FIND ING THE MAXIMAL INC IDENCE MATR IX
OF A LARGE GRAPH

by

M. Overton
A. Proskurowski

STAN-C S-75-509
SEPTEMBER 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERSITY

20 JUNJo
P QO“D,—\ ==
T8 NN
&V’ ” N \ \'.
JE, ey TN
fe/ ey Vel
E / ";-‘« -2t
EED TN Z
R RPN ALY S
T T S R
TN 4
s Op e

NoanzEn S

r— r r— — 1

Finding the Maximal Incidence Matrix of a Large Graph

Michael Overton and Andrzej Proskurowski
Computer Science Department
Stanford University

Abstract

The paper deals with the computation of two canonical representations

of a graph. A computer program is presented which searches for "the

maximal incidence matrix" of a large connected graph without multiple

edges or self-loops. The use of appropriate algorithms and data

structures is discussed.

This research was supported in part by National Science Foundation grant
DCR72-03752 AC2 and by the Office of Naval Research contract NR OLk-Lo2,
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1. Introduction.

The notion of the maximal incidence matrix as a canonical represen-
tation of a graph was introduced in [1]. Aan algorithm to search for
this matrix (a graph being given by--any of its incidence matrices) was
presented there together with a computer program which performed the
search.

In this paper we briefly review basic ideas of [1] and discuss
another "maximal incidence matrix" of a graph. Our main concern is the
application of the search algorithm to large graphs and an efficient use
of computer memory when representing graphs and carrying on the search.
A variety of arrays and linked lists will be employed in order to limit
the amount of parameters passed along with the recursive subroutine calls.
We have developed a computer program written in ALGOL W that maintains
the data structures and performs the search. The program is presented

and its functions are discussed.

2. Basic Notions.

In order to use concrete phrases when discussing the problem and

the proposed solution, let us define our basic vocabulary.

A graph will mean two sets N (of nodes) and E (of edges),

together with a function F (the incidence function) which ascribes

an edge ae¢E to some unordered pair of nodes ng and,rlz,

F(nl,ng) = F(nz,nl) = a

We constrain the function F to be partially defined (in particular,

not defined for n. =n_ thus excluding graphs with self-loops) and

1 2
require that F is single-valued, i.e., graphs do not have multiple

edges. Nodes n, and n are said to be adjacent and the edge a is

1 2
salid to be incident to nodes nl and n2 . The valence of a node nl

is the number of edges incident to it, and will be denoted valence(nl).
A graph is connected if for every pair of nodes u,veN there exists a

sequence of adjacent nodes ni (i = 0,...,k) such that no =u,

n = v and F(ni-l’ni) is defined for all i =1,...,k . 1In the
following we shall consider only connected graphs, for simplicity.

We shall label elements of the sets of nodes N and edges E by
consecutive integers beginning with 1 . We shall represent a graph by
listing entries of its incidence function which is a shorthand for its
incidence matrix: a sparse binary matrix of n =|N| columns
corresponding to the nodes and e = |E| rows, each corresponding to
an edge. The element M(p,i) of the incidence matrix M equals 1
if the edge label-led p and node labelled i are incident, and 0
otherwise. We will denote edge labels p, g, r and node labels i, j , k
The p-th row of the matrix, corresponding to the edge labelled p , will
be referred to as M(p,*) and the i-th column, corresponding to the
node labelled i , will be referred to as M(*,i) .

An important notion for our discussion is that of isomorphic graphs.

Two graphs, Gy = (Nl,El,Fl) and G, = (NQ,EE,FQ) , are said to be
isomorphic if they may be represented by identical sets Nl = N2 and
El = E2 s and identical function Fl = F, . With our assumption about

labelling sets N and E , this means tiat the labels in one of the
graphs may be permuted in a way transforming the incidence function into
a form identical with the other. 1In terms of the incidence matrices
this means exchanging columns and rows of one matrix so as to get a
matrix identical with the other one.

Let us consider incidence matrices of a graph which have rows
arranged lexicographically in descending order. Then, for a given
graph, we can define an ordering relation on the class of row-ordered
and M, we say that

1 2
Ml is row-greater than M2 if the first row of Ml that differs from

incidence matrices. For two unequal matrices M

the corresponding row of M2 is lexicographically greater. A matrix

not less than any other matrix in this class will be called the

row-maximal incidence matrix of the graph, or the "romim" for short.

