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Abstract

We prove that there is a function h(k) such that every
undirected graph G admits an orientation H with the following
property: 1if an edge uv belongs to a cycle of length k in G
then uv or vu belongs to a directed cycle of length at most h (k)
in H . Next, we show that every undirected bridgeless graph of
radius r admits an orientation of radius at most r2+r , and this
bound is best possible. We consider the same problem with radius
replaced by diameter. Finally, we show that the problem of deciding
whether an undirected graph admits an orientation of diameter

(resp. radius) two belongs to a class of problems called NP-hard.
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0. Introduction.

In 1939, H. E. Robbins [12] proved that an undirected graph G
admits a strongly connected orientation if and only if G is
connected and bridgeless. If G is thought of as the system of
two-way streets in a city, then the theorem gives necessary and
sufficient conditions for being able to make every street in the
city one-way and still get from every point to every other point.
The theorem, however, asserts nothing about the distance one has to
travel from x to y 1in the one-way system as compared to the
distance between x and y in the two-way system. Actually, the
comparison may be quite discouraging: if G is a cycle of length
k then for each strongly connected orientation H of G , there
are vertices x and y such that x and y are adjacent in G
but it takes k-1 edges to get from x to y in H

J. A. Bondy and U. S. R. Murty proposed to study quantitative
variations on Robbins' theorem. 1In particular, they conjectured the
existence of a function f such that every bridgeless graph of diameter
d admits an orientation of diameter f(d) . We shall prove their
conjecture as a corollary to a rather general theorem. The theorem
asserts that every und}rected graph G admits an orientation H with

the following property: if an edge uv belongs to a cycle of length k

in G then uv or vu belongs to a cycle of length at most

(k-2)2[ (k-l)/2] +2

in H . It is an easy exercise to prove that, in a bridgeless graph G

of diameter d , every edge belongs to @’cycle of length at most 2d&1 .



Thus our theorem implies that the conjecture is true; in fact,

it implies that
a
f£(d) < d((2a-1)27+ 1)

This bcund may be drastically improved. Indeed, we shall prove that
every bridgeless graph of radius r admits an orientation of radius
at most r2+r (and this bound is best possible). It follows immediately
that
2
f(d) <24 +2d
On the other hand we shall show that

a4 3
f(d)NZ 5 d-i-d

and we shall describe graphs of diameter d and arbitrary high
(possibly infinite) connectivity such that every orientation has
diameter at least

%d2+d

Thus the order of growth of f is established; however, to find the
exact values of f seems to be difficult. As a first step in this
direction, we show that £(2) =6 ; the Petersen graph provides the
lower bound. Finally, we shall turn our attention to the general
problem of finding, for an undirected graph G , its orientation with
a minimum diameter (resp. radius). We shall show that this problem
is very difficult: in a sense, it is as difficult as the problem of
deciding whether G has a hamiltonian cycle or the problem of finding

the chromatic number of G .

In general, we follow the standard graph-theoretical notation and

]

terminology, see Berge [2] or Harary [7]. In an undirected (resp.



directed) graph G , the distance dist(u,v;CG) from u to v is
the number of edges in a shortest path (resp. directed path) from u
to v . Note that for an undirected graph G , the function

dist (u,v;G) is a metric whereas for directed graphs G , we often

have dist(u,v;G) # dist(v,u;G) . Unlike Moon [1l], we postulate
dist(u,u;G) = 0 . The diameter of a graph G is the longest distance

in G ; the radius of G is

min max(max{dist(u,v;G) , dist(v,u;G)))
u v

Thus the diameter of G is at least the radius and at most twice the
radius of G . Note that the diameter and the radius are defined only
for connected undirected graphs and for strongly connected directed
graphs. Also, if there is no finite upper bound on the distances in G

then the diameter and radius are undefined.

1. From Cycles to Directed Cycles.

In the theorem below, we set
n(x) = (xe)el (/2] 4o

- for every integer k such that k > 3

THEOREM 1. Every graph G admits an orientation H with the following
property: 1if an edge uv belongs to a cycle of length k in G
then uv or vu belongs to a directed cycle of length at most h(k)

in H.



