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1. Introduction.

| The notion of the maximal incidence matrix as a canonical represen-

tation of a graph was introduced in[1]. An algorithm to search for

this matrix (a graph being given by--any of its incidence matrices) was

presented there together with a computer program which performed the

search.

In this paper we briefly review basic ideas of [1] and discuss

another "maximal incidence matrix" of a graph. Our main concern is the

application of the search algorithm to large graphs and an efficient use

of computer memory when representing graphs and carrying on the search.

A variety of arrays and linked lists will be employed in order to limit

be the amount of parameters passed along with the recursive subroutine calls.

We have developed a computer program written 1n ALGOLW that maintains

3 the data structures and performs the search. The program 1s presented
and its functions are discussed.

i

2. Basic Notions.

| In order to use concrete phrases when discussing the problem and
the proposed solution, let us define our basic vocabulary.

i A graph will mean two sets N (of nodes) and E (of edges),
together with a function F (the incidence function) which ascribes

- an edge ack to some unordered pair of nodes ng and n, ,

| . F(n,,n,) = F(n,,n,) = a .
We constrain the function F to be partially defined (in particular,

not defined for n, =n, thus excluding graphs with self-loops) and
require that F is single-valued, i.e., graphs do not have multiple

edges. Nodes ny and n, are sald to be adjacent and the edge a 1s

sald to be incident to nodes n, and n, . The valence of a node ny
1s the number of edges incident to 1t, and will be denoted valence(n,) :
A graph 1s connected if for every pair of nodes u,veN there exists a

sequence of adjacent nodes n, (i = 0,...,k) such that n,o=u,
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n = v and F(n, 151m.) is defined for all i =1,...,k . In the
following we shall consider only connected graphs, for simplicity.

We shall label elements of the sets of nodes N and edges E by

consecutive integers beginning with 1 . We shall represent a graph by

listing entries of its incidence function which 1s a shorthand for its

incidence matrix: a sparse binary matrix of n = | columns

corresponding to the nodes and e = |E| rows, each corresponding to
an edge. The element M(p,i)of the incidence matrix M equals 1

BN if the edge label-led p and node labelled 1 are incident, and 0
otherwise. We will denote edge labels p, gq, r and node labels i, j , k .

The p-th row of the matrix, corresponding to the edge labelled p , will

be referred to as M(p,*) and the i-th column, corresponding to the

- node labelled i , will be referred to as M(*,i) .

An important notion for our discussion 1s that of isomorphic graphs.

- Two graphs, Gy = (N,E 5 Fy) and G, = (Nyy Es Fy) , are said to be
isomorphic 1f they may be represented by identical sets Ny = N, and

| iy = E, » and identical function Fl = F, . With our assumption about
labelling sets N and E , this means that the labels in one of the

i graphs may be permuted in a way transforming the incidence function into
a form identical with the other. In terms of the incidence matrices

this means exchanging columns and rows of one matrix so as to get a

g matrix identical with the other one.
Let us consider incidence matrices of a graph which have rows

| arranged lexicographically in descending order. Then, for a given
graph, we can define an ordering relation on the class of row-ordered

| ) incidence matrices. For two unequal matrices My and M, we say that
My 1s row—greater than M, 1f the first row of My that differs from

i the corresponding row of M, 1s lexicographically greater. A matrix
not less than any other matrix in this class will be called the

row-maximal incidence matrix of the graph, or the "‘romim" for short.

. The notion ofromimwas introduced in [1] under the name of

"maximal incidence matrix" and 1ts existence proved.

. Considering columns of an incdence matrix as bit strings read

top-to-bottom we may order them in descending lexicographic order.

For a given graph let us define a relation column-greater than on the

class of column ordered incidence matrices. A matrix not less (in the
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sense of column-ordering) than any other matrix in the class will be

called the column-maximal incidence matrix of the graph, or simply the

1 comim'' .

Fact 2.1. For a given graph there always exists a column-maximal

incidence matrix defined as above.

Proof 2.1. Given a graph we can always fix the labelling of the edges

and then order the columns of the incidence matrix lexicographically.

Thus, for all possible labellings (permutations) of edges we obtain a

set of corresponding column-ordered incidence matrices. Since the set

1s finite, we have an element that 1s not less than any other element

of the set. This is the comim.

It must be pointed out that the two definitions describe two

different quantities. We glve an example of a graph and its romim

and comim (Figure 2.1). By inspection, the matrices are not equal.
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L (b) Nodes: 1234567 (c) 1423567
11 T 1
1 1 1 1
1 1 1 1
1 1 1 1
11 1 1

| 1 1 1 1
1 1 11

Figure 2.1. Example of a graph (a) with unequal romim (Db)
and comim (c). —



5. The Search.

It 1s easy to describe a brute force method to find the maximal

incidence matrix. By listing all possible labellings of nodes of a

graph, lexicographically ordering the rows of the corresponding incidence

matrices, and saving the "maximal matrix so far", the romim is obtained.

Similarly, by listing all possible labellings of the edges and ordering

the columns of the incidence matrices the comim 1s obtained. However,

there often exist clear indications of which permutations should be

considered as leading to the proper labelling. A depth-first search

procedure to find the (row-) maximal incidence matrix was proposed in[2].

It labels nodes of the given graph and selects the best choices to be

labelled tentatively leaving the other possibilities still to be examined.

The search may be represented by a search tree where nodes of the tree

correspond to the labels to be assigned. When the search arrives at a

leaf of the tree (i.e., when all nodes of the graph are labelled), the

incidence matrix "maximal so far" 1s compared with the result of the

tentative labelling and —-- 1f it 1s inferior -- replaced by the newly

. found one.

The main role in the process of labelling nodes of a graph 1s played

by the priority vector. It is a one dimensional array which for every

unlabelled node gives an indication of its suitability to be labelled

next. This indication 1s calculated from the incidence matrix based

upon how a node is connected with the labelled nodes. To formalize

this we introduce a notion of the priority vector for assignment of the

. label m . The element PRIVEC (1) , where 2 <m < i <n, is a bit
string which at every position 1 < j <m has 1 if the node 1 is

adjacent to node j and 0 otherwise. Figure 3.1 gives an example of

a graph (a) and the priority vectors (b) for consecutive instances of

labelling the nodes.



(2) 3 2

1

I

6

L

| (RIVE (1) (2) (3) (5) (6)
m=z L 1 1 1 0

’ 11 10 10 01
i 5 101 100 010

7 1000 0101

i 01011

Figure 3.1. A graph and the priority vector corresponding to the
labelling (1,2,3,L4,5,6) .
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Let us define a labelling of the nodes of a graph to be privet-proper

1f any incidence matrix of the graph with nodes arranged by this labelling

has nonincreasing priority vectors, 1.e., for every 1, J and m such

that 2 <m < 1 < j < n we have PRIVEC (1) > FRIVEC (J).
The importance of privet-proper labellings of nodes 1s stressed

by Theorem 3.1 (stated and proved for the romim in [1]).

Theorem 3.1. For a given graph the labelling of the nodes that

results 1n the maximal incidence matrix (romim or comim) 1S privet-proper.

However a matrix with a privet-proper node labelling 1s not necessarily

a maximal matrix.

It 1s worth noting that the property of the priority vector stated

in Theorem 5 .1 holds true for both romim and comim. Let us state two

lemmas that will simplify proof of the theorem. Lemma 3.2 expresses an

intuitively obvious fact that we want "as many ones as possible" in the

lefthand upper corner of the incidence matrix.

Lemma 3.2. For a given incidence matrix and a given column 1 define

Ss to be the set of all rows with their first 1 in column 1 . Then,
for the maximal incidence matrix, romim or comim, any row between the

first row 1in Ss and the last row in 5, 1s also in Sq . We call the
set S.. simply a block i of rows in the maximal incidence matrix
(note that block 1 may be empty).

Proof 3.2. Assume the contrary: that for a maximal matrix My there
exist a column i and rows p, gq, r with p < r < gq , such that the

first 1's of rows p and g are 1n column 1 and the first 1 of

row r is in column k #£ i .

(1) Suppose My is the romim. If k < i then a matrix with rows

p andr swapped 1s row—-greater than M; , and if k > 1 then

a matrix with rows gq andr swapped 1s row-greater than My

SO My 1s not the romim.
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(11) Suppose My 1s the comim. If k < 1 then swapping rows p and '-
(relabelling corresponding edges) and column ordering the matrix

results in a matrix column greater than My + Similarly if k >i
then swapping rows gq and r and column ordering leads to the

| contradiction. Cl ’
Actually it 1s obvious that this block structure of the incidence

matrix holds for every row-ordered incidence matrix (see Figure 3.2).

11

1 1
block 1

1 1

1 1
~—mm- — — —

1 1
block 2

1 1

-__-_-3-

11 block 3
- TTT a- block 4 is empty

1 1 block 5

11 block 6

|

Figure 3.2. A row-ordered incidence matrix of a graph displays
the block structure.

| The second lemma states the conservative property of the priority

vector with respect to the assigned label.

Lemma 5.3. For a given incidence matrix and two nodes 4 gpg :
(1 <j) we have, for all 2 <i<m<i,

FRIVEC (1) > PRIVEC (3) = FRIVEC (1) > PRIVEC (J)m

The proof 1s trivial and 1s left as an exercise for the reader. =
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Now we can prove Theorem>.1 for both romim and comim.

Proof 5.1. Assume the contrary: the given maximal incidence matrix

My does not have a privet-proper node-labelling. Thus there exist

m<i< Jj such that PRIVEC (1) < PRIVEC (J) . According to Lemma 3.3
this implies

PRIVEC, (1) < PRIVEC, (J)

which means that there 1s a position k < 1 such that the k-th bit in

PRIVEC, (1) equals 0 and the k-th bit in PRIVEC, (J) equals 1 , with
the first k-1 bits in the same in both PRIVEC, (1) and PRIVEC, (J) :
Thus in blockk of My (Lemma 3.2) all rows have 0 's in column 1
and there is a row p in the block with a 1 in column j . We will

Now prove that My may be rearranged in different ways leading to

matrices M, and M, » each greater than My , 1n the sense of row-
and column-ordering, respectively. This will contradict our assumption

that My 1s a maximal incidence matrix.

