APPLICATIONS OF PATH COMPRESSION ON BALANCED TREES

Robert E. Tarjan

STAN-CS-75-512
AUGUST 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY






e

r— r— r— [

. other contexts. A companion paper will discuss this application.
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Abstract

We devise a method for computing functions defined on paths in trees.
The method is based on tree manipulation techniques first used for
efficiently representing equivalence relations. It has an almost-linear
running time. We apply the method to give O(m a(m,n)) algorithms for

two problems.

A*  Verifying a minimum spanning tree in an undirected graph
(best previous bound: O(m log log n) ).
B. Finding dominators in a directed graph (best previous bound:
O(n log n + m) ).
Here n is the number of vertices and m the number of edges in the
problem graph, and &(myn) is a very slowly growing function which is
related to a functional inverse of Ackermamn's function.
The method is also useful for solving, in O(m a(m,n)) time,

certain kinds of pathfinding problems on reducible graphs. Such

. problems occur in global flow analysis of computer programs &nd in i
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1. Introduction.

There is & small collection of basic techniques which are useful
for building efficient algorithms for a wide variety of graph problems.
Here we study one such technique, path compression on balanced trees.
The technique is a combination of the ideas of several people. It was

first used for efficiently representing equivalence relations, and was
subsequently applied to a variety of problems. gee[2,3,13,21,36] for
extensive discussions and applications.

We significantly extend the range of application of the technique
by using it to compute functions defined on paths in trees. We apply

. this function-- evaluation method to give O(m a(myn)) algorithms for
two seemingly diverse problems:

A, Verifying a minimum spanning tree in an undirected graph

(previous best bound: 0(m log log n) [10,33%,40]),.
B. Finding dominators in a directed graph (previous best
bound: O(n log n + m) [ 3438]),
Here n is the number of vertices and m the number of edges in the
problem graph, and a(myn) is a very slowly growiné function which is
related to a functional inverse of Ackermann's function.

The method is also useful for solving, in O(m o(m,n)) time,
certain kinds of pathfinding problems on reducible graphs. Reducible
graphs are a special /01788 of directed graphs which arise naturally
when considering global Hroperties of computer programs [7,12,18,19].
Solvable types. of pathfinding problems include computing path sets
using regular expressions [9,32], solving linear equations [15], and
doing global flow analysis of computer programs [1}4,17,23]. These

applications will be discussed in a companion paper. The best previous

bound for these problem's is O(m log n) [5,14,17,23,39].
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The paper contains ten sections. Section 2 gives definitions
and various preliminary results. Section 3solves the function
evaluation problem using an algorithm which works in general but is
highly efficient only for b@lanced trees. Section 4 discusses two
previous applications of path compression on balanced trees. Section 5
presents a method of decomposing the function evaluation problem into
a problem on a balanced tree and a problem on paths. Section 6presents
a simple, efficient algorithm for paths when the function of interest
is max. Section 7presents an efficient algorithm for paths which
works for any function. Section 8applies the algorithm to the
problem of verifjing a minimum spanning tree and to two similar
problems. Section 9 applies the algorithm to the problem of finding
. dominators in a directed graph. Section 10 discusses lower bounds

for various forms of the function evaluation problem.

2. Definitions and Preliminary Results.

This section contains the basic notions needed to discuss the
function evaluation algorithm. We will introduce more advanced notions
as needed.

A graph G = (V,E) consists of a finite set; V of n = |V| elements
called vertices and a set E of m =|E; elements called edges. Either
the edges are ordered pairs (v,w) of distinct vertices (the graph is
directed) or the edges are unordered pairs of distinct vertices, also

represented as (v,w) (the graph is undirected). A directed edge (v,w)
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is a

is said to leave v . =
and enter w A graph G1 ( Vl’E

1)

subgraph of G if VvV, ¢V and E, € E . A path of length k from

v to w in G 1is a sequence of edges

k+1
and edges (vl,ve).Se (v

(vl’vg) 2 (VE,VB) 2. .. jﬁ':‘k |v'k+l) With V]. =V and V, =W . The

path contains vertices V12V

...’vk""l k'vk+l)

and avoids all other vertices and edges. The path is simple if

Vs eV, are distinct (except possibly V1 = V1 ) and the path

is a cycle if v =V By convention there is a path of no edges

k+l °
from every vertex to itself but a cycle must contain at least two edges.
An undirected graph is connected if there is a path joining every pair
of vertices.

A tree T = (V,E) 1is an undirected graph such that T is connected
and contains no cycles. If a tree T is a subgraph of a graph G with

the same vertex set as T , then T is a spanning tree of G . In a

tree T there is a unique simple path between any two vertices v
and w ; we denote this path by T(v,w).

A rooted tree (T,r) is a tree with a distinguished vertex r ,
called the root. If v and w are vertices in a rooted tree (T,r) ,
we say v is an ancestor of w and w is a descendant of v (denoted
by v i(;W ) if v is on the path from r to w . By convention v x \%
for all vertices v . If v 2w and {v,w} is an edge of T (denoted

by v-w3, we say v is the parent of w and w is a child of v

In a rooted tree each vertex has a unique parent (except the root, which
has no parent). Any two vertices v and w in a rooted tree have a

unique vertex x , called the least common ancestor of v and w

(denoted by x = ICA(v,w) ), such that x is on T(v,w) , X v , and



*
x -w . The path T(v,w) consists of two parts, a path joining v and
x containing descendants of % and ancestors of v , and a path joining
x and w containing descendants of x and ancestors of w .

A directed, rooted tree T = (V,E) is an acyclic directed graph

with a distinguished vertex r , called the root, such that r has no
entering edges and every other vertex has a unique entering edge. Every
directed rooted tree may be converted into a rooted tree by ignoring
the direction of all edges; every rooted tree may be converted into a
directed, rooted tree by directing all edges from parent to child. Thus
all the concepts of rooted trees apply to directed, rooted trees. We
shall use either rooted trees or directed, rooted trees as appropriate.
In some contexts it is useful to have a numbering of rooted tree
. vertices such that each vertex has a number larger than its parent. In
other contexts it is useful to have a numbering such that each vertex
has a number smaller than its parent. The following algorithm generates

numberings of these types.

procedure ORDER(T,T);

begin
Erocedure SEARCH (V) ;
begin ,
PRENUMBER(V) := i :3 i#l;
for w such that v - w do SEARCH (w) 3
POSTNUMBER(v) := 7§ := j#l;
end SEARCH;
i:=3 :=0;
SEARCH(r) ;

end ORDER;



Any numbering PRENUMBER(v) generable by ORDER is called a

preorder numbering of (T,r) [24] and satisfies the condition that

evéry vertex have & higher number than its parent. Any numbering

POSTORDER(v) generable by ORDER is called a postorder numbering of

(Tyr) [24] and satisfies the condition that every vertex have a lower
number than its parent. Procedure ORDER requires O(n) time if
implemented properly [2435]. Note that PRENUMBER(r) = 1 , and
FOSTNUMBER(r) = n .

Let ® be any associative (not necessarily commutative) binary
operation, having an identity element 0 such that 0®x = x@0 = x
for all x . “(If & has no identity element, we can create such an
element by augmenting the domain of @ .) Let ¢(v,w) be an
arbitrary function defined on the edges of a rooted tree (T,r) , such
that the range of e(v,w) is contained in the domain of ® . If v
and w are any vertices satisfying v A W and (v = Vl’ve) ’(VQ’VS) .

