
A MICROPROGRAM CONTROL UNIT

BASED ON A TREE MEMORY

by

N. Tokura

STAN-CS-75-514

AUGUST 1975

. COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

| = A Microprogram Control. Unit Based on a Tree Memory

E Nobuki Tokura

) Department of Enformation and Computer Sciences

— Faculty of Engineering Science

Osaka University

. + Toyonaka, Japan

_ Abstract

A modularized control unit for microprocessors 1s proposed that

— implements ancestor tree programs. This leads to a reduction of

storage required for address information. no pasic architecture is

| extended to paged tree memory to enhance the memory space usage.
Finally, the concept of an ancestor tree with shared subtrees 1s

i introduced, and the existence of an efficient algorithm to find
sharable subtrees is shown.

|

[

j

The printing of this research was supported by IBM Corporation.

Reproduction in whole or in part 1s permitted for any purpose of
the United States Govemment.'

1

rm———R——

CC — 1. Introduction.

| The limitation of pin count makes the architectural design of
— microprocessors difficult [6]. It leads to a somewhat restricted

instruction and system capability. The bit-sliced modularization

_ has been successfully used to make high performance modules. This

method 1s good for regularly structured units such as ALRU (Arithmetic -

Logic -Register unit), stacks, and others. However, modularization of

= control units with less regularity has not yet been achieved.

The modularization of control units 1s the principal theme of

= this paper, and structured programming the subordinate one. There have

been several attempts to realize some control primitives, e.g. DO WHILE ,

— IF THEN ELSE , on conventional machines. This is done not by changing

the machine itself, but by limiting the usage of the machine. The

- efficiency of this restricted code 1s one of the important problems

to be solved. In this paper we take an opposite approach by examining

. a machine oriented to structured programming. However, there seems to
be no general agreement on what structured programming is [9]. Also,

structured programming has been the subject of criticism, especially

= for its inefficiency [5]. As one proposal, we choose the ancestor tree

program to be the basis of structured programming. This selection

.— leads to an efficient instruction set and a simply modularized control

: unit. Section 2 presents the basic notion and a possible implementation.

] In Section J, a paged tree memory system is proposed to answer the
problem of memory chip efficiency. Also, a new paged memory system is

| | described which has a distributed address table entry on bit-sliced
pagedmemory. In Section L4, the problem of the coding efficiency of

| an ancestor tree program is examined. The result is a broader type
of structured programming, allowing ancestor tree programs with shared

| sub-trees. The implementation and the existence of an efficient
algorithm to find sharable subtrees are briefly described.

_ |

2

|

— 2. Tree Memory.

Let us first recall some definitions relating to binary trees [4].

— In Figure 1l,an example of a binary tree is shown. Each node has an

alphabetical label for reference. Node A 1s called the root of the

_ tree. The root is the unique node to which no edge enters. A node Y
connected by an edge from a node X and placed on the left side of X

is called a_left son of X and the edge (X,Y) is called a left edge.

= Right sons and right edges are defined similarly. In Figure 1, node C

1s the left son of node B and node G is the right son of node E .

= If ¥Y is a left son or a right son of X , then X is called the father

of Y . A node with no sons is called a leaf; e.g. nodes D , F, G, |

— I, Ky, M and N are leaves in Figure 1. If there 1s a path from X

to Y, then Y 1s called a descendant of X and X 1s called an

_ ancestor ofY . A node X is considered to be an ancestor and a
descendant of itself.

For a binary tree T and a node X in T , a subgraph with the

= root X consists of all the descendants of X in T and edges (Y,Z)
in T with both Y and Z descendants of X .

= The depth of a node in a tree 1s the length of the path from the

root to the node. The height of a tree 1s the length of a longest path

— from the root to a leaf. In Figure 1, node D is of depth 3 and

the root A is of depth 0 . The height of the tree is 4 .

- An ancestor tree 1s a binary tree with a (possibly empty) set of

back edges. Each back edge connects a leaf to one of its ancestors,

’ and each leaf has at most one back edge leaving it. Figure 2 shows

B an example of an ancestor tree. Edges (D,C) , (G,A) , (K,H) , (M,J)
and (N,H) are back edges. For any ancestor tree T , the binary

— tree T' obtained from T by removing all the back edges 1s called

the basis tree of T . The tree of Figure 1 1s the basis tree of the

4 . ancestor tree of Figure 2.