PROOF . Let H be a maximal directed graph such that H, is an

3 3
orientation of some subgraph of G and such that every edge of H3

is in a directed cycle of length three. (If G is infinite then

H5 exists by Zorn's lemma.) When H has been chosen for some 1 ,

i-1

let Hi be a maximal directed graph such that H and Hi is

1-1H;

an orientation of some subgraph of G and avery edge of Hi is in a

directed cycle of length at most i . The graph

©
s

is not necessarily an orientation of G : the bridges of G do not

belong to H .x However, we shall prove that H has the other desired

property: 1f an edge uv belongs to a cycle of length k in G then uv
or vu belongs to a directed cycle of length at most h(k) in H
Clearly, that is all we need: the edges belonging to no cycles of
(that is, the bridges of G ) may be directed quite arbitrarily.

Let us consider a cycle ul,ug,,,.,uk,ul in G such that, for

some n , neither nor ukul belongs to Hn ; all we have to

Y1uk
prove is that n <h(k)

For each i with 3 < i <n, let x; (resp. yi) denote the

number of those directed edges uj+lpj (resp. ujuj+l ) that belong
to H; but not to H, ; . For each m = 3,4,...,n , we shall prove
that

m

2 (1-2)x; > m+l-k . (1)

i=>

*
For this purpose, consider the graph Hm obtained from Hm by adding

the directed edge WUy and all the directed edges ujuj+l such that



* . .
uj+luj£1%n . Clearly, all the new edges of Hm lie on a directed

cycle of length at most

k-1 * m m
1+ 2 dist(u,u,,3H) = [k - 2 x, |+ 2 (i-l)x,
s )
j=1 g i=3 ) i=3 t

By the maximality of Hh ; this number is at least m+l and so (1)
follows.

Next, define m(0) = 2 and, for every positive integer t ,
m(t) = (k-2)2t-l+-2 . For each t such that m(t)<_n , we shall-

prove that

Let t be the smallest nonnegative integer such that m(t) < n and

such that (2) fails. Trivially, t > 1 ; by the minimality of t ,

we have
m(t-1) mgﬁ)
t-1 < 2 x, < X x, < t-1
- . i = 7, 71i=
i=3 i=?
and so x, = 0 for m(t—l) < i < m(t) . Consequently,
mg? m(t-1)
(i—2)xi’ = ' 2 (i-2)x,
=3 i=2 *
-1 m%:s) t-1 m(t-1)
< 2 (m(s)-2) x.. = 2 (m(s) -m(s-1)) T
s=1 i=m(s-1)+1 * s=1 i=m(s-1)+1
t-1 t-1
< 2L (m(s) -m(s-1)) (t-s) = 2 m(s) - (t-1)m(0)
s=1 s=1

m(t) -k ,

X

i



contradicting (1). The same argument shows that, for each t such

that m(t) < n , we have
m%%)
v, >t .
1=3 *

Now, we cannot have n > h(k) = m([(k+1)/2]) : indeed, this would

imply

n n
2 X, + Loy, > E[E%ﬂ_ > k

i=3 T i=3

which is clearly a contradiction.

COROLLARY 1.~ TILet G be a graph such that every edge of G belongs

to a cycle of length at most k . Then there is an orientation H

of G such that
dist(u,v;H) < (h(k)-1)dist(u,v;G)

for every two vertices u and v

A particular instance of Corollary 1 (to be used in Section %)
asserts the following: if every edge of G belongs to a triangle

then there is an orientation H of G such that
dist(u,viH) < 3-dist(u,v;G)

© for every two vertices u and v

Note that h(3) = t and h(4) = 6 . If h' is any function
such that Theorem 1 holds with h' instead of h , then we must have
h'(3) > L (as demonstnated by a wheel with an odd'number of spokes)
and h'(4) > 6 (as demonstrated by the pentagonal prism)

so for k = 7, 4 the result of Theorem 1 is best possible.