(vk’vk+l = w) 1is the path T(v,w) , we define
® (V',W) = c(vl,vz) ® C(VE,VB) ®@...9 c(vk’vk'i"l) if v % w ,
®v =0 if v=w

We are interested in carrying out an intermixed sequence of two
. types of instructions on a set of rooted trees. 1Initially the set
contains n trees, each tree having only a single vertex. The two

types of instructions are:

EVAL(v): return the value of ® (r,v) , where r is the root of
the tree currently containing the vertex v ;
LINK(v,w,x): combine the trees with roots v and w into a
single tree with root v by making w a child of

v , and let the new edge (v,w) have value c(v,w) = x .



In the succeeding sections we develop an algorithm for carrying cut an
intermixed sequence of m EVAL instructions and n-1 LINK instructions.

Then we apply this algorithm to a variety of problems.'

3. A Basic Algorithm Efficient for Balanced Trees.

In this section we present three algorithms for the function
evaluation problem. The first algorithm is extremely simple but has
only an O(mn) running time. The second algorithm improves on the

first by adding a powerful technique called path compression. The

resultant algorithm has an O(m log n) running time and an even faster
O(m a(myn)) running time for a special class of trees, called balanced
trees. The third algorithm achieves an O(m a(myn)) bound for all trees
but only works for @ operations having a suitable kind of inverse.

It is useful to consider a static version of the function evaluation
problem. Consider any sequence of m EVAL instructions and n-1
intermixed LINK instructions. Let T be the tree defined by the LINK
instructions (i.e., (v,w) is an edge of T with value c¢(v,w) = x if and
" only if there is a IlNKhnwns instruction in the sequence). For each
EVAL(v) instruction, let r(v) be the root of the tree containing v
atjthe time the EVAL(v) instruction is to be executed. Then executing
the sequence of instructions is equivalent to computing the value of
® (r(v),v) in the tree T for each pair (r(v),v) . (However, the
values on the edges of T , and even the shape of T , may depend on
the results of the EVAL(v) instructions. Thus it may not be possible

to construct T without simultaneously carrying out the evaluations.)



Conversely, let T be any tree of n vertices, with values

¢(v,w) defined on the edges, and let {(vi,wi)} be any set of m

. *
vertex pairs such that v, » Wi in T . We can use the following

method to evaluate @ (Vi’wi) for each vertex pair.

Step 1;  Number the vertices of T in postorder. Identify each
vertex by its number.
Step 2: Sort the pairs (Vi’wi) in increasing order on v,
Step 3: &v:l%n%m
for w such that v » w do LINK(v,w,c(v,w));
for (vi,wi) such that v, = v do EVAL(wi);
end;

laraard

Step 2 requires O(m) time and O(m) space using a radix sort
[27], so the time required to solve this static function evaluation
problem is within a constant factor of the time required to solve the
dynamic problem defined by Step 3, and the storage space required is
O(m) plus the space necessary to execute Step 3.

To solve the dynamic funetion evaluation problem we use two
arrays, f(v) and ce(v) . The value of f(v) is the parent of
vertex v in the set of trees so far constructed; f(v) =0 if v
has no parent. The value of cc(v) 1is | e(f(v),v) if v has a
parent and Q otherwise. The following programs implement the LINK

and EVAL instructions.



INITIALIZE: EEE,V := 1 until n ggjbeﬁin
f(v) = 0;
ce(v) :=0;

end INITIALIZE;

procedure LINK(v,w,x); begin

fw) 1= v;
ce(w) := x;

end LINK;

procedure EVAL(v); begin
a := 0}

W o= Vv

while f(w) # 0 do begin

a =cc(w @ a;
w = f(w);
end;
EVAL := ga;
end EVAL;

This method of implementing EVAL and LINK is simple but not very
efficient. Consider a sequence of instructions which constructs a
non-branching tree of n vertices, and then carries out m
evaluations on the vertex farthest from the root. Such an instruction
sequence requires O(mn) computing time [13].

. To avoid this inefficiency, we use the associativity of @ . We
modify the EVAL instruction so that it not only computes @ (r(v),v) ,
but it modifies the tree containing v . Each vertex on the path

from r(v) to v is made a child of r(v) , and values on the edges

are modified to preserve @&(r(v),w) values for all vertices w in the

same tree as v . Here is a program for this purpose.

L



procedure EVAL(v); begin
if £(v) = 0 then begin r := v; a := 0 end;

else if f(f(v)) = 0 then begin r := £(v); a := ec(v) end;
else begin

comment first loop reverses f pointers along path from
v to root;

X :=0; y:=v; r

While £(x) # 0 do begin
f£y) i= x;

end;

¢

comment first loop ends with r = r(v);
1= ce(y);
comment second loop computes @(r(v),v) and modifies
pointers and values;

while x £ 0 do begin

y o= £(x);
d := a @ ce(x);
ce(x) := a; f£(x) := r; X :=7y;
et end;
EVAL := 3;
end EVAL;

We call this method of carrying out an EVAL instruction path

compression [3]. As a side effect, this procedure sets r equal to
the root of the tree currently containing v . It is easy to prove
that this implementation returns the correct value of EVAL(v) for
each EVAL instruction. Knuth [1l] attributes the path compression

idea to Tritter; independently, MeIlroy and Morris [20] used it in an
algorithm for finding minimum spanning tre§s. e call each tree defined

by the f array an f-tree.

10



Theorem 1.  For any intermixed sequence of m > n EV. instructions
and n-1 LINK instructions, the running time of the path compression

algorithm is  O(m - max(1, logg(ne/m) / log,(2m/n))) .

Patterson [29] proved Theorem 1 for the case m = n ; a proof for
arbitrary m > n appears in [36]. The bound in Theorem 1 is tight
for values of m and n satisfying, for some positive constants c
and e, m<cn orm> cnl+€

Let (T,r) be the rooted tree defined by the n-1 LINK instructions
(with no path compression). For any vertex v in T , let d(v) be
the number of descendants of v , including v itself. We Say T is
balanced if v »w in T implies 24d(w) < d(v) . If T is balanced,
the path compression algorithm is faster than indicated by the Theorem 1
bound.

Let the function A(i,x) on integers be defined by A(0,x) = 2x
for x >0 ; A(i,0) = 0 for 1 >1 ; A(i,1) = 2 for i >1;
A(i,x) = A(i-1,A(i,x-1)) for i >1 , x > 2 . A(i,x) is a slight
variant of Ackermamn's function [1 ]. Let
a(m n) = min{z >1 |A(z, 4Im/nl) > log, n} where [x1 denotes the
smallest integer not less than x . For fixed n , the function

a(myn) decreases as m grows.

Theorem 2 [36]. The path compression algorithm runs in O(m a(m,n))

time if the tree T defined by the LINK instructions is balanced.

Our goal is to devise alfunction evaluation algorithm which
requires O(m @(m,n)) timg foy all trees T . We will accomplish

this by representing an arbitrary tree as a combination of a balanced

11
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tree and a set of paths, and constructing an efficient function

evaluation algorithm for paths.
For @ operations with a suitable kind of inverse, we can achieve
the O(m o(myn)) bound for arbitrary trees with much less trouble than

in the general case. Suppose that there is a Boolean function Z(x) on
i

the domain of @® and another function I(x) from the domain of ® into
the domain of ® satisfying

(1) Z(x) = true implies y@x = x for all y ;

(11) 2(x) = false implies Z(I(x)) =~£3£§e and y®x+I(xLy for

all y ; and

(1ii) 2(x) =2(y) = false implies z(x@y) = false

Then we can modify the implementation of LINK so that the EVAL instructions
are performed on a balanced tree, regardless of the structure of T .