The notion of romim was introduced in [1] under the name of
"maximal incidence matrix" and its existence proved.

Considering columns of an incdence matrix as bit strings read
top-to-bottom we may order them in descending lexicographic order.

For a given graph let us define a relation column-greater than on the

class of column ordered incidence matrices. A matrix not less (in the

sense of column-ordering) than any other matrix in the class will be

called the column-maximal incidence matrix of the graph, or simply the

"comim" .

Fact 2.1. For a given graph there always exists a column-maximal

incidence matrix defined as above.

Proof 2.1. Given a graph we can always fix the labelling of the edges
and then order the columns of the incidence matrix lexicographically.
Thus, for all possible labellings (permutations) of edges we obtain a
set of corresponding column-ordered incidence matrices. Since the set
is finite, we have an element that is not less than any other element

of the set. This is the comim. O

It must be pointed out that the two definitions describe two
different quantities. We give an example of a graph and its romim

and comim (Figure 2.1). By inspection, the matrices are not equal.

— r—

(b)

Nodes:

Figure 2.1.

1234567 (¢) 1ho3567

11 T

! 1 1 1

1 1 1 1

11 1 1
1 1 1 1
L 1 11

Example of a graph (a) with unequal romim (D)
and comim (c).

D The Search.

It is easy to describe a brute force method to find the maximal
incidence matrix. By listing all possible labellings of nodes of a
graph, lexicographically ordering the rows of the corresponding incidence
matrices, and saving the "maximal matrix so far", the romim is obtained.
Similarly, by listing all possible labellings of the edges and ordering
the columns of the incidence matrices the_comim is obtained. However,
there often exist clear indications of which permutations should be
considered as leading to the proper labelling. A depth-first search
procedure to find the (row-) maximal incidence matrix was proposed in [2].
It labels nodes of the given graph and selects the best choices to be
labelled tentatively leaving the other possibilities still to be examined.
The search may be represented by a search tree where nodes of the tree
correspond to the labels to be assigned. When the search arrives at a
leaf of the treex(i.e., when all nodes of the graph are labelled), the
incidence matrix "maximal so far" is compared with the result of the
tentative labelling and -- if it is inferior -- replaced by the newly
found one.

The main role in the process of labelling nodes of a graph is played

by the priority vector. It is a one dimensional array which for every

unlabelled node gives an indication of its suitability to be labelled
next. This indication is calculated from the incidence matrix based
upon how a node is connected with the labelled nodes. To formalize
this we introduce a notion of the priority vector for assignment of the
label m . The element PRIVK%Ji) , where 2 <m < i < n , is a bit
string which at every position 1 < j <m has 1 if the node i is
adjacent to node j and 0 otherwise. Figure 3.1 gives an example of
a graph (a) and the priority vectors (b) for consecutive instances of

labelling the nodes.

| ! f —

(a) 5

1
L
6
(b) PRIVEC (1) (2) (3) (L) (5) 6)
m=2 1 1 1 1 0

2 11 10 10 01

4 101 100 010

2 1000 0101

¢ 01011
Figure 3.1. A graph and the priority vector corresponding to the

labelling (l: 2,3, L"’ 5 6) .

Let us define a labelling of the nodes of a graph to be privet-proper
if any incidence matrix of the graph with nodes arranged by this labelling
has nonincreasing priority vectors, i.e., for every i, j and m such
that 2 <m < i < j_< n we have PRIVEC (i) > PRIVEC (J).

The importance of privet-proper labellings of nodes is stressed

by Theorem 3.1 (stated and proved for the romim in [1]).

Theorem 3.1. For a given graph the labelling of the nodes that

results in the maximal incidence matrix (romim or comim) is privet-proper.

However a matrix with a privet-proper node labelling is not necessarily

a maximal matrix.

It is worth noting that the property of the priority vector stated
in Theorem 3 .1 holds true for both romim and comim. Let us state two
lemmas that will simplify proof of the theorem. Lemma 3.2 expresses an
intuitively obvious fact that we want "as many ones as possible" in the

lefthand upper corner of the incidence matrix.

