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Analysis of the Subtractive Algorithm for Greatest Common Divisors

Andrew C. Yao and Donald E. Knuth

Computer Science Department

Stanford Un.versity

To the memory of Hans A. Heilbronn, 1908-1975

An ancient Greek method (1) for finding the greatest common divisor

of two positive integers by mutual subtraction (& vet avar pedLg)

can be described as follows: "Replace the larger number by the

difference of the two numbers until both are equal; then the answer

1s this common value.” For example, the computation of ged(18,42)

requires four subtraction steps: {18,42} — {18,2k} - {18,6} ~

(12,6) - {6,6} ; the answer is 6 .

Let S(n) denote the average mumber of steps to compute gcd(m,n)

by this method, vhen =m 1s uniformly distributed in the range

1 <m <n. We shall prove the following result:

-2 2 2
Theorem. 8(n) = 6x (ln n)© + O(log n(log log n)") .
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1. Preliminaries.

Let |x| denote the largest integer less than or equal to x,

and let x mod y = x-y|lx/y] be the remainder of x after division

by y . We represent the continued fraction 1/ (x +1/ (xy: -.-4 x) ces ))

by fx)%5 5x J :

If 1<m <n, it is well known that there is a unique sequence

of positive integers qys--+»Q, Such that m/n = fa--9.,1f ,
vhere r = r(m,n) >0 . The number of subtraction steps needed to

compute gcd(myn) is precisely qy+ ...+q_ ; for this is evident

when m divides n , and otherwise qQ = n/m] subtraction steps

replace {m,n} by {m,n mod m} , where (n mod m)/m = Jay --q,,1f .
Therefore 8S(n) may be interpreted as one less than the average

total sum of partial quotients in the continued fraction representation

of fractions with denominator n .

Let us say that (x,x',y,y') 4s an H-represemnta“ion of n if

n=xx'+yy' , x>y>0 , ged(xy)=1 , and x' >y' >0. [1.1]

We begin our analysis with the following sharpened form of a fundamental

observation due to H. A. Heilbronn (3):
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Lemma 1. There is a 1-1 correspondence between H-representations of

n and orderzd pairs (m,j) where O <m <3n and > {J <r(mn) .
Furthermore if (x,x',y,y') corresponds to (m,j) , the j-th partial

quotient 9, in the continued fraction m/n = faa, ---59,10
is |x/y} -

Proof. Given 0 <m <in y let d = ged(myn) , r = r(m,n) , and
m/n = J 2,59, TRFLIRY J . Let m'/n = J La --05a,9, f s then

Zn <m' <n, and the correspondence m « m' between (0,3 n) and
(30m) is 1-1.

Now let (m,r) correspond to the H-representation

(m*/d,d, (n-m*)/d, qd) ;, and if (m,J) corresponds to

(x,5%3,¥4,¥3) for same Jj > 1, let (m,j-1) correspond to

(v, R 94%] +Y) ’ x, ayy x3) . It follows rerdily that Lxy/v, =a
for 1 <j <r and that yy = l , since this construction parallels

the contimed fraction process for a'/n .

To complete the proof, we start with a given H-representation

(x,X',¥,¥') and show that it corresponds to a unique (m,3) . This

is obvious if x' = y' , since the construction clearly treats every

such H-representation exactly once. If x' >y' , let x' = qy*' +x"

where 0 <x" <y' and g >1 . By induction on x' , the H-representation

(y*qx, y', X, Xx") corresponds uniquely to some (m,}) , where j > 1

since x > 1 ; hence (x,x',y,y') corresponds wniquely to (m,j-1) . O
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corollary. naS(n) =2T (x'y;+l-(nmui dM . where the oum ts over

all H-represeniations of n .

Proof. By the lemma, © |x/y] is the total number of subtractions

to compute ged(m,n) for 1 <m< ay n. It is also the tctal for
1

S5a<&<n, since {mn} and {n-m,n} both reduce to {m,n-m}

after ore step. Finally we add the cases m =n (0 steps) and |

he . Zo (1 step if n is even). [J

2. Reduction of the Problem.

Let T'Lx/y] denote the sum over all H-representations with

2'y <3n. Note that

x/y < nfx'y = xfy+y'/x' < x/yl , [2.1]

hence the excluded H-representations with x'y > sn have |x/y| =1.
Since r(m,n) = 0{log n) , we have

ILx/y) = T'Lx/y]+0(n log n) . [2.2]

Lemma 2. Given x',y >0 amd x'y < 3n » there exist H-representations
(x,x',¥,¥') of n if and only if

gcd(y,n) = ged(y,x*) . [2.3]

And when [2.3] holds there are exactly ged(y,n) TT(1-p™) such

Herepreseitations, where the product is over all primes p which

divide gcd(y:n) but not y/ged(y,n) .

Reproduced from
best available copy
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Proof. The necessity of [2.3] is obvious, since gecd(x,y) = 1 . Let

d = ged(y,n) = ged(y,x') = kx' *by' . The set of all s lutions

(x,¥') to n= xx'+yy' 4s given by ((an+qy)/a, (bn-qx')/a) ,

for integer gq . Exactly a values of q will satisfy

O <bn-gx' <adx' , 1.e., y' <x' ; and when y' <x' we have

x = (n-yy')/x* >n/x'-y >y .