A flowchart 1s a labeled directed graph with the following

properties:

(1) There 1s exactly one node with label START which no edges enter.

= (2) There aye nodes with label STOP from which no edges leave.

3

| A

x ~~ “

B | / I
\

C E I J

N D Fr & G K LL
vd Nn

Figure 1. A binary tree

B A

. B H

C XE T& J

D Fd G K L

M NJ I.

Figure 2. An ancestor tree.

in

Lo (3) The other nodes are divided into two classes: one class is the
3 set of nodes with functional labels and having only one outgoing

CC edge, and the other class 1s the set of nodes labeled with test

predicates and having two outgoing edges labeled 0 and 1 .

— If a flowchart of a program 1s a labeled tree (or a labeled

ancestor tree), then the program is called a tree program (or an

_ ancestor tree program, respectively). |
A random access memory of size Mn consists of 2" registers

LH each of which 1s capable of holding a binary word of length n . gmieop

~ register 1s associated with a distinct binary word of length m which

| 1s called the address of the register. Usually, the addresses are

— treated as binary numbers ranging from 0 to 2.1 . This leads

{ naturally to the concept of linear memory. However, there are other

L concepts. For example, two (or more) dimensional memory can be
conceived [11]. Another idea is that of a tree memory [2].

L In [2], Berkling considered the register with address (0 ...01)
as the root in a memory of size yn and the register

| (a 1 & 0 tte ay 0) (or the register CE LL. 8g 1)) as the
left son (or right son, respectively) of the register

(0 8180. .. a) . Figure 3 shows a tree memory of size m = 3% .
The register (0 . . . 0) is left unused. Berkling has shown that a

: simple shift register suffices to traverse the tree (Figure 4). By

shifting the register SR left one place supplying 0 (or 1) to

. the right end, we can visit the left son (or right son, respectively)

of the node currently pointed to by the register SR . Conversely,

by shifting SR right one place supplying 0 to the left end, we can

-visit the father of the current node. The one-bit register v can

'be used as an overflow indicator which 1s 1 when the register SR

points outside of the tree.

Berkling discussed several aspects of a tree memory, but apparently

did not intend to apply his scheme to instruction sequencing. This is

quite natural because the basic scheme doesn't have enough sequence

control capability for the task. This paper, however, will show that

by adding several features, his scheme becomes applicable.

5

I

O01

100 101 110 111

Figure 3. A tree memory.

-

|
-

| n

. foo

Figure 4. A shift register.

6

Engeler Normal Form.

It is known that every flowchart program can be transformed to

an equivalent Engeler normal form [3]. The transformation is very

simple:

Try to make an equivalent tree program, but if a node

already occurs in the path from the root to the

currently scanned node, then make a back edge.”
This is demonstrated by example in Figure 9. The normal form construction

process must always terminate because the height of the tree obtained by

removing the back edges cannot exceed the number of nodes in the original

flowchart. Note that this transformation retains the equivalence of

programs, but introduces some duplicated nodes, such as nodes G and

STOP in our example. More precisely, this transformation preserves not

only equivalence but also isomorphism, that is, the possible sequences

of actions are identical. The ancestor tree defined here is slightly

different from an Engeler normal form in that the latter may have a back

edge from a non-leaf node. But this difference is not essential. We

can easily obtaln an equivalent ancestor tree program from an Engeler

normal form by introducing a leaf for each back edge (if necessary). In

Figure 9,G" is obtained from G' by introducing a new (no-operation)

node At.

Two Primitives.

Hence, we can concentrate on ancestor tree programs. To implement

ancestor tree programs, the two sequence control operations GO DOWN

and GO UP are sufficient.

The operation GO DOWN replaces a test instruction of a flowchart

program. It has a selector field end 1s executed as follows:

(1) Select a signal specified by the selector field.

(2) If the signal is 0 (or 1), then visit the left son (or right

son, respectively).