Lemma 3.2. For a given incidence matrix and a given column i define

Si to be the set of all rows with their first 1 in column i . Then,

for the maximal incidence matrix, romim or comim, any row between the

first row in Si and the last row in S.l is also in Si . We call the
set S.l simply a block i of rows in the maximal incidence matrix

(note that block i may be empty).

Proof 3.2. Assume the contrary: that for a maximal matrix Ml there
exist a column i and rows p, ¢, r with p < r < g , such that the
first 1's of rows p and g are in column i and the first 1 of

row r is in column k £ i

(i) Suppose Ml is the romim. If k < i then a matrix with rows
p and r swapped is row-greater than Ml , and if k > i then
a matrix with rows g and r swapped is row-greater than Ml ’

S0 Ml is not the romim.

(i1) Suppose M, is the comim. If k < i then swapping rows p and ,

1
(relabelling corresponding edges) and column ordering the matrix

results in a matrix column greater than Ml - similarly if k >i
then swapping rows g and r and column ordering leads to the

contradiction. Cl

Actually it is obvious that this block structure of the incidence

matrix holds for every row-ordered incidence matrix (see Figure 3.2).

11
1 1
block 1
1 1
1 1
Zmm- < - -
1 ! block 2
1 1
_____ a -
11 block 3
- - - -a-- block 4 is empty
1 1 block 5
11 block 6
Figure 3.2. A row-ordered incidence matrix of a graph displays

the block structure.

The second lemma states the conservative property of the priority

vector with respect to the assigned label.

Lemma 5.3. For a given incidence matrix and two nodes 3 gpg 5

(1 < J) we have, for all 2 <f<m<i,

PRIVEC (1) > PRIVEC (j) = PRIVEC, (i) > PRIVEC (J)
m

The proof is trivial and is left as an exercise for the reader. =

Now we can prove Theorem 5.1 for both romim and comim.

Proof 3.1. Assume the contrary: the given maximal incidence matrix
Ml does not have a privet-proper node-labelling. Thus there exist
m<1i<3j such that IRIVECm(i) < PRIVECm(j) . According to Lemma 3.3

this implies

PRIVECi(i) < PRIVECi(j)

which means that there is a position k < i such that the k-th bit in
PRIVMGﬁi) equals 0 and the k-th bit in PKUECiCﬂ equals 1 , with
the first k-1 bits in the same in both,PRIwmi(i)and PKUECiCﬂ
Thus in block k of M

1
and there is a row p in the block with a 1 in column j . We will

(Lemma 3.2) all rows have 0 's in column i

now prove that M, may be rearranged in different ways leading to

1
matrices M2 and N% » each greater than M, , in the sense of row-

and column-ordering, respectively. This will contradict our assumption

that M 1s a maximal incidence matrix.

1

(i) Suppose M, is the romim. Then swapping columns i and j

1
(relabelling corresponding nodes), and ordering rows within

blocks 1,...,k-1 we obtain a matrix with the blocks 1,...,k-1
identical with those of Ml . In the block k , however, row p
is greater than it was before, and no other row in this block
has been changed. Thus, ordering block k we get a matrix M2

that is row-greater than Ml .

(ii) Suppose Ml is the comim. Consider blocks 1,...,k-1 ; because
of the definition of k there cannot be a row with a 1 in
column i without another row in the same block with a 1 in
column j , and vice versa. 1In each block if there is a row p

" with a 1 in column i and a row g with a 1 in column j ,
such that p < g , then interchange rows p and g (relabel
the corresponding edges). There must be at least one such block
or else the columns would not be in order. Then the new column j
is greater than column i of Ml » the new column i is less
than column i of Mi and all other columns are unchanged. Thus,
ordering the columns lexicographically, we obtain a matrix M5

greater than Ml . This completes the proof. Cl

10

r

r— r— I 1

We can now recall from [2] how the algorithm for finding the romim

works.
At any stage m , the priority vector gives the indications for the

assignment of label m . These indications may appear in two forms;

(1) There is exactly one node pretending to the label m gince it
uniquely has the highest wvalue of the corresponding element of

the priority vector;

(2) There are several nodes for which the corresponding elements of
the priority vector have the highest value. These nodes are

called equal pretenders.