(1) Suppose My is the romim. Then swapping columns 1 and J
(relabelling corresponding nodes), and ordering rows within

blocks 1,...,k-1 we obtain a matrix with the blocks 1,...,k-1

identical with those of My . In the block k , however, row p
1s greater than it was before, and no other row in this block

has been changed. Thus, ordering block k we get a matrix M,

that 1s row-greater than My .

(11) Suppose My is the comim. Consider blocks 1,...,k-1 ; because
. of the definition of k there cannot be a row with a 1 in

column 1 without another row in the same block with a 1 in

column j , and vice versa. In each block if there is a row p

"with a 1 in column 1 and a row gq with a 1 in column j ,

such that p < g , then interchange rows p and g (relabel

the corresponding edges). There must be at least one such block

or else the columns would not be in order. Then the new column J

1s greater than column 1 of My , the new column 1 1s less

than column 1 of My and all other columns are unchanged. Thus,

ordering the columns lexicographically, we obtain a matrix My
greater than My . This completes the proof. Cl
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We can now recall from [2] how the algorithm for finding the romim
| works.

| At any stage m , the priority vector gives the indications for the
: assignment of label m . These indications may appear in two forms;

| BN (1) There 1s exactly one node pretending to the label m since it
uniquely has the highest value of the corresponding element of

the priority vector;

(2) There are several nodes for which the corresponding elements of

the priority vector have the highest value. These nodes are

called equal pretenders.

The situation of (l)is clear and implies assigning label m to the

pretender, thus increasing the number of labelled nodes. Calculating

the priority vector for the rest of the unlabelled nodes again and

agaln gives the situation (1) or (2) and eventually results in the

incidence matrix, maximal for the original labelling 1,2,...,m-1 .

. In the situation (2) there are more pretenders that have to be
tried as node m . Successively one by one all of the equal pretenders

L are assigned the label m.and, after proceeding as in situation (1),
a matrix maximal for every labelling is calculated. The greatest of

. these matrices 1s stored as the incidence matrix maximal for labelling
1,2,...,m=1 . The maximal matrix of the graph is identical with the

| solution of the problem of finding for the matrix maximal for m = 1
(no nodes labelled).

i ” The algorithm is based on two recursive procedures, CHOOSE and
PRETEND. Procedure CHOOSE computes the priority vector and makes the

right choice for the next label if there is only one pretender; if there

N are several it calls PRETEND. Procedure PRETEND mades various tentative

choices for the next label, calling CHOOSE for each. The process is

. initiated by examining the valences of the nodes and calling CHOOSE

with each node of highest valence as the initial choice. 71+ is clear

that for both romim and comim the node labelled first must bea node

of highest valence.
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We must correct here the algorithm of [2] which applies a valence

check in situation (2) to narrow down the number of pretenders. In the

example of the graph in Figure 2.1 this would result in MN, rather than

My , 1n spite of the fact that My 1s row—greater than M, . Our present
algorithm omits this check.

However, the valence check employed--in the algorithm 1s useful for

determining the comim, making the search for the comim more efficient

than the search for the romim. This 1s elaborated in the next section.

L. Pruning the Search Tree for the Comin.

It 1s attractive to search for the comim rather than the romim because

of the following theorem:

Theorem 4.1. Let=. M; be the comim for some graph with nodes numbered
ly,oe sme? + Then for all 1 < J:

PRIVEC, (1) = PRIVEC, (J) =» valence(i) > valence(j) .
. Thus 1f on the i-th decision level two nodes are equal pretenders but

have different valences, the node with the higher valence should be

chosen.

Proof. Assume the contrary, that 1s, there exist 1 < j such that

PRIVEC, (1) = PRIVEC, (J) and valence(i) < wvalence(j) . Consider blocks
ly voy, i-1 of My (cf. Lemma 3.2); because the priority vectors are

- equal there cannot be a row with a 1 in column 1 without a row 1n

the same block with a 1 in column j , and vice versa. Relabel the

edges in the following way. Interchange the pairs of rows, 1n the

blocks 1, . . .,i-1 , which have 1's in columns i and j , and also

move the remaining rows with a 1 in column j up following block 1-1.

The new column j is greater than the column i of My , because
valence(j) > valence(i) . Columns 1,...,i=-l1 remain unchanged, so after

ordering the columns we obtain M,, column-greater than My , which 1s a
contradiction. U

12
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Theorem 3.1 showed that the same search tree leading to privet-proper

| labellings of nodes can be used for both the romim and the comim.
Theorem4.1 shows that the comim search tree can be significantly pruned
by considering the valences when encountering equal pretenders.

When arriving at a leaf of the search tree we have a privet-proper

— node labelling and have built up an incidence matrix of the graph with

this node label-line;. It remains to label the edges. In the case of

_ the romim search 1t 1s clear that ordering the rows of the matrix

results in the row-maximal 1ncidence matrix for this node labelling.

It turns out that for the comim search as well, ordering the rows of

the matrix results in the column-maximal matrix for the labellings.

This result 1s stated in Theorem 4.2.

Theorem 4.2. Let a graph with a privet-proper labelling of nodes be

- given by an incidence matrix. Then ordering the rows of the matrix

results in the column-maximal matrix for the labelling.

L

To prove this theorem, consider the row-ordered matrix. Lemma 4.3

i shows that such a matrix has a column block structure analogous to the
row block structure described in Section 2. Furthermore, Lemma 4.4

| shows that such a matrix 1s column-ordered. The final step will be
to prove that no other permutation of the rows gives a matrix which

| 1s column-greater than the row-ordered matrix.

| ) Lemma 4.3. A row-ordered incidence matrix of a graph with a privet-proper
labelling of the nodes has the following two properties:

(A) For every row in the matrix, a 0 in between two 1's has a 1

- above 1t in the same column.

(B) The highest 1 in any column is not lower than the highest 1 in

any succeeding column.

Proof 4.3.

(A) Assume that row p has a 0 in column k and 1's in columns

1 and j , where 1 <k <j, and that there is no 1 in columnk

prior to row p . As the given matrix is row ordered, rows with a

15



1 in column k must have the other 1 in column £ > 1 (see

Figure 4.1). But this implies that PRIVEC, (J) > FRIVEC, (k) ,
which 1s not possible since the labelling 1s privet-proper.

if kJ

0

P 0
l 01

11

Figure 4.1

(B) Suppose the highest 1 in column 1 is 1n row p and the

highest 1 in column j 1s 1n a higher rowq , with 1 < j

and p > q . Let the other 1 of row g be in column k .

If k < 1 then we hav situation which contradicts (A) (see

Figure 4.2), and if 1 then rows p and gq are out of order,

which is not possib L]

k

a 01

p 1

Figure 4.2

Lemma 4.L. A row-ordered incidence matrix of a graph with a privet-proper

labelling of the nodes 1s column-ordered.

Proof L.k. Recall from Section 2 that we are concerned only with

connected graphs without multiple edges.

We will show that every two columns of the matrix are in order.

Consider the highest 1's in columns 1 and Jj with 1 < j . By

1h



Lemma 4.3B the highest 1 in column i is not lower than the highest

1 in column j . We claim that it is in fact higher, except for the

case i=1, J =2 . Suppose the contrary —-- then columns i and

have their highest 1's in the same row, say row p . Suppose further

| 1<j—-1. Then there is a column K (i < k < Jj) with a 0 in row p ,
so by Lemma 4.3A there must be a 1 in column k higher than row p

—— however this violates Lemma %.3B since the highest 1 in column i

is 1n row p . Otherwise i = j-1 , but then nodes 1,...,i-1 are not

connected to nodes i, ....n. This can be seen by considering Figure 4.3,

where submatrix My must be all 0 's since the rows are ordered, and

submatrix M, must be all 0 's because of Lemma 4.3B and the fact that
the 1% in row p are the highest in columns i and Jj. Thus the

a assumption that the graph is connected is violated.

i :
D 11

My

|

Figure 4.3

. Inthecase 1 =1, J = 2 the first column must have 1's in the

first two rows and the second column must have a 0 1n the second row

since the graph has no parallel edges and the first node chosen must be

a node of greatest valence. Thus column 1 is greater than column 2

(except 1n the trivial case of a graph consisting of only one edge). T]
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Now let us prove Theorem 4.2.

Proof 4.2. By Lemma 4.3 any row-ordered incidence matrix My of a
graph with a privet-proper labelling of the nodes 1s column-ordered.

Thus 1t 1s sufficient to show that no other permutation of the rows

gives a matrix M, which 1s column greater.
Suppose the contrary. Let column k be the first column differing

in M, and M, , and let the first element of column k differing in

My and M, be in rowp . Since M,, 1s column greater than My ,

clearly M,;(p,k) = 0 and M, (pk) = 1 . Because column k differs in
M4 and M, only by a permutation of elements p,...,e , there exists

gd > p such that M, (qk) = 1 . Therefore row p of My has a 1 to
the left of column k , say in column 1 < k , since the matrix 1is

row-ordered. As column1 is the same in both matrices we have

M, (ps1) = M, (psi) = 1. The other 1 in row p of M, must lie to
the right of column k , say in column j > k ; otherwise, 1f j < k ,

then M, (Psd) = M, (ps J) = 1 and there would be three 1's in row p
. of M, . Thus we have M, (D5 *) > M, (ps *) . Hence there exists r <p
such that M, (D5) = M, (r,*) (with the 1's in columns i and k ),
since My and M, differ only by a permutation of rows and My 1s
row-ordered (see Figure 4.4).

My Ma

ik Jj ik

T 11

p 101 11

q 1

Figure 4.4
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But then M,(r,*) = M,(r,*) and we have two identical rows in M, ,
which contradicts the assumption that the graph has no multiple edges.