} The operation GO UP 1s used to transfer the control along a
back edge. It has a displacement field and 1s executed as follows:

(1) Set the number specified in the displacement field into a counter.

| (2) While the counter is not zero, decrease the counter by 1 and

‘ visit the father of the current node.

|
|]

START
START

A START

| | B ep

| C I © fo | B \- NF
| | H C ° s | (I |

C i : ;
D ©

vv | % STOP l ror. - STOP E
STOP E

| STOP

_ k C) GG"

Fig, 5 a) A flowchart oo
b) its equivalent Engeler normal form
¢) its equivalent ancester tree form

8

| Microprogrammed Control Unit.

The microprogrammed control unit (for short, micro-control unit)

1s already modularized in comparison with 1ts hard-wired random logic

counterpart. The microprogram is stored in a microprogram memory.

The form of micro-instruction is"of broad range from vertical (highly

encoded) instruction to horizontal (completely decoded) instruction.

In the context of micro-processors, a medially encoded micro-instruction

seems to be convenient. Highly integrated f'unction units such as ALRU

will accept an encoded micro-order instead of a decoded micro-order.

Because of the pin count limitation, communication between modules

favors highly encoded information. Modularized function units can work

in parallel. The sequence control of micro-instructions can be done by

some modules. With this background, the micro-instruction is considered

here to consist of one field for sequence control micro-order and several
fields for function micro-orders.

An Implementation.

A possible implementation is shown in Figure 6. The micro-

instruction register (MIR) holds one micro-instruction. Each micro-

instruction consists of two parts: one part is a sequential control

part which has a 2 bit field for sequence control micro-order codes and

a k-bit selector/displacement (S/D) field and the other part is a

function part which has micro-orders for the f'unction units. The

program control register (FR) is a shift register which holds the

] address of the next micro--instruction. This register can be implemented
as bit-sliced modules, The KR receives orders from the sequence

control block (SCB) such as shift right, shift left, and clear. The

SCB executes sequence control micro-orders. There are four kinds of

| micro-orders. Each micro-order 1s executed as follows:
Pre-test GO DOWN

(1) Shiftthe KR left one place with the output of the multiplexer

shifted in. The multiplexer selects one signal from the function

units and other external sources according to the g/p field.

9

y

QERUENCE FUNCTION UNITS
| OL MICROORDERs ~ -

ST

MEMORY ADDRESS BuUS |

conmeor Cyflpy i
— S— —_ a

Em PATA /MICROORDER i
— |

CONTROL /sTATYS SIGNALS | : |
+ Mic 1 |

SC B ro instruction ‘

| PCR Sequence con+tro | pp sTer
M Py rog ram con+t psf ock

MUiTiplexe pr oo FiTer

Fig. 6 An implementation of microprogram COntrp] unit

10

(2) Start the execution of function micro-orders.

(3) After the comletion of all the function micro-orders, the micro -
instruction pointed to by the KR 1s fetched.

Post-test GO DOWN y

(1) Start the execution of function micro-orders.

(2) After the completion of all the function micro-orders, shift

the FCR left one place with the output of the multiplexer

shifted in.

(3) Fetch the next instruction.

Go UP

(1) Start the execution of function micro-orders.

(2) If the §/D field is zero, then go to5 ; otherwise set the
value of the S/D field in the counter of SCB. While the

. counter 1s not zero, decrease the count by 1 and shift the

FCR right one place. After completing the shifts, fetch the

next instruction.

| (3) The case with zero displacement 1s interpreted as a return to

| the root. So the ER is cleared and a "1" is shifted into
from the right. This is easily done by selecting a signal" 1"

| with selector (0 . . . 0) .
] STOP a

i
=~ (1) Clear the PCR and others.

By a START/RESTART/SINGLE STEP, the FR will be set to

~ 0 . . . 01 and the execubion will resume.

The following control capabilities of the SCB will be minimally

required to implement this system.

A. Control.

(1) Start the execution of function micro-orders.

(2) Shift left/right and clear.

11

B. Status monitoring.

(1) Detect the completion of the function micro-orders.

(2) Detect the overflow and zero of the shift register.

