
APPLICATIONS OF PATH COMPRESSION ON BALANCED TREES

by

Robert E. Tarjan

STAN-CS-75-5]2

AUGUST 1975

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

- Applications of Path Compression on Balanced Trees

oo Robert Endre rar jon ¥/
i Computer Science Department

Stanford Universit

Stanford, California 3 505

Abstract

We devise a method for computing functions defined on paths in trees.

The method 1s based on tree manipulation techniques first used for

efficiently representing equivalence relations. It has an almost-linear

running time. We apply the method to give O(m <&(m,n)) algorithms for

two problems.

- A* Verifying a minimum spanning tree in an undirected graph

. (best previous bound: O(m log log n)).

B. Finding dominators in a directed graph (best previous bound:

— O(n log n + m)).

Here n 1s the number of vertices and m the number of edges in the

= problem graph, and a(myn) is a very slowly growing function which is

5 related to a functional inverse of Ackermann's function.

The method is also useful for solving, in O(m a(m,n)) time,

i certain kinds of pathfinding problems on reducible graphs. Such |

i . problems occur 1n global flow analysis of computer programs and 1n
other contexts. A companion paper will discuss this application. |

i Keywords: balanced tree, dominators, equivalence relation, global flow \
analysis, graph algorithm, minimum spanning tree, path

i compression, pathfinding problem, tree.

— Research supported by a Miller Research Fellowship at University of \
California, Berkeley; and by NSF Grant DCR72-03752 A02 at Stanford
University. Reproduction in whole or in part is permitted for any

- purpose of the United States Government. \

1

[1

' Ll []

1. Introduction.

There 1s & small collection of basic techniques which are useful

for building efficient algorithms for a wide variety of graph problems.

— Here we study one such technique, path compression on balanced trees.

The technique 1s a combination of the ideas of several people. It was

first used for efficiently representing equivalence relations, and was

subsequently applied to a variety of problems. gee. [2,3,13,21,36] for

extensive discussions and applications.

~ We significantly extend the range of application of the technique

by using 1t to compute functions defined on paths in trees. We apply

= this function evaluation method to give O(m Q(myn)) algorithms for

1 two seemingly diverse problems:
A. Verifying a minimum spanning tree in an undirected graph

- (previous best bound: 0(m log log n) [10,33,L40]).

| B. Finding dominators in a directed graph (previous best
bound: O(n log n + m) [34,38]).

| Here n 1s the number of vertices and m the number of edges in the
problem graph, and Q(myn) is a very slowly growing function which 1s

L related to a functional inverse of Ackermann's function.
The method is also useful for solving, in O(m &(m,n)) time,

= certain kinds of pathfinding problems on reducible graphs. Reducible

graphs are a special pas of directed graphs which arise naturally
] when considering global properties of computer programs [7,12,18,19].
, Solvable types. of pathfinding problems include computing path sets

using regular expressions [9,32], solving linear equations [15], and

| doing global flow analysisof computer programs [1k4,17,23]. These

applications will be discussed in a companion paper. The best previous

bound for these problem's is O(m log n) [5,1%4,17,23,39].

ls)

The paper contains ten sections. Section 2 gives definitions

and various preliminary results. Section 3 solves the function

| evaluation problem using an algorithm which works in general but 1s

highly efficient only for balanced trees. Section 4 discusses two
previous applications of path compression on balanced trees. Section 5

presents a method of decomposing the function evaluation problem into

a problem on a balanced tree and a problem on paths. Section 6 presents

a simple, efficient algorithm for paths when the functionof interest

1s max. Section 7presents an efficient algorithm for paths which

works for any function. Section 8applies the algorithm to the

problem of verifying a minimum spanning tree and to two similar

problems. Section 9 applies the algorithm to the problem of finding

. dominators 1n a directed graph. Section 10 discusses lower bounds

for various forms of the function evaluation problem.

2. Definitions and Preliminary Results.

This section contains the basic notions needed to discuss the

function evaluation algorithm. We will introduce more advanced notions

as needed.

A graph G = (V,E) consists of a finite set; V of n = |v| elements

called vertices and a set E of m =|E elements called edges. Either

the edges are ordered pairs (v,w) of distinct vertices (the graph is

directed) or the edges are unordered pairs of distinct vertices, also

represented as (v,w) (the graph is undirected). A directed edge (v,w)

N - 1s said to_leave v and enter w . A graph Gy = (V5E;) is a
| subgraph of G if V;© V and E; cE. A path of length k from

N v to w 1n G 1S a sequence of edges

| B (vy5v,) ’ (Vas vz) 5 a. Rl vi) with vy =vV and Viel = VW The
path contains vertices Vir Vor cra Vig and edges (vi5vy). Se Vv)

— and avoids all other vertices and edges. The path is simple if

Vis rersVy,q are distinct (except possibly v; = Vir1) and the path

- 1s a cycle if 1S Vi By convention there 1s a path of no edges
| from every vertex to itself but a cycle must contain at least two edges.

An undirected graph 1s connected if there 1s a path joining every pair

- of vertices.

A tree T = (V,E) is an undirected graph such that T is connected

a and contains no cycles. If a tree T is a subgraph of a graph G with

~ the same vertex set as T , then T 1s a spanning tree of G . In a
tree T there 1s a unique simple path between any two vertices v

L and w ; we denote this path by T(v,w).

| A rooted tree (T,r) is a tree with a distinguished vertex r ,
called the root. If v and w are vertices in a rooted tree (T,r) ,

i) we say Vv 1s an ancestor of w and w 1s a descendant of v (denoted
by v Sw) 1f wv is on the path from r to w . By convention v av

- for all vertices v . If v 3 w and {v,w} is an edge of T (denoted

by v-w3j,we say v is the parent of w and w is a child of v .

) In a rooted tree each vertex has a unique parent (except the root, which

| has no parent). Any two vertices v and w 1n a rooted tree have a

unique vertex x , called the least common ancestor of v and w

(denoted by x = ICA(v,w)), such that x is on T(v,w) , X Lov , and

$ 3 4 ‘

*

x -»w . The path T(v,w) consists of two parts, a path joining v and

X containing descendants of % and ancestors of v , and a path joining

x and w containing descendants of x and ancestors of w . |

A directed, rooted tree T = (V,E) is an acyclic directed graph

with a distinguished vertex r , called the root, such that r has no

entering edges and every other vertex has a unique entering edge. Every

directed rooted tree may be converted into a rooted tree by ignoring

the direction of all edges; every rooted tree may be converted into a

directed, rooted tree by directing all edges from parent to child. Thus

all the concepts of rooted trees apply to directed, rooted trees. We

shall use either rooted trees or directed, rooted trees as appropriate.

In some contexts 1t 1s useful to have a numbering of rooted tree

. vertices such that each vertex has a number larger than its parent. In

other contexts it 1s useful to have a numbering such that each vertex

has a number smaller than its parent. The following algorithm generates

numberings of these types.

procedure ORDER(T,T);

begin

procedure SEARCH(v);

begin
PRENUMBER(v) := 1 :3 i+1;

for w such that v -» w do SEARCH(W) 3
POSTNUMBER(vV) := J := j#l;

end SEARCH;

1 :=]J :=0;

SEARCH(r);

end ORDER;

5

|

Any numbering PRENUMBER(v) generable by ORDER is called a

preorder numbering of (T,r) [24] and satisfies the condition that

| every vertex have & higher number than its parent. Any numbering

BN FOSTORDER(v) generable by ORDER is called a postorder numbering of

| (Tyr) [24 and satisfies the condition that every vertex have a lower

— number than 1ts parent. Procedure ORDER requires O(n) time if

implemented properly [24 35]. Note that PRENUMBER(r) = 1 , and

- FOSTNUMBER(r) = n .

Let ® be any associative (not necessarily commutative) binary \

operation, having an identity element 0 such that 0@x = x@®0 = x

for all x . “(If ® has no identity element, we can create such an

element by augmenting the domain of @ .) Let e¢(v,w) be an

arbitrary function defined on the edges of a rooted tree (T,r) , such

that the range of e¢(v,w) is contained in the domain of ® . If v

and w are any vertices satisfying v Zw and (v = ys V,) » (Vr vy) Ce
(Vio Vig 1 = w) 1s the path T(v,w) , we define

@ (vow) = c(vysv,) ® ¢ (Vp Vz) @...8 (Vis Vi, 1) if v Ew,

_ @®v =0 1f v=w .