1lowever, we do not know i f h' can be chosen to be a polynomial or

even a linear function.

2. From Radius to Directed Radius.

THEOREM 2. Every bridgeless graph of radius r admits an orientation

of radius at most r2+r .

PROOF'. We shall find it useful to work with orientations of multi-

graphs: in such orientations, the multiple edges may be directed both
ways (whereas the single edges must be directed only one way). By
induction on r , we shall prove the following statement: "if G 1is
a bridgeless multigraph and if u 1is a vertex of G such that
dist(u,v;G) < r for every vertex v then there is an orientation H
of G such that dist(m,v;H) < r+r and dist(v,usH) < ro+r  for
every vertex v ".

For every neighbor v of u , the edge uv is contained in some
cycle; let k(v) denote the length of a shortest such cycle. It is

important to note that

N
~—

k(v) < 2r+l for every v ; (;

the proof of this fact is left to the reader. An orientation A of
some subgraph of G will be called admissible if there is a set S
of neighbors of u , together with a directed cycle Cv for each veS ,

such that

(1) each Cv has length k(v) and contains either the edge uv

or the edge vu ,

8



(ii) A 1is the union of all these cycles CV (ve ) .

Note that by (%) and this definition, we have

dist(u,w;A) < 2r and ~dist(w,u3A) < or (k)
for every vertex w of A . Furthermore, we shall prove that
every maximal admissible graph (5)

contains all the neighbors of u

Assume the contrary, so that wfA for some maximal admissible

graph A and for some neighbor w of u . There is a cycle
Wl’w2"'.’wk’Yl in G such that Wi Ewo, W, =W and k = k(w)

If none of the vertices we,xj,),...,wk belongs to A then adding the
directed circuit Wy Wy .. W W, to A we obtain a larger
admissible graph: a contradiction. Thus we may assume that at least
one of the vertices WE’WB""’WK belongs to A ; let W be such a
vertex with the smallest subscript. Since wieA , there is some veS
such that w:.LeCV . Writing u=v, =v, - . . . -V oV for Cv’

we have m = k(v) and either v = Vo O V.=V there is no loss of
generality in assuming that v = v, . We also have W, = v.J for some j

[

Now, we shall distinguish between two cases.

Case 1. w,_ =v. In this case, define (:W to be the directed

cycle

u - Vv —‘VE-"...—’V.—'W. - W, —*.** —"We—'u

and note that CW has length k(w) . (Indeed, if Cw had more than
k (w) edges then the path u,v,vj_ ,,.,vJ. would be longer than the path

u,v,w In that case, the closed walk

Kol? Wy

SO 0 Ge)n Typ oo T would produce a cycle in G of length

bV

9



less than k(v) and yet containing the edge uv : a contradiction.)

Adding CW to A we obtain a larger admissible graph: a contradiction.

Case2. W #v . In this case, define Cw to be the directed

cycle

U—-W, 2 W, = eoe =W, 5V, . =V, = o..>2V —U
2 3 i j*+1 j+e m

and note that Cw has length k(w) . (Indeed, if Cw had more than

k (w) edges then the path v,

J’V,j+l’ PR would be longer than the

path Wi’wi+l"' [ ) UL In that case, the closed walk

u,v,vB,. m‘Mﬁ’:’@TmXB.Q .t would produce a cycle in G of length

less than k(v‘)" and yet containing the edge uv : a contradiction.)

Adding CW to A we obtain a larger admissible graph: a contradiction.
Now, (5) is proved and the rest is fairly straightforward. Consider

a maximal admissible graph A . (If G is infinite then the existence

of A follows by Zorn's lemma.) In G , contract all the vertices

of A into a new vertex u* (this may create new multiple edges)

*
and call the resulting graph G* . Note that G is bridgeless and

that by (5), we, have
*
dist(u ,v;G) < r-1

*
. for every vertex of G . By the induction hypothesis, there is an

* *
orientation H of G such that

Is

* * 2 * X
dist(u ,v;H ) < r"-r and dist(v,u ;H ) < ey (6)

* *
for every vertex v of G . We may think of H as an orientation
of some subgraph of G . Continuing this orientation with A (and
directing all the remaining edges of G arbitrarily) we obtain an

orientation H of G . By(4) and (6), we have

10



dist(u,v;H) < r2+r and dist(v,u3H) ~ r +r

for every vertex v of G .