The readers can convince themselves of the realizability of thesc

modules by current technology 1f they compare the modules with chips

currently available.

Remark 1. Another type of GO UP operation can also be used. It

requires a counter (D-counter) which keeps the depth of the current

node. The operation is executed as follows:

) While the D-counter 1s larger than the displacement field,

decrease the counter by 1 and visit the father of the

C current node.

The displacement field in this case specifies the depth of destination,

| while the displacement field in the GO UP explained above specifies
the relative difference of the depth to the destination. These two

operations may be distinguished by calling the former a Co UP

operation with absolute displacement (for short, aboslute GO UP)

and by calling the latter a GO UP operation with relative

) displacement (for short, relative GO UP). The discussion with them

| are parallel. Therefore, in what follows, we consider only (relative)
GO UP operations.

!

Amounts of Address Information.

The most prominent feature of the proposed system 1s that the

address information for sequence control 1s reduced greatly. The
*

displacement field of length [log m] */ is sufficient for the tree
memory of height m . Let us compare the amount of address information

necessary to implement an ancestor tree program under this system with

the amount required using the conventional linear memory. Tet bh and p

*/ LL
The base of logarithm is 2. [x] stands for the least integer
not less than x .

12

i be the number of test nodes and back edges respectively. Then, in
: conventional method using conditional branches and/or jumps, (b+p)m
» bits are used to specify the destination address, while only p{logm]

bits are necessary in the present method.

| The experience of trying to emulate the PDP-1ll using a currently

avallable high speed microprocessor has shown that the design of the

instruction decoding section 1s tedious and the resulting emulator

requires a great deal of time for decoding {7]. This inefficiency

was attributed to the limited branch/jump capabilities of the micro-

processor, although admittedly the decoder of a PDP-11 should be rather

complex. This decoding problem may be easily solved in the proposed

system. It 1s even possible to implement a multiple branch by shifting

several bits into the KR.

The Problem of Tree Height.

L The problem in this method 1s the limit of the height of trees

implementable in a limited memory. The rest of this paper is mostly

| devoted to this problem.
The first effective method to reduce tree height 1s to reduce the

| straight line parts of an ancestor tree program. Qne general method is
to utilize parallel execution as much as possible. After that there

will remain some straight line parts which should be done sequentially

= but have neither branches nor loops. These sections can be implemented

by a programmable sequencer on a chip. Figure 7 shows one possible .

realization. This is essentially a microprogram controller without any

branches. Several straight line programs can be stored. The end of

each program is designated by a "1" in the end bit position

(Figure 7 (b)). The entry points to the program can be set by setting

the counter value with the START signal. Therefore, a straight line

program can be entered at arbitrary points. This allows a program or

its parts to be shared. Each word in ROM has the function part which

1s used to control the function units. The event selection bits select

one signal from the function units which signals the completion of an

operation. Counting clock pulses, the control waits for the selected
signal to become asserted within a time period «¢ specified by the

15

© NAC

E EP START

[-- ~~ — — TTT TT TATA TT TT Tm

i = fo] - M :COUNTER CONTROL P :

| - of= = EE| END BIT
PERIOD 27S |

: |m EVE NT “SELECT] bo

"| Rem o
| FUNCTION

RB Mi CROORER
| |

|
— em em em om o_o

a) ! MDR memory data register

Trowerion PARTS
EVENT SELECTION

‘Ce

b) END BIT

Fig.. 7 a) a programmable sequencer
b) its word format

14

 ——————————

)

period-select bits. In most cases, no wait will be selected. If the

control gets the response in 7 , then it directs the next instruction

| fetch and initializes 1ts inner timer unless the end bit 1s 1 . If

there 1s no response in time 11 , then it responds to the master with

the abnormal end signal AE on—-; If the end bit is 1 and the last

response 1s received in time 7t , then the control responds with the

normal end signal NE on, and returns to its initial state.

This sequencer replaces "loops for wait" in a program by "waits"

in the control. The time-out check also serves to detect hardware

malfunctions. It 1s possible to use these chips in a hierarchical

way, 1n analogy to a nested macro.

