i=? r=>

and so x, =0 for m(t-1)< i < m(t) . Consequently,

_ nt) m(t-1)
i=3 i=5

£-1 ne) £-1 m(t-1)< 2 (m(s)-2) x. = 25 (m(s) -m(s-1)) ZT Xs
s=1 i=m(s-1)+1 + s=1 i=m(s-1)+1

t-1 t-1

< 2 (m(s) -m(s-1)) (t-s) = 2 m(s) = (t-1)m(0)
s=1 s=1

= m(t) -k ,



contradicting (1). The same argument shows that, for each t such

that m(t) <n , we have

nt) vy. >t .
i=3 °

Now, we cannot have n > h(k) = m([(k+1)/2]) : indeed, this would

imply

2 " K+

2. X. + 2 ¥. > of BY > k. 1 . 1 — 2 —

which 1s clearly a contradiction.

COROLLARY 1l.~ Let G be a graph such that every edge of G belongs

to a cycle of length at most k . Then there is an orientation H

of G such that

dist(u,v;H) < (h(k)-1)dist(u,v;G)

for every two vertices u and v .

A particular instance of Corollary 1 (to be used in Section J)

asserts the following: if every edge of G belongs to a triangle

i then there 1s an orientation H of G such that

dist(u,v;H) < 3-dist(u,v;G)

. for every two vertices u and v .

Note that h(3) = 4 and h(4) = 6 . If h' is any function

such that Theorem 1 holds with h' instead of h , then we must have

h' (3) > L (as demonstyated by a wheel with an odd number of spokes)

and h'(4) > 6 (as demonstrated by the pentagonal prism)

so for k = 3, 4 the result of Theorem 1 is best possible.

(



1lowever, we do not know i f h' can be chosen to be a polynomind or

even a linear function.

2. From Radius to Directed Radius.

THEOREM 2. Every bridgeless graph of radius r admits an orientation

of radius at most ror .

PROOF. We shall find it useful to work with orientations of multi-

graphs: 1n such orientations, the multiple edges may be directed both

ways (whereas the single edges must be directed only one way). By

induction on r , we shall prove the following statement: "if G 1s

a bridgeless multigraph and if u 1s a vertex of G such that

dist (u,v;G) < r for every vertex v then there 1s an orientation H

of G such that dist(m,v;H)< r“+r and dist(v,u3H) < r+r for

every vertex v ".

For every neighbor v of u , the edge uv 1s contained in some

) cycle; let k(v) denote the length of a shortest such cycle. It 1s

important to note that

k(v) < 2r+tl for every Vv ; (2)

the proof of this fact is left to the reader. An orientation A of

some subgraph of G will be called admissible if there is a set S

of neighbors of wu , together with a directed cycle Co for each ved ,

such that

(i) each Cv has length k(v) and contains either the edge uv

or the edge vu ,
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(ii) A 1s the union of all these cycles C, (vi 53)

Note that by (3) and this definition, we have

dist(u,w;A) < 2r and dist(w,u3A) < @r (4)

for every vertex w of A . Furthermore, we shall prove that

every maximal admissible graph (5)
contains all the neighbors of u .

Assume the contrary, so that wfgA for some maximal admissible

graph A and for some neighbor w of u . There 1s a cycle

WysWos oes Wyo Wy in G such that Wy =U, W,= W and k = k(w) .

If none of the vertices Wop Wop eee) Wy belongs to A then adding the

- directed circuit Wp = Wp»... ow WwW, to Awe obtain a larger

| admissible graph: a contradiction. Thus we may assume that at least

one of the vertices Wo Ways eons Wy belongs to A ; let ws be such a

vertex with the smallest subscript. Since ws eA , there 1s some veS

such that w, eC . Writing u = LA EEE SR £] for C ’

we have m = k(v) and either vv = Vo or Vv =v ; there 1s no loss of

; generality in assuming that v = v, . We also have Ww, = ve. for some J .
Now, we shall distinguish between two cases.

Case 1. Ww, =v. In this case, define Cy to be the directed

cycle

u =v, - Vz ce SV. SW. TW, 7 kx TW,

and note that Co has length k(w) . (Indeed, 1f C had more than

k(w) edges then the path Uy Vy Vg. SAE would be longer than the path

Uy Vy Wy 15 reo W, . In that case, the closed walk

Uy Vigo 0 fel Va oy Tu would produce a cycle in G of length

9



less than k(v) and yet containing the edge uv : a contradiction.)