For this purpose we need a third array, d(v) , which records the
number of descendants of each vertex v in the set of trees constructed

by the modified LINK procedure. The new version of [,INK appears below.

procedure LINK(v,w,x); begin
EVAL(v) ;

comment this EVAL instruction, as a side effect, sets r

equal to the root of the f-tree currently containing v;

ry = rj
EVAL(w) ;
T, i= I
if 2(x) then _c_g(re) 1= x@_c_g(rg)

else if d(rl) > d(re) then begin
comment make r, a child of r

2 1
d(rl) = d(rl) + d(re) 3
£(ry) = ry;
ce(ry) := I(ec(ry)) @xdcc(ry);

end else begin

12



comment make r, a child of T3
alry) 1= d(r)) + (ry);

f(rl) =13

ce(r,) := x@ce(r,);

22(1'1) = I(Eg(rz)) 69_2(1'1);

end end LINK;

We must, in addition, modify EVAL to return the value cc(r)@a
instead of a .

We call the new implementation of LINK and EVAL path compression

with balancing. Suppose this implementation is used and let T' be

the tree such that v -»w in T* if and only if v is the first
non-zero value assigned to f(w) . T' and T differ in that certain
parents and children are exchanged, and certain edges in T are missing
from T' . It is easy to show that T* is balanced and that LINK
adjusts the cc array in such a way that all EVAL instructions return
correct values [2,13,21]. By Theorem 2, path compression with balancing
requires O(m ¢(m,n)) time for an arbitrary instruction sequence.

Morris [20] apparently originated the balancing idea. It also
appears in [16]. Discussion, analysis, and applications of path
compression with balancing appear in [2,3,13,21,36].

We can modify the LINK instruction to save n words of storage
if storage is at a premium, The value of d(v) is only of interest
when f(v) = 0 ; thus we can store values of d(v) in the f array
if we add a Boolean array to indicate whether £ (v) represents a
pointer or a count of descendants.

For sane applications it is useful to generalize the LINK
instruction to allow w to be a vertex other than a tree root. Such

an instruction GLINK(v,w,x) can be implemented as follows:

13
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Procedure GLINK(v,w,x); begin
Y := EVAL(v);
comment r is now the root of the f-tree containing V;
LINK(r,w,y ®x) ;

end GLINK;

14



4, Two Previous Applications.

This section presents two previous applications of path compression
with balancing. The algorithms constructed for these applications will
be used in succeeding sections.

The first algorithm computes unions of disjoint sets. We can use
the algorithm to represent equivalence relations [25]. Suppse we are
given n disjoint sets, each containing one element, and each having a
distinguishing name. We wish to carry out two types of instructions
on these sets. The instruction types are: FIND(x) : return the name
of the set containing element x . UNION(A,B) : add the elements
in set B to set A , destroying B

To carry out these instructions, we use four arrays, cc(x) , d(x) ,

. f(x), and r(d) . We define x®y = x for all x, vy, and I(x) = x ,
Z(x) = false , for all x . We initialize cc(x) to be the name of

the set initially containing x , d(x) to be one, f(x) to be zero,
and r(A) to be the single element initially in set A . Then we use
path compression with balancing to carry out UNION and FIND instructions

as follows:

-

procedure FIND(x);
W..(x) ;

procedure UNION(A,B);
LINK(r(4) , r(B) , A) ;'
The time required for m > n FINDs and n-1 intermixed UNIONs
is O(m a(myn)) . The space required is O(n) . Since ® is so
simple, the procedures for EVAL and LINK can be shortened somewhat

for this special case. This set union algorithm is useful for handling

15
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EQUIVALENCE and COMMON statements in FORTRAN [8,16], finding minimum

spanning trees [10,33], and checking flow graphs for reducibility [37].

The second algorithm, due to Aho, Hoperoft, and Ullmen [2],

computes least common ancestors in a rooted tree. TLet (T,r) be a

rooted tree and let [{vi,wi}} be a set of m vertex pairs. We wish

to compute ICA(v,,w,) for each pair. The following method uses the

set union algorithm to carry out the computation.

Step 1:

Step 2:

Step 3:

Step 4:

We can prove that this algorithm works correctly by using properties

Number the vertices of T in postorder. Idemtify each
vertex by its number.

Sort the pairs {vi,wi} so that v, <w, for all i and
v:.LSV;i for all 1 < J

for v :=1untiln§.2

initialize a set {v} named v; ,

o°

for w := 1 - n -

for {vi,wi} such that w, =w do'
ICA(vi,wi) i= FIND(Vi);

let u be the vertex such that u - w in T;

UNION(u,w) ;
! ‘

end;
laa o d

of depth-first search; the postorder numbering corresponds to

a depth-first search of the tree (T,r) ., See [(2,34,37,38]. If there

are m >n vertex pairs, the method requires o(m a@(m,n)) time and

O(m) space to compute least common ancestors.

16



5. Representation of an Unbalanced Tree.

Let (T,r) be a rooted tree. Tor each vertex v let d(v) be
the number of descendants of v in 7 , and let f(v) be the parent
of v in T (f(r) =0) . If v -w in T , we say the edge (v,w)
is good if 2d(w) < d(v) and bad if 2&(w) > d(v) . For each vertex
v there is at most one bad edge (v,w) . Let b(r) = 0 and for
v # r let b(v) be the unique vertex such that b(v) & £(v) in T,
the path T(b(v),f(v)) contains only bad edges, and f(b(v)) # 0
implies (f(b(v)),b(v)) is a good edge. Let TB be the tree with

edges {(b(v),v) | v # r}. (See Figure 1.)
Theorem 3. TB 1s balanced.

Proof. For each vertex v , let d'(v) be the number of descendants
of v in TB . 1If (f(v),v) is a bad edge in T, d'(v) =1 . Thus
2d'(v) = 2 < a'(b(v)) . If (f(v),v) is a good edge in T , then

d' (v) =d(v) . Thus 2d'(v) = 24(v) < d(f(v)) < d(b(v)) = d'(b(v)) .

In either case 2d'(v) < d'(b(v)) , and TB is balanced. O

For the purposes of the function evaluation problem, we can represent
- any tree T by the correspo n,iing balanced tree TB and the set of

paths defined by the bad edges/ Each edge (b(v),v) in TB has an
associated value cb(b(v),v) = @I(b(v),v) . Given any vertex pair

(r(v),v) , we can represent @I,(r(v),v) as

@r(r(v))v) = c(r(v),x) @ [ @T(X:Y)] ® c(y,2z) ® | @TB(Z’V) ]

where (r(v),x) 1is an edge of T, X 5 y by a path of bad edges

*
in T, (y,2z) is an edge of T, and z - v in TB .