This sequencer can be used 1n several places. For example,

micro-instruction fetch , read-in of a page on a missing-page fault

(ef. Section 3), and register-saving in case of micro-level error are

possible applications.

The proposed system with this sequencer seems to be sufficient

to implement ancestor tree programs with many branches but of rather

limited height, such as microprograms of minicomputer emulation.

But for broader applications, other modifications are necessary and

are discussed 1n the following sections.

|
/

15

| 3. Paged Tree Memory.
- For a larger program, the memory space efficiency will become an

important problem. This efficiency is defined as a ratio of the used

memory area to actually implemented memory area. pe mapping used in
the last section 1s best for complete trees, where a tree of height m

1s called a complete tree if every leaf 1s of depth m . The mapping

however, leaves much unused memory area for incomplete trees. The

worst case 1s a straight-line program. 71f the length of it is m ,
then the mapping will leave om unused words. A missing subtree

with the root of depth d in a complete tree of height m amounts

to om-d words loss.

Our problem 1s to find a good mapping for incomplete trees which

. preserves the simple sequencing capability of the proposed system,

while it reduces the unused memory area. The following method is

| proposed.
| Assume that we have memory chips with oP words and we want to

store an ancestor tree program of height 2p-l . Each memory chip

- can store an ancestor tree of height p-1 and this 1s considered a
page. The following mapping will be used.

program address page address line address

P P pl D
TTTTT rTTTee —————y \

; O.. . 0 0 0... 0 0 00 . ..o ... 01

Oo... 0 O Orn 1 a, 00 . ..0 0. . . la,
\ . |

* 0... 0 0 1 a ...a 00 +. «. 0 la ... a N

** 0... 01 als a la ... a or ot1 9) 1 "9p « oe EVRY

0 . | a; a, a CL q hl 1 Bye. a 00... la 1 \

le Coe 81 8 oo Bop-1 la,.. : a, 1 ql Lk B0p-1

16

This 1s equivalent to considering AP] trees of height p-1

instead of a single tree of height 2p-1 . Each small tree ic

| implemented on a memory chip and 1s identified by its page address.

If a page is never used, then the corresponding chip need not be

equipped.

By the new mapping, a missing subtree with the root of depth

p-1i (0 < 1 < p) amounts to 2-1 words loss, while it amounts
to 2P-1 words loss by the original mapping.

An Implementation.

The implementation of the FCR will change slightly as suggested

in Figure 8. In the mapping shown above, the transition between the

state * and the state ** should be treated differently from other

- transitions. There are several methods of accomplishing this, but it

| may be simplest to use a counter in the SCB which maintains the current

L depth. The counter will be incremented by 1 for each GO DOWN and

decremented by 1 for each step of GO UP , and changes from p-1
I

3 to p (and vice versa) are detected.

This 1s but one possible implementation. More sophisticated

| schemes for the total system are conceivable.

: Page address (1l+p) line address (p)

Figure 8

17

———SreE——

Paged Memory System.

The mapping defined above maps all the nodes in a subtree with

the root of depth p-1 into a consecutive memory area with the same

prefix (page address). This paged tree memory is similar in many

respects to the usual paged memory. It is possible to place some of

the pages in the secondary storage, to read pages into a rewritable

memory (RAM) and to execute the instructions from that memory instead

of Implementing all the pages as ROMs. It seems convenient to specify

important and frequently used pages as ROMs, and store others 1n the

secondary storage. This approach provides us flexibility to change

dynamically microporograms not in ROMs. To implement this paging

system, a new simple method may be more effective than the sophisticated

paging systems used 1n current machines. Most of the conventional

paging systems use a page table in an associative memory and an address

set-up mechanism. The method proposed here will use a different

: approach.
The simplest 1dea 1s as follows: for simplicity, each RAM chip

1s assumed to hold a page (later, this assumption 1s removed). Each

ROM and RAM chip contains chip select logic. Each ROM has a fixed

chip number (page number). But each RAM must change its page number

"oo according to its current contents. Each page has a{one word with

: address (0. . . 0) left unused. This word can be used to store the
{ page address (or part of this address, as explained later in conjunction

with Figure 9). The page address on the page address bus is checked

] against the content ofrthe word. If they coincide, the chip responds.
If there are no responses from any memory chips —-- this 1s detectable

by time-out logic -- then the missing page fault procedure will be

started, and a new page will be brought into a RAM chip. This can be

| done by a programmable sequencer describedin an earlier section.
- In this method, the page table 1s distributed among the chips and

the associative search 1s replaced by a coincidence check against the |
content of the address 0 in each RAM. This idea can be used in |

systems other than tree memory system by adding an extra word to

hold the page address.