The situation of (l)is clear and implies assigning label m to the
pretender, thus increasing the number of labelled nodes. Calculating
the priority vector for the rest of the unlabelled nodes again and
again gives the situation (1) or (2) and eventually results in the
incidence matrix, maximal for the original labelling 1,2,...,m-1 .

In the situation (2) there are more pretenders that have to be
tried as node m . Successively one by one all of the equal pretenders
are assigned the label m .and, after proceeding as in situation (1),

a matrix maximal for every labelling is calculated. The greatest of
these matrices is stored as the incidence matrix maximal for labelling
1,2,...,m=-1 . The maximal matrix of the graph is identical with the
solution of the problem of finding for the matrix maximal for m = 1
(no nodes labelled).

The algorithm is based on two recursive procedures, CHOOSE and
PRETEND. Procedure CHOOSE computes the priority vector and makes the
right choice for the next label if there is only one pretender; if there
are several it calls PRETEND. Procedure PRETEND mades various tentative
choices for the next label, calling CHOOSE for each. The process is
initiated by examining the valences of the nodes and calling CHOOSE
with each node of highest valence as the initial choice. 71t ig clear

that for both romim and comim the node labelled first must be a node

of highest wvalence.

We must correct here the algorithm of [2] which applies a valence
check in situation (2) to narrow down the number of pretenders. In the
example of the graph in Figure 2.1 this would result in M2 rather than
is row-greater than M

My s in spite of the fact that M Our present

1 2
algorithm omits this check.
However, the valence check employed--in the algorithm is useful for

determining the comim, making the search for the comim more efficient

than the search for the romim. This is elaborated in the next section.

L. Pruning the Search Tree for the Comim.

It is attractive to search for the comim rather than the romim because

of the following theorem:

Theorem 4.1. Let=. Ml

1, ¢ gy - Then for all i < j:

be the comim for some graph with nodes numbered

PRIVECi(i) = PRIVECi(j) = valence (i) > valence (j)

Thus if on the i-th decision level two nodes are equal pretenders but
have different valences, the node with the higher wvalence should be

chosen.

Proof. Assume the contrary, that is, there exist i < j such that
PKUECitﬁ = PRDECiQﬁ and valence (i) < valence(j) . Consider blocks

ly ooy, i=-1 of M (cf. Lemma 3.2); because the priority vectors are

equal there caniot be a row with a 1 in column i without a row in

the same block with a 1 in column j , and vice versa. Relabel the
edges in the following way. Interchange the pairs of rows, in the

blocks 1, . . .,i-1 , which have 1's in columns i and j , and also

move the remaining rows with a 1 in column j up following block i-1 .
The new column j 1is greater than the column i of Ml , because
valence(j) > valence(i) . Columns 1,...,i~1 remain unchanged, so after
ordering the columns we obtain M. column-greater than Ml , which is a

2
contradiction. O

12

Theorem 3.1 showed that the same search tree leading to privet-proper

labellings of nodes can be used for both the romim and the comim.

Theorem 4.1 shows that the comim search tree can be significantly pruned

by considering the valences when encountering equal pretenders.

When arriving at a leaf of the search tree we have a privet-proper
node labelling and have built up an incidence matrix of the graph with
this node label-line;. It remains to label the edges. In the case of
the romim search it is clear that ordering the rows of the matrix
results in the row-maximal incidence matrix for this node labelling.

It turns out that for the comim search as well, ordering the rows of

the matrix results in the column-maximal matrix for the labellings.

This result is stated in Theorem 4.2.

Theorem 4.2. Let a graph with a privet-proper labelling of nodes be
given by an incidence matrix. Then ordering the rows of the matrix

results in the column-maximal matrix for the labelling.

To prove this theorem, consider the row-ordered matrix. Lemma k.3
shows that such a matrix has a column block structure analogous to the
row block structure described in Section 3. Furthermore, Lemma 4.4
shows that such a matrix is column-ordered. The final step will be
to prove that no other permutation of the rows gives a matrix which

is column-greater than the row-ordered matrix.

Lemma 4.3. A row-ordered incidence matrix of a graph with a privet-proper

labelling of the nodes has the following two properties:

(A) For every row in the matrix, a 0 in between two 1l's has a 1
above it in the same column.
(B) The highest 1 in any column is not lower than the highest 1 in

any succeeding column.