7



We can modify IINK to update the tree TB and the set of bad

edges, and modify EVAL to compute @I(r(v),v) using the decomposition
above. LINK requires six arrays:.. cb(v), ce(v) r b(v) r £(v) s
s(v) , and d(v) . For each vertex v , f(v) is the parent of v

in T , cc(v) is the value of edge (f(v),v) in T , s(v) is a
list of the children of v in T , and d(v) is the number of
descendants of v in T . The pointers b\(v) represent the tree TB ,
and cb(v) is the value of @rB(b(v),v) =>@I,(b(v),v) . Initially
eb(v) =cc(v) =0, b(v) = £(v) =0 ,s(v) =@, and d(v) = 1 for

each v .
As soon as a LINK(v,w,x) instruction occurs, we can compute the
value of d(w) . Thus, for each child u of w in T , we can decide

whether (w,u) is a good edge or a bad edge. If (w,u) is a bad edge,

we use a procedure LINKP to add the edge (w,u) with value cc(u)

to the set of bad paths. If (w,u) is a good edge, we find all
vertices y such that (wy) is an edge of TB , and for each such y ,
we add (w,y) with value @r(u,y) to TB . The program below
implements this computation. The program uses a recursive procedure

DFS to find, for each good edge (w,u) , the vertices y such that
(w,y) is an edge of TB . The program assumes the existence of a

“procedure LINKP for adding edges to bad paths.

18



procedure LINK(v,w,x); begin
procedure DFS(y,a);
for zes(y) do begin
b(z) := u;
ob(z) = adee(y) s
if 2'a(z) > d(y) then DFS(z, cb(2));
end DFS;
a(v) :=d(v)+ d(w);
co(w) = x3
add w to s(v);
for ues(w) do if 2'd(u) >d(w) then
LINKP(w, u, cc(u));

else begin
c := 0,

DFS(u,c);
end end LINK;

Consider 'this program. The time required for n-1 calls on LINK
is O(n) plus the time for all calls on DFS and LINKP . Each
recursively nested call on DFS causes b(z) to become non-zero for
a new value of z . Thus the total number of calls on DFS is O(n)
The time required for all calls on DFS is proportionalto the total
number of calls, so this time is O(n) , and the total time for n-1
LINK instructions is 0O(n) plus the time required for the LINKP
instructions.

The following program implements the EVAL instruction. The program
assumes the existence of a procedure EVAIB which uses path compression
on TB to compute path values in' TB . EVALB is identical to the path
compression algorithm in Section 3 except for the use of arrays b(v) ,
¢b(v) in place of f(v) ,f ggkv) . The program also assumes the existence

of a procedure EVALP which Q&uput?s path values on the set of bad paths.

j
I i
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procedure EVAL(v); begin
a := EVALB(v);

comment as a side effect EVALB(v) sets r equal to the root

of the tree containing v in the part of TB so fax

constructed;
X 1= r}
if f(x) #0 then a := EVALP(f(x))®cc(x) ®a;

comment as a side effect EVALP(f(x)) sets r equal to the
root of the tree containing f(x) in the set of bad
paths so far constructed;
a :=ce(r) @a;
EVAL := a;
§¥E§ EVAL;

Suppose we execute a sequence of m EVAL instructions and n-1
intermixed LINK instructions. The EVAL instructions require O(m) time
plus the time required for m EVALB and m EVALP instructions. The
EVAIB instructions carry out path compression on the balanced tree TB
and by Theorem 2 require O(m a@(mn)) time. Thus the entire sequence
of instructions requires O(m &(m,n)) time plus the time for the
LINKP and EVALP instructions.

To complete the algorithm we need a way to implement function

evaluation on a set of paths; that is, to implement LINKP and EVALP.

- The next two sections present two ways of doing this so as to achieve

an O(m a(m,n)) time bound. The algorithm of Section 6 is quite
simple but is only valid for the special case when xgpy = max {x,y} .
The algorithm of Section 7works for all operations % but requires
certain advance knowledge about the sequence of EVAL and LINK

instructions.
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6. An Algorithm for the Operation max{x,y} .

In this section we assume that x®y = max{x,y} . The special
properties of mex{x,y} allow us to construct a réasonably simple
function evaluation algorithm for the set of bad paths. The algorithm
uses the disjoint set union algorithm of Section 4, in combination

with the following theorem.

*
Theorem 4. Suppose x =y 22 in T . Then @ (x,5) < ® (x,2) .

* % ,
If wox=>y -2z 1in T and 9 (xy) = ®(x,2) , then ®(w,y) = ®(w,2) .

Proof. Obvious. O

-

For any vertex v , consider the set of vertices w such that
*
v »w by a path of bad edges in T .By Theorem 4 we can partition

this set of vertices into a collection of sets §, such that each S.1

i

consists of the vertices on a path of T , all vertices WesSi have

the same value of &(v,w) (denoted by @Si), and if weS, , X e S.J,
*

it3, w—»x,then@Si<@S.J.

Our function evaluation method for the bad paths uses the set

union algorithm to keep track of the sets Si and'their associated

values @Si .  The algorithm uses as the name of the set Si the
vertex wes, such that x ESi implies w x in T . The algorithm
uses two arrays, max(v) and t(v) . Initially max(v) = -= (= 0)
and t(v) = 0 . As the algorithm proceeds, max(v) = @Si if v 1is

the name of set Si , and t(v) =w 1f v is the name of a set Si

and w is the name of a set Sj such that v 2 X a w implies
)cesilJSj . Initially each vertex v is in a singleton set (v)

named v.
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The algorithm also needs a mechanism to keep track of the vertex

r(v) which is the first vertex on the path containing v in the set

of bad paths so far constructed. Two arrays, last (v) and root (v)

are used for this purpose. Ipnitially last(v) = root(v) = v for all

vertices. As the algorithm proceeds, isst(ghe last vertex on
the path containing v in the set of bad paths so far constructed,

and root (last(v)) is the first vertex on this path. The following

programs implement LINKP and EVALP.

procedure LINKP(v,w,x); begin

last (v) := last(w);
root}last(v)) = V;
max(w) := X;

t(v) 1= w;

while (W) # 0) and (max(t(w)) < x) 49 begin
UNION(w,t (w)) ;
t(w) = t(t(w));
end end LINKP;

procedure EVALP(v); begin

r := root (last(v));
EVALP := max(FIND(v));
EEE, EVALP;

Execution of n-1 LINKP and m intermixed EVALP instructions

requires O(m Q(m,n)) time. Using this implementation in combination
with the decomposition method of Section 5gives an 0O(m @(m,n)) time

function evaluation method for the special case of x®y = max{x,y} .

The method requires O(n) storage space.
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T. A General Algorithm.

To achieve an O(m a(myn)) bound for an arbitrary operation @,
we must make an assumption about the sequence of EVAL and LINK
instructions. We assume that the entire sequence of EVAL and LINK
instructions, with the exception of the x parameters in the LINK
instructions, 1is known in advance. Thus we can precompute the trees
T and TB, and determine in advance the paths Vv %w over which we
must compute @ (v,w) .

We represent the set of bad paths by two sets of balanced trees,
TR and TL . Consider any bad path and suppose its vertices are
numbered in postorder from 1 to k. Let v and w be vertices
on this path for which we want the value of @®(v,w) . TWe compute
® (v,vw) as ® (v,w) =[@(v,u)] ® [ ®(w,w)], where u = (2j+1)2*
is the vertex with largest i in the range w <u < v .

To compute' @ (u,w) , we use a forest TR . TR is the set of
trees with vertices 1 through k such that the father of vertex

i+l (See Figure 2.) The value of an edge (x,y)

(25+1)2* is (§+1)2
in TR is @r(x,y) . TR is a set of balanced trees numbered in
- postorder. We can use path compression in TR to compute

@T(u,w) . @I'R(u’w) .