18

PAGE ADDRESS LINE eo (< be |

— I |
| | ys be eo |] eee'0'—f~JcomParaToR ERE my~~~

PAR : 2| = FAR FAR :
| :

RAM | RAM RAM Oo

- 7 / BE ME >
SR |SY OSAN| lL { ”

— ~ - ee ———— ee—————SEEIUNIN |

LINE | R/wADDRESS | | | /
DATA WORD ¢ ks)

Fig. 9 A possible chip design and arrangement |

19

To realize this system, the current decign of memory chips must

| be slightly changed. The problem is the appropriate selection of

| parameters such as page address bits, line address bits, and word
length under limited pin count.-. To fit a broad range of applications,

| the chip 1s desired to be adaptable to various parameter selection.

Figure 9 shows a solution to this problem.

Let s be the word length of RAM words. Assume that the length

of micro-instruction 1s ks and that page address 1s of gq bits

width with g < ks . Then k chips are used as a page and the

colncidence signal will be obtained through k serially connected

comparators which compare the s bit page address with the page

address register (PAP). The PAR may be the word of address 0 or an

extra register. The read/write control signal is applied to each

chip ANDed with the coincidence signal. In a sense, this is a bit-

sliced page memory.

We note, finally, that a secondary storage device which transfers

i a page selected by a page address to a suitably selected RAM chip

I should be available; e.g. an electronic disc with key-retrieval and
block transfer capability.

| What replacement algorithm 1s suitable in the paged tree memory
system? One principle may be to replace the farthest page in terms

of kinship to the current page. The dynamic behavior of a structured

. program reflects 1ts structure (or should). This will make it easier

to devise a replacement algorithm.

20 |

4. Ancestor Tree with Shared Sub-trees.

Now let us consider another possible objection. As mentioned

| earlier, every flowchart can be transformed into an ancestor Llreecup

| to isomorphism. But this transformation requires node-splitiing,| that 1s, some parts of the program must be copied. It does not change

the execution time of the program but it may require greatly increased

space. As an example, let us consider an acyclic graph isomorphic to

Pascal's triangle truncated to height n . Let us call this graph T

(Figure 10). The graph I has (77%) nodes and the transformed ’
binary tree has 2"-1 nodes. This is an example of exponential
space explosion in the structured counterpart of an unstructured or

go-to program. This example1s an extreme one. But the feature that

a lower node 1s shared by many ancestor nodes 1s not rare. [Here is

another example [10]. A very short module in PDP-11 DOS Monitor,

| containing67 instructions, expands to an equivalent ancestor tree
program of 212 instructions. One common design goal is to minimize

program size —-— especially in the monitors of minicomputers. Therefore

-— GO TO's (jumps/branches in this case) are used freely in real programming

despite Dijkstra's warning [5].

_ As a compromise, yet another instruction called SHARE is

introduced. This is essentially GO TO but it is used with clear

awareness that a sub-tree is shared with other control paths. Thys,

the usage 1s limited. In this sense, we may be said to be yet in the

- realm of structured programming. For example, T, (Figure 10) can

be realized as a program of Figure 11. The label/' X' means an

instruction " SHARE X ". This program has 3 more nodes than the

. original program. In general, a triangle program Ty of height n
1s realized as a binary tree program with (7) more nodes than
T, with (we) nodes. Thus, the exponential explode is excluded
with the cost of speed (that 1s, the extra instruction SHARE must be

executed). This instruction can be used with ancestor trees also.

In this case, we must be careful due to possible back edges returning

to ancestor nodes over the root of the shared subtree.