It remains to count how many of these Ad solutions satisfy

ged(x,y) =1 . If p is a prime divisor of y/d , them p does not

divide an/d , hence p does not divide x . On the other hand, let

P,»---sP, De the primes which divide d but not y/d ; then Py ---P,

consecutive values of q will make (an+qy)/d run through a complete

residue class modulo p, ...p. , hence (p,-1) ces (9,-1) of these
values will be relatively prime to y . 0

Let P(n) demote ¢(n)/n = Ta-rh , where the product is over

all prime divisors of n , and let P(n\m) denote the similar product

over all primes which divide n but not m . As a result of {2.1],

{2.2] and the lemma, we have

Tips = TL aa\G/@) EZ (F+0@) omen)d\n gecd(y,n) =4 ged(x',y) =a

1<y<n/2 1<x' <n/2y

Replacing n,y, x' respectively by md, Jd, kd yields

Lixfy) = ZL Z_  P((n/m)\J) Z = + O(n log n) , [2.3]
m\n ged(Jj,m) =1 ged(k,J) =1 5

j <m>/2n Kk <m°/2nj

since Za\n d =no_,(n) =0(n log log n) . (See (2, §2.9).)

p
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5. Asymptotic Formulas.

Lemma . D Er = 0(log log n) . [3.1]
P\n

Proof. Let n be divisible by k primes, and let CC be constants

such that the j-th prime lies between c,d log J and 5 jlog J + Then

. 18 log P lo |>; WEP. T —dof I BL) .ogK. J
pm P 1<i<k Pj 1<ick J 108

Consequently

r »a (3) - = BRpnp) - o(log logn) [3.2]a\n pa FP

and

- ln d 1 2 n 2 |

&al \Z my 5 Feet 5)ea(5) = 0((loglogn)~). [5.3]p'\n Pp P P

We shall now evaluate [2.3] step by step, beginning with the sum

on k.

Lema f= BQ) nx + 0(log log 3) - (3.4)ged(k,J) =1

k<x

Proof. The sum is

Zu IZ &-T dd anZion) o
a\Jj kd <x a\J
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Let u (n) = (-1)° if n 1s the product of r >0 distinct

primes, none of which divide m , otherwise y(n) =0 .

P{4\d ba (T)
Lemma . 2 E(I\D) P(m) ln x py ———+ O(log logm) . [3.5]

ged(j,m) =1 J ged(r,m) =1 r
J <x | r<x

Proof. The sum is

(r) (r)

r iz ft”. pz NWT zp 1,ged(j,m) =1 J r\J r ged(r,m) =1 ged(j,m) =1
J<x r <x j<x/r

apply (3.4]. QO

Lema.

(r)

7 P(N) Inj _ 2 P(m) (In x)° 7 adged(j,m) =1 J ged(r,m) =1 r
J <x r<x

+ O(log x log log m) . [3.6)

Proof. As in [3.4], we have

z ik 5 4 ££ BX
ged(k,3) =1 FE ag kaex HM

j<x

TC](3 xY, (1X (3 )& 3 1(1a 2) +(¥)oa d)+0 1m} )
1 2

= 5 P(J)(1n x)” + 0(1og x log log J)

by [3.2], hence the desired sum can be evaluated as in [3.5]. J
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Lk. Concluding Steps.

Putting the results of Section 3 into [2.3], letting N stand for

m°/2n , and using the fact that P(a\b)P(b) = P(ab) = P(b\a)P‘a) , we

have '

3 > 5 P(n/m)P(J\(n/m)) ; (KNLf] m\n . ged(J,m) =1 J (3 )
J<N

+ O(n o_y(n) log n log log n)

1 2 ba/mF)= 2; mP(n/m) 5 P(m) (1n N) 2, hs
m\n ged(r,m) =1 r

r<N

+ O(n o_y(n) log n log log n)

IT mP(n/m) P( (5+ 2 In = : 2 (7)= = m)P(m = =  —e m\n 2 n ) r<N r

+ O(n log n(log log n)7)

Since

p2 m log = =n 2 og d = 0(n(log log n°)
n\n n d\n

by [3.3], we can simplify this to

1 2 ra (F) 2
3 2 mP(n/m)P(m)(ln n)® ZL ~~ + O(n log n(log log n)°) .

m\n r<§ rr
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We can extendthe summon r to « , since

In 5- Lal 5+ Tao)m\n r>N r m\n r>l r m\n m
m<vn m>J/n

= of va 3 1) = ol nm\n

by (2, §18.1). Now

(r) -1
2 Yn = 1- 2 = 6 l - i .p31 1 I ( 7) $1 ( Pp

It remains to evaluate Zn nP(n/m)P(m) , and since this is a
aultiplicative function it suffices to do the evaluation when n =p" ;
we obtain |

2 2

p> (2-3) + ((2- 2 (1-2 = pf 1-1).| oie’ 3) + (@+p) 2) 2) ) ? z

Putting everything together ylelds |

ZLxly) = % n(1n n)2 + o(n log n(log log n)%)

and this proves the theoremin view of the corollaryto the lemma of

Section 1. |

The theorem saows that the sum of all partial guotients for m/n

is 0((log n)2*®) for all tut o(n) values of mR<n, a8 n =o,
and this establishes a conjecture made in (5). The applicatiom in (5)

involves the sums of even-mmbered and odd-mmbered partial quotients
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separately. If So(n) denotes the average of q+ Az + q+ --.
and 8,(n) the average of gq, + qu +tqgt +... 5 It is easy to see from

the relation between m/n and (n-m)/n that n(8,(n) -8,(n)) =n-1.

Hence S,(n) ~ S,(n) ~ 3x 2(1n n)® .
In a sense our theorem is rather surprising, since Khintchine (4)

proved that the sum of the first k pastial quotients of a real number

Xx is asymptotically k log, k except for x in a set of measure

zero. Thus we originally expected S/n) to be of order

(log n) (log log n) instead of (log n)° .
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