.~ To compute ®(v,u) , we use a forest TL . TL is the set of

trees with vertices 1 through k such that the father of vertex
(25+1)2" is ;121+l . (See Figure 3.) The value of an edge (x,y)
in TL is @r(y,x) . TL is a set of balanced trees numbered in
preorder. If we define x®'y = y®x , then @r(v,u) = @iL(u,v) for

* 0
any pair of vertices (v,u} such that u -v 1in TL .
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The idea we want to use is to compute C&(vnﬁ = G%thv) for
appropriate pairs (v,u) by using path compression in TL . This
idea does not work directly, however, because compressing a path
uy A v; in TL may cause a later pair (u2,v2) to become unrelated
in TL .  (See Figure 4.)

To solve this problem, we use the fact that we can precompute
the trees T , TB , TL , and TR and the paths over which we wish
to evaluate. We reorder the paths in TL so that path compression
will work, and we symbolically compute values for each appropriate
path in T , TB , TL , and TR. This symbolic computation works as
follows. We construct a unique identifier e for each edge (v,w)
of T, with f(e) = v, g(e) = w . For each path T(x,z) , the
value of which we wish to compute as @, (x,2z) = [ 2.(6y)] o[ ®n(v,2)]
we also construct a unique identifier e , with f(e) = x, g(e) =z,
p, (e) = e p, (&) = e where e identifies the path T(x,y)
and e, identifies the path T(y,z) .

After constructing identifiers to represent the entire computation,
we reorder the identifiers in a way consistent with the order of the
EVAL and LINK instructions. Then we read through the identifiers
and the EVAL and LINK instructions, carrying out the computation.

The algorithm, presented below, has six steps.

Step 1: Initialize all variables. Construct T . Compute d(v)
for each vertex of T

8tep :  Construct TB , TR , TL . For each EVAL(v) instruction,
find the vertex r such that EVAL(v) = ®(r,v) and

construct identifiers e 1 e5 r e such that
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®(r,v) = [@h‘(f(ee):r) Jol @T'R(f(;eg),g(ez))]
® c(f(ez),g(ei)) @[ ®TB(f(eh)’g(eh)) 1.

Use path compression to symbolically compute values for

appropriate paths in TB and TR .
Step :  Sort the pairs (f(ey),r) in decreasing order on d(£(ey)) .
4tep :  Use path compression to symbolically compute values for appropriate

paths in TL. For each pair (r,f(ee)) ; construct an identifier e
Step 5: Sort the identifiers e in increasing order on d(f(e)) ,

breaking ties in decreasing order on d(g(e))
Step 6: Process%the identifiers and the LINK and EVAL instructions

in order, carrying out the actual evaluation.

This algorithm hinges upon the symbolic computation and the
reordering of identifiers so that the actual computation proceeds
in an order consistent with the order of the EVAL and LINK instructions;
the x values occuring in the 'LINK instructions may depend on the
results of previous EVAL instructions. Since d(v) > d(w) implies
V=w or -(w 5 v) in T , the sorting in Step 3 guarantees that
the path compression in Step 4 will work. Furthermore Step 5 sorts
the identifiers e so that plﬁﬂ and pé(e), if defined, precede e ,
end if e, precedes e, and e; and e, identify edges of T , then
the LINK instruction corresponding to e precedes the LINK

instruction corresponding to & -

If all the x values in LINK instructions are known ahead of
time, as in the static evaluation problem mentioned in Section 3, we
can dispense with Steps 5and 6and the symbolic computation and
carry out all the evaluations directly. We must still reorder the

evaluations on the forest TL using Step 3.
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The algorithm uses thirteen arrays and one array of lists.

For each vertex v ,  et(v) is the identifier of the edge from

the parent of v to v in T .- Arrays € , e r el similarly

represent TB , TR , TL . For each vertex v , d(v) is the number
of descendants of v in T , and g(y) is a list, of children of v
in T .

vertex on each bad path as described in Section 6.

h (v)

the bad path containing v | The array c(e) is used to store values

Arrays root(v) and last(v) are used to find the first

For each vertex v ,

is the number of vertices (including v ) from v to the end of

computed for the identifiers in Step 6.For each vertex v , the

algorithm constructs a dummy identifier e with f(e) = g(e)
$tep : for v :=l%ng‘gb~%§,&
et(v) := eb(v) := er(v) := el(v) := 0;
f(v) := g(v) := root(v) := last(v) i= v;
d(v) := h(v) := 1;
s(v) := @3
c(v) := 03
31;12; .
k := nj

ident := list := ¢;

for i := 1 until m+n-1 do

if instruction i is LINK(v,w,x) then begin
d(v) := d(v)+ d(w);
k = ktl;
et(w) = kj
£(k) := v; g(k) := w;
s(v) := s(v) U {w};
g}lci Step 1;
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Step 2: for 1 := 1 until m+n-1 do
if instriction i is LINK(v,w,x) then begin
if 2'd(v) > d(w) then LINKP(v,w)
else DFS(w);
end else begin
let instruction i be EVAL(v);
EVAL(v, eb, eh) H
AE et(£(e, (1)) = 0 then ex(1) = v
slee e5(1) = eb((e,(1)));
EVAL(f( 33(1)):ﬂ: 92) 5
r :=_root(last(f(e,(1))));
list := list U {(f(ee(i)),r, i)l
end Step 2;

procedure DFS(x); |
for ves(x) do begin
if f(et(y)) = w then eb(y) := et(y)
k := ktl;
£(k) == £(eb(x)); g(k) :=y; p, (k) := eb(x);
Py(k) := et(y);

eb(y) := k;
ident := ident U {k};

end;
if 2*a(y) > d(x) then DFS(y);

end DFS;

An examination of Figures 2 and 3 verifies the following facts, which
form the basis for procedure LINKP(v,w) below. Let h(v) = (2,j+1)2i
be the number of vertices (including v ) from v to the end of the
bad path containing v . Then {(goe_l)‘(w) |0 <2 < i-1) is the set
of children of v in TR . If i =0, w is the parent of Vv
in TL ; if i >0 and j >0, (geel) i(w) is the parent of v

in TL ; and if i>0 and j=0, v has no \parent in TL
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RxQgeedure LINKP(v,w) ; begin
h(v) := h(w)+1;

J = h(v); .

if j is odd mﬂ(") = et(w)
er(w) := et(w);
j o= 3/2;

z = el(w);

Wide I is evenid degin
k := ktl;
(k) := v; g(k) = g(z);
py(k) := er(£(z)) ; pylk) t= z;

er(g(z)) := k;

ident := identy {k};
I o:= el(g(z));

end

if e(z) £o then begin
k := ktl;
£(k) = v; g(k) := gl
Py(k) := er(2(z)); p,(k) := z;
idemt- identy {k};
el(v) := k;

e end end LINKP;
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procedure EVAL(v,e,ei);

if e(v) =0 then ei(i) :=v
else if e(f(e(v))) = 0 then ei(i) := e(v)
X :=0; y:=e(v);

while e(f(y)) £ 0 do begin

e(e(y) ) :=xi x :=y; y := e(£(y));

&nd;
while x # 0 do begin
k = ktl;

£(k) := f£(y); g(k) := g(x)

g(x);
Pi(k) = e(£(x)); py(k) := x;

X := e(g(x));
e(py(k)) = k;
ident := ident U {k};

end;
ef{i) := k;
end BVAL;

Step 3: Using a radix sort, order the triples
in decreasing order on d(z) .
Step 4 for (z,r,i) elist do

iﬁiz = r then e, (i) = r

else if z = g(el(r)) then e, (i)

X 1= 0; y := el(r);
while el(g(y)) # 0 do_begin
el(f(y)) :=x5x:=y;y

end;
dile x £ 0 do begin

k 1= kel

g(k) :=g(y); £(k) :=

pp(k) := el(g(x)); py(k)