'THEOREM 3. For every positive integer r there is a bridgeless
graph Gr of radius r such that every orientation of Gr has

. 2
radius T +r

PROCEF . We shall construct a certain sequence Hlﬂ%ﬁ.-- of rooted
graphs. H,; 1s simply a triangle with one of its vertices designated
as the root. To construct Hr , take a cycle uO’ul""’uQr’uO and
two disjoint eopies of Hr 1 - Then identify the root of the first
(resp. second) copy of Hr 1 with uy (resp. u2r), The resulting
graph, rooted at Uy s is Hr . Finally, Gr is obtained by taking
two disjoint copies of H, and identifying their roots. The graph 05
is shown in Figure 1; we leave it to the reader to verify that Gy, has

the desired property.

(i:::;;ﬁ C<;;:;}3 (kiz;;j)
- ’\m/ y i |

) )

. O
N NS

i
Figure 1"
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REMARK. The graphs Gr constructed above are so easy to stud)

because of their simple structure and numerous cutpoints. We do not
know if there are undirected graphs G of arbitrarily high connectivity
and radius r such that every orientation of G has radius at

least r2+r . Nevertheless, we can construct undirected graphs G

of arbitrarily high connectivity and radius r such that every
orientation of G has radius at least r2/2+ r . ' These are the

graphs G constructed in Theorem L.
2r,k

3. From Diameter to Directed Diameter.

For each positive integer d , let f(d) be the smallest integer
such that every bridgeless graph of diameter d admits an orientation
of diameter at most f(d) , By Theorem 2, we have f(d) < 2d°+ 24 .
On the other hand, the reader may verify that each of the graphs G,
of Theorem ) has diameter d = 2r and that every strongly connected
orientation of G, has diameter 2(r2+r)= d2/2+ d . Let G} denote
the graph obtained from Hr and Hr+l (of Theorem 3) by identifying
their roots. Then G; has diameter d = 2r+l and every strongly
connected orientation of G; has diameter

1 .2 1

.r2+r+(r+l)2+(r+l) = 37d°+d+ 5 . Hence f(d) 2%0‘?‘+ d for

all 4 > 2 .

THEOREM k. For each'pair d, k , where d is a positive integer and
k is a finite or infinite cardinal, there is a k-connected undirected
graph G of diameter d such that every orientation of G hag

d, k d, k
diameter at least % d21-d .

12



PROOF'. Begin with disjoint sets of vertices § SE""’Sm such that

l’
5, and § have cardinality 1 , each of §; (2 <1 < m-1) has

cardinality k , and

1+ (a+1)%/2 (d odd) ,
1+d(a+2)/2 (d even)

Then, for each i = 1,2,...,m-1 , join every vertex from Si to every
vertex from Si+l The resulting graph is k-connected; by adding as
few as d edges, we shall bring its diameter down to d . To do so,

we shall first define

1+ (§+1)j for 0 < j <d/2,
i(3) =
m - (d-j+l1) (d-J) for d/2 < j < d .
Note that 5 = i.(1) < 1(2) «< .. . < i(d-1) = m-2 and that thec scquence
of differences i(j+l)-1i,(j) is2, %6, .. . .6, 4, 2. Tor each
j=20,1,...,d choose a velte;( uj € S'i(j) . For each j = 0,1,2,...,d~1

join uJ. to uj+l . Call the resulting graph Gd,k . The graph Gh,?)
is shown in Figure 2. It is easy to see that Gd,k has diameter d
Now consider any strongly connected orientation of Gd,k . Let Pl