BN We are 1nterested in carrying out an intermixed sequence of two

5 . types of instructions on a set of rooted trees. Initially the set

contains n trees, each tree having only a single vertex. The two

— types of instructions are:

. EVAL(v): return the value of ® (r,v) , where r is the root of
the tree currently containing the vertex v ;

. LINK(v,w,x): combine the trees with roots v and w into a |

| single tree with root v by making w a child of

- v , and let the new edge (v,w) have value c(v,w) = x .

6

In the succeeding sections we develop an algorithm for carrying cut an

intermixed sequence of m EVAL instructions and n-1 LINK instructions.

Then we apply this algorithm to a variety of problems.’

3. A Basic Algorithm Efficient for Balanced Trees.

In this section we present three algorithms for the function

evaluation problem. The first algorithm is extremely simple but has

only an O(mn) running time. The second algorithm improves on the

first by adding a powerful technique called path compression. The

resultant algorithm has an O(m log n) running time and an even faster

O(m a(myn)) running time for a special class of trees, called balanced

trees. The third algorithm achieves an O(m &(myn)) bound for all trees

but only works for @® operations having a suitable kind of inverse.

It is useful to consider a static version of the function evaluation

problem. Consider any sequence of m EVAL instructions and n-1

intermixed LINK instructions. Let T be the tree defined by the LINK

instructions (i.e., (v,w) is an edge of T with value c¢(v,w) = x if and

“only if there is a LINK(v, v, x) instruction in the sequence). For each
EVAL(v) instruction, let r(v) be the root of the tree containing v \

at-the time the EVAL(v) instruction is to be executed. Then executing

the sequence of instructions 1s equivalent to computing the value of |

® (r(v),v) in the tree T for each pair (z(v),v) . (However, the

values on the edges of T , and even.the shape of T , may depend on

the results of the EVAL(v) instructions. Thus it may not be possible

to construct T without simultaneously carrying out the evaluations.)

/

| |
| Conversely, let T be any tree of n vertices, with values

c(v,w) defined on the edges, and let ((vyow,)] be any set of m

| vertex pairs such that vy A Wy in T . We can use the following
method to evaluate @ (vyr¥y) for each vertex pair.

— Step 1; Number the vertices of T in postorder. Identify each

: vertex by 1ts number.

Step 2: Sort the pairs (vy5¥,) in increasing order on vo

Step 3: for v := 1 until n do begin

for w such that v » w do LINK(v,w,c(v,w));

L for (vys¥,) such that v, = v do EVAL(w,) ;

Step 2 requires O(m) time and O(m) space using a radix sort

L [27], so the time required to solve this static function evaluation
[problem is within a constant factor of the time required to solve the

dynamic problem defined by Step 3, and the storage space required 1s

_ O(m) plus the space necessary to execute Step 3.

] To solve the dynamic function evaluation problem we use two

. arrays, T(v) and ce(v) . The value of f(v) is the parent of

vertex v 1n the set of trees so far constructed; f(v) =0 if wv

| has no parent. The value of cc(v) is | c(f(v),v) if v has a
parent and 0 otherwise. The following programs implement the LINK

and EVAL instructions.

| [

INITIALIZE: for v := 1 until n do begin
f(v) := 0;

ce(v) := 0;
end INITIALIZE;

procedure LINK(v,w,x); begin
f(w) := v;

- ce(w) i= x;

end LINK;

procedure EVAL(v)3; begin

a := 0}

WwW oi= V;

while f(w) £ 0 do begin
a = cc(w) @ a;

w = f(w);

end;

EVAL := a;

end EVAL;

This method of implementing EVAL and LINK 1s simple but not very

efficient. Consider a sequence of instructions which constructs a

non-branching tree of n vertices, and then carries out m

"evaluations on the vertex farthest from the root. Such an instruction

sequence requires O(mn) computing time [13].

. To avoid this 1nefficiency, we use the associativity of @® . We

modify the EVAL instruction so that it not only computes @ (r(v),v) ,

but 1t modifies the tree containing v . Each vertex on the path

from r(v) to v 1s made a child of r(v) , and values on the edges

are modified to preserve @(r(v),w) values for all vertices w in the

same tree as v . Here 1s a program for this purpose.

9

procedure EVAL(v); begin

if £(v) = 0 then begin r := v; a := 0 end;

elseif £(f(v)) = 0 then begin r := £(v); a := ce(v) end;
else begin

comment first loop reverses f pointers along path from

v to root;

X :=0; y=v; r= £(v); |

vhile f(r) # 0 do begin |
fly) t= x; x :=y; y := r; r := f(r);

end; i

comment first loop ends with r = r(v);

a = ce(y);

comment second loop computes @(r(v),v) and modifies

_ pointers and values;

while x # 0 do begin
y = f(x);

d := a ® cc(x);
ce(x) := a; f(x) := 1; X i= y;

end end;

EVAL := a;

end EVAL;

We call this method of carrying out an EVAL instruction path

compression [3]. As a side effect, this procedure sets r equal to

the root of the tree currently containing v . It 1s easy to prove

that this implementation returns the correct value of EVAL(v) for

each EVAL instruction. Knuth [11] attributes the path compression

idea to Tritter; independently, MeIlroy and Morris [20] used it in an

algorithm for finding minimum spanning trees. je call each tree defined

— by the f array an f-tree.

Cy

Theorem 1. For any intermixed sequence of m >n EV. instructions

and n-1 LINK instructions, the running time of the path compression

algorithm is O(m - max(l, log, (n/m) / log, (2m/n))) .

Patterson [29] proved Theorem 1 for the case m = n ; a proof for

arbitrary m > n appears in [36]. The bound in Theorem 1 is tight |

for values of m and n satisfying, for some positive constants c

and e , m<ecnorm> ene.

Let (T,r) be the rooted tree defined by the n-1 LINK instructions

(with no path compression). For any vertex v in T , let d(v) be

the number of descendants of v , including v itself. We SAYT 1s

balanced if v »w in T implies 2d(w) < d(v) . If T is balanced,

the path compression algorithm 1s faster than indicated by the Theorem 1

bound.

Let the function A(i,x) on integers be defined by A(0,x) = 2x

for x >0 ; A(i,0) = 0 for 1 >1 ; A(i,1) = 2 for i >1;

A(i,x) = A(i-1, A(i,x-1)) for 1 >1 , x > 2 . A(i,x) is a slight

variant of Ackermann's function [1]. Let |

. a(m, n) = min{z >1 |A(z, 4Im/nl) > log, n} where [x1 denotes the

smallest integer not less than x . For fixed n , the function

ad(m,n) decreases as m grows.

Theorem 2 [36]. The path compression algorithm runs in O(m a(m,n))

time 1f the tree T defined by the LINK instructions 1s balanced.

Our goal 1s to devise A function evaluation algorithm which

requires O(m Q(myn)) timg for all trees T . We will accomplish

this by representing an arbitrary tree as a combination of a balanced

11

| tree and a set of paths, and constructing an efficient function
evaluation algorithm for paths.

” For ® operations with a suitable kind of inverse, we can achieve

the O(m a(myn)) bound for arbitrary trees with much less trouble than

in the general case. Suppose that there is a Boolean function %(x) on
!

the domain of ® and another function I(x) from the domain of ® into

the domain of ® satisfying

(1) Z(x) = true implies y®x = x for all y ;

(ii) 2(x) = false implies 2z(I(x)) = false and y®x+I(xLy for

all y ; and

. (111i) 2Z(x) =Z(y) = false implies z(x®y) = false .

Then we can modify the implementation of LINK so that the EVAL instructions

are performed on a balanced tree, regardless of the structure of T .

i For this purpose we need a third array, d(v) , which records the
number of descendants of each vertex v in the set of trees constructed

L by the modified LINK procedure. The new version of LINK appears below.

| procedure LINK(v,w,x); begin
EVAL(v);

) comment this EVAL instruction, as a side effect, sets r
[.

equal to the root of the f-tree currently containing v;

ry i= I;

- EVAL(w);

g I, i= Ij

if z(x) then ce(r,) y= x@ce(r,)
else if d(ry) > d(r,) then begin

comment make ry a child of I
a(ry) i= d(r)) + d(x) ;
£(r,) t= Ty;

ce(ry) := I(ec(ry))@xdee(r,);
end else begin

12

comment make ry a child of rss
d(r,) := d(r,) + d(r,);

£(r;) P= rp
ce(ry) := x@ce(r,);
ce(ry) i= I(ee(ry)) ®ec(ry);

end end LINK; ’

We must, in addition, modify EVAL to return the value ce(r)®a

instead of a .