X 1= el(f(x));

el(p;(k)) := k;

ident := ident U {k};
end;

e, (1) :=k;
end Step 4

)
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i= el(r)

1= el(g(y));
f(X)‘;

1= x;
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—

Step 5:

6tep

Initialization and construction of T , TB , TR , TL require O(n)

time. The path compressions and symbolic computations in Steps 2 and k&

Using a two.pass radix sort, order the identifiers e on

ident in increasing order on d(f(e)) , breaking ties in
decreasing order on d(g(e))

for i := 1 until mtn-1 do
if instruction i is LINK(v,w,x) then begin
c(et(w)) := x;
for j eident such that f(j) = v do
e(3) := e(py(3)) De(py(3))s
end else begin
let instruction i be EVAL(v);
return o(e; (1)) ®(ey(1)) @c(ez(1)) e(e (1))
as the result of instruction i;
end Step 6;

-~

require O(m o(myn)) time. Step 3 requires O(m) time and space,

and Step5 requires 0(a(m,n)) time and space, since O(m Q(m,n))

identifiers are constructed. Step 6 requires O(m a(m,n)) time.

Tpus the entire algorithm requires O(m %(myn)) time and space. The

corresponding algorithm for the static function evaluation problem

(omitting Steps 5and 6and the symbolic computations) requires

O(m o(myn)) time and O(m) space. It is possible to save storage

space in the algorithm for the dynamic function evaluation problem by

delaying evaluation on TB and TR until Step6when the values are

actually known and using symbolic computation only on TL . However,

this saves at most a constant factor in running time and storage space.
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8. Verifying a Minimum Spanning Tree.

This section presents a simple, direct application of the
function evaluation algorithm. Let T be an arbitrary tree
and let ® be a commutative, associative operation. 1et each
edge (x,y) of T have an associated value e(x,y) which is
in- the domain of @.For any two vertices v and w in T , let
® (v,w) = C(Vl: V2) ® C(V2,V3) ®...® (vk’vk+l) , where
T(v,w) = (vl,va) s (v2,v3) 3 eeey (vk’vk-l-l) . The problem we solve is
this: given a set of m pairs of vertices {{vi,wi}} , compute
@(vi,wi) for each pair.

Our algorithm‘;l an application of the least common ancestors
algorithm of Section ¥ and of the function evaluation algorithm,

. appears below.

Step 1: Pick an arbitrary vertex r of T and convert T into
a rooted tree (T,r) .
Step 2: For each pair {vi,wi} , compute x. = ICA(vi,wi) using
the algorithm of Section L.
Step 3: Compute ar(xi,vi) s @r(xi,wi) for each pair {vi,wi}
using the static version of the function evaluation algorithm

and combine the answers to give @(vi,wi) for each pair.

This algorithm requires O(m a(m,n)) time and O(m) storage
space.

The algorithm has several interesting applications. Suppose
c(v,w) is a real value representing the cost of edge (v,w) , and let

X®y = xty . Then the algorithm computes the total cost of each of
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a set of m paths T(vi’wi) . In this case ® has an inverse and

we can use path compression with balancing, as described in Section 3,
to carry out Step 3. See [2] for a similar solution to a problem
requiring computation of depths in rooted trees.

Suppose ¢(v,w) is & real value, and let x®y = min{x,y} . Then
the algorithm computes the minimum value along each path T(vfwi). In
this case we can use the algorithm of Section 6to carry out Step 3.
This problem arises when determining the minimum cut (or maximum flow)
between given pairs of vertices in an undirected graph with edge weights.
Gomory and Hu [22] have given a method for constructing, for any
undirected graph G with edge weights, a tree T such that
(1) T has the same vertices as G , and
(ii) the value of the minimum cut between any pair of vertices v

and w in G is equal to the minimym edge:value on the path

T(v,w) .

Thus, we can use the algorithm above to compute minimum cut values for
a set of vertex pairs, assuming that the cut tree T is given.
Suppose G = (V,E) is a graph with real values e(v,w) on its

edges and T = (V,E') is a spanning tree of G . We say T is a

minimum spanning tree if 2 e(v,w) is aminimumamong all
(v,w)eE!
s-panning trees of G . We wish to test whether T is a minimum

spanning tree. The following well-known theorem allows us to apply

the algorithm above.

Theorem 5. T is minimum if and only if, for each edge (v,w) ¢E-E' ,

c(v,w) > max{c(x,y) I (%,y) is on T(v,w)
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Thug, if G has m edges, we can test whether 'I' is minimum
in 0(m a(myn)) time by computing @T(v,w) for each non-tree edge
(vyw) using the algorithm above with x®y = max{x,y} and applying
the test of Theorem 5. This result is interesting because the best
known algorithms for actually finding a minimum spanning tree [ 10,33,40]

require O(m log log n) time.

9. Finding Dominators.

Several interesting graph-theoretic problems arise in the study
of global flow analysis and optimization of computer code. This section
discusses a problem of this type. A flow graph (G,r) is a directed
graph with a distinguished start vertex r such that there is a path
from r to each node in G . Vertex v dominattes,vertex w in

flow graph (G,r) if v # w and every path from r to w contains v .

Vertex v is the immediate dominator of w , denoted v = idom(w) ,

if v dominates w and every other dominator of w galso dominates v .

By convention idom(r) = 0

Theorem 6. Every vertex of a flow graph (G,r) except r has a
unique immediate dominator. The edges {(idom(w),w) | we V-{r}} form

a-directed tree rooted at r , called the dominator tree of (G,r) ,

such that v dominates w if and only if v 2% in the dominator tree.

Proof. See [6]. O

We wish to construct the dominator tree of an arbitrary flow graph

(d,r) . Reference [6] describes uses of the dominator tree in global
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code optimization. Aho and Ullman [6] and Purdom and Moore [30] have
given simple O(mm) time algorithms. Reference [34] gives a more
complicated O(n log n + m) time algorithm and [38] gives a simplified
version of this algorithm. Here we use extensions of the ideas in
[34,38] to develop a new algorithrr;‘ which uses path compression to
achieve an O(m o(m,n)) time bound.

We need ne new concept, that of a depth-first spanning tree.

Let (Gyr) be a flow graph with ¢ = (V,E) , and let (T,r) be a
directed spanning tree of G rooted at r , with T = (V,E') . Let

T have a postorder numbering and assume that vertices of T are
identified by number. (T,r) with the given numbering is a depth-first

spanning tree—-(DFS tree) of (G,r) if the edges of E-8' can be

partitioned into three sets:

(1) a set of edges (v,w) with v ~% in T , called forward edges;

*
(i1) a set of edges (v,w) with w = v in T , called cycle edges;
(111) a set of edges (v,w) with neither v »w nor w -%v , but

with w > v, called cross edges.

A DFS tree is so named because it ¢an be generated by starting at
r and carrying out a depth-first search of G . A properly implemented
algorithm requires O(m) time to carry'out such a search [35], using
~a set of adjacency lists [4,26] to represent G . The search generates T ,
numbers the vertices in postorder, and partitions the edges into tree
edges, forward edges, cycle edges, and crossedges. Henceforth we assume

that (T,r) is a DFS tree of G and that vertices are identified by

number.