SE This completes the proof of Theorem 4.2. mn

We have now shown that the comim is a row-ordered matrix with a

privet-proper node labelling. The example of Figure 2.1 shows that if

My and M, are two row-ordered matrices with privet-proper labellings

it 1s possible for My to be row greater than M, and M, column
greater than My . However because of Theorem 4.1 we can (confine our
attention to row-ordered matrices with privet-proper labellings and with

[ PRIVEC, (1) = PRIVEC, (J) and 1 < J | = valence(i) > valence(j) .

At first sight 1t might seem that if My and My, are two such matrices

— then My 1s row greater than M, if and only 1f My 1s column greater
than M, . However this is not the case and Figure 4.5 gives a

. counterexample.

.
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5. Data Structures.

A data structure for the search of the maximal incidence matrix of

small graphs by means of this algorithm was proposed and used in [2].

The incidence matrix of a graph with n nodes and e edges was represented

by e words. If edge 1 was incident to nodes j and k , then the
i-th word was a bit string with 1's only in positions J and k . Thus

one row of the incidence matrix was stored in one word of computer memory.

Such a representation facilitated manipulating the matrix by logical

operations on the bit strings. However, the number of nodes in the graph

was limited by the number of bits in the computer word. In the data

structure proposed here the number of nodes 1s limited only by the

computer integer range and the size of computer memory.

In the present implementation the incidence matrix INCMAT 1s stored

in an ex2 integer array (twice the storage of the old representation).

” If edge 1 is incident to nodes j and k then the i-th row is an

unordered pair of integers j and k .

- During the search it 1s necessary to order the rows of INCMAT. The

ordering is achieved by introducing an integer vector NEXTEDGE which

| transforms INCMAT into a linked list. This vector is dimensioned from
0 to e with NEXTEDGE(i) = itl initially, except NEXTEDGE(e) = -1 .

| As nodes are labelled, the edges incident to them are "pulled up to the
top of the list". The pointer LASTLABELLED points to the last such edge

pulled up; initially LASTLABELLED 1s set to zero. More precisely, when

=~ procedure CHOOSE 1s entered, with say node p chosen to be the next

. labelled node, procedure PULILUP is called, which scans down the linked

- list (INCMAT, NEXTEDGE) starting from LASTLABELLED, and upon encountering

. an edge incident to p , deletes the edge from the list, inserts it following

] the edge at LASTLABELLED, and updates LASTWELLED. The two nodes incident

to the edge are interchanged if necessary so that p 1s 1n the first
’ column, the other node 1s examined, and the priority vector PRIVEC is

modified accordingly.

When a leaf of the search tree 1s reached the new candidate for the

maximal matrix must be calculated from the linked list representing the

incidence matrix. This means that the rows of the incidence matrix must

be lexicographically sorted. The entries in the first column of INCMAT

19



are in order determined by the label permutation found. The second

column, however, requires sorting of entries within blocks (cf. Lemma 3.2)

to obtain an ordered matrix. Now the new matrix may be compared with

MAXMAT, the maximal matrix found so far. This testing -- in the sense of

row ordering —— 1s an easy task for the chosen data structure. It suffices

simply to compare the two-element rows of the new matrix with those of

MAXMAT one at a time. The test 1n the sense of column-ordering 1s not

as obvious, and will be described in Section 6.

The priority vector PRIVEC does not have to be stored in a way

described in Section 3, with the number of bits in each element equal to

the number of nodes labelled so far. Instead 1t 1s stored here in an

integer array called PRIVEC, whose entries are node numbers and which 1s

broken into a number of logical blocks. (Now we are talking about blocks

in PRIVEC, not the ones defined in Lemma 3.2.) At any stage of the labelling

process all nodes within a block have equal priority, and nodes within one

block have higher priority than nodes within another block further down the

vector. There may be a block of nodes that have not been assigned any

priority yet -- the last part of the PRIVEC may contain only zeros. This

. block is referred to as the empty block. In the priority vector described

in Section 3, when a node p 1s labelled one more bit is added to every

element of the vector: 1 to those elements corresponding to nodes

adjacent to p and 0 to all other elements. In the data structure

described here, when a node p 1s labelled, any node adjacent to p 1s

either added to the empty block if it 1s not already in PRIVEC or marked

in PRIVEC if it is already there. Such nodes are found by procedure PULLUP,

. described earlier. After all nodes adjacent to p have been found,

procedure SHUFFLE is called. This procedure scans PRIVEC and shuffles

the entries within each block so that the elements marked by the action

of ‘PULIUP are moved to the top of the block and the unmarked elements

are moved to the bottom. If these two sets of elements are both nonempty

the block is then split into two blocks, since the marked elements have

higher priority than the unmarked elements. After all blocks have been

shuffled, the empty block 1s checked for the presence of any new elements.

If some were added by the pull up operation, a new block 1s created to

accommodate them and the remaining zero elements become the new empty block.
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In order to avoid searching the entire vector FRIVEC every time an

edge incident to p is pulled up, a new vector CROSSREF is introduced.

| This is the cross reference to PRIVEC: at any time, if PRIVEC(i)= J > 0

| then CROSSREF(j) = i .
| The description of the PRIVEC blocksis stored in a list of records,

pointed to by BIOCKLIST. Each record contains an integer field BLOCKFTK

| and a link NEXTBIOCK. The BIOCKPTR fields are integers pointing to the
first element of each of the blocks in PRIVEC. The integer BIOCKPIR

(BLOCKLIST) points to the first element in the highest priority block

of PRIVEC; this element 1s not necessarily the first element of PRIVEC

as will be explained shortly. The pointer EMPTYBIOCK points to the last

] record in the list. The integer BLOCKPIR (EMPTYBLOCK) points to the
first zero element of PRIVEC, unless every node has been entered in

PRIVEC in which case the pointer will have value n+l .

Initially BLOCKLIST 1s set to point to a list of two blocks, the

first containing a node of maximum valence and the second the empty

- block. At any stage 1n the search the pointer BIOCKLIST points to a
list of at least two records. The initial data structures for a certain

i incidence matrix are shown 1n Figure 5.1.
After initialization, procedure CHOOSE 1s called. The node with

| the highest priority 1s considered to be labelled and procedures PRILLUP
and SHUFFLE are called to perform the actions described earlier. The

| resulting data structures are illustrated in Figure 5.2.
At this point the block containing the labelled node 1s deleted from

_ the block list. (In fact the deletion 1s done in between PULLUP and

~ SHUFFLE since it 1s a bit simpler to do so, but this makes no difference.)

Now another node must be labelledso the first block of the modified

. block list is examined. If it contains only one element, CHOOSE is called.

Ifrit contains more than one element there are several pretenders to the
label, so PRETEND 1s called. Then PRETEND will call CHOOSE several times,

each time with the first block split into two blocks, one containing a,

single chosen pretender and the other containing the remaining pretenders.

In the comim search the valence check may reduce the number of calls to

CHOOSE (see Section 6).
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Because of the recursive nature of the search, the crucial question

that one must ask here 1s: how much must be kept on the stack? The

answer 1s that when CHOOSE 1s calling itself or calling PRETEND only

three words must be passed (as value parameters): FIRSTBLOCK, EMPIYBLOCK,

and LASTLABELLED; when PRETEND 1s calling CHOOSE (i.e., at a branch in

the search tree), only a copy of the block list structure must be passed

in addition. At no time 1s it necessary to have more than one instance

of INCMAT, NEXTEDGE, PRIVEC or CROSSREF. This 1s very important, since

these arrays may be large and the search tree deep. It 1s not necessary

to keep a copy of INCMAT or NEXTEDGE because any changes made to the

linkedlistonly reorder the edges or reverse the pair of nodes incident

to an edge, producing an incidence matrix as valid as the original one.

It 1s not necessary to keep a copy of PRIVEC or CROSSREF because the only

changes made to PRIVEC take the form either of shuffling elements within

a block, or of adding elements to the empty block. Note that splitting

a block does not affect PRIVEC but only inserts a new record in the block

list. Since elements within one block have equal priority the shuffling

does not destroy the priority information. Any elements added to the

empty block of PRIVEC at a lower level may be deleted on return by saving

a pointer to the empty block before the call; corresponding new CROSSREF

entries may be deleted at the same time. An actual new copy of the block

list structure need be made only when PRETEND calls CHOOSE, since this 1s

the only point where the search tree branches.

The example of Figures 5.1 and 5.2 is continued in Figures 5.5 and

5.4, illustrating the situation after PRETEND has been called by CHOOSE,

and after CHOOSE has been called again.
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6. Differences in Implementation of the Search for the Romim and the Comin.

| The previous sections showed that the same basic search tree can be

used for both the romim and the comim, and furthermore that the search

tree for the comim can be significantly pruned by making use of the node

valences. The pruning 1s done by considering the valences of the pretender:

at the beginning of procedure PRETEND. The maximum valence of the

pretenders 1s found, and CHOOSE is called only for the pretenders with

this valence. The valences of all the nodes were computed at the

beginning of the program and stored in the array VALVEC.

The data structures described in Section 5 are particularly well

sulted for the romim search. With a slight modification they may also

be used 1n the search for the comim. At a leaf of the search tree the

new matrix found must be compared with the maximal matrix so far. In

_ the romim case the maximal matrix so far 1s stored in MAXMAT, an array

with the same format as INCMAT, and as explained in Section 5 it 1s then

a very easy to do the necessary row comparison. However the column
comparison for the comim search would be very inefficient using this

i structure. A solution 1s to translate the row-ordered incidence matrix
found into an array of n linked lists, each corresponding to a column

| and listing the rows with a 1 in this column. Then with the maximalmatrix so far stored in a similar array of linked lists MAXMATCOL, the

column comparison of the two matrices simply requires a series of scans

i down the lists. The matrix comparison, together with a replacement of
the maximal matrix so far if necessary, is done by one of two versions

"of procedure UPDATE -- one for the romim and one for the comim.
] Advantages of the comim search are demonstrated by the running times

of an ALGOLW program which implements the search and data structures

described. One of the parameters to the program is a logical variable

whose value specifies whether to calculate the romim or the canim. The
| "records and references" dynamic storage feature of ALGOL W is used for

the lists BLOCKLIST and MAXMATCOL. Integer arrays are used for all the

other list structures since they do not change size dynamically. The

program, listed in Appendix A, was run for several graphs on an IBM 370/168.