We call the new implementation of LINK and EVAL path compression

with balancing. Suppose this implementation is used and let T' be

the tree such that v -w in T* 1f and only 1f v 1s the first

non-zero value assigned to f(w) . T' and T differ in that certain

parents and children are exchanged, and certain edges 1n T are missing

| from T' . It is easy to show that T* is balanced and that LINK

adjusts the cc array in such a way that all EVAL instructions return

correct values [2,13,21]. By Theorem 2, path compression with balancing

requires O(m a(m,n)) time for an arbitrary instruction sequence.

Morris [20] apparently originated the balancing idea. It also

appears in [16]. Discussion, analysis, and applications of path

compression with balancing appear in [2,3,13,21,36].

| We can modify the LINK instruction to save n words of storage
| if storage is at a premium, The value of d(v) is only of interest

when f£(v) = 0 ; thus we can store values of d(v) in the f array

1f we add a Boolean array to indicate whether f(v) represents a

pointer or a count of descendants.

For sane applications 1t 1s useful to generalize the LINK

instruction to allow w to be a vertex other than a tree root. Such

an instruction GLINK(v,w,x) can be implemented as follows:

15

- procedure GLINK(v,w,X); begin
3 Y := EVAL(v);

oo comment r 1s now the root of the f-tree containing Vj
TT

LINK(r,w,y ®x) ; :
end GLINK;

|
—

~

14

A Two Previous Applications.

This section presents two previous applications of path compression

with balancing. The algorithms constructed for these applications will

be used in succeeding sections.

The first algorithm computes unions of disjoint sets. We can use

the algorithm to represent equivalence relations [25]. Suppse we are

glven n disjoint sets, each containing one element, and each having a

distinguishing name. We wish to carry out two types of instructions

on these sets. The instruction types are: FIND(x) : return the name

of the set containing element x . UNION(A,B) : add the elements

in set B to set A , destroying B .

To carry out these instructions, we use four arrays, cc(x) , d(x) ,

. f(x), and r(A) . We define x9y = x for all x, vy, and I(x) = x ,

Z(x) = false, for all x . We initialize cc(x) to be the name of

the set initially containing x , d(x) to be one, f(x) to be zero,

and r (A) to be the single element initially 1n set A . Then we use

path compression with balancing to carry out UNION and FIND instructions

as follows:

procedure FIND(X) ;

W.. (x) ;

procedure UNION(A,B);
LINK(r(A), r(B), 4) ;

The time required for m > n FINDs and n-1 intermixed UNIONs

is O(m a(myn)) . The space required is O(n) . Since ® is so

simple, the procedures for EVAL and LINK can be shortened somewhat

for this special case. This set union algorithm is useful for handling

15

| EQUIVALENCE and COMMON statements in FORTRAN [8,16], finding minimum

; spanning trees [10,33], and checking flow graphs for reducibility [37].

The second algorithm, due to Aho, Hoperoft, and Ullmen [2],

computes least common ancestors in a rooted tree. Tet (T,r) be a

| rooted tree and let vgs) be a set of m vertex pairs. Je wish

} to compute ICA(v,,w;) for each pair. The following method uses the

% set union algorithm to carry out the computation.

Step 1: Number the vertices of T in postorder. Identify each

- vertex by 1ts number.

_ Step 2: Sort the pairs {v,,w;} so that v; <w, for all i and

vy SV; for all 1 < J .

— Step 3: for v := 1 until n do

initialize a set {v} named v; ,

B Step 4: forw:=1 - n % -

; for (vows such that w, =w do’

ICA(v,w,) := FIND(v,);

let u be the vertex such that u- w 1n T;

. UNION(u,w) J
end;

L

We can prove that this algorithm works correctly by using properties

: of depth-first search; the postorder numbering corresponds to

a depth-first search of the tree (T,r) . See [2,34,37,38]. If there

L are m >n vertex pairs, the method requires O(m a(m,n)) time and

| O(m) space to compute least common ancestors.
L

i 16

: 5. Representation of an Unbalanced Tree.

Let (T,r) be a rooted tree. Tor each vertex v let d(v) be

| the number of descendants of v in 7 , and let f(v) be the parent

of v in T (f(r) =0) . If v -w in T , we say the edge (v,w)

is good if 2d(w) < d(v) and bad if 2a (vw) > d(v) . For each vertex
v there is at most one bad edge (v,w) . Let b(r) = 0 and for

v # r let b(v) be the unique vertex such that b(v) > £(v) in T ,

the path T(b(v),f(v)) contains only bad edges, and f(b(v)) # 0

implies (f(b(v)),b(v)) 1s a good edge. Let TB be the tree with

edges {(b(v),v) | v # r}. (See Figure 1.)

Theorem 3. TB is balanced.

Proof. For each vertex v , let d'(v) be the number of descendants

. of vin TB . If (f(v),v) is a bad edge in T , d'(v) = 1 . Thus

2d'(v) = 2 < a'(b(v)) . If (f(v),v) is a good edge in T , then

d' (v) =d(v) . Thus 2d'(v) = 2d(v) < d(f(v)) < d(b(v)) = a'(b(v)) .

In either case 2d'(v) < 4'(b(v)) , and TB is balanced. O

For the purposes of the function evaluation problem, we can represent

- any tree T by the correspo ming balanced tree TB and the set of
paths defined by the bad edges! Each edge (b(v),v) in TB has an

associated value cb(b(v),v) = @(0(v),v) . Given any vertex pair

(r(v),v) , we can represent @(r(v),v) as

@,(r(v),v) = c(r(v),x) @ | ®p(%7)] ® c(y,2) © | ®pg (207)]

where (r(v),x) 1s an edge of T, Xx 5 y by a path of bad edges

in T, (y,2z) 1s an edge ofT , and z ov in TB .

Lf

: We can modify LINK to update the tree TB and the set of bad

edges, and modify EVAL to compute (r(v),v) using the decomposition

above. LINK requires six arrays:.. ¢b(v), cc(v) 5 b(v) r £(v) s

— s(v) , and d(v) . For each vertex v , f(v) is the parent of v

in T , cc(v) is the value of edge (f(v),v) in T , s(v) 1s a

list of the children of v in T , and d(v) 1s the number of

3 descendants of v in T . The pointers b(v) represent the tree TB ,

and cb(v) is the value of Bp (0(V), Vv) = @,(b(v),v) . Initially
cb (v) =cc(v) =0,b(v) = £(v) =0 ,s(v =¢, and d(v) = 1 for

each v .

As soon as a LINK(v,w,x) instruction occurs, we can compute the

_ value of d(w) . Thus, for each child u of w in T , we can decide

whether (w,u) is a good edge or a bad edge. If (w,u) is a bad edge,

L we use a procedure LINKP to add the edge (w,u) with value cc (u)

i to the set of bad paths. If (w,u) is a good edge, we find all
vertices y such that (wy) is an edge of TB , and for each such vy ,

[we add (wy) with value & (wy) to TB . The program below
implements this computation. The program uses a recursive procedure

i DFS to find, for each good edge (w,u) , the vertices y such that
(uy) is an edge of TB . The program assumes the existence of a

“procedure LINKP for adding edges to bad paths.

18

procedure LINK(v,w,x); begin

procedure DFS(y,a);

| for ze s(y) do begin
| b(z) := u;

eb(z) := adce(y)s
x

if 2 d(z) > d(y)) then DFS(z, cb(z));
end DFS;

a(v) :=d(v)+ d(w);

ce(w) = x;

add w to sv);
*

for ues(w) do if 2 d(u) >d(w) then
LINKP(w, u, cc(u));

else begin

c := 0,

DFS(u,c);

end end LINK;

Consider 'this program. The time required for n-1 calls on LINK

1s O(n) plus the time for all calls on DFS and LINKP . Each

recursively nested call on DFS causes Db(z) to become non-zero for

a new value of z . Thus the total number of calls on DFS 1s O(n) .

The time required for all calls on DFS 1s proportionalto the total

_ number of calls, so this time is O(n) , and the total time for n-l1

LINK instructions 1s O(n) plus the time required for the LINKP

instructions.