Proof 4.3,

(A) Assume that row p has a 0 in column k and 1l's in columns
i and j , where i<k < j, and that there is no 1 in column k

prior to row p . As the given matrix is row ordered, rows with a

13

1 in column k must have the other 1 in column £ > 1 (see
Figure 4.1). But this implies that PRIVECk(j) > IRIVECk(k) ,

which is not possible since the labelling is privet-proper.

i2k
0]

Figure 4.1

(B) Suppose the highest 1 in column i is in row p and the

highest 1 in column j 1is in a higher rowqg , with i < j

and p > q . Let the other 1 of row g be in column k
If k < i then we hav situation which contradicts (A) (see
Figure 4.2), and if i then rows p and g are out of order,
which is not possib |
k
q 01
P 1
Figure 4.2
Lemma k4.k. A row-ordered incidence matrix of a graph with a privet-proper

labelling of the nodes is column-ordered.

Proof 4.h. Recall from Section 2 that we are concerned only with
connected graphs without multiple edges.
We will show that every two columns of the matrix are in order.

Consider the highest 1's in columns i and j with i < j . By

1k

Lemma 4.3B the highest 1 in column i is not lower than the highest

1 in column j . We claim that it is in fact higher, except for the
case 1 =1, j =2 . Suppose the contrary —-— then columns i and j
have their highest 1's in the same row, say row p . Suppose further
i<j-1. Then there is a column X (i < k < j) with a 0 in row p ,
so by Lemma 4.3A there must be a 1 in column k higher than row p

-- however this violates Lemma 4.3B since the highest 1 in column i
is in row p . Otherwise i = j-1 , but then nodes 1,...,i-1 are not
connected to nodes i,...n. This can be seen by considering Figure 4.3,
where submatrix Mi must be all 0 's since the rows are ordered, and
submatrix Mé must be all 0 's because of Lemma 4.3B and the fact that
the 1% in row p are the highest in columns i and j. Thus the

assumption that the graph is connected is violated.

1.... ig .. n
M2
P 11
My
Figure L.3
Inthecase i =1, j = 2 the first column must have 1's in the

first two rows and the second column must have a 0 in the second row
since the graph has no parallel edges and the first node chosen must be
a node of greatest valence. Thus column 1 is greater than column 2

(except in the trivial case of a graph consisting of only one edge). 0

15

Now let us prove Theorem 4.2.

Proof 4.2. By Lemma 4.3 any row-ordered incidence matrix Ml of a
graph with a privet-proper labelling of the nodes is column-ordered.
Thus it is sufficient to show that no other permutation of the rows
gives a matrix M2 which is column greater.

Suppose the contrary. Let column k be the first column differing
in M1 and M2 , and let the first element of column k differing in
Ml and Mé be in row p . Since M2 is column greater than Ml’
clearly Ml(p,k) = 0 and ME(p,k) = 1 . Because column k differs in
Ml and M2 only by a permutation of elements p,...,e , there exists
g > p such that Mi(qﬂd = 1 . Therefore row p of Ml has a 1 to
the left of column k , say in column i < k , since the matrix is
row-ordered. As column i is the same in both matrices we have
Mgﬁbi)= Mlﬁ%i)EE 1. The other 1 in row p of M; must lie to
the right of column k , say in column j > k ; otherwise, if j < k ,
then Mz(pﬂﬂ = Ml(pgﬂ = 1 and there would be three 1's in row p
of M, . Thus we have M2(p,*) > Ml(p,*) . Hence there exists r <p
such that Mg(p,*)== Ml(r,*) (with the 1's in columns i and k),
since Ml and M2
row-ordered (see Figure 4.4).

differ only by a permutation of rows and Ml is

1 2
ikj ik
r 11
101 11
1
Figure 4.4

16

But then %Jr,*)= Mlu3*)and we have two identical rows in M, ,

which contradicts the assumption that the graph has no multiple edges.