The results are summarized in Table 6.1. The computer printouts and an

explanation of the choice of graphs are given in Appendix B.
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|

ROMIM COMIM

GRAPH NODES EDGES TIME LEAVES TIME LEAVES

1 6 9 01 8 .01 L

2 7 7 .02 2h .01 L

3 17 22 12 ol .02 2

L 18 oh 12 2h .03 2

5 19 29 Bl 1hk .10 16

6 22 30 2.13 576 03 1

7 24 31 5.10 1152 OL 2

8 ol 32 7.03 3456 .06 6

9 50 78 > 600 81 48

Table 6.1. Summary of the results of sample runs.

Time 1s shown in seconds.
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We see from the results that the comim search 1s substantially

faster than the romim search. However the data structures in the prograr

were designed primarily for the romim search. ye could expect significant

improvements 1n the performance of the comim search 1f more suitable data

structures were used. A particularly attractive idea 1s to compare the

maximal matrix so far with the new incidence matrix found as it is built

up, and thus have the possibility of abandoning unuseful labellings

early. This could be done if more of the priority information was kept.

The 1dea of abandoning labellings early might also be applicable to the

romim search, for example 1f the edges were labelled first instead of

the nodes.

Highly symmetric graphs (graphs with many automorphisms) will require

- search trees with a large number of redundant leaves corresponding to

automorphic permutations of nodes. A way to eliminate some of these

~ leaves by keeping track of automorphic permutations as the search

progresses is discussed in [3].

-
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Appendix A

The Program.
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| CIaMIMENT
FINS LIG THE MAXIMAL INCIUDLNCE MAIRIA OF A LARUE URAPH

MICHAEL OVERTUN anbL ANOUKLEJD PRUSKUROWSKI
COMPUTER SCIENCE uvEPAKI MENT

STANWFULRUUNL VEROLITY

JULY LY /7L

| LEG IN
Pe JCEDUKE KLAPFERSLANOGE (INTEGER AKKAY INCMAT  MAXMAT( %, %*) 3

INTEGER ARKAY PEKMUTATIUNC=*): INTEGER VALUE NODES JEUGES:
LAJGILCAL VALUE RUMIM; INTEULER RESULT LcAvV ES):

COMMENT TAKES THE IN IDENCE MATIX INCMAT OFA GRAPH ANU ReTURNS Tit
(RUMIM Ok CUMa) MAXIMAL MATRIX MAAMAT AND THE LABelL PexmMUTATT UN:

COMMENT LEAVES [S SET Tu THt NuMBek OF LEAVES IN The SEARCH TREE:
BEGIN | |

INTECEK ARRAY NEXT EuLELG:sbuvL Sh:

COMMENT THESE POINTERS THRANSHFURM [NCMAT INTO A LINKED LIST:
IMTEGErK La>TiLAbcelEL§

COMMENT PCINID> TU Lad BULGE "PJLLED UP'™  3Y NUDE LADBELL INL

INTECER ARKAY PR IVceCoURUSOHKEFVALVEC (12 2.3UDES)
L CUMMENT PRIVEC IS THE PnlUxilY VECTOR, CROS>KtEF THE (CxOSS

KEFERENCe TU PRIVELY AlNu VALVEC THE VECTOR UF VALENCESS

| RECORD BLCCKEINTEGER SBLLUKPTR; REFERENCE(BLOCK) NeXTBLJICK):
REFERENCE(DBLUCK) BLULKLISTEMP TYBLUCKS

CCMMENT BLUOOKRLEST PLINTS TO THE LIST OF BLUUKRS UF PKIVEC.

| EMPTYBLOUK PIINTS TU THE LAST cLCMENT CF THRE LIST:
RECCRD INCELCECINTEER EUGENU: REFERENCE( INCEUGE) NEXTUNE):
REFERENCClUINCEUGLGE) ARsAY MAXMATCUL(L$ eNULUES):
CUMMENT FeALS UF ThE LIST REPRESENTATION OF MAXMAT -
USED ONLY IN THE CUMIM SEARCH:

PROCEDURE ChRCLSE (KEFERLWLELBLUCK) VALUE BLUOCKLLIST.EMPTYBLOCK¢
~ INTEGER VALUE LASTLABcLLELI) :

COMMENT LAdtL THE UNLY tibkMenT OF THE FIRST BLOCK IN BLOCKULIST.
- REARRANGE ThE INCIUENLE MATRIX AND MUDIFY PRIVEL AUCIRKUINGLY

BY CALL INu PULLULP. AND SHUFFLE:

BEGIN

PrRULCUURE PULLLP (INTeELER VALUE CHCSEN);

COMMENT SCAN LOCaN INUCIUENCE MATRIX STARTING FRUM

LASTLABELLEUS UPUN ENCUUNTERING AN EDGE INCIOVENT TO Nuoc
CHLSENy PRCCEEU JU "PULL UPY THE EUGE Tu LASTLABELLEU.

AF Tbr LOOKING AT THe UTHER NODE CF THE tUuGLe MUUIFY PRIVEC
ACCLUrRDINGLL YS |

EEGIN | |

INTEOEK PF RKEV.PRIVECLAST

PREVS=LASTLABELLEUs P2=NEATELDGE(LASTLABELLED); |
ERIVECLAST:20LUCKPTRIEMPTYBLOCKI 3 CUMMENT POINTS TO
THE FIRST (oe KU ELEMENT CF PRIVECS

WHILE P~=-] UJ

BEGIN INTELEK FUUNDIX

tlunbi= IF IWwCMAT(Po 1 )=CHOSEN THEN 1 ELSE IF

INCMAT (Poc) = CHOSEN THEN Z ELSE U3
IF FUUNU==U THEN
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o ELL

INTEuer TEMPS

LiUMMeEn] PUT CHUSEN NOCE IN FIRST CCLUMN

IF PUUND=2 THEN

BEGIN INCMAT(P+2) :=INCMAT( Polls

INCMAT(Posl ):=CHUSENS ENU

CoMMeENT MOUVIFY PRI VEC

X=]INCMAT (Po2)

[F CRUSSKEF (X)=2 THEN CUMMENT NOT | N

Pliviee 0 ADD IT;

BEGIN -

PRIVEC{PRKIVECLAST)=X;

CRUOSSKEF(X):=PRIVECLAST;

Fr RIVECLAST 2=PRIVECLA>MT +];

eND

L LSE CUMMENT ALREALY| NPRIVECS O MARKITS

PRKIVECICRISSREF(EX) ) :=-PHIVECLCROSSREF (XX)

COMMENT PULL EUGE HIGHEK UP aN LISTS

IF Prt Vv~=LASTLABELLED THEN

BEoIN

TEMP e=NEXTEUGE (LASTLABELLED) ¢

NEXTeDGE(LASTLABELLEDIS=P¢

NEXTEOGE(PREV) :=NEATEUGE(P ) 3

NeEXTEUGE(PD) S=TEMP;

LASTLABELL ED: =P;

= PI=NEXTEDGE (PREVI

END

ELSE CUMMENT PULL UPNJTNLCESSAKYS

bEGIN

LASTLABELL ED: =PREVI=P

Pe=NEXTEDGEL(P)

END3

£ NOD

eLSe CUMMENT CHAUSENN O TFOUND IN EDGES

BELIN

FREY: =P; PS=NEXTEDGE(P)

Cc NU

EivLs

COMMENT I+ ANY NEW ELEMENTS H A V EOJSEEN ADDED TU PRIVEC

EEN CREATE A NEWBLOCK FUR THEM;
It PRIVECLADTOBLUCKPTR{EMPTYBLOCK)I THEN

- EMFTYELOGOKS =NEXTBLOCKA{EMPTYBLUCK) =

BLECCKAFRIVECLAST «NULLS

END PULLUP

PRCCEULRE SHUFF A L ( KeFERENCE (BLOCK ) VALUCP )

- COMMENT SCAN UUwWN LIST UF BLOCK PCINTERS. rOR ANY BLOCK
CONTAINING NEOGAT Ive eLEMENTSy SHUFFLETHEBLUCKSPLITTING

| T inwT0 Twu BLUCKYe THe FIRST CUNTAINING THE NEGATI V E

FLEMENTS A N Dine SuCunNu THE POSITIVE - ALSU Re SET THE

NEGATIVE ELEMENTS TU PUSITIVES

whILENEXTBLUCK(P )~=N U L LOU

BEGIN INTELER A oBURDER: CUMMENTAFTEKSHUFFLINGTH E

BLUCK tL EMENT Se BUKDER WILL B E J H EINDE X JF THE FIRST

NCNNEGATIVE ELEMENT 3

BUKDEK :=bLULKPTR (PIS

FUR [25 BLUCKPTRIEP) UNTIL BLOCKPTRENEXTILUCK(P)) - 1

D CIFPRIVECUIIKUTHENCOMMENTMUVEMARKcY

Nuvt UP TUNCGATIV tHALFO F BLOCKS

bEGIN IF 1l-= BUOROUER THEN
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oo bLOIN INTEGER TEMP,
a | EMP: =PRIVEC(I};

PRIVELLT) 1=PRIVEL(BORGER) ;

: PRIVEL(BURDEK):= = TEMP;
CRUSSREF(PRIVEC(I}):=12

CRUSSKEF(PRIVEC(BORDER) :=BORDER;
£ NU

3 ELSE PRIVECLL):==PRIVEC(I):

| BUKUER: =BUKUER+ 1;
: END:

j COMMENT If BUTH THE POSITI VE AND NEGATI Ve HALVES

OF THE LUCK ARE IWOUNEMPTY THEN SPLIT THE 8LUCK:

IF (BCROER~=BLOCKPIR( P)) AND {BORDER~=8LUCKPTR (

NEXT BLOCK(P) )) TheN NEXTBLOCK(P ):=8LUCK(BURDER,
NEXTBLUCK(P));