The following program implements the EVAL instruction. The program

assumes the existence of a procedure EVAIB which uses path compression

on TB to compute path values in' TB . EVALB 1s identical to the path

compression algorithm in Section 3 except for the use of arrays b(v) ,

cb(v) in place of f(v) , cd(v) . The program also assumes the existence

of a procedure EVALP which computes path values on the set of bad paths.
| !

|

LW

procedure EVAL(v); begin
a := EVALB(v);

comment as a side effect EVALB(v) sets r equal to the root

of the tree containing v in the part of TB so fax

constructed;

X :=r;

if f(x) #0 then a := EVALP(f(x))®cc(x)®a;
comment as a side effect EVALP(f(x)) sets r equal to the

root of the tree containing f(x) in the set of bad

paths so far constructed;

a := ce(r) da;

EVAL := a;

end EVAL;

Suppose we execute a sequence of m EVAL instructions and n-1

intermixed LINK instructions. The EVAL instructions require O(m) time

_ plus the time required for m EVALB and m EVALP instructions. The

EVALB instructions carry out path compression on the balanced tree TB

— and by Theorem 2 require O(m a&(myn)) time. Thus the entire sequence

of instructions requires O(m a&(myn)) time plus the time for the

LINKP and EVALP instructions.

I) To complete the algorithm we need a way to implement function

evaluation on a set of paths; that is, to implement LINKP and EVALP.

L + The next two sections present two ways of doing this so as to achieve

an O(m a(m,n)) time bound. The algorithm of Section 6 is quite

simple but is only valid for the special case when xgpy = max {x,y} .

[The algorithm of Section 7works for all operations 9 but requires
certain advance knowledge about the sequence of EVAL and LINK

} instructions.

20

6. An Algorithm for the Operation max{x,y} .

In this section we assume that x®y = max{x,y} . The special

properties of mex{x,y} allow us to construct a reasonably simple

function evaluation algorithm for the set of bad paths. The algorithm

uses the disjoint set union algorithm of Section 4, in combination

with the following theorem.

Theorem 4. Suppose x it y 2 in T . Then ® (x,y) < @ (x,2) .

If w-x ge. Lz in T and 9 (x,y) = ®(x,z) , then @(w,y) = @®(w,2z) .

Proof. Obvious.

For any vertex v , consider the set of vertices w such that

Vv Sw by a path of bad edges in T .By Theorem 4 we can partition

© this set of vertices into a collection of sets 5, such that each 8;

consists of the vertices on a path of T , all vertices wes, have

the same value of @&®(v,w) (denoted by SEN), and if wes; , Xe S.

i£3, Ww =x, then ®@8; < es.
Our function evaluation method for the bad paths uses the set

_ union algorithm to keep track of the sets 5. and'thelir associated

values ®s, . The algorithm uses as the name of the set S, the

vertex wes, such that x BS implies w % x in T . The algorithm
uses two arrays, max(v) and t(v) . Initially max(v) = -= (= 0)

and t(v) = 0 . As the algorithm proceeds, max(v) = ®8, if v 1s

the name of set S. , and t(v) =w 1f v is the name of a set S.

and w 1s the name of a set 3 such that v = x 4 w implies
Xx e8; US, . Initially each vertex v 1s in a singleton set (v)
named Vv.

21 |

| The algorithm also needs a mechanism to keep track of the vertex

r(v) which 1s the first vertex on the path containing v in the set

of bad paths so far constructed. Two arrays, last (v) and root (v)

are used for this purpose. 71pitially last (v) = root(v) = v for all

vertices. As the algorithm proceeds, iast(ghe last vertex on

the path containing v in the set of bad paths so far constructed,

and root (last (v)) 1s the first vertex on this path. The following

programs implement LINKP and EVALP.

B procedure LINKP(v,w,x); begin
| last (v) = last (w);
“ root (last (v)) i= v;

1 mex(v) i= x;t(v) = w;

while (t(w) # 0) and (max(t(w)) < x) do begin
t UNION(w,t(w)) ;

t(w) = t(t(w));
end end LINKP;

procedure EVALP(v); begin
- r := root (last (v));

EVALP := max(FIND(v));

, end EVALP;

Execution of n-1 LINKP and m intermixed EVALP instructions

requires O(m &(m,n)) time. Using this implementation in combination

with the decomposition method of Section 5gives an 0(m o(m,n)) time

function evaluation method for the special case of x®y = max{x,y} .

The method requires O(n) storage space.

22

T. A General Algorithm.

To achieve an O(m a(myn)) bound for an arbitrary operation @,

we must make an assumption about the sequence of EVAL and LINK

instructions. We assume that the entire sequence of EVAL and LINK

instructions, with the exception of the x parameters in the LINK

instructions, 1s known in advance. Thus we can precompute the trees

: T and TB, and determine in advance the paths Vv Zw over which we
must compute @®(v,w) .

We represent the set of bad paths by two sets of balanced trees,

| TR and TL . Consider any bad path and suppose 1ts vertices are

numbered in postorder from 1 to k. Let v and w be vertices

on this path for which we want the value of @®(v,w) . We compute

®@ (v,w) as ® (yw) =[@(v,w)]®[®(u,w)] , where u = (25+1)2*

is the vertex with largest i 1n the range w <u << v .

To compute' @®(u,w) , we use a forest TR . TR 1s the set of

trees with vertices 1 through k such that the father of vertex

(25+1)2% is (5+1)2% 1 . (See Figure 2.) The value of an edge (x,y)

in TR 1s a (2,7) TR is a set of balanced trees numbered in

- postorder. We can use path compression in TR to compute

CHORY . Bg (Ws W) :
~ To compute ®(vyu) , we use a forest TL . TL 1s the set of

trees with vertices 1 through k such that the father of vertex

e5+1)2* is 21 | (See Figure 3.) The value of an edge (x,y)

in TL is @p(¥,%) . TL is a set of balanced trees numbered in

preorder. If we define x@'y = y®x , then a (vu) = at (u,v) for

any pair of vertices (v,uf such that u Tv in TL .

25

The 1dea we want to use 1s to compute @,(vsu) = py, (157) for
| appropriate pairs (v,u) by using path compression in TL . This

1dea does not work directly, however, because compressing a path

Uy 5 vy in TL may cause a later pair (ups v,)) to become unrelated
B in TL . (See Figure 4.)

To solve this problem, we use the fact that we can precompute

the trees T , TB , TL , and TR and the paths over which we wish

to evaluate. We reorder the paths 1n TL so that path compression

wlll work, and we symbolically compute values for each appropriate

path in T , TB , TL ,- and TR. This symbolic computation works as

_ follows. We construct a unique identifier e for each edge (v,w)

of T , with f(e) =v , g(e) = w . For each path T(x,z) , the

— value of which we wish to compute as @, (x, 2) = [De (x57)] D[®(v,2)] ,
we also construct a unique identifier e , with f(e) = x, ge) =z,

B p, (e) = & 1 Py (e) = € where ey identifies the path T(x,y)
Co and e, identifies the path T(y,z) .

| After constructing identifiers to represent the entire computation,

- we reorder the identifiers in a way consistent with the order of the

- EVAL and LINK instructions. Then we read through the identifiers

N and the EVAL and LINK instructions, carrying out the computation.

. The algorithm, presented below, has six steps.

[Step 1: Initialize all variables. Construct T . Compute d(v)
for each vertex of T .

} 3tep : Construct TB , TR , TL . For each EVAL(v) instruction,
find the vertex r such that EVAL(v) = ®(r,v) and

- construct identifiers ee, , e, + €, such that

24

(xv) = [@1;(£(e,)51) 1 @ [@pp(£(e,),8(e,))]

® c(£(e,),g(e5)) @ [Opp(£(e,) a(e))) 1

Use path compression to symbolically compute values for

appropriate paths in TB and TR .

Step: Sort the pairs (f(e,),r) in decreasing order on a(f(e,))
dtep Use path compression to symbolically compute values for appropriate

paths in TL. For each pair (ry £(e,)) y construct an identifier ey
Step 5: Sort the identifiers e in increasing order on d(f(e)) ,

breaking ties 1n decreasing order on d(g(e)) .

Step 6: Process the identifiers and the LINK and EVAL instructions

in order, carrying out the actual evaluation.

This algorithm hinges upon the symbolic computation and the

reorderingof identifiers so that the actual computation proceeds

in an order consistent with the order of the EVAL and LINK instructions;

the x values occuring in the LINK instructions may depend on the

results of previous EVAL instructions. Since d(v) > d(w) implies

V=w or -—(w A v) 1n T , the sorting in Step 3 guarantees that

"the path compression in Step 4 will work. Furthermore Step 5 sorts

the identifiers e so that p,(e) and p,(e) , 1f defined, precede e ,

and if e, precedes e, and e; and e, identify edges of T , then |

the LINK 1nstruction corresponding to e, precedes the LINK

instruction corresponding to ey
If all the x values in LINK instructions are known ahead of

time, as in the static evaluation problem mentioned in Section 3, we

can dispense with Steps Sand 6and the symbolic computation and

carry out all the evaluations directly. We must still reorder the

evaluations on the forest TL using Step 3.