Adding Co to A we obtain a larger admissible graph: a contradiction.

Case2. wy, #v . In this case, define C, to be the directed
cycle

u =, Wy ‘con ~ Ww, = Vig ® Vip” eee V—U

and note that Cr has length k(w) . (Indeed, if Co had more than

k(w) edges then the path Vir Vigo Leo V su would be longer than the

path WosWoiqr ee ® ARLE In that case, the closed walk
0

u,v, vy, 0 | Lt eraex=l0u oil would produce a cycle in G of length
less than k (v) and yet containing the edge uv : a contradiction.)

Adding Co to A we obtain a larger admissible graph: a contradiction.

Now, (5) is proved and the rest is fairly straightforward. Consider

a maximal admissible graph A. (If G 1s 1nfinite then the existence

of A follows by Zorn's lemma.) In G , contract all the vertices

»

of A into a new vertex u (this may create new multiple edges)

*

and call the resulting graph G* . Note that G 1s bridgeless and

that by (5), we, have

) *
dist(u ,v;G) < r-1

*

. for every vertex of G . By the induction hypothesis, there is an

® *

orientation H of G such that

* * n * OX ‘

dist(u ,vsH ) < r"-r and dist(v,u ;H ) < reer (6)

for every vertex v of G . We may think of H as an orientation

of some subgraph of G . Continuing this orientation with A (and

directing all the remaining edges of G arbitrarily) we obtain an

orientation H of G . By(4) and (6), we have

10



dist (u,v;H) < Pre and dist (v,u;H) ~ rH

| for every vertex v of G .

| THEOREM 3. For every positive integer r there is a bridgeless

graph G. of radius r such that every orientation of G.. has

radius Tr +r |

PROOF. We shall construct a certaln sequence IEFLOVRRE of rooted

graphs. Hx; 1s simply a triangle with one of its vertices designated

as the root. To construct H , take a cycle Us Uys ve esl Uy and

two disjoint eopies of H 1 Then identify the root of the first

(resp. second) copy of H, 1 with Ug (resp. us, ) . The resulting

graph, rooted at Uy 1s H, . Finally, G., 1s obtained by taking

two disjoint copies of H_ and identifying their roots. The graph Gs

is shown in Figure 1; we leave it to the reader to verify that G has

the desired property.

(O

@ B O O-

C4 OQ OQ) (F—— G (

Figure 1"
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REMARK. The graphs G.. constructed above are so easy to stud)

because of their simple structure and numerous cutpoints. We do not

know if there are undirected graphs G of arbitrarily high connectivity

and radius r such that every orientation of G has radius at

least rey . Nevertheless, we can construct undirected graphs G

of arbitrarily high connectivity and radius r such that every

] orientation of G has radius at least r/o + r . ' These are the

graphs a constructed in Theorem kL.

5. From Diameter to Directed Diameter.

For each positive integer d , let f(d) be the smallest integer

such that every bridgeless graph of diameter d admits an orlentation

of diameter at most f(d) . By Theorem 2, we have f (d) < 24° + 24 .

On the other hand, the reader may verify that each of the graphs tn

of Theorem J has diameter d = 2r and that every strongly connected

orientation of G, has diameter 2(rHr) = d°/e+ d. Let GJ denote

the graph obtained from H, and Ho 1 (of Theorem3) by identifying

their roots. Then G.. has diameter d = 2r+l. and every strongly

connected orientation of G., has diameter

Cra (rt1)%4 (r+1) = zd +d + 1 . Hence £(d) > 3 & + d for
all d >2.

THEOREM 4. For each'pair d, k , where d is a positive integer and

k is a finite or infinite cardinal, there is a k-connected undirected

graph Ga, I of diameter d such that every orientation of Ga, x has

diameter at least I a+ a .

12



PROOF. Begin with disjoint sets of vertices SEL TERETE such that

SI 5, and § have cardinality 1 , each of 8, (2 < 1 < m-1) has

cardinality k , and

2 -
1+ (d+1)7/2 (d odd) ,

m =

1+ d(a+2)/2 (d even) .