F3=NEXTBLCCK( Ps

END SHUFFLE3

INTEGER NEWNGLES:

NEWNULESS=BLOCKPTR(EMPT YBLUCK) 3 COMMENT POINTER TO

) FIRST Z2ERU ENIRY IN PRIVEC TO BE USED FUk RESTORING:
IF TRACE THEN WRITE ("cNTER CHOOSE W ITH CHOSEN NJULE =v,

PRIVEC(BLUGCKPIRIBLUCKLISTYI) S

. PULLUP(PRIVECIBLUCKPTR{BLOCKLIST)))
CUMMENT NUW THE FIKST BLUCK HAS BEEN DEALT WITHSOD EL ET E

1T: BLOCKLIST :=NEXTBLULK(BLUCKLIST)

| IF NEXTBLOCK(BLUCKLIST)~=NULL THEN CUMMENT THERE ARE STILL
- UNLABELLEC NUGES3

BEGIN INTEGER PRETENDERS:

| SHUFFLE(BLUCKL IST):CCMMENT  PRIVEL HAS NOw BEEN UPDATED AS REQUIRED BY

THE LABELLING OF THE NUDE. [IF THE FIKST BLOCK OF

The MUDIFIGU PRIVEC CONTAINS UNLY ONE ELEMENT THEN

| LABEL LT BY CALLING CHOOSE - OTHERWISE THERE Alt
SEVERAL PKEI ENUERS;

FRETENDEKS : =bLOCKPT K INEXTBLOCK (BLUCKL IST) )-BLOCK? TR
| BLUCKL IST) 3

- [F PRETENLERS = 1 THENCHOOSE(BLOCKLIST EMPTYBLOCK »

LASTLABELLEU) ELSL PRETENDI(BLOCKLIST,EMPTYBLOCK,
: ; LASTLABELLEUs PRETENDERS) 3

CCMMENT LT IS NUT NECESSARY TO PASS A NEw COPY JF THE

BLOCK LIST:

ENE

ELSE CCMMENT ALL NUDES H A VE BEE NLABELLED SU CALCULATE

: THE INCIUENCE MATK IX FUUND AND UPDATE MAXMAT IF NECESSARY:

IF RCMIM THEN UPUATE_RUMIM ELSE UPDATE_CUMIM;
CCMMENT KeSTURE PRIVEC AND CRUSSREF WHiCH HAVE BEEN

MOUIFIED BY SEARCH ON UEEPLR LEVELS. UELETE THE NEW

NLUES FROM PRLIVEC AND uelETe THE CURRESPUNDI No

ENTRIES IN CRUSSKEF;

WHILE (NEWNOUE SK=NUDES) AND (PRIVEC{(NEWNUDES)})~=0} DO
BEGIN

CRUSSREF(PRIVELINEWNNODES) J: =03

PR IVEC {NE wNUUES)$=03

NEWNUDES: =NEWNUDLES +1:

END;

IF TRACE THEN WRITE("EXIT CHUQSE")

ENC ChUCSE 3

33



PRUCED URE PReTENU (riFERENCE(BLOCK) vALUE BLUCKLIST yeMPTYBLUCK
INTEGER VALLE LASILADLLLEUPR TENOERS)

CCMMENT ad3SiuN inerAl cAbil TJ tACH JF THE PrieTeNUERS IN TURN BY

CREATING A NEw SLuLKk cunTairninG THE CHUSEIN tLEMENT UNLY AND

CALLING CLrLudSks

BeolnN

Ret ERENCE(BLUCK) PrkulLcecuUxe COPY (ReFERENCE(BLUCK) VALUE Pi

REFERENCE(BLUCLK) KESJLT J)
CCMMENT CUPY THE LIST PUINTED TO BY Po» RETURN A POINTER

TU IT AS THE PRUCEUUKE VvALUE, AND SET Tu POINT TO THE

LAST tLbeMenTLi THE LIS)

IF P = NULL Thin

BEGIN We=ivubLLss wwubLL END

ELSE IF NEAT bLLOUK(P) = NULL THEN

BEULIN wizbBLUCKIBLULKPTRIP)NULL): & END

ELS>c BLULKIBLUCKPTIRLP$I sCUPYINEXTBLUCKLP) oI)) 3

KEFERENLE(BLULR) HEAD TALL: CUMMENT PUINTEKS Tu NEW INSTANCES

CF dln IDT ANU EMPTYBLUCK§ |

INTEGER ARRAY bLOCKPRKETI>(L ::PRETENCERS )

INTEGER MAX KEPT |

IF TRALE THE WRIT ("ENTER PRETEND wWwITHY,PRET ENDERS,

#  PReTENDVUERS")

CCMMENT (CCFY THE FIRST BLUCK OF BLCCKL IST (CONTAINING THE

PrRETENDEK3) "Tu BLULKPKETS: |

Fur [e=1 UNT IL PrelehNuekd DU BLOCKPKETS(I) :=PRIVECI(BLOCKPTRI{

BLOCKLLIST)®i—-L)s

CUMMENT INTKLOUUCE A NEW BLOCK FOR THE CHUSEN NOVEs

NEXT BLUCKEBLUCKLIST }:=plUCK(BLOCKPTRIBLUCKLISTI+ 1, NEXTBLUCKI(

BLOCKLISI})

CCMMENT FUR THE CUOMIM UNLY FINDT H ESTRICT SET OF PRETENUENKS

TO THE NEXT LABEL BY CUNSIDERINGT H EVALENCES:

I F ~<xC#IMTHEN

BEGIN INTEGEK V3

CCMMENT FINU THE MAX VALENCE OFT H E PRETENIERS— KEPT

LSTHENUMBERKUF PRETENDERS WITHTHE M A X VALENCE::;

MAXSs=KEPT 2=(s

FCKk 1: = AUNTIL PRET ENDERS OO

BLOG LN

. ‘ Vi=VALVEL(PKLIVEC(BLOCKPTR(BLUCKLIST)+I~-11)):
iF VoMaX Tntbivn 3EGIN MAX:=V KEPT:=s{: END

cide lk Vv=MAA THEN KEPT =KEPT +.

ENL

[+ TKACE THeWN wRITE("VALENCE CHECK: ",KEPT,

: * PREITENUERIS) TU Bt CONSIUVEKREDM™)

ENDS

[IF RCMIM UR (VALVEU(BLOCKPRETS(L))=MAX)T H E N

CCMMENTC AL LCOCHUUSEPASOSINGT H EFIRSTPRETENDER~-T T

ISNECESSARY7 - UPASS ANEWCC P YCFT H EBLUCKLIST

BECALSE UF THE TENTATILI V E ASSIGNMENT UNLESS (FUR

: The CCMIM) CNLY UNE PRETENDER HAS THEM A XVALENCE:... . . .

| t- ~&kClMIM ANU (REP T=L)T HE N

CRUUSE(BLUCKLIST EMPTYDLULK LASTLABELLED)

ELSE

BEG IN

FEAL: =SCUPY (oLUCKLISTLTAILDS

CHuUUSELHEAU»TATL «LASTLABELLED)

END
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HE FUR CHUSEiINS=¢ UNTIL PRETENDERS DC
IF RUMIM UR (vALVECIBLULKPRETS{CHCSEN))=MAX) THEN

Ecol INTEGER Leo LUGICAL FOUND

| 13=1:5 rtuUNUI=FALDE . Cee oo
: COMMENT rEVIOUS CALLS TO CHUUSE MAY HAVE CHANGED Tre

Orr Ur THe cblEMeNTY IN THE FIRST S8LOCK UF PRIVECL
SC IT IS NECLESSAKY [) SEARCH FOR THE LHOSEN NUDE

- WHILE ~FUUND VO It PRIVECIBLUCKPTRIBLUCKLIST)I+I)=

BLUCKPKETISICHOSEN?) THEN | |

BEGIN cummin] "INTERCHANGE CHOSEN NUOE WITH THe

B PRE VIUUSLY CHUSEN NOUE IN THe FIRST POSITIUN OF
Tht sLuCK

PRIVELIBLUCAPTR(BLCCKLUIST)+[):=PRIVECIBLOCRPTXI
bLUCKLIST))

—- CL CL PRIVECIBLUCKPTR(BLOCKLIST I I:=BLUOCKPRETSICHISEN):

: CRUSOKEFR(IPKIVECIBLUCKPTRIBLUOLKLIST +L) ): =
BLUCKPTRKABLOCKLIST)+I;

— CRUDSKREFIBLUCKPRETSICHCSEN) J: = .

: BLOLCKPTIR{BLUOCKLIST) 3

FOCUND::=TrUE¢

END |

= ELSE {:=1+1;

| COMMENT CALL CHUUoLtc PASSING THE PRETENDER =~ IT

IS NECESSARY TU PASS A NEW CLPY OF THE BLOCK LIST

- BECAUSE OF THE TENTATIVE ASSIGNMENT UNLESS (FOK
, Ce ee ThE CUMIM) (UNLY UNF PRFTFNDFR HAS THF MAX VAIL FENCE:

iF ~RCMIM ANU (KEPT =1) THEN

. CHUUJSE(LOLUCKLLI ST EMPTYBLOCK 4LASTLABELLED)
ELSE

stu IN

hEAUI=CUPY(BLOCKLIST,TAIL) ;

CHUUSE(HEAU JTAILWLASTLABLLLED)
cb 3 :

END

IF TRACE THEN WRITc(YEXIT PRETEND"):

ENU PRETEND;

| PROCEED UKE UPLUA TE_RCMIiM:COMMENT] COMPARETRHE INCIDENCE M ATRIXUOBTAINEDBYN E W LABELLING TO

THE MAXIMAL MATRI X FCUNU SULA RIMAXMAT) AND REPLACET H ELATTER

. | FNECESSARY

| CCMVMENT ThiS I S FLUK THE ROMIM QilLyY
BEGIN

CUMMENT BECAUSE UF THE ALTIONO FPULLUPs THE FIRST COLUMN

| OF INCMAT 1S AkKANGEU IN THE JESIRED (LINKEU) URDER WlITh
. | ThE LABEL PERMUTAT ION GIVEN BY CRUSSREFS

CUMMENT IN THIS PROCEUVUKE THE TERM "BLOCK" IS USEDT O ME AN

| A >elLTIULN O k INCMAT Wl TH ALL ELEMENTS OF THE FIRST CULUMN

— LwUALe ANC THE RELAT TUN "MAXMATONER MATRIX?”IT S USED TUMEAN
MAXMATIS BETTER THANITHENEWM A TRI X ;