25

The algorithm uses thirteen arrays and one array of lists.

For each vertex v , et(v) 1s the identifier of the edge from

the parent of v to v in T .- Arrays eb , er / el similarly

| represent IB , TR , TL . For each vertex v , d(v) is the number

| of descendants of v in T , and g(v) is a list, of children of v
in T . Arrays root (v) and last(v) are used to find the first

vertex on each bad path as described in Section 6. §gr each vertex v

h(v) 1s the number of vertices (including v) from v to the end of

the bad path containing v | The array c(e) is used to store values

computed for the identifiers in Step 6.For each vertex v , the

B algorithm constructs a dummy identifier e with f(e) = gle) =.

~ tep forv := 1 untiln do begin
| et(v) := eb(v) := er(v) i= el(v) := 0;
L f(v) := g(v) := root(v) := last(v) := v;

a(v) := h(v) := 1; |

L s(v) i= §; |
c(v) := 0;

|
end;

kK := nj;

ident := list := ¢;

for i := 1 until m+n-1 do

if instruction i is LINK(v,w,x) then begin
d(v) := d(v)+ d(w);

kK t= ktl;

f(k) := v; g(k) := w;

s(v) :=s(v) U {vw};

end Step 1;

26

Step 2: for 1 := 1 until mtn-1 do

if instruction i is LINK(v,w,x) then begin
% ~~

if 2d4(v) > d(w) then LINKP(v,w)

else DFS(w);
end else begin

let instruction i be EVAL(v);

EVAL(v, eb, e) ;
| ALE et(f(e,(1))) = 0 then e5 (1) =v

else e;(1) = et(f(ey(1)));
EVAL(£(e5(1))ex, €,) ;
r :=_root (last (f(e,(1))));
list := list U {(£(ey(1)),r, i) 3;

end Step 2;

procedure DFS(x); |

for yes(x) do begin

if f(et(y)) = w then eb(y) := et(y)

else begin

k = ktl;

£(k) == £(eb(x)); g(k) :=y; p(k) := eb(x);

eb(y) := k;

ident := ident U {k};

end;

if 2¥d(y) > d(x) then DFS(y);
end DFS;

An examination of Figures 2 and 3 verifies the following facts, which

form the basis for procedure LINKP(v,w) below. Let h(v) = (25+1)2"

be the number of vertices (including v) from v to the end of the

bad path containing v . Then {(geel)’(w) |0 < # < i-1) is the set

of children of v in TR . If i =0, Ww is the parent of V

in TL ; if 1 >0 and j >0 , (geel) (w) is the parent of v

in TL 3 and if i>0 and j=0, v has no ‘parent in TL .

27

REcedure LINKP(v,w) ; begin
h(v) := h(w)+1;

J = h(v); .

if J is odd then el(v) := et(w)

er(w) := et(w);

J i= 3/2;

2 i= el(w);

kK = k+l;

fk) := vi g(k) := g(z);

Py(k) = er(£(z)) ; p(k) i= z;
- sr(g(z)) := k;

= ident := identy {k};
Loi= el(g(z));

i S49
if g(z) #0 then begin| kK := k+l;

£(k) = v; g(k) = 87);

Py(k) = er(£(z)); py(k) := z;
i ident identy {k};

el(v) = kj

end end end LINKP;

28

procedure EVAL(v,e,ei);

if e(v) = 0 then ei(1) :=v
else 1f e(f(e(v))) = 0 then ei (1) := e(v)

else begin

X = 0; y= ev);

while e(f(y)) £0 do begin
e(e(y)) =x x = yj vy := e(£(y));

while x £ 0 do begin
kK = ktl;

£(k) := f(y); g(k) := g(x);

p, (k) i= e (f(x); pylk) := x;
X := e(g(x));

e(p,y(k)) := k;
ident := ident U {k};

ei) := k;

end EVAL;

Step J: Using a radix sort, order the triples (z,r,i) on list

in decreasing order on d(z) |.

Step 4: for (z,r,i) elist do

if z =r then e, (1) =r

else ifz = g(el (r)) then e, (i) := el(r)

else begin |
X = 0; y := el(r);

while el(g(y)) # 0 do_begin |
el(f(y)) :=x5x:=y;y := el(g(y));

while x #£ 0 do begin
k = ktl

g(k) := gly); f£(k) := f(x);

p(k) := el(g(x)); py(k) := x;
X =el(f(x));

el(p,(k)) := k;
ident := identU {k};

end;

e, (1) := k;

end Step 4;

29

Step 5: Using a two.pass radix sort, order the identifiers e on

ident in increasing order on d(f(e)) , breaking ties in

decreasing order on d(g(e)) .

6tep : for i := 1 until mtn-1 do

if instruction i is LINK(v,w,x) then begin

c(et(w)) := x;

for J eident such that £(J) = v do

(J) := e(py(3)) @e(py(d));
end else begin

let instruction i be EVAL(v); |

return c(e;(1)) ®c(ey(1)) @c(e(1)) Dele, (1))
as the result of instruction 1;

end Step 6;

he

Initialization and construction of T , TB , TR , TL require O(n)

L time. The path compressions and symbolic computations in Steps 2 and 4

| require O(m a(myn)) time. Step 3 requires O(m) time and space,
and Step5 requires 0(a(myn)) time and space, since O(m @(m,n))

i identifiers are constructed. Step 6 requires O(m a&(m,n)) time.
Thus the entire algorithm requires O(m o(myn)) time and space. The

~ corresponding algorithm for the static function evaluation problem

) ; (omitting Steps Sand 6and the symbolic computations) requires

O(m a(myn)) time and O(m) space. It is possible to save storage

space in the algorithm for the dynamic function evaluation problem by

delaying evaluation on TB and TR until Step 6 when the values are

actually known and using symbolic computation only on TL . However,

this saves at most a constant factor in running time and storage space.

30

8. Verifying a Minimum Spanning Tree.

This section presents a simple, direct application of the

function evaluation algorithm. Let T be an arbitrary tree

and let ® be a commutative, associative operation. [et each

edge (x,y) of T have an associated value e(x,y) which is

in- the domain of @®.For any two vertices v and w in T , let

| ® (v,w) = c(vys v5) ® ¢ (Vy V3) ®@.. .® (Vis Vip 1) , where

T(v,w) = (vys¥,) , (Vp Vz) y een y (Vis Vip q) . The problem we solve is

this: given a set of m pairs of vertices {vow 1] , compute

&(v, wy) for each pair.

Our algorithm, an application of the least common ancestors

algorithm of Section 4 and of the function evaluation algorithm,

. appears below.

Step 1: Pick an arbitrary vertex r of T and convert T into

a rooted tree (T,r).

Step 2: For each pair {vow} , compute x. = ICA(v,,w,) using

the algorithm of Section L.

. Step 3: Compute Sn (x45) , @n(x;,v;) for each pair {vow}
using the static version of the function evaluation algorithm

and combine the answers to give ® (vy Ww.) for each pair.

This algorithm requires O(m @&(myn)) time and O(m) storage

space.

The algorithm has several interesting applications. Suppose

c(v,w)is a real value representing the cost of edge (v,w), and let

x®y = xty . Then the algorithm computes the total cost of each of

31

a set of m paths T(vysw,) . In this case ® has an inverse and
| we can use path compression with balancing, as described in Section 3

| Co to carry out Step 3. See [2] for a similar solution to a problem

| requiring computation of depths in rooted trees.
Suppose ¢(v,w) is & real value, and let x®y = min{x,y} . Then

the algorithm computes the minimum value along each path T(vysw,) . In
this case we can use the algorithm of Section 6to carry out Step 3.

This problem arises when determining the minimum cut (or maximum flow)

between given pairs of vertices 1n an undirected graph with edge weights.

i Gomory and Hu [22] have given a method for constructing, for any

| undirected graph G with edge weights, a tree T such that

} (1) T has the same vertices as G , and

t (11) the value of the minimum cut between any pair of vertices v

| and w 1n G 1s equal to the minimym edge:value on the path
T(v,w) .

| Thus, we can use the algorithm above to compute minimum cut values for
—

a set of vertex pairs, assuming that the cut tree T is given.