(resp. P2 ) denote a shortest directed path from Uy to s (resp.
from ud to uO ). Let ‘s denote the length of PS for s = 1,2
For each j , 0 < j<d-1, at least one of the paths PS '

avoiding the

1 <s <2, contains a subpath from si(!j) to si(,j+.1.)
da-1
edge between u. and u, , so L.+ L, > 2 (i(3+1) —-i(3)+ 1) =
J :J+l 1 o - ] 2

. . 1,1 1 .2
m-1+d. Hence the diameter is at least 3 (m-1+d) > pd*d

15
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Figure 2

In the rest of this section, we shall prove f£(2) = 6 .

THEOREM 5. Every bridgeless graph of diameter two admits an orientation

of diameter at most six.

PROCEF . Let G be a bridgeless graph of diameter two. We may assume
that some edge uv of G 1is contained in no triangle (otherwise the
desired conclusion follows from Corollary 1). Let A (resp. B )
denote the set of all the neighbors of u (resp. v ) other than v

(resp. u ). Furthermore, let Al (resp. B denote the set of

1)
all the vertices in A (resp. B ) that have no neighbors in B

(resp. A ). Set A2 = A-Al ’ 32 = B-Bl and denote by C the .set
of-all the vertices not in {u,v}UAUB . The reader may easily verify

that the orientation of G , described simply by W » v 4B & - A -y
and Bl - B2 ~ A2 - Al , has diameter at most six. (Here X =Y means
that every edge Jjoining a vertex of x of X with a vertex y of Y

is directed from x to y .)

14
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Next, we shall prove that Theorem 5 is best possible. A part

of our argument is of independent interest; therefore we shall state

it on its own.

LIEMMA . Every strongly connected orientation of the Petersen graph

contains a directed cycle of length five. \

PROOF . Let H be a strongly connected orientation of the Petersen
graph; assume that H contains no directed cycle of length five.
Since H is strongly connected, it contains some directed cycle;
furthermore, the shortest directed cycle has no diagonals. 7p the
Petersen grapﬂ; there are no cycles of length seven and every cycle
of length greater than seven has a diagonal. Hence we may assume
that H contains a directed cycle of length sixX. In the Petersen
graph, every two cycles of length six are equivalent under some
automorphism; hence we may assume that H contains the directed

cycle 1424344454641 shown in Figure 5.

N
7

Figure 3
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At least one edge of 11 enters O and at least one edge of 1I

leaves 0 ; without loss of generality, we may assume 7 - O and
8 - 5 ,créatifg .thiodireetahistydbse 584 - i+ LceshRrwi8e— !5 |.+8  forces
Similarly,

we must have 3 -7 (otherwise 7 -3 forces 6 - 7 creating the

N

directed cycle 3 -4 - 5 -6 -7 -3 ). But then 3 =7 -+ 0 -8 - 2 -
is a directed cycle of length five: 3 contradiction.

(Let us digress in order to mention a problem suggested by the
lemma. Which bridgeless graphs G have the property that every strong
orientation of G contains a directed cycle whose length equals the
girth of G ? The Petersen graph has this property and so does every

bridgeless graph of radius one.)

THEOREM 6. Every orientation of the Petersen graph has diameter at

least six.

PROOF . Let us assume that some orientation H of the Petersen graph

has diameter at most five. By the lemma, H contains a directed

cycle of length five. 1In the Petersen graph, every two cycles of

length five are equivalent under some automorphism; hence we may assume

that H contains the cycle 1 -2 -3 o4 45 41 shown in Figure k.



Figure b

Consider the "cross edges" 16, 27, 38, k49, 50 ; each of them

may be directed towards the pentagon or away from it.

Case 1. Three consecutive cross edges are directed in the same

sense. Without loss of generality, we may assume that 0 - 5, ¢ . |

and 7 -2 . Here, the contradiction is immediate: dist(5,7;H) > 6.
Case 2. No three consecutive edges are directed in the same
sense. We may assume 8 — 3 and 9 -k , forcing 5,9, 2 ~7 and )

. in turn, 6 o 1 . Now, dist(3,6:H) <5 forces 0 8-6 and
dist(3,93H) < 5 forces 0 - 7 -9 . But then dist(1,8;H) > 6

a contradiction.