: INTEGER ARRAY KELABELLED( 1 : sMAXVAL)S

CUMMENT Keo tAbBbolbitu 1S USED FUR SORTING THE SECUND COLUMN (Ff

~ Tht CURRENT BLUCK UF INUMAT BEING EXAMINED:

INTEGER [oJoeJU eK: COMMENT | POINTS TO INCMAT, vu ANDJ OTy

) MAXMAT ANU K Tu RULABELLED;

INTEGERELT LoLUMP ;

COMMcNT ELTL 1 STHeLeMENTINT H EFIRSTCIOLUMN IFT H E
. CURRENT LUCK UF INCMAT BEING EXAMINECU:

CCMMENT COMP LIS SET POSITIVETL F MAXMATONEWM A TRI X

ANU NEGATIVE IF mMAaXMaT<NEW MATRIX:
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PRUCEULRE Sur,

CULIMMENT SURT KELABELLEL FRUM 1 -C &K IN ASCENDING URDER BY

STKALOGHT INSERTION SUKT:®

FUn L3=2 UNTIL K DU *

geEGIN INTELER KEY OI:

[:i=sL-1;

KeYS=RebLABELLED(LI)

wHiLE (I > 0) AND (KEY < RELABELLED(TL)) DJ.

BEGIN

ncbLAbELLEL(I +1) s=kELABELLELI(I

L:=l~-13:

EinL eo |

KELABELLEULLI+L) i=KL YS
ENC

| PRUCELUUKE COMPARE$
: CLMMENT CUMPARE THE PART UF THE INCIDENCE MaTRIX IN

RELABELLEL Tdub THER will THE FIRST CULUMN cL EMENT

CRUSSREF{ELTL) wilh THE CURRESPUNDING BLUCK OF MAXMAT,

COMP 1S 5cT PUSITIVE Lr 1AXMAT IS BIGUER AND NEGATIVE

IF MAAKMAT IS SMALLEK:?S

tEGLN

WHILE (COMP=u) AND (JU<J0+K) CO

BEGIN

CUMP == ((MAXMAT (Jol )~CROSSREF(ELTL)) * NUDES +

MAXMAT(Je2)-RELABELLED(J=JUO*1)1}
CUMMENT WaT CH JUT FOR UVekFLUW FUR LARGE GRAPHS

: Je=J¥+is |

ENU5

IF CCMP==u THEN CUMMENT SET J TOU FIRST ENTKY IN MAXMAT

UVIFFERENT FRhuMm THAT IN THE NEw MATRIX:

Ji=d-1:

enu CUMPAKL |

LGuICAL FIRSTSAMLE; |

CLMP:=03 | |

[ s=NEXTELGE(O)

JU3=0s K2I=US

wHILE (I-=—-1) ANU (CuMP <= 2D) DO CCMMENT COUNTINUE UNLESS

IT 1S ESTABLISHED THAT MAXMAT > NEw MATRIX:

: BEGIN

~~ FIRSTSAME: =TRUE

Je=JiLe=JdutKhs K:i=Us

ELTL:=INCMATCLe lds

wick FIKSTSAaME vu COMMENT CCPY >eCOND

: CULUMN GF A BLJULK UDF INCMAT TO RELABELLED:
st GIN |

Ki=K+1]:

RELABELLEVD(RN ):=CRUSSREF( INCH4AT(I+2))3

CUMMEINT CUNT INUE TILL FIRST cLEMENTYT JF COPIED

tbLE CHANLLES36

FIKOSTSAME:= LIVEXTEDGE( TI )~==1i}) AND

(INCMAT(NEXTEDGE(I)41) = ELTL

[s=NEXTEVLLELTL)

ENL

SUKT3

IF CLMP=U THN CUMPARES
IF LUMPCU THLN CuMMENT NEw MATRIX > MAXMAT SO REPLACE

THe LATT EK |
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| oo Fuk Mi=g UNTIL gQO¢K=-1 DY)
r BEGIN

MAAMAT(Moo) 2 =CROSSKEF(ELTL

] MAXMAT( Me 2) s=RELABELLED(M=JO+1);
ENU:

END ;

Ir LEAFTRACE THEN

{ BEOLIN |
| wRITLI"LEAE UF StAKCH TREE - LAbEL PERMUTATION IS:"):

FOr I3=1 UNTIL NuuES OO |

BEGIN ab I REM 12 = 1 THEN [UCONTRUL(Z):
WRITECNIPRIVEC(II):

ENU | |

ENO3

| fCCMP<L THEN

BEGIN CUMMENT UPUATE PERMUTATICN:

: Fuk I3=1 UNTIL NoUES DU PERMUTATIONCI) :=PRIVECI(I};
- [+ TRACE THen WKITe("MAXMAT UPDATED"):

CinbD

ELSE IF TRACE THEN WRITE("MAXMAT NOT UPDATED"):
| LF TRACE THEN WRITE(" %);

BN LEAVES:=L EAVES +1;
| END UPLATE_RUMIM; |

- PRUCEDURE UPUATE_CUMIM
CUMMENT CCMPARE THE INCLVUENCE MATRIX OBTAINEL BY New LABELLING TO
THE (CLMIM) MAX IMAL MATKIX FUUND SO FAR (STURED IN MAXMATCOL)| AND REPLACE THE CATTER IF NECCSSA~Y: |

BEGIN

| CCMMENT BECAUSE UF THE ALTION OF PULLUP. THE FIRST COLUMN

| Ur [NCMAT [S ARKANGEU (iN THE DESIRED (LINKED) JRDER WITH
THE LABEL PEKMUTATIUN GIVEN BY CROSSREF:

COMMENT IN THIS PRUCEUURE THE TERM "BLOCK" IS USED TO MEAN
] A SELTICN OF INUMAT wllH ALL ELEMENTS CF THE FIRST CULUMN
. EQUAL ANU ThE KelAT IUN "MAXMATONEW MATRIX" [S USED TU MEAN

MAXMAT IS BEITER THAN THE Now MATRIX: | | |
- INTzGbrx ARRAY RELABELLEULL 133MAXVAL); |

CUMMENT RELABELLED IS USED FUR SURTING THE SECUNU COLUMN UF
ThE CUKRENT BLULK OF INUCMAT BEING EXAMINED:

INTEGER 14JU Ks (UMMENT 1,00 POINT TO INCMAT,
| - ANU K TU RELABELLEDS

INTEGER ELT LloRELL2ILASTUUMPAREDCOMP

COMMENT ELTFi IS THt ELEMENT IN THE FIRST CULUMN UF THE
| CURRENT BLUCK UF iNCMAT BEING EXAMINED, AND RELL IS ITS
- KELABELLEU VALUE. LASTCOMPARED1S THe LAST CULJMN OF THE
‘ MATR[X CUMPARLU SU FAK:

COMMENT CLMP 1S SET PUSLTIVE IF MAXMATONEW MATRIX
ANU NEGATIVE IF MAXMATSINEW MATRIX: |

REFEREMNCECINCEDGE) ARRAY INCMATCOL oCOLTAILL 123NUJES) :
COMMENT INCMATCUL I> FUR THE HEADS UF THE (T EMPURARY)
LIST REPRESENTATIUN UF INCMAT AND CULTAIL IS FOR THE TAILS:

PROCEDURE SCT;

COMMENT SCRT KELABELLED FROM 1 TO K IN ASCENDING ORDER BY
STRAIGHT INSERTION SOK:

FUR L3=2 UNTIL K LU
BEGIN INTLGER KEY ol;

[e=L-1;

KEY:=KELABELLED(L } 3 |

WHILE (I > 0) ANU (KEY < RELABELLED(I)) LO
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BEGIN |
nclaoclieutiel) s=RELABELLEU(])S

ls=1-1,

ENU

rbELABELLEUL I+ L)S=KEY
£iNbL 3

PRLCCLURE TKANSKELL

CUMMENT EXPANL THE LIST UF INCMATCCL CORRESPUNWING TD
cuLumMnN Kells

FCKR Li=1 UNTIL Nn UU a. |

CULTALLIRKELL) s=nNEXTUNL(COLTAILIRELL)):=

INCECGE{JU +L Le nNULL J»

PRUCELURLE TRANSKELADBELLEUDSS

CUMMENT EXFANL Tht LIST> CORRESPUNDING TO THe .C3LUMNS
SPECIFIED [iv kELAbELLEDS

FUR L3=1 unl ie K DU

ceiLialiL{kerAelLEViL)=

ne XTuinb teu Tal elketAbeLLep(L) dd = |
INCELLCE(JC HL -LoNULL DS

PrCCEDURE CUMPAKLE

CLMMENT COMPARE CULUMNS LASTCOMPAREU+L THROUGH RELL JF

Trae Thu Lisi >is lured INCMATCUOL ANU MAXMATCOL.
CCMP IS SET PuUSIIIVE LF MAXMATCUL I> BIGGER THAN
INCAA TCUL yy lete MAXMATONEAWN MATRIXs ANL NEGATIVE IF |
IT IS SFALL EK

BeOGIN

ReFERENLELINC EVLE) PLIP2S

INTECER ws |

LGLICAL ENUVLCUOLUMNSG

«s=LASTCULMPAKLEU :
aHiLE (CuMP=u) aNU (QKRELL) LO a.