. Suppose G = (V,E) is a graph with real values c(vy,w) on its

. edges and T = (V,E') is a spanning tree of G . We say T is a

minimum spanning tree 1f 2 c(v,w) 1s aminimumamong all
(v,W)eE!

‘ s-panning trees of G . We wish to test whether T is a minimum

spanning tree. The following well-known theorem allows us to apply

the algorithm above.

Theorem 9. T is minimum if and only if, for each edge (v,w) ¢E-E!' ,

c(v,w) > max{c(x,y) | (x,y) is on T(v,w) . .

32

hue, 1f G has m edges, we can test whether 'I' is minimum

in O(m a(m,n)) time by computing (vw) for each non-tree edge

(vyw) using the algorithm above with x®y = max{x,y} and applying

the test of Theorem 5. This result is interesting because the best

known algorithms for actually finding a minimum spanning tree [10,33,40]

require O(m log log n) time.

9. Finding Dominators.

Several interesting graph-theoretic problems arise in the study

of global flow analysis and optimization of computer code. This section

discusses a problem of this type. A flow graph (Gyr) is a directed

graph with a distinguished start vertex r such that there 1s a path

from r to each node in G . Vertex v dominates vertex Ww 1n

flow graph (G,r) if v # w and every path from r to w contains v .

Vertex v is the immediate dominator of w , denoted v = idom(w) ,

1f v dominates w and every other dominator of w g3glso dominates v .

By convention idom(r) = 0 .

Theorem 6. Every vertex of a flow graph (G,r) except r has a

unique immediate dominator. The edges {(idom(w),w) | we v-{r}} form

a-directed tree rooted at r , called the dominator tree of (G,r) ,

such that v dominates w 1f and only 1f v 2% in the dominator tree.

Proof. See [6]. O

We wish to construct the dominator tree of an arbitrary flow graph

(G,r) . Reference [6] describes uses of the dominator tree in global

33

{

__

code optimization. Aho and Ullman [6] and Purdom and Moore [30] have

) given simple O(mm) time algorithms. Reference [34] gives a more

complicated O(n log n + m) time algorithm and [38] gives a simplified

version of this algorithm. Here we use extensions of the ideas in

[34,38] to develop a new algorithm which uses path compression to

achieve an O(m ¢{m,n)) time bound.

We need ne new concept, that of a depth-first spanning tree. t

Let (Gyr) be a flow graph with ¢ = (V\,E) , and let (T,r) be a

directed spanning tree of G rooted at r , with T = (V,E') . Let

T have a postorder numbering and assume that vertices of T are

identified by number. (T,r) with the given numbering is a depth-first

spanning tree (DFS tree) of (Gyr) if the edges of E-E' can be

partitioned into three sets:

(1) a set of edges (v,w) with v ~% in T , called forward edges;

(11) a set of edges (v,w) with w Vv inT , called cycle edges;

(111) a set of edges (v,w) with neither v Sw nor w -*v , but

| with w > v , called cross edges.

A DFS tree 1s so named because 1t gan be generated by starting at

. r and carrying out a depth-first search of G . A properly implemented

B algorithm requires O(m) time to carrylout such a search [35], using

3 a set of adjacency lists [4,26] to represent G¢ . The search generates T ,

numbers the vertices in postorder, and partitions the edges into tree

- edges, forward edges, cycle edges, and crossedges. Henceforth we assume

that (T,r) is a DFS tree of G and that vertices are identified by

- number.

L Theorem 7. If v>w, any path from v to w in G must contain

| a common ancestor of v and w 1n T .

I oo 34

Proof. See [34,35]. QO

We will calculate idom(w) for each vertex w by processing the

vertices in order, from smallest to largest. For 0 <k <n, let

6, = (V, {(vsw) | (v,%) ¢E and w <k}) . Gy = (Wf) ; ¢ = G . For

0<k<n and 1 <w<n let dom(k,w) = mex{v | there is a path

from v to w in G, } . It is clear by examining T that

dom(k,w) > max{k,w} for all k and w , and dom(k,w) > k if

k >w and w <n . Furthermore, it follows from Theorem / that

dom (k, w) 5 w for all k and w . We prove some more facts about

dom (k,w) which enable us to calculate 1it.

Theorem 8. dom(k,k) = max{dom(k-1,v)| (v,k) is an edge} if k < n .

Proof. Obvious. Cl

For 0<k<n, l<w<n, k>w, let a(k,w) be the smallest

ancestor of w larger than k . Define e¢(v,w) = dom (w,w) for all

edges (v,w) eT , and x®y = max{x,y} .

© Theorem 9. If k>w, dom(k,w) = @& (a(k,w),w) .

Proof. Clearly there is a path from @® (a(k,w),¥) to w in Gy +

so dom(k,w) > ®(a(k,w),w).We prove by induction on k that k > w

implies dom (k,w) < ® (a(k,w),w) . The hypothesis is clearly true for

k = w . Suppose the hypothesis 1s true for some k and consider the

path in G.,, from dom(k+l,w) to w . If this path does not contain

kt1 , then dom(k+l,w) = dom(k,w) < ®(a(k,w),w) < ®(a(k+tl,w),w) by

the induction hypothesis. If this path does contain k+l , then kl >w

35

|

| implies the path from k+l to w 1n Grey q contains a common ancestor

| of k+l and w , which must k1 . Then dom(k+l,w) = dom(k+l, k+l)
< ®(a(k+l,w),w) . O !

Theorems 8and 9allow us to compute dom(w,w) for each vertex

w <n by using path compression. We simply execute the following loop.

for w := 1 until n-1 do

begin

dom(w,w) := [max{v | (v,w) ¢E and v > w)]

® [max{EVAL(v) | (v,w) ¢E and v < w}];
-—, let v-w in T;

LINK(v,w,dom(w,w)) ;

1 end;

| The next theorem shows how to use the values dom(w,w) to compute

] immediate dominators.
Theorem 10. Let v #n . If no vertex u satisfies u Jy ,

_ dom(u,u) > dom(v,v) > u , then idom(v) = dom(v,v) . Otherwise, let

u be the smallest vertex such that u = v and dom(u,u) > dom (v,v) > u .

- Then idom(v) = idom(u) .

Proof. Clearly no vertex except dom(v,v) on the tree path from

dom(v,v) to v can dominate v . Suppose no vertex u satisfies
*

u~-v, dom(uu)>dom(v,v) >u . Consider any path from n to v .

Let x be the last vertex on the path with x > dom(v,v) . If there

is no such vertex then dom(v,v) = n and dom(v,v) dominates v .

Otherwise, let y be the first vertex following X on the path with
* * ’

dom(v,v) » y =» v .All vertices =z between x and vy on the path

36

|

must satisfy z <y by Theorem 7 and the choice of x and y. Thus

dom(y,y) > x > dom(v,v) . By the hypothesis this means y =dom(v,v)

(y =v is impossible since then there is a path from x >dom(v,v)

to v in @,). Thus dom(v,v) lies"on the path from n to v .

Hence dom(v,v) dominates v , and idom(v) = dom(v,v) .

Conversely, suppose some vertex u satisfies u 5 Vo,

dom(u,u) > dom(v,v) > u . Pick the minimum such vertex u . Clearly

no vertex which does not dominate u can dominate v . Thus every

vertex which dominates v dominates u . Now we need only show that

idom(u) dominates v . Consider any path from n to v . Let x

be the last vertex on this path satisfying x >idom(u) . If there

is no such x , then idom(u) = n dominates v . Otherwise, let y

be the first vertex following x on the path and satisfying

idom(u) A % A v . All vertices =z between x and y on the path

must satisfy z <y by Theorem 7 and the choice of x and y . Thus

dom(y,y) > x > idom(u) > dom(u,u) . Hence y cannot lie between

idom(u) and u , or equal u , since otherwise idom(u) would not

dominate u . Also y cannot lie between u and v by the choice

"of u . Purthermore y # v since y = v implies there is a path

from x > dom(u,u) > dom(v,v) to v in G, . The only remaining

possibility is y = idom(u) . Thus idom(u) lies on the path from

nto Vv, and idom(u) dominates v . my

We use the set union algorithm and Theorem 10 to compute 1lmmedlate

dominators. First we sort the pairs (dom(v,v),v) so that (u,v)

precedes (uy5v,) if and only if wu, < u, or u, =u, and v; > v, .

37

| []

We use a two-pass radix sort, which requires O(n) time. This

ordering has the feature that if (u},v;) precedes (u,,v,) and

Vi < Vy then uy < u, Next we apply the set union algorithm.