Then, for each i = 1,2,...,m-1 , Jolin every vertex from Ss to every

vertex from S541 The resulting graph is k-connected; by adding as

few as d edges, we shall bring its diameter down to d . To do so,

we shall first define

1+ (+1) for 0 < j <d/2,

1(J) =

m =~ (d-j+1) (d-J) for d/2 < j < d .

Note that 5 = 1.(1) < 1(2) «<< o. . < 1(d-1) = m-2 and that thc scquence

of differences i(j+l)-1i,(3) is 2, 4,6, . . . .06,4, 2, Tor each

j=0,1,...,d choose a veh tex uc S4(3) For each j = 0,1,2,...,d~1
join u- to RTS] . Call the resulting graph Ga, x . The graph SI

. is shown in Figure 2. It 1s easy to see that Gy Ie has diameter d .2

Now consider any strongly connected orientation of Ga x . Let Py :

(resp. F, ) denote a shortest directed path from Uy to Uy (resp.

from uy; to u, ). Let t, denote the length of P_ for s = 1,2 .

For each Jj, 0 <j <d-l, at least one of the paths P ,

| & ] avoiding: thr
1 <s <2, contains a subpath from 5104) to S5(5+1) avo1dings

} d-1

edge between us and Uy , SO 4yt A, > z (i(3+1) —-i(3)+ 1) =
1, 1 2

m—-1+d. Hence the diameter is at least 3 (m-1+d) > pd +d.

13



Figure ¢

In the rest of this section, we shall prove f(2) = 6 .

THEOREM 5. Every bridgeless graph of diameter two admits an orientation

L of diameter at most six.

i PROOF. Let G be a bridgeless graph of diameter two. We may assume
that some edge uv of GG 1s contained in no triangle (otherwise the

~ desired conclusion follows from Corollary 1). Let A (resp. B )

denote the set of all the neighbors of u (resp. v ) other than v

(resp. u ). Furthermore, let A, (resp. B, ) denote the set of
all the vertices in A (resp. B ) that have no neighbors in B

| (resp.A ). Set A, = A-A; , B, = B-B; and denote byC the set

of-all the vertices not in {u,v}JUAUB . The reader may easily verify

that the orientation of G , described simply by UW wv 4B 4 C =A -»u

and By ~ B, — A, — Ay has diameter at most six. (Here X = Y means

that every edge joining a vertex of x of X with a vertex yv of Y

is directed from x to y .)

1h
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| BN Next, we shall prove that Theorem 5 1s best possible. A part
| of our argument is of independent interest; therefore we shall state

it on 1ts own.

LIEMMA . Every strongly connected orientation of the Petersen graph

contains a directed cycle of length five.

PROOF. Let H be a strongly connected orientation of the Petersen

graph; assume that H contains no directed cycle of length five.

Since H 1s strongly connected, it contains some directed cycle;

furthermore, the shortest directed cycle has no diagonals. 1p the

Petersen graph, there are no cycles of length seven and every cycle

of length greater than seven has a diagonal. Hence we may assume

~ that H contains a directed cycle of length six. In the Petersen

| graph, every two cycles of length six are equivalent under some

: automorphism; hence we may assume that H contains the directed

L cycle 1424344454641 shown in Figure 5.

- > 1

5 & 6

| ) |

Figure 3
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| | At least one edge of 11 entersO and at least one edge of II

\ leaves 0 ; without loss of generality, we may assume 7 = 0 and

| 8 =» & ,crlatigy .th¥odirwetedistydbye 584+ 0+ lcsherwi8e—5 ).+8 forces

| Similarly,
we must have 3 -»7 (otherwise 7 —»3 forces 6 =» 7 creating the

directed cycle 3 »4 » 5 26 +7 23). But then 3 -7 = 0 28 + 2 = %

1s a directed cycle of length five: a contradiction.

(Let us digress 1n order to mention a problem suggested by the

B lemma. Which bridgeless graphs G have the property that every strong

orientation of G contains a directed cycle whose length equals the

} girth of G ? The Petersen graph has this property and so does every
| bridgeless graph of radius one.)

i | THEOREM 6. Every orientation of the Petersen graph has diameter at
least six.