BEGIN | |

we =GWtlae
rle=MAAMATCUL(J)

Pes =NEXTUNG( INCMATCOL (QM) S :

ceihnbCubLuMiNe = ALSES
wiiiLt (CuMP =u) AND -~ENDCOLUMN DO

] ir PL=NULL THEN

BEGIN |

LF PZ2=NULL THEN ENODCOLUMN:=TRUE

LLSE CuUMpP i=-]

END

cl>E Lt P2=NuliL THEN COMP:=l |

clot

BbEG IN

LUMP: =EDGENC(P2)-EOGENU(PL

PL:=NEXTCNE(PLI; P23=NEXTONE (P23
ENUS

LNUS | |

eNU§

LASTCCMPAKED:: =rELL |
END CUMPARL

LULGLICAL FIKRDSIDAMES |

CLMPI=4

LASTCOCMPAREL:=0
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ese

. Le=NEXTELGE() os

JCi=ls K3=y;

FUR L: = AUNTIL NLued DU INCMATCOLC(L) s=CULTAILIL) =

INCEUGE(OINULLI): CUMMENTUJUMMYRECOR 3

wHiLE (L===L1) ANU (CUMP <= J} DU CUMMENT COUNT INJE UNLESS

IT1 5 ESTAELIShELTHAT MAXMATDONEWMA TRI X ;

BEGIN

FIKSTSAME:=IKUE 3

JO3=JO+Ks K23=03

ELTRS=INCMATLL90) 3

Rel Ls=CRUSSKEF(ELTLIS

wile rIkSTSAME vu CUMMENT CLPY SECOND

COLUMN UF A oSLUCLKOF INCMAT TO RelASELLED:

BEGIN *
Ke=K+1.

RELABELLEDI(K I:=CROSSREF({INCMAT(Is2)):

CUMMENT CUNTINUETILLF I RS TELEMENTUF COPIED

ELLEC HANLE 5%

” FARSTSAME: = (iWEXTEOGE(I)~==1)A ND

(INCHMATINEXTEOGELL)41) = ELTL1);

Is=NEXTEDGE(I)

NU3

TRANSKEL L$

iF CCME=0 THEN CUMP ARES

_ ~IF  CLMP<=0 THEN
BEGIN

SURT:

TRANSRELABELLEI):
e- END;

eNU3

| fLEAFTKACE THEN

_ BEGIN

aRITE("LEAF UF SEARCH TREE ~LABEL PERMUTATION IS:“):
FO |<s=L UNTILL NOQUESD O |

BEGIN FI KeM1 2= 1 THEN IUQCONTROL(Z2):

WKIT ECNIPRIVEC(IDY)

END;

END;

I F CCMESDO THEN

BEGIN CUMMENT UPLATE PERMUTATION:

FUR [Is=1 UNTIL NJLES DU PERMUTATION(I) :s=PRIVECI(I):

| ) CCMMENT UPUATEe MAXMATCOL:
FUR [<=1 UNTIL Ndue$dS vU

MAX MAT CLL (TI 2=NEXIONE(CINCMATCOLCI))

i CUMMENT DKUP LUMMY RECORD;IF TRACE THEN WwRITE("HAXMAT UPDATED");

END

ELSE IF TRACE THEN WRI TE("™MAXMAT NCT UPDATED");

| IF TRACE THEN WRITE" v3
LEAVES:=LEAVES+H+L:

ENC JPLCATE_CULMIiM;

| PROCEDURE TRANSLA TE_MA XMAT ;
CCMNENT TRANSLATE The (COMIM) L IST REPRESENTAT IuUN
MAXMATCCLI NTU THE ARK AY MAXMAT;

. FCR 13=1 UN IL NCLES DU
BEGIN

REFERENCE INCELOGE) Ps

Pe=MAXMATCOUL(1).

— WHILE P-~= NULL DU
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teEGIN

IF MaXMATlcuoonuUudPI) «1 )=NUDES+]L THEN

MAAMAT(EuLENUIP) old =]

ELSE MAAMAT(EULENULIP)202=13

Pi=NEXTUNE(PI)

END

ENU $ :

PRUCEDUKE PRINT (KEFEKENLE(BLOULK) VALUE Beks INTEGER VALUE LIS

COMMENT PRINT OUT The uvwATA STRUCTURE CONTeNTS [IF veBJdo 1S SET

IF Jesu The So.

BEOIN

wR IT ("Bb LUCK Li>T 15:3);

while gen=hull LU |
BEGIN

wR ITeUNLOLUCKPIK(DL)IS

es=NEXTLLLCKB)S

eNDs

wRITe("EMPTYbLULK [52%

[+r EMPTYBLUCKR=NULL THEN wRITEONC"NULL ") ELSE

WK ITcUNIBLJUCKr TRIED) 5 oo |
wriITE("PRIVEL 15:7)

FOR [2=1 UNTIL NUDL> DU wRITEONCPRIVEC(I)IS

wh ITE(YCREGSSREF 15:9) |

FC Le=4 UNTIL NUbEeS LU WRITECN(CRCSSREF(IL))
WR ITE(INEXTELLEDSM) §

FUR [2=0 UNTIL EUGLES Du WRITEONINEXTEUGE(TLI))S

Wk LIE ("LADS TLADELLEU Yo Lo
WRITE" ©)

ENU oo

INTEGER MAXVAL: CUMMENT MAXIMUM VALENCE OF A NuDES

CUMMENT Iwl TLIALLI ZL UATA SInUCTURESS

FCR T:s=1 UNTIL eLeiS DU FOR J2=1 UNTIL 2 DU MAXMAT(Isd) s=NODESH LS

[FF -<xOMI™ Then FUR d2=i UNTIL NODES DU MAXMATCuUL{I):=nJdLLS
LEAVES: =03

COMMENT USE NEXTELCe Tu MAKE INCMAT A LINKED LISTS
Fur [2=0u UNTIL EDGES=L vu NEXTeDGLE(L)S=1+#13

NEXT EDGCeteuCtade=—1s
LASTLABeLLEL:=0Us

FUR [s=1 unT IL NUbLES DU PRIVECE TD) 2=CROSSREF(I)2=VALVECLI)=]
© COMMENT CALCULATE VvALENCES UF NODESS |

MAXVAL =u

FOk T:=1 UNT iL £LGES DUO FrUK J:=1 UNTIL 2 DU |

Beolin | | |
: VALVECLINCMAT(led) dssVALVECUINCMAT(L sd) d+1

X Ir VALVECUINCMAT(i+4d)) > MAXVAL THEN MAXVAL:=VALVECI

INCMAT( Led) ) se
ENU§ : 2

CIMMENT INITIALIZE BLOCK LIST TO A LIST OF Twal BLOUCKSs THE FIRST
CONTAINING A NULE wil The nloHEST VALENCE AND Tie SeCOND THE
EMPTY bLGUK |

EMPTYBLULK:=oLUCK(ZeNuLL) 3 BLULKLIST:=BLUCK(L &MPTYBLUCK);

CUMMENT ChOULSE FCk The FIRST LABELLED NOUE EACH UF THE NUDES wiTH
THE HIoHEST vALEeNCE IN TURNS

FOK 1:s=1 UNTIL NUCL DOU LIF VALVEC(I) = MAXVAL [THEN

BEuULIN

Pe ivVeL tli =13 )
ChCSSKREFCL I=

CRUUSE(BLUCKLLISTEmMmPTYBLUCK LASTLABELLEDI) S
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! — COMMENT REST Lt CRUSSKEF: CRUSSREF(I):z=0:
a ENU

IF ~RCMINM TEEN TRANSLAT E_MAXMAT ;

END KLAFPERSLANGE

INTEGER NCODES EDGES LEAVES

INTEGER ARRAY INCMAT MAXMAT(L::iU0s1222):
INTEGER ARRAY PERMUTAT ICNCL:: Lu0):

LOGICAL DEBUG ¢ TRACE LEAF TRACE oRUMIM;
INTFIELDSIZF:s=13; | |
LEAF TRACE : =F AL SES | oo
I«kACc :=FAL SE;

JEBUG: =FALSE; |

KEAD (NUDE S+EDGES KLMIM); |
- wHILE NUOUESDT U0 |

: BEGIN | |
IOCONTRUL( 3) 3 . .

IF RCMIM THEN WRITE(%* * RUMIM * *") ELSE WRITE("*® & CIMIM * =x):
: | WRITE(YNUMBER UF NUDES =",NoUE So" NUMBER.GF EDGES. =v,

EDGES); | | | |

FOF T2=0i UNTIL tUGES UO FUR Ji=l UNTIL 2 DO READON(INCMAT(Isd)):
~ WRITE(Y INCIUVENCE MATRIX 1S:2%);
| FCR I:=1 UNTIL ELGES UU WRITE(INCMAT(I, 1), INCMATIIs2)):

KLAPPERSLANGE(INCMATy MAXMAT  PEKMUTATION ¢ NUDES ¢ EDGES « KUMIM, LEAVES ) 3
i WRITE("MAX IMAL MATKIX 152%); oo Co

| FOk T3i=1 UNTIL cDGcS DU WRITE(MAXMAT(1,1) MAXMAT (1,2)):
WRITE(M"L ABEL PERMUTATIUN IS 22%); | |

i FOR I2=1 UNTIL NCUES CO
- BEGIN IF I REM leg = 1 1HEN IOCONTRGL(2): |

WRITECN(PERMUTATIOUNCE) 3

| END ; | | |WRITE(YNUMBEK OF LEAVES IN SEARCH TREE =", LEAVES)
READ (NOUES st UGES yRULMIM)3

| END | | oo

| END oo

b
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Appendix B

Sample Runs.

The examples given below are not intended to serve the purpose of
a systematic analysis of the program's performance. However they

illustrate the difference in efficiency of the romim and comim searches.

An attempt at a more systematic analysis of the basic search algorithm,

by means of "random graphs", 1s given in [1]

Maximal incidence matrices were computed for several graphs.

Graph 1 1s the example used throughout Section 5 (see Figure 5.1 (a));

a trace of the program flow 1s shown for this example only. Graph 2

was mentioned in Section 2 as having unequal romim and comim (see

Figure 2.1). Graph 3 represents the structure of an electrical filter,

which indicates a-possible application. Graphs 6, 7 and 8 are subgraphs

of Graph 9, which 1s the largest graph we have tested and has arbitrarily

chosen edges.