Initially each vertex v 1s 1n a ‘singleton set containing only v

and named v. As the algorithm examines the pairs 1n order, vertex v

will be in the set named x if and only if x 1s the smallest vertex
*

such that x » v and the pair (don(x,),x) has not yet been examined.
Here 1s the computation.

Step 1: for each pair (dom(x,x),x) in order do begin
let u » x 1n T;

UNION(FIND(u), x);

to if FIND(dom(x,x)) # FIND (x) then
begin idom(x) := FIND(x); flag(x) := true end

\ else idom(x) := dom(x,x); flag(x) := false end;

end;

Step 2: fori := n-1 step -1 until 1 do if flag(i) then
idom(1) :=_idom(idom(i));

The first loop constructs a set of pointers in array_idom(v)

using Theorem 10. The second loop uses these pointers to compute

dominators. The total time to compute dom(w,w) values and

dominator values is 0(m a(m,n)) using the function evaluation

algorithm of Section 6. The storage space necessary is O(m) .

38

10. Lower Bounds.

An interesting theoretic problem 1s to determine whether the

O(m a(myn)) bound is tight, for either the general function evaluation

problem or for interesting special cases. Perhaps surprisingly in

light of the dearth of lower bound results, we can prove that the

O(m a(myn)) bound is tight to within a constant factor, for various

cases of the function evaluation problem.

To prove lower bounds, we use the following formal setting.

Let (T,r) be a rooted tree on n vertices, with edge values

selected from the domain of an associative binary operation @ .

Given a set of m pairs (vysw.) of related vertices, we desire a
lower bound on the number of @® operations required to compute

.® (vysw;) for all m pairs.

A computation sequence for the pairs (viow,) is a list of

assignments of the form x := y®z , where y and z are either

edges of T or are variables which have occurred on the left side

of some previous assignment, and each variable x occurs on the left

side of only one assignment. Correspondingto each pair (vyswy) 1s

a varlable x. such that, for all substitutionsof values for the

edges, the variable Xs is assigned value ® (v5) when the

computation sequence 1s carried out. We prove that, in the worst

case, any computation sequence for m pairs must be of length at

least kma(m,n) , for some constant k . We prove this result for

various interesting operations @ . In some cases the lower bound

holds even if we allow a second operation to occur 1n the computation

sequence.

39

| Notice that our computation model allows only straightline

programs, with no branching. In certain cases the lower bound does

not hold if we allow branching. In other cases, we conjecture the

lower bound still holds but cannot prove it.

Consider any computation sequence, and let x be any variable

which occurs in the sequence. Corresponding to x 1s an expression

of the form x = e(x yy | ®...0 (Xp 1¥y) which gives the value
computed for x as a function of the edge values. Suppose the

computation sequence satisfies the following property.

i (*) If x = c(x,y;) ®.*%. @ (xy) 1s the expression for any

variable x , then (%1937) Ln (%,5¥,) all lie on T(v;sw,)

= for some pair (vyswy).

- Order the pairs (vysw,) so that if (viow,) precedes (vows) |
i in the ordering and vi Fy. , then (y= v.) in T . For each

variable x 1n the computation sequence, assign the corresponding

| expression to the first pair (vsW,) in the ordering such that every
| J edge 1n the expression 1s on T(vssW,)

= Now associate with T and with the pairs (v;5%,) a directed
graph G and a cost C as follows. Initially G* = T . Process

] the pairs (vysw,) in the order defined above. To process a vair'
. (vss Ww) » let Vi SX) 2X) eee X gy SW, be the path in fs from

v to w . Add to G* each edge 5: 2%) with J; < Jo which is
not already present 1in of . Let the cost of the pair (vio) be
L.-1, where Ls 1s the length of the shortest path from vs to Ww.

in a (before the new edges for SA are added). Tet the cost C
be the total cost of all pairs (vysw) :

hi

Theorem 11. The cost C is a lower bound on the length of any

computation sequence satisfying (*).

proof. Consider a computation sequence satisfying (¥). Assign the

expressions computed by the computation sequence to pairs (vyows) as
described above. Process the pairs (vows) in the order defined

above, a6 follows. Initialize G =T. For each pair (vysv,) ,
add edges to G ab described above, and compute the value of all

expression6 assigned to the pair (vis)

For each pair (vysw) , the number of ® operations required to

compute all expressions assigned to the pair (vy5%s) 1s at least as

great ab the cost of (v9) ro prove this, suppose the expression
for ® (vy5w,) is computed as

| (@{e(x15¥,7) ®c(Xypyy0) @ -o- @ (ge Vx) |11<3 <p}

where each expression inside the outer sum 1s assigned to a pair

previous to (vgs) . We can order the expressions so that for some

r < p and for some SPRL CYRRRIL ,

) * * * * * ~

iT TV 7 Taq, To Vek, TUBqp TV, 7 rk= Vi

£q
Then (91x) , SER , LFF, (rg Vrk) are edges ©
before pair (vys¥,) is processed, and the number of expressions

combined to compute D (vy) is no fewer than 2-1 , where L

is the length of the shortest path from Vy to Ww, in oy before

(vysw,) is processed. Thus C = I 11 1s a lower bound on the
total length of the computation sequence. [I

41

Now we apply the very general lower bound result of [36], which

] states:

Theorem 3.2 [36]. There is a constant k such that, for all m

and n with m >n, there is a tree T of n vertices and a

sequence of m pairo (vysv,) for which the cost of Gg is at least
kma(m,n) .

We have immediately; ,

Theorem 15. For any m >n, there is a static function evaluation

problem for m- palrs on a tree with n vertices such that any

computation sequence satisfying (¥) has length at least kma(m,n) . |

-

The power of Theorem 1) lies in the fact that for many interesting

| operation6 @®, any expression which does not satisfy (¥) is useless in

I any computation sequence; thus any minimum-length computation sequence
must satisfy (¥). Such operations include the following:

_ (1) Function composition over a suitably general function space.

:] (2) String concatenation.

y (3) Set union. The lower bound holds even if set intersection is also

| allowed as an operation.

(4) Maximum over real numbers. The lower bound holds even if

minimum is also allowed.

(5) Boolean "and" over the domain [true, false] . The lower bound

holds even 1f Boolean "or" 1s also allowed.

We prove the lower bound for (b). Consider any computation

sequence which uses a (and) and v (or) to compute a (viow,) for

Lo

for a sequence of m pair6 (vyow,) . Such a computation sequence

corresponds to a monotone Boolean circuit for computing A (visw;)

for all pair6 (viowy) . See [28,31] for lower bounds on the sizes
of restricted kind6 of Boolean circuits for other functions.

Let E be any expression involving A and v . Let = denote

truth value equivalence. Convert E into disjunctive normal form

E = Ej = (29 Ax oA : STR V...V (xq A : Mog)

with i; < i, for 1 < J < K . Then E 1s equivalent to a conjunction,

namely E = (ry Ap o NOX)) , 1f and only if each variable x),
1

in the first clause occur6 in all the clauses. It follows that 1f

E, VE, =(x) Ax; A Xz A : Lo AX) , then either E, = (X AX A oe nx,)

or E, E (x Ax, A ree AX) .

Similarly, let E be any expression and convert E into

conjunctive normal form

E = E, = (¥11 VI Vee Vy) Aoee A (Yep V I Vig)

with i; < i for 1<j<k. Then E is equivalent to a conjunction,

namely E=(y 4 A¥pq Aco AY). 1E and only if i. = 1 for

1 < j <1 and each clause (37 VeesVy sg) for 1 <j <k contains
J

oome variable Vo, with 1 <p < £.Thus if Ei AE, = (yy AYA ee AY) ,

then E, = (Fy ATA «oo AT) and E, =(y A. 5. AY.) for some J , k
satisfying 1 <j <ktl <i. (Achieving this representation may

require renumbering the variables.)

43

- Now consider any computation sequence which use6b A and v to

B compute A (vgaW,) for a set of m pairs (vows) . Let E, be

the expression computed for A (vyswy). By the remarks above
- a subsequence Of the computation sequence must compute a sequence

of expressions EipBipr. 0B = Ey such that each Bs 1s elther

- an edge of T or 1s equivalent to Bip Eig for some p,q <J .
Delete all assignment6 from the computation sequence except those

corresponding to expressions By . The resultant sequence still

computes A (vysW;) for all pairo6 (viow,) and also satisfies (¥).
Thus by Theorem 13 we have:

| Corollary 1. For any m >n , there 1s a rooted tree T of n

- vertices and a set of m pairs (vysWs) of related pair6 such that
any computation sequence ysing A and Vv to compute Avy, LY for

| all pair6 ha6 length at least kma(myn) for some constant k .