We do not know any other bridgeless graph of diameter 2 which
can play the role of the Petersen graph in Theorem 6. perhaps the
Moore graph of diameter two and degree seven, constructed by Hoffman

and Singleton [8], is &nother example.

17



4, Finding Optimum Orientatiops.

Given an undirected graph G , let us ask for its orientation
with smallest possible diameter (resp. radius). Clearly, such an
orientation can be found in a finite time: the diameter and the
radius of a directed graph on n vertices can be found in O(nj)
steps [6] and an undirected graph with m edges has 2" distinct
orientations. In the spirit of Fdmonds (5], we shall ask for a
"better-than-finite" algorithm finding optimum orientations; more
specifically, we shall ask for such an algorithm terminating within
p(n) steps for some fixed polynomial p . Our results are rather
discouraging; "they suggest that no such an algorithm exists.

The key notion is that of an "NP-hard" problem. A certain class
of problems is called NP. This class is very wide: it consists of
all the problems for which the correctness of a proposed solution may
be checked in a polynomial time (relative to the size of the problem).
That is, NP consists of all the problems with "good characterizations"
(this notion is due to Edmonds [4]). For example, the problem "Ic a

graph G k-colorable?" belongs to NP. Now, let X be a problem with
the following property: if X can be solved in a polynomial time
then every problem in NP can be solved in a polynomial time. Such a

. problem is called NP-hard. (To many, it seems unlikely that every
problem in NP can be solved in a polynomial timej such a belief
implies that no NP-hard problem can be solved in a polynomial time.)
In a pioneering paper [3], Cook proved that it is NP-hard to find the
largest clique in a graph. Since then, many other people have shown

many other problems to be NP-hard; as a rule, this is done by "reducing"

18



the problem of finding the largest clique in a graph (or another
problem which already has been shown to be NP-hard) into the problem
in question. (For more information on the subject, the reader 1is
referred to [1].)

In particular, ILovdsz [10] has shown that it is NP-hard to decide
if a hypergraph is 2-colorable; it is implicit in his proof that
the same problem remains NP-hard even when the input is restricted to
hypergraphs of rank three. The relevant definitions may be found in
Berge's monograph [2]; for the sake of completeness, we shall repeat
them here. A hypergraph is an ordered pair H = (V,E) such that V
is a set and such that E is a family of subsets of V . The elements
of V are called the vertices of H , the elements of E are called
the edges of H . The number of vertices of H is called the order

or H , the cardinality of the largest edge of' Ii is called the rank

of H . A hypergraph is called 2-colorable if its vertices can be
colored red and blue in such a way that every edge includes at least

one vertex of each color.

THEOREM 7. Given a hypergraph H of rank three and order n , we can
construct in O(n6) steps a graph G with the following property:

G admits an orientation of diameter two if and only if H is

2—-colorable.

and

N

PROOEF . Let k be the integer satisfying 10 < k <1
ntk = 2 (mod 4) . We shall find it convenient to work with the
hypergraph HO , obtained from H by adding k new vertices
vl,v?,,,.,yk and, if H has an even number of edges, adding new

edge {vl,ve} . Note that H, has an odd number of edges. To

0

19



construet ¢ , take disjoint cets P and Q. such that, the clements

ol P (resp. Q ) are in a onec-to-one correspondence with the verticoo

(resp. the edges) of H, ; for simplicity, we shall I abel each clement

of P (resp. Q ) by the corresponding vertex (resp. edge) of I .
Join by an edge every two vertices in P and every two vertices in Q ;
join a vertex veP to a vertex eeq if and only if uee ip HO
Then add four vertices LA Wy W) and join each of them to
all the vertices in PUQ . Finally, add a new vertex x and join
it to all the vertices in P ., We shall show that the resulting
graph G has the desired property. (Note that the number of edges
of G may be of the order & .)