PROOF. Let us assume that some orientation H of the Petersen graph

| has diameter at most five. By the lemma, H contains a directed

cycle of length five. In the Petersen graph, every two cycles of

length five are equivalent under some automorphism; hence we may assume

that H contains the cycle 1 +2 -3 wk 45 4 1 shown in Figure kL.

16
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| 1
f

| Cy |

3 ih

Figure

Consider the "cross edges" 16, 27, 38, 49,50 ; each of them

may be directed towards the pentagon or away from 1t.

Case 1. Three consecutive cross edges are directed in the samc

sense. Without loss of generality, we may assume that 0 - 5, #4 4 |

and 7 -2 . Here, the contradiction is immediate: dist(5,7;H)> ©.

_ ) Case 2. No three consecutive edges are directed 1n the same

sense. We may assume 8 —+ 3 and 9 - 4 forcing 5,0, 2 ,7 and,

= . in turn, 6 1 . Now, dist(3,6:H) <5 forces 0» 8-6 and

5 dist(3,9;H) < 5 forces 0 - 7 -» 9 . But then dist (1,858) > 6 »
a contradiction.

. ] ] ]
We do not know any other bridgeless graph of diameter 2 which

| can play the role of the Petersen graph in Theorem 6. Perhaps the
Moore graph of diameter two and degree seven, constructed by Hoffman

i and Singleton [8], is nother example.

- 17



4, Finding Optimum Orientatiops.

Given an undirected graph G , let us ask for its orientation

with smallest possible diameter (resp. radius). Clearly, such an

orientation can be found in a finite time: the diameter and the

radius of a directed graph on n vertices can be found in 0(n”)

steps [6] and an undirected graph with m edges has 2" distinct

orientations. In the spirit of Fdmonds [5], we shall ask for a

"better-than-finite" algorithm finding optimum orientations; more

specifically, we shall ask for such an algorithm terminating within

p(n) steps for some fixed polynomial p . Our results are rather

discouraging; "they suggest that no such an algorithm exists.

The key notion is that of an "NP-hard" problem. A certain class

of problems is called NP. This class is very wide: 1t consists of

all the problems for which the correctness of a proposed solution may

be checked in a polynomial time (relative to the size of the problem).

That is, NP consists of all the problems with "good characterizations”

(this notion is due to Edmonds [4]). For example, the problem "Ic a

graph G k-colorable?" belongs to NP. Now, let X be a problem with

the following property: 1f X can be solved in a polynomial time

then every problem in NP can be solved in a polynomial time. Such a

. problem is called NP-hard. (To many, 1t seems unlikely that every

problem in NP can be solved in a polynomial time; such a belief

implies that no NP-hard problem can be solved in a polynomial time.)

In a pioneering paper [3], Cook proved that it is NP-hard to find the

largest clique in a graph. Since then, many other people have shown

many other problems to be NP-hard; as a rule, this is done by "reducing"

18



the problem of finding the largest clique 1n a graph (or another

problem which already has been shown to be NP-hard) into the problem

in question. (For more information on the subject, the reader 1is

referred to [1].) |

In particular, Iovasz [10] has shown that it is NP-hard to decide

if a hypergraph 1s 2-colorable; it is implicit in his proof that

the same problem remains NP-hard even when the input 1s restricted to

hypergraphs of rank three. The relevant definitions may be found in

Berge's monograph [2]; for the sake of completeness, we shall repeat

them here. A hypergraph is an ordered pair H = (V,E) such that V

1s a set and such that E 1s a family of subsets of V . The elements

of V are called the vertices of H , the elements of E are called

the edges of H . The number of vertices of H is called the order

orH , the cardinality of the largest edge of' Ii 1s called the rank

of H . A hypergraph is called 2-colorable if its vertices can be

colored red and blue in such a way that every edge includes at least

one vertex of each color. |

] THEOREM 7. Given a hypergraph H of rank three and order n , we can

construct in O(n steps a graph G with the following property:

G admits an orientation of diameter two if and only 1f H 1s

2—colorable. |

PROOF. Let k be the integer satisfying 10 < k < 15 and

ntk = 2 (mod 4) . We shall find it convenient to work with the

hypergraph Hy , Obtained from H by adding k new vertices }

Vis Vosr. oes Vy and, 1f H has an even number of edges, adding new |
edge vy v,) . Note that Hy has an odd number of edges. To

!