21

A

BCx
G H J

Fig. 10 Tj

BY \C¢C

DY EX E'Y \F

6 HH 0

Fig. 11 T3 realized by using SHARE

22

An Implementation.

The instruction SHARE requires a full address as an operand

(page address and line address, in case of paged. tree memory). kach

instruction es executed as follows (see Figure 12):

| SHARE (address)
(1) Push down the KR into the address stack and transfer

the address part to the KR.

(2) Push down the counter II into the counter stack and clear

the counter II.

(3) Fetch the instruction.

GO DOWN (selector)

Same as the explanation in Section 2 except that counter II

will be incremented by 1 at the same time the FR 1s shifted

| left one place.

| GO UP (displacement)
(1) Start the execution of function micro-orders.

(2) If displacement field is zero, then go to 2; otherwise

BN set the value in the counter I.

While counter I 1s not zero, do the following:

(2.1) Decrement counter I by 1.

(2.2) If counter II 1s not zero, then decrement 1t by 1

and shift the KR right one place; otherwise pop-up

both the stacks to counter II and ER and go to

(2.2) again.

If counter I 1s zero, fetch the next instruction.

(3) (Return to the root +) Clear counter II, counter stack,

address stack, and FR, then shift in a "1" from the

right and fetch the instruction.

Remark. The use of instruction SHARE is not limited to sharing a

subtree. When storing tall tree programs in the memory, SHARES are
!

used to join the sectioned trunks, This usage 1s nothing other than

GO TO (jump).

25

} MIR

I ————
<9]
COUNT] | HE a MPX

II ||
|

COUNT, ADDR ADDR. | |
STACK STACK | | *** | [STACK | |

| SCB

L Fig. 12 An implementation of SHARE
(Partial structure) :

ol

Search for Sharable Subtrees.

The last problem 1n this paper 1s how we can find such sharable

subtrees in an ancestor tree. If this is too hard, then we can not

5 utilize the capability of SHARE sufficiently. Fortunately, we have a

| good algorithm to find all the sharable subtrees 1n an ancestor treein time nearly proportional to the number of nodes in the tree.

There will be no loss of necessary information if a given

ancestor tree T 1s replaced by a labeled tree with all back edges

removed because the displacement field of the instruction retained as

a label will enable us to recover back edges. Then the problem can

be restated as finding all the identical subtreesup to their labels.

The subtrees in the ancestor tree which correspond to the identical

subtrees up to label in the corresponding labled tree can be shared.

_ Here, an implicit assumption should be explained. That 1s, every

| instruction 1s treated as one label even 1f it contains the

| displacement field which 1s of order log log n , where n 1s the
numberof nodes in the free. In the usual situation, this factor

| may be considered not to contribute to the efficiency measure. Rut
= 1f the asymptotical efficiency 1s of concern, the present algorithm

can be safely said to be an O(n log log n) algorithm where

~ O0(f(n)) stands for " order of f(n) ".

Lemma. The list of identical subtrees up to labels in a labeled

tree can be obtained in linear time.

See the Appendix fora sketch of the proof.

Thus the existence of an almost linear algorithm to find

sharable sub-trees 1s shown, though the actual algorithm should be

simplified further.

25

Conclusion.

The concept of tree memory 1s re-examined and applied to micro-

program memory. It leads to a program with the address information

greatly reduced, and a simple modularized control unit. With the

_ programmable sequencer, ancestor tree programs of low height but with

many branches seem to be realizable effectively; e.g. an emulator of |

minicomputers and possibly a core part of small monitor programs could

be implemented. If the program is far from the complete tree, then

the paged memory system will save the unused memory chips. A simple

Bh paged memory system 1s also proposed in which ROMs and RAMS can co-exist.

This technique will be useful for broader applications such as micro-

code replacement of some software routines and interpreters of high

level languages.

Lastly-we have reached a new class of structured programming by

examining the efficiency issue. It was easy to implement a CO TO in

the proposed system, but we stop at SHARE. This compromise to introduce

SHARE does not harm the merits of structured programming, because an

ancestor tree program with SHAREscan be directly expandable to an

equivalent ancestor tree program. RB

Each user wants a structured programming system most similar to

his problem structure [9]. The ancestor tree programs (with shared |
sub-trees) seem to be very near to many problems which people want to

implement by microprogram, although it might be too early to say so ,

when there 1s little data on this issue. What can be said at present |

1s that users have obtained more freedom of choice. The presentation |
1s 1ntended to be suggestive and the readers are invited to develop |

their own ideas on this proposal.