Firstly, assume that G admits an orientation G* of diameter
two. Color a vertex u of H blue (resp. red) if in G* , we have
L x - u (resp. u —-x ). Since dist(x,e;G*) = 2 (resp.

dist(e,x;G*) =2) for every eecq , every edge of H includes at
L least one blue (resp. red) vertex. Thus H is 2-¢olorable.
Secondly, assume that H is 2-colorable. Then HO admits

a 2-coloration such that the number of blue (and red) vertices is

*odd and at least five; this 2-coloration induces a partition p - p_ yp

8 1
We are going to describe an orientation G* of G ; before doing so,

let us digress a little. By a cyclic tournament of order 2k+l , we

shall mean the tournament with vertices such that

Uprtpr oo solngyq

Up Uy for every j = 1,2,...,k (arithmetic modulo 2k+1l ). The

parity partition of such a tournament is the partition AUB defined

i
by A = (ul’u5""’u2k+l} and B ={u2,uu,...1?2k}. If k > 2 then

the parity partition has the following nice properties:

20
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(i) if ufA then there are € A such that v, - u - v_ ,

MR 1 2

(i) if ufB then there are ¢B such that v, - u —v, .

% il

.X.
Now, the orientation G of (i may be described as follows. [or
each of the three sets l’l » 1’2 » Q » direct the edges of the complete
graph induced by that set so as to obtain a cyclic tournament. Let

AiUBi be the parity partition of Pi (1 = 1,2) and let AUB be

the parity partition of Q . Direct

X =P, - P. - Xx 3

1 2
P, ~Q P, ,
AJ_,UAQ_’Wl - A,
B—»Wl—»BlUB2 y
AJUA,~ W, =B ,
A—vwz—»BlUB2 B

-

BlUB2 —ow3 - A
B -w

b)
By UB, »w) ~B,

— A UA,

A - W), —bAlUA

i

o
{
We leave it to the reader to verify that G* has diameter two.

COROLLARY 2. It is NP-hard to decide whether an undirected graph

admits an orientation of diameter two.

THEOREM 8. Given a hypergraph H of rank three and order n , we
can construct in O(n6) steps a graph G with the following property:
]

G admits an orientation of radius two if and only if H is 2-colorable.
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PROOF. Take disjoint sets P and Q such that the clementsol P
(resp. Q ) are in a one-to-one correspondence with the vertices
(resp. the edges) of H . Join by an edge every- two vertices in | ;
join a vertex veP to a vertex ecé if and only if vee in H

Then add a new vertex x and join it to all the vertices in P ;
call the resulting graph Gb . To construct G , take two disjoint

copies of G, and identify their vertices x . We leave it to the

0
reader to verify that G has the desired property.

COROLLARY 3. It is NP-hard to decide whether an undirected graph

admits an orientation of radius two.

REMARK. Easy modifications of our constructions show that (i) for
every k with k > 4 , it is NP-hard to decide whether an undirected
graph admits an orientation with diameter at most k , (ii) for every
k with k > 4, it is NP-hard to decide whether an undirected graph G
admits an orientation with radius at most k . To prove (i), take

the graph G as constructed in Theorem T, add a cycle
uO’ul""’uk-Q’uO and identify uO with x . To prove (ii), take

two disjoint copies of the graph GO constructed in Theorem 8, add

. a tree T consisting of four paths of length k-2 starting at the
same vertex. Now take two of the four end vertices of T and identify
them with the vertex x in one of the copies of G. , then identify

the remaining two end vertices of T with the vertex x in the other

copy of GO )

22



REMARK. Corollary 2 shows that in general, it is very hard to
decide whether an undirected graph G admits an orientation of
diameter two. However, if G has too few edges then the answer is
always negative. More precisely, katona and Szemerédi(9] proved
that no undirected graph with n vertices and fewer than

n n . , . .
5 log,, 5 edges admits an orientation of diameter two.
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