The lower bounds for operationé (3) and (4) follow from

i Corollary 1; lower bound6 for operations (1) and (2) are immediate
1 - from Theorem 13.

Several plausible lower bounds remain conjectures. We leave

| . them as open problems.

| (1) Prove a kma(m,n) lower bound for any operation @® which has
an 1nverse.

m

- (2) Prove a kmq(m,n) lower bound for computing v [A (v,,w.)]
i=1 tot

_ usingA and V,where U(vow,)] is a set Of pairs of

related verticesjn a tree T .

ddl

(3) Prove Corollary 1 if negation is also allowed as an operation.

(4) Prove that verifying a minimum spanning tree requires km (m,n)

comparisons in the worst case.

L5

| Acknowledgments.
] I would like to thank Andrew and Frances Yao for several
B stimulating discussions on the minimum spanning tree problem which

| sparked the 1deas in Section 7 and the writing of this paper;

Adrian Bondy and Ron Graham for criticism which led to correct

formulation of the ideas in Section 5;Mark Wegman, for many long

and rewarding talks about algorithms for global flow analysis; and

Jeff Barth, for providing monetary stimulus for this research.

L

i

46

hd

eae R

.

| | References
[1] W. Ackermann, "Zum Hilbertshen Aufbau der reelen Zahlen,"

| Math. Ann.99 (1928),118-133.

| El A.V.Aho,J.E.Hoperoft,and J. D. Ullman, "On computing least
common ancestors in trees," Proc. Fifth Annual ACM Symposium on

oo Theory of Computing (1973), 253-265.

[3] A. V. Aho, J. E. Hoperoft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass.
(197%), 129-13k.

[4] ibid, 50-52.

- [5] A. V. Aho and J. D. Ullman, "Node listings for reducible flow
graphs," Proc. Seventh Annual ACM Symposium on Theory of Computing
(1975), 177-185.

. [6] A.V. sho and J. D. Ullman, The Theory of Parsing, Translation,
and Compiling, Vol. IT: Compiling, Prentice-Hall., Englewood
Cliffs, N.J. (1972).

o ~~ [71 F.E. Allen, "Control flow analysis," SIGPLAN Notices 5 (1970),
| 1-19. -

| [8] B. W. Arden, B. A. Galler, and R. M. Graham, "An algorithm for
equivalence declarations," Comm. acm, 4 (1961), 310-31k.

| [9] RB. C. Backhouse and B. A. Carre, "Regular algebra applied topathfinding problems,” J. Inst. Maths. Applies., 15(1975),
161-186.

[10] D. Cheriton and R. E. Tarjan, "Finding minimum spanning trees,"
~ submitted to SIAM J. Comput.

[11] V. Chvdtal, D. A. Klarner, and D. E. Knuth, "Selected combinatorial
research problems," STAN-CS-72-292, Computer Science Department,
Stanford University (1972).

[12] J. Cocke, "Global common subexpression elimination," SIGPLAN
Notices, 5 (1970), 20-2k.

[13] M. J. Fischer, "Efficiency of equivalence algorithms," Complexit
of Computations, R. E. Miller and J. W. Thatcher, eds., Prem
Press, New York (1972),153-168.

[4] A. Fong, J. Kam, and J. Ullman, "Application of lattice algebra
to loop optimization," Conf. Record of the Second ACM Symposium
on Principles of Prog. Lang. (1975), 1-9.

[15] G. E. Forsythe and C. B. Moler, Computer Solution Of Linear
Algebraic Systems, Prentice-Hall, Englewood CIiffs, N.J.(1967)
27-33.

[16] B. A. Galler and M. J. Fischer, "An improved equivalence
algorithm,” Comm. ACM, 7 (1964), 301-303.

[17] Ss. Graham and M. Wegman, "A fast and usually linear algorithm for
global flow analysis," Conf. Record of the Second ACM Symposium
on Principles of Prog. lLang.(1975), 22-34w.—

7

[18] M.S. Hecht and J. D .Ullman, "Flow graph reducibility," SIAM
J. Comput. 1 (1972), 188-202.

[19] M. 8. Hecht and J. D. Ullman, "Characterizations of reducible
flow graphs," J. ACM., 21 (1974), 367-375.

[20] J. E. Hoperoft, private communication.

[21] J. E. Hoperoft and J. D. Ullman, "Set-merging algorithms,”
SIAM J. Comput., 2 (1973), 294-303.

[22] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley,
Reading, Mass. EDP 129-150.

[25] KX. W. Kennedy, "Node listings applied to data flow analysis,"
Conf. Record of the Second ACM Symposium on Principles of Prog.

[24] D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass. (1968), 315-3k6.

[25] ibid, 353-355.

[26] ibid, 295-304.
[27] D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and

Searching, Addison-Wesley, Reading, Mass. (1973), 170-178.

[28] E. I. Neciporuk, "A Boolean function, " Soviet Math. Dokl.,7
(1966), 999-1000.

[29] M. Paterson, unpublished report, Univ. of Warwick, Coventry,
Great Britain (1972).

[30] P. W. Purdom and E. F. Moore, "Algorithm 430: Immediate
predominator6 in a directed graph," Comm. ACM., 15 (1972), 777-778.

[31] V. Pratt, "The power of negative thinking in multiplying
Boolean matrices," Sixth Annual ACM Symposium on Theory of

[32] A. Salomaa, Theory of Automata, Pergammon Press, N. Y. (1969),
120-127.

[35] R. Tarjan, "Finding minimum spanning trees," Mem. No. ERL-M501,
Electronics Research Laboratory, University of California, Berkeley,
(1975)

[34] R. Tarjan, "Finding dominators in directed graphs," SIAM J. Comput.,
5 (1974), 62-89.

[35] R. Tarjan, "Depth-first search and linear graph algorithms,"
SIAM J. Comput., 1 (1972), 146-160.

[36] R. Tarjan, "Efficiency of a good but not linear set union
algorithm," J. ACM., 22 (1975), 215-225.

[37] R. Tarjan, "Testing flow graph reducibility," J. Comp. Sys.
Sciences, 9 (1974), 355-365.

[38] R. Tarjan, "Edge-disjoint spanning trees, dominators, and depth-
first search," STAN-CS-T4-455, Computer Science Department,
Stanford University (1974).

48

| [39] J. D. Ullman, "A fast algorithm for the elimination of common
| subexpressions,” Acta Informatica, 2 (1973), 191-213.

| [40] A. C. Yao, "An O(|E| log log |V|) algorithm for finding
minimum spanning trees," Info. Proc. Letters, to appear.

“ |

L ?

-
aV

QJ

an
TR —~
— QJ

Sy O
~ SU WAY

On

hi ~
~~ \

hou .

NY Ql “a NB)
O fe} ouN — ° ©

| On Uy .
8

QO ne) >
QO -—
0 —

\O - bs
O a]

Ta Ne : 3
NY >

ya
Ql) 5 3

Q

= = 3g
— 3 jo

O O O
a +4 0

“© O
— - +

© - -
QO i” S

0) 0© 0 O
> TO ©

Q O dl
O

0 @ Q
7 ho SE 2NY .

@) =C ry & eS,
& QJ -— ~ “= a +P 0)— a; QO 9

4H Q =~
= 0 =HNY) oO al 3 2rf a ©

ie C ? © Q
aS Y, ~—— ~

— \

— CL
QJ Pan —

©

ON i.
on
-—

QD ON re—1

NO ~~
IN

Ta \o

OO
NY —

Ql ~F

—

50

- —————

1

5 5 9 17

2 1
7 11 13 | 19 21

ANE 10 18

1h op ©2
8 12 15 20

16 ol

“

l-

|
Figure 2. The set of trees TR for k = 24 .

L

(_-

\ 51

| vA

| ~ 15 2%

7 11 15 19 21
1h 22

3 5 9 17 18
6 10 12 20 mp 2k

LJ 1
1 y Ly 8 16

Figure 3. The set of trees TL for k = 2h .

50

vy v,

ple

= Vo
u

v X
2 1 Yo

u

1 Yq

] @) (b)

[Figure 4: 1pyalid path compression.

(a) Before compression of path (p57) .

L (b) After compression of path (uy5vy) -
In this tree —(u a Vv |

A 2)

g 53