26

i

| Acknowledgment.

The author would like to thank Prof. I. Lee of' the University

of California at Berkeley for his talk which inspired the present

work. Thanks also go to Prof. I. Shirakawa of Osake University for

his help. This work was done when the author stayed at the Department

of Information and Computer Sciences at the University of Hawaii and

at the Computer Science Department at Stanford University. He would

like to thank all the people at the departments, Professor W. W.

Peterson and Professor D. E. Knuth, especially.

X

|
|

to

2

= oo References

~~ » [11 A.V. Aho, J. E. Hoperoft and J. D. Ullman, The Design and
: Analysis of Computer Algorithms. Reading: Addison-Wesley,

197%

[2] XK. J. Berkling, "A Computing Machine Based on Tree Structurcs,
IEEE Transactions on Computers, C-20 (4), kok-418, April 1971.

[3] E. Engeler, "Structure and meanings of elementary programs,"
Symposium on Semantics of Algor 1 hm Ne: Languages, 1971.

[4] D. E. Knuth, Fundamental Algorithms: The Art of Computer
Programming, voI. I, Reading: addison-Wesley, 1968.

[5] D. E. Knuth, "Structured Prog amming with GO TO Statements,"
Comput. Surveys, Dec. 197k, 261-301.

. [6] 1. Lee, "ISI Microprocessors and Microprograms for User-
Oriented Machines," proceedings of ACM Micro-7, sl-sl3, Sept. 197k.

| | [7] I. Lee, private communication, 1975.
[8] R. J. Lipton, S.C. Eisenstat, and R. A. DeMilla.,"Thac Complexity

of Control Structures and Data Structures," Proceedings of
| Seventh Annual ACM Symp. on Theory of Computing, May1975,”

186-193.

[9] C. McFarland, "Structured Microprogramming," Proceedings of
ACM Micro-7, s28-s32, Sept. 1974. .. —_—

[10] J. Okui, N. Tokura, and T. Kasami, "Analysis of a Disk Operating
System, © Kyoto University, Institute of Math. Analysis, 189,

[11] N. Tokura, "A Multi-dimensional Addressing System," Trans. IECE
Japan, 55-C, Nov. 1970, 855-862, in Japanese. (English
Cranslation: Systems, Computers, Controls 1, Nov.-Dec. 1970, .

- [12] P. Weiner, "Linear Pattern Matching Algorithms " Proceedings of
14th Annual Symposium on Switching and Automat: Theory—
Oct. 1973, I-ITI.

28

Appendix

A Sketch of Proof of Lemma.

The form of the algorithm claimed in the Lemma 1s briefly

described.

For a labeled tree T , let P(T) be a string of tree labels

spelled out when T is traversed in preorder [U4]. For example, the

preorder traversal trace P(T) of a tree in Figure 11 1is

ABDGHEHICE''FIUJ .

For a given tree T , P(T) can be obtained in linear time simply by

traversing the tree. The length of P(T) equals the number of nodes

in T .

Fl. If subtrees T; and T, are isomorphic in a tree T , then

there are two identical substrings P(T,) and P(T,) in P(T).
Conversely, if there are identical substrings Wy and Ww, in P(T)
for a tree T and if there is a tree T' such that Wo o=W, = P(T*) ,
then there are isomorphic subtrees T; and T, with wy = P(T,)
and w, = P(T,)

P2. It 1s decidable at most in time proportionalto the length of

P(T) whether a substring w of P(T) is a preorder traversal trace

of a subtree of T or not.

- Proof. Simply by traversing.

The problem to find all the repeated substrings in a string 1is

shown by Weiner [12,1] to be solvable in linear time. Therefore,

with P1 and P2, we can conclude that the problem to list the root

nodes of isomorphic subtrees in a tree 1s solvable in linear time. C]

29