Theorem 7. If v>w, any path from v to w in G must contain

a common ancestor of v and w in T
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Proof. See [34,35]. O

We will calculate idom(w) for each vertex w by processing the
vertices in order, from smallest to largest. For 0 <k <n, let
G = (v, {(v,w) | (v,w) €E and w < k}) . Gy = (V) ; G, =G . For
0<k<n and 1 <w<n let dom(k,w) = max{v | there is a path
from v to w in Gk] . It is clear by examining T that
dom(k,w) > max{k,w} for all k and w , and dom(k,w) > k if
k >w and w<n . Furthermore, it follows from Theorem 7that
dom (k, w) 5 w for all k and w . We prove some more facts about

dom (k,w) which enable us to calculate it.

Theorem 8. dom(k,k) = mex{dom(k-1,v) | (v,k) is an edge} if k < n .

Proof. Obvious. C1l

For 0<k<n, 1l<w<n, k>w, let a(k,w) be the smallest
ancestor of w larger than k . Define c¢(v,w) = dom (w,w) for all

edges (v,w) ET , .and x®y = max{x,y} .

Theorem 9. If k>w, dom(k,w) = @ (a(k,w),w) .

Proof. Clearly there is a path from @ (a(k,w),w) to w in G s
so dom(k,w) > ®(a(k,w),w).We prove by induction on k that k > w
implies dom(k,w) < @(a(k,w),w) . The hypothesis is clearly true for
k = w . Suppose the hypothesis is true for some k and consider the
path in G, from dom(k+l,w) to w . If this path does not contain
kt1 , then dom(k+l,w) = dom(k,w) < ®(a(k,w),w) < @ (a(ktl,w),w) by

the induction hypothesis. If this path does contain ktl1 , then k1l >w
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implies the path from k+t1 to w in Grepy contains a common ancestor

of kt1l and w , which must k1 . Then dom(k+l,w) = dom(k+l, k+l)

< @(a(krlw),w) . O

Theorems 8and 9allow us to compute dom(w,w) for each vertex

w <n by using path compression. We simply execute the following loop.

for w := 1 until n-1 do
dom(w,w) := [max{v | (v,w) €E and v > w)]
® [max{EVAL(v) | (v,w) €E and v < w}];
—. let v-win T;
LINK(v,w, dom(w,w)) ;

end;
lanarad

The next theorem shows how to use the values dom(w,w) to compute

immediate dominators.

Theorem 10. Let v g n . If no vertex u satisfies u Ky ’
dom(u,u) > dom(v,v) > u , then idom(v) = dom(v,v) . Otherwise, let
u be the smallest vertex such that u = v and dom(u,u) > dom(v,v) > u .

Then idom(v) = idom(u) .

Proof. Clearly no vertex except dom(v,v) on the tree path from
dom(v,v) to v can dominate v . Suppose no vertex u satisfies
uly s dom(w,u) > dom(v,v) > u . Consider any path from n to v .
Let x be the last vertex on the path with x >__d__oLn(v,v) . If there
is no such vertex then dom(v,v) = n and dom(v,v) dominates v .
Otherwise, let y be the first vertex following x on the path with

* * ’
dom(v,v) » y - v .All vertices z between x and y on the path
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must satisfy z <y by Theorem 7 and the choice of x and y. Thus
dom(y,y) > x > dom(v,v) . By the hypothesis this means y = dom(v,v)
(y =v is impossible since then there is a path from x > dom(v,v)
to v in G, ). Thus dom(v,v) lies'on the path from n to v

Hence dom(v,v) dominates v , and idom(v) = dom(v,v) .

Conversely, suppose some vertex u satisfies! u t v,
dom(u,u) > dom(v,v) > u . Pick the minimum such vertex u . Clearly
no vertex which does not dominate u can dominate v . Thus every
vertex which dominates v dominates u . Now we need only show that
idom(u) dominates v . Consider any path from n to v . Let x
be the last vertex on this path satisfying x > idom(u) . If there
is no such x , then idom(u) = n dominates v . Otherwise, let y
be the first vertex following x on the path and satisfying
idom(u) 5 y b v . All vertices z between x and y on the path
must satisfy z <y by Theorem 7 and the choice of x and y . Thus
dom(y,y) > x > idom(u) > dom(u,u) . Hence y cannot lie between

idom(u) and u , or equal u , since otherwise idom(u) would not

dominate u . Also y cannot lie between u and v by the choice
of u . Furthermore y # v since y = v implies there is a path
from x > dom(u,u) > dom(v,v) to v in G, - The only remaining

possibility is y = idom(u) . Thus idom(u) lies on the path from

nto v, and idom(u) dominates v . DI

We use the set union algorithm and Theorem 10 to compute immediate
dominators. First we sort the pairs (dom(v,v),v) so that (ul,vl)

precedes (uE’Vz) if and only if u < w, or u; =u, and v; > v, .
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|
We use a two-pass radix sort, which requires O(n) time. This

ordering has the feature that if (ul,vl) precedes (ue,v2)

Vi< Yy then u <, . Next we apply the set union algorithm.

and

Initially each vertex v 1is in a ‘singleton set containing only v
and named v. As the algorithm examines the pairs in order, vertex v
will be in the set named x if and only if x 1s the smallest vertex

* 0
such that x -» v and the pair (d_oﬂfx,X),X)\has not yet been examined.

Here is the computation.

Step 1: for each pair (dom(x,x),x) in order do begin
let u » x in T;
" UNION(FIND(u),%)
if FIND(dom(x,x)) £ FIND (x) then
begin idom(x) := FIND(x); flag(x) := true end
else idom(x) := dom(x,x); flag(x) := false end;

end;

Step 2: for 1 := n-1 step -1 until 1 do if flag(i) then
idom(1) :=_idom(idam(1));

The first loop constructs a set of pointers in array_idom(v)
using Theorem 10. The second loop uses these pointers to compute
dominators. The total time to compute_dom(w,w) values and

dominator values is O(m o(m,n)) using the function evaluation

algorithm of Section 6. The storage space necessary is O(m)
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10. Lower Bounds.

An interesting theoretic problem is to determine whether the
O(m a(myn)) bound is tight, for either the general function evaluation
problem or for interesting sp;cial cases. Perhaps surprisingly in
light of the dearth of lower bpund results, we can prove that the
O(m 2(myn)) bound is tight to within a constant factor, for various
cases of the function evaluation problem.

To prove lower bounds, we use the following formal setting.
Let (T,r) be a rooted tree on n vertices, with edge values
selected from the domain of an associative binary operation @ .
Given a set of m\pairs OG)WQ of related vertices, we desire a
lower bound on the number of @ operations required to compute
. ® (vi,wi) for all m pairs.

A computation sequence for the pairs (vi,wi) is a list of

assignments of the form x := y®z , where y and z are either
edges of T or are variables which have occurred on the left side

of some previous assignment, and each variable x occurs on the left
side of only one assignment. Corresponding to each pair (ving) is
a variable Xy such that, for all substitutions of values for the
edges, the variable Xs is assigned value @(Viﬂ%) when the
computation sequence is carried out. We prove that, in the worst
case, any computation sequence for m pairs must be of length at
least kma(m,n) , for some constant k . We prove this result for
various interesting operations @ . 1In some cases the lower bound
holds even if we allow a second operation to occur in the computation

sequence.
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Notice that our computation model allows only straightline

programs, with no branching. 1In certain cases the lower bound does
not hold if we allow branching. In other cases, we conjecture the
lower bound still holds but cannot prove it.

Consider any computation sequence, and let x be any variable
which occurs in the sequence. Corresponding to x is an expression
of the form x = c(xl,yl) ®...0 c(xk,yk) which gives the value
computed for x as a function of the edge values. Suppose the

computation sequence satisfies the following property.