The results of the computer runs follow.
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-———————EEEEEEEEEE——

x x RGMIM * =

| NUMBLEK OF NUDES = ¢ | NuMbpek ULE LLOLES = ¢

ENC IDENCE MATRIX IS:

: 3 & 1 2
i Z

1 3 / ~< \
i O 6 3
2 3 | |

3 “4 7

4 ho) 5 In
5 6 |

ENTER CHUUSE WITH CHCSEN NCLE = 3

ENTER PXETEND WITH 4 FRE TENDERS
ENTER CHULSE WITH CHCSEN NUDE = €

ENTER CHUUSE WITH CHCSEN AULL = 1

ENTER CHUUSL WITH CHOSEN uot = 2
ENTER CHOULSE WITH CHOSEN NLUE = 4

ENTEx CHUOSE WITH CHOSEN NUDE =  §

LEAF UF SrARCH TREE — LABEL PERMITATICN 15:
3 & 1 2 4 5

MAXMAT UPCAIED

EXIT CHIJISE

EXIT CHULOSE

EXIT CHUUSE

EXIT CHUOUSE

EXIT CHOOSE

ENTER CHOUSL wITH CHOSEN Nuot = i

ENTER PRETEND WITH 2 PE TUNUERS

ENTER CHUOSE WITH CHOSEN ANLDe = 6

ENMER CHUUSE WITH CHOSEN Nuvut = 2

ENTER CHUUSE WITH CHCSEN NLLE = 4

ENTER CHLUSE WITH CHUSEN NuOE = ©

LEAF OF SEARCH TREE = LABEL FURMUTAT ION 1S:
3 L 6 2 4

MAXMAT UPUATED

= EXIT CHOOSE

| tXI1 CHOUSE

| ; EXIT CHOOSE
“ EX IT CHUUSE

ENTERCHOUSEWITH CHGCSEhNULLE=<

ENTER CHOOSE (ITH CHOSEN NUDE = &

ENTER CHUGSEWNITHC HC SE hNLUE= 4

ENTER CHOOSE WI TH CHOSEN NOOE=  §

LEAFUF SLAKCHT R E E— LABEL PERMUTATIUNI S :

| 3 L 2 6 4 3MAXMAT RUT UPDATED

EXIT CHUUSE

| eXIT CHOOSE
EXIT CHUUSE

EXIT CHOOSE

ix IT PRET END

_ EXIT CHIUSE

ENTER CHGGSE WITH CHCSEN NUDE = 2

t NTER CHUOUSE WI TH CHCSEN NOCE = 1

ENT EK CHOUSE WITH CHUSEN NUDE = &

~ ENTER CHUGOSE WITH CHCSEN NCCE = 4
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end ex CHIUSE WITH Cit SEN nok = s
Loar UF StArCH TREE = LAYeL VPermUTALTIUN Loe

3 < 1 & 4 Pp)

AX MAT woul UPLAT LED

LXIT Cri )SE

EXIT erUuddSE

EXIT CHOOSE

EXIT CHJUSL

EXIT CHOGJSE

cNTER CHUUSE WITH CHOSEN Nuuwe = 4
EinNnTeR PRelenND WITH 3 FRET ENLERS

cNTEXK vHULSE #1 TH CHCSEN NLJE = |

eT 2R PReTEND WITH 2 PRETENDERS

bNTER GAUCSE AI TH CHCSEN NLOL = ©

ENTER CHOUSE AITH CHUSEN Nuuke = Z

ender CruuSt WITH CHCSEN NUCEk = 5

LEAF OF SEARCH TREE - LAbtL rFexkMUTATION los

b) 4 1 H 2 p
MAXMAT NUT UPDATED

EXIT CHUOSE

exIT LHR)SE

EXIT CHUUSE

ENTER CHLUSE WITH CHOSEN ANCLE = ¢ |

chnTeEx CHUUSE-WITH CHOSEN Nuve = 6

CINTER CHGUGSLE AL TH CHOSEN NJlE = 5

LeAF OF StArCid TREE —- LAdel PExRMUTATIUN 153

3 4 1 2 6 p)
MAXMAT NUT UPJATED

EXIT CrlddskE

EXIT Coty) SE

cALT onlUGSE

EXIT PReTEND

cxIT CHJOSE

ENTER CHUUSE WITH CHUSEN NUDE = ¢€

ENTER CHOJSE AL TH CHOSEN NOwe = 1

ch CR CHJUSE WITH CHOSEN NuOE = 2

eNTex CHGJUSE WITH CHOSEN NODL = 5

LEAF Ur SEARCH TREE — LABSLL FierkmuTATIUN 153

3 4 6 1 2 5

1aXMAT NUT UPDATED

cXIT CriiJUsE

eXIT CHuUSE

EXIT LHUOSE

EXIT CHUJSE

ENTER CHUUSL WITH CHOSEN Nuk = 2

chhTex CHUCSE #ITH CHCSEN NBL = 1}

ENTER CHOUWSE WITH CHUSEN NUDE = &

ENTER CHUUSE WITH CHCSEN MNLiLbL = 5

LEAF UF SEARCH TREE —- LABelL PcKMUTATIUN15:3

Jd 4 Z 1 6 5
MaXMAT NJT UPDATED

ex IT CHUUSL

eal CHUUSE

cAILT CHUOSE .

eXIT CHOJSE
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3 EAIT PRET ENU '
8 ceXIT LHOUSE

EXIT PRLTEND

| EXIT CHUUSE |
MAXIMAL MATRIX IS:

i 2

1 3 |

i 4

1 5 .
l 3 || | Z “4

| 3 o

4 a

po 6

LABEL PLRMUTATION IS :

3 1 6 Vi 4 5
NUMdeK JF LEAVES IN SEARCH IKEE = 8

QUD «U5 SECUNDS IN EXECUT IC

a
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Xx & COMIM * *

NUMRER NF NODFS = 6 NUNMRER (CF ENGES = 9

INCIDFNCF MATRIX TS:

3 6

1 ?

1 3

1 &

2 3

2 5

3 4

4 5

5 6

ENTER CHAOSF WITH CHOSEN NODE = 2

ENTER PRETFND WITH 4 PRETENDERS

VALENCF CHECK: 13 OPFTENDER(S) 10 RF CONSIDERED

ENTER CHOOSE WITH CHOSEN NODE = 6

ENTFR CHOOSE WITH CHOSEN NODE = 1

ENTER CHPOSE WITH CHNISEN NNDE = 2

ENTER (CHNNSE WITH CHIISEFN NODE = 4

ENTER CHONSE WITH CHOSEN NODE = § |

LEAF NF SFARCH TRFF -- LABFL PERMUTATION IS:

3 6 1 2 4 5

MAXMAT UPDATED

FXIT CHNOSE™
EXIT CHONSF

EXIT CHOOSE

EXIT CHNNSE

EXIT CHOOSE

ENTER CHNNSE WITH CHOSFN NONE = 1

ENTER PRFTEND WITH 2 PRFTENNERS

VALENCE CHECK: 2 PRETENDER(S) TN BE CNONSTODERFD

ENTER CHNNSE WITH CHIISEN NODE = 6

ENTFR CHNNSE WITH CHOSEN NCDF = 2

FNTER CHNOSE WITH CHOSEN NCDE = 4

ENTER CHONSF WITH CHOSEN MODE = 5

LEAF (OF SFARCH TPFEE -- LABFL FERMUTATION IS:

3 1 6 2 4 5

MAXMAT UPNDATFD |

EXIT CHPNSE

EXIT CHOSE

EXIT CHMSFE

EXIT CHONSE

© ENTER CHNNSE WITH CHOSEN NODE = 2
. ENTER CHOOSE WITH CHOSFN NODF = 6

 ENTFR CHOOSE WITH CHOSEN NODE = 4

ENTER CHOOSF WITH CHOSEN NODE = &

LEAF NF SFARCH TRFF - [LAREL FFRMUTATION IS:

3 1 2 6 4 5

MAXMAT NOT UPDATED

EXIT CHNNSE

EXIT CHNNSE

FXIT CHONSE

EXTT CHONSE

EXIT PRETEND

EXIT CHNNSE i

ENTFR CHONSC WITH CHPSEN NCDE = 2

EN R CHNNSE WITH CHOSEN NODE = 1

E

L6



3 ENTER CHNNSF WITH CHOSEN NODE = 6
ENTER CHOOSE WITH CHOSEN NODF = 4
ENTER CHONSF WITH CHNSEN NODE = §

| LEAF NF SEARCH TRFE - LARFL PFQMUTATION IS:
| 3 2 1 é 4 5

MAXMAT NDT UPDATED

FX IT CHPNSE -

FXTT CHNOSE

EXIT CHONSE

FXIT CHDOSE

EXTT CHNOSF

EX| TPRFTEND

EXITCHCNSF

MAXIMAL MATRIX TS:

1 ?

1 2

1 4

1 5

2 3

2 4

3 6

4 4

= 5 6

LARFL PERMUTATION IS

3 1 6 2 4 5

- NUMBER NF LFAVES | N SEARCH TREF= 4

000.02 SECONDS INEXECUTION

-

by



x ROMIM x %

NUMRER NF NODES = 7 NUMBER NF EDCES = 7

TNCINDENCF MATRIX IS:

1 2

1 3

EE 7 5 !
2 é |

2 7 1

3 4

WAXTMAL MATRIX | S - 2

1 2

1 3

1 4 6 3
1 5

2 3

4 6

4 7

{ABFL PERMUTATION IS

1 3 4 ? 5 6 [4

NUMRER OF L FAVES IN SFARCH TREF = 24

000.02 SECONDS | NEXECUT ICN
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JE
|

g ok CUMLM * * }
NUMBER UF NODES = 7 NORE OF bees= 7
INCIUENCE MATRIX S:

i 2

1 3

1 4

i 5

Z 7

3 4

MAXI MAL MATRIX IS:
lL 2
1 3
L 4

1 po)

2 >

2 {

3 4

LABEL PERMUIATION IS :
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