19 |
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EEE

| | construct G , take disjoint sets P and such bLhat, the oloements |
ol" PP (resp. Q ) are in a one-to-one correspondence with the vertices

| (resp. the edges) of By 7 for simplicity, we shall 1 abel each clement
a of P (resp. Q ) by the corresponding vertex (resp. edge) of i .

Join by an edge every two vertices in P and every two vertices in Q ;

join a vertex veP to a vertex eeq 1f and only if uee ip Hy, .

Then add four vertices Wy or Wyo Wy ; Wy and join each of them to
all the vertices in PUQ . Finally, add a new vertex x and join

it to all the vertices in P , We shall show that the resulting

graph G has the desired property. (Note that the number of edges

of G may be of the order 4 .)

Firstly, assume that G admits an orientation g of diameter

i two. Color a vertex u of H blue (resp. red) 1f in a , we have

| X » u (resp. u =X ). Since dist (x,e;G ) = 2 (resp.
dist (e,x;G ) =2) for every eecq , every edge of H includes at

L least one blue (resp. red) vertex. Thus H 1s 2-¢olorable.
Secondly, assume that H 1s 2-colorable. Then H, admits

i a 2-coloration such that the number of blue (and red) vertices is

- odd and at least five; this 2-coloration induces a partition P=P UP, :
We are going to describe an orientation G* of G ; before doing so,

let us digress a little. By a cyclic tournament of order 2k+tl , we

shall mean the tournament with vertices Up Ups ev eslUny, oq such that

Up = Ug, for every j = 1,2,...,k (arithmetic modulo 2k+1). The
parity partition of such a tournament is the partition AUB defined

by A = (U35Uz5 eeesuyy, 4} and B = (apr spy} If k > 2 then
the parity partition has the following nice properties:

20



1 (i) if ufA then there are VppVy€ A such that v; »u - v,

| (11) if u/B then there are Vip Vy B such that CT EN

‘ Now, the orientation G of ( may be described as follows. [for

each of the three sets Py 5 Py Qo direct the edges of the complete

graph induced by that set so as to obtain a cyclic tournament. Iet

| A,UB, be the parity partition of Pb, (i = 1,2) and let AUB be

: the parity partition of Q . Direct

Pp =R ~ by '

Bow =5 UB

” We leave it to the reader to verify that G* has diameter two.

COROLLARY 2. It 1s NP-hard to decide whether an undirected graph

admits an orientation of diameter two.

THEOREM 8. Given a hypergraph H of rank three and order n , we

can construct in 0 (n°) steps a graph G with the following property:
j

G admits an orientation of radius two 1f and only 1f H 1s 2-colorable.
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PROOF. Take disjoint sets P and Q such that the clementsolP

(resp.  ) are in a one-to-one correspondence with the vertices

(resp. the edges) of H . Join by an edge every- two vertices in p ;

joln a vertex veP to a vertex ecq 1f and only 1f vee in H .

Then add a new vertex x and join it to all the vertices in P ;

call the resulting graph Gy . To construct G , take two disjoint

copies of Gq and 1dentify their vertices x . We leave it to the

reader to verify that G has the desired property.

COROLLARY 3. It 1s NP-hard to decide whether an undirected graph

admits an orientation of radius two.

REMARK. Easy modifications of our constructions show that (i) for

everyk withk > 4 , it is NP-hard to decide whether an undirected

graph admits an orientation with diameter at most k , (11) for every

k withk > Lb » 1t 1s NP-hard to decide whether an undirected graph G

admits an orientation with radius at most k . To prove (i), take

the graph G as constructed in Theorem7, add a cycle

- WysUgs oo Wy nol, and identify U, with x . To prove (ii), take

two disjoint copies of the graph Gy constructed in Theorem 8, add

a tree T consisting of four paths of length k-2 starting at the

same vertex. Now take two of the four end vertices of T and identify

them with the vertex x in one of the copies of Go , then identify

the remaining two end vertices of T with the vertex x in the other

copy of Gy
) i '
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REMARK. Corollary 2 shows that 1n general, it 1s very hard to

decide whether an undirected graph G admits an orientation of

diameter two. However, if G has too few edges then the answer is

always negative. More precisely, Katona and Szemerédi[9] proved

that no undirected graph with n vertices and fewer than

5 Log, 2 edges admits an orientation of diameter two.
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