(*) If x = c(xl,yl) ®.*%. @ (xk,yk) is the expression for any
variable x , then (x,y), . . (xk,yk) all lie on T(Vi’wi)
for some pair (Vi’wi)'

Order the pairs (vi,wi) so that if (Vi’wi) precedes (Vj’wj)
in the ordering and vi ,éJv , then ﬂ(xf_.*—o \3.) in T . For each
variable x in the computation sequence, assign the corresponding
expression to the first pair (vi,wi) in the ordering such that every
edge in the expression is on T(Vi’wi) .

Now associate with T and with the pairs (vi,wi) a directed
graph G* and a cost C as follows. 1Initially G* = T . Process
‘the pairs (vi,wi) in the order defined above. To process a pair:‘
(vi, wi) , let v, = Xy =Xy =X, T be the path in T from

1

v to w . Add to G* each edge (x.,x.,) with j, < j, which is
J1 32 1 2

. %
not already present in G . Let the cost of the pair (vi’wi) be
£;-1, where 5 is the length of the shortest path from vy to w,
. * .
in ¢ (before the new edges for (Vi’wi) are added). TLet the cost C
}

be the total cost of all pairs (vi,wi) .
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Theorem 11. The cost C is a lower bound on the length of any

computation sequence satisfying (*).

proof. Consider a computation sequence satisfying (¥). Assign the
expressions computed by the computation ”sequence to pairs (vi,wi) as
described above. Process the pairs (Vi’wi) in the order defined
above, a6 follows. Initialize ¢ =T. For each pair (vi,wi) ,

add edges to G* a6 described above, and compute the value of all
expressionbt assigned to the pair (vi,wi) )

For each pair (vi,wi) , the number of ® operations required to
compute all expressions assigngd to the pair (Vi’wi) is at least as
great a6 the cost; of (vi,wi) . To prove this, suppose the expression
for @(vi,wi) is computed as

{®{c(le’yjl) @ c(x32’yj2) @ s @ C(XJk’yjk)} ‘ l _<.. j S P} 2
- d d

where each expression inside the outer sum is assigned to a pair

previous to (Vi’wi) . We can order the expressions so that for some

r < p and for some UpsQzs =+ osdp 4

* * * *

T Yok, TUq T Vme, T T e TV

%*
v, = -y = X
i k1 1k 2q, 5

*
Then (X -,¥+, ) (%, 3¥op ) Jx%x  (x ,y . ) are edges of G
. 11°Y1k 1 ! 2q2 2k2 ’ ’ r:c‘q rrk

before pair (Vi’wi) is processed, and the number of expressions
combined to compute ®(Vi’wi) is no fewer than zi-l , wWhere lli

*
is the length of the shortest path from V; to w, in G before

i
m
(v,,w,) is processed. Thus C = X £.-1 is a lower bound on the
R ] p o 1

total length of the computation sequence. O
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Now we apply the very general lower bound result of [36], which

states:

Theorem 3.2 [36]. There is a constant k such that, for all m
and n with m >n, there is a tree T of n vertices and a

*
sequence of m pairb6 (vi,w for which the cost of ¢ is at least

)
kma(m,n) .

We have immediately; ,

Theorem 13. For any m >n, there is a static function evaluation
problem for m- pairs on a tree with n vertices such that any

computation sequence satisfying (¥) has length at least kma(m,n) .

The power of Theorem 13 lies in the fact that for many interesting
operation6 @, any expression which does not satisfy (¥) is useless in
any computation sequence; thus any minimum-length computation sequence

must satisfy (¥). Such operations include the following:

(1) Function composition over a suitably general function space.

(2) String concatenation.

(3) Set union. The lower bound holds even if set intersection is also
allowed as an operation.

(¥) Maximum over real numbers. The lower bound holds even if
minimum is also allowed.

(5) Boolean "and" over the domain [true, false] . The lower bound

holds even if Boolean "or" is also allowed.

We prove the lower bound for (5). Consider any computation

sequence which uses 2 (and) and v (or) to compute p (Vi’wi) for

L2



for a sequence of m pair6 (Vi’wi) . Such a computation sequence

corresponds to a monotone Boolean circuit for computing A (vi’w')
i

for all pair6 (vi,wi) . See [28,31] for lower bounds on the sizes
of restricted kind6 of Boolean circuits for other functions.
Let E be any expression involving A and v . Let = denote

truth value equivalence. Convert E into disjunctive normal form

E = E = (xllelQA . ../\xlil) V...V (xkl/\ . ../\xkik)

with i, <i, for 1< j < }? . Then E is equivalent to a conjunction,

1 J
namely I = (xllel.QA 0 @@@%".x ) , if and only if each variable X1,
1

in the first clause occur6 in all the clauses. It follows that if

E, VE A X ../\xi) , then either E, = (xlAXEA'”Axi)

1V 52 2N X3 A
or E, E(xl/\xz/\.../\xi)

E(xl/\x

Similarly, let E be any expression and convert E into

conjunctive normal form

E = E, =(yllvy12v...vylil)/\... A (yklv...vykik)

with i; <i, for 1<j<k. Then E is equivalent to a conjunction,

J
nam-elyEE(yll/\y2l/\.../\y!l),1f and only if 1i. = 1 for
1 < j_< 1 and each clause (371 VeeV¥ gy ) for 1 <j <k contains
J

pome variable Yp with 1 <p < £.Thus if E|NE, = (yl/\ye/\.../\yi) ,

1
then E, = (yl/\yel\.../\yk) a.ndEEE(yA.j.Ay4) | for some J , k
satisfying 1 <j <ktl <i . (Achieving this representation may

require renumbering the variables.)
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Now consider any camputation sequence which use6 A and v to

compute /\(vi,wi) for a set of m pairs (vi,wi) . Let E. Dpe

i

the expression computed for A(Vi’wi)’By the remarks above
A

a subsequence of the computation sequence must compute a sequence

of expressions Eil’Ei2""’Eik = Ei such that each Eij is either

an edge of T or is equivalent to EipAEiq for some p,q <J

Delete all assignment6 from the computation sequence except those
corresponding to expressions Ei:] . The resultant sequence still
computes A (vi,wi) for all pairé6 (vi,wi) and also satisfies (¥).

Thus by Theorem 13 we have:

Corollary 1. For any m >n , there is a rooted tree T of n
vertices and a set of m pairs (vi,wi) of related pair6 such that

any computation sequence l‘lsing A and v to compute A(vi, wi) for

all pair6 ha6 length at least kma(m,n) for some constant k .

The lower bounds for operation6 (3) and (4) follow from
Corollary 1; lower bound6 for operations (1) and (2) are immediate
from Theorem 13.

Several plausible lower bounds remain conjectures. We leave

. them as open problems.

(1) Prove a kmoa(m,n) lower bound for any operation @& which has
an inverse.
m

(2) Prove a kma(m,n) lower bound for computing v [ A (Vi’wi) ]
i=1

usingA and V,where {(vi,wi)} is a set Of pairs of

related vertices in a tree T

44




(3) Prove Corollary 1 if negation is also allowed as an operation.

(4) Prove that verifying a minimum spanning tree requires km Q(m,n)

comparisons in the worst case.
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Figure 2.

The set of trees TR for k
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Figure 4:  1nyalid path compression.

(a) Before compression of path (ul,vl) .

(b) After compression of path (ul,vl) .
_‘[,

In this tree —1(u2 - vz)
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