This completes the proof of Theorem 4.2. n

We have now shown that the cOmim is a row-ordered matrix with a

privet-proper node labelling. The example of Figure 2.1 shows that if
M; and M2 are two row-ordered matrices with privet-proper labellings
it is possible for M to be row greater than M), and M, column

greater than Ml . However because of Theorem 4.1 we can (confine our

attention to row-ordered matrices with privet-proper labellings and with

[PPIVECi(i) = PRIVECi(j) and i < j] = valence(i) > valence(]j)

At first Slght it mlght seem that if Ml and M2 are two such matrices

then Ml is row greater than M2 if and only if Ml is column greater
than M2 . However this is not the case and Figure 4.5 gives a

counterexample.

17

*(q) usyz xe3BaI8 MOX ST (D) 9qngq (o) uBy3

199898 wmTod ST (q) XTI3eW - (®) Udesl B JO SOOTJIJBUW SOUSPTOUT OM], *Gq 2INITA

18

T T TT
T T T T
T T TT
1T T T 3
TT T T
=\t T'Vl T T e
T T ! T T L ¢
T |T Tl [T
| Tt
9G¢KeT¢b6Q L 6gLoSH¢eeT 6

2) (a)

r

5. Data Structures.

A data structure for the search of the maximal incidence matrix of
small graphs by means of this algorithm was proposed and used in [2].

The incidence matrix of a graph with n nodes and e edges was represented
by e words. If edge i was incident to nodes j and k , then the

i-th word was a bit string with 1's only in positions 7 and k . Thus
one row of the incidence matrix was stored in one word of computer memory.
Such a representation facilitated manipulating the matrix by logical
operations on the bit strings. However, the number of nodes in the graph
was limited by the number of bits in the computer word. In the data
structure proposed here the number of nodes is limited only by the

computer integer range and the size of computer memory.

In the present implementation the incidence matrix INCMAT is stored
in an ex?2 integer array (twice the storage of the old representation).
If edge i 1is incident to nodes j and k then the i-th row is an
unordered pair of integers j and k

During the search it is necessary to order the rows of INCMAT. The
ordering is achieved by introducing an integer vector NEXTEDGE which
transforms INCMAT into a linked list. This vector is dimensioned from
0 to e with NEXTEDGE(i) = i+l initially, except NEXTEDGE(e) = -1
As nodes are labelled, the edges incident to them are "pulled up to the
top of the list". The pointer LASTLABELLED points to the last such edge
pulled up; initially LASTLABELLED is set to zero. More precisely, when
procedure CHOOSE is entered, with say node p chosen to be the next
labelled node, procedure PULILUP is called, which scans down the linked
list (INCMAT, NEXTEDGE) starting from LASTLABELLED, and upon encountering
an edge incident to p , deletes the edge from the list, inserts it following
the edge at LASTLABELLED, and updates LASTWELLED. The two nodes incident
té the edge are interchanged if necessary so that p is in the first
column, the other node is examined, and the priority vector PRIVEC is
modified accordingly.

When a leaf of the search tree is reached the new candidate for the
maximal matrix must be calculated from the linked list representing the
incidence matrix. This means that the rows of the incidence matrix must

be lexicographically sorted. The entries in the first column of INCMAT

19

are in order determined by the label permutation found. The second

column, however, requires sorting of entries within blocks (cf. Lemma 3.2)
to obtain an ordered matrix. Now the new matrix may be compared with
MAXMAT, the maximal matrix found so far. This testing -- in the sense of
row ordering -- 1is an easy task for the chosen data structure. It suffices
simply to compare the two-element rows of the new matrix with those of
MAXMAT one at a time. The test in the sense of column-ordering is not

as obvious, and will be described in Section 6.

The priority vector PRIVEC does not have to be stored in a way
described in Section 3, with the number of bits in each element equal to
the number of nodes labelled so far. Instead it is stored here in an
integer array called PRIVEC, whose entries are node numbers and which is
broken into a number of logical blocks. (Now we are talking about blocks
in PRIVEC, not the ones defined in Lemma 3.2.) At any stage of the labelling
process all nodes within a block have equal priority, and nodes within one
block have higher griority than nodes within another block further down the
vector. There may be a block of nodes that have not been assigned any
priority yet -- the last part of the PRIVEC may contain only zeros. This

. block is referred to as the empty block. In the priority vector described
in Section 3, when a node p 1is labelled one more bit is added to every
element of the vector: 1 to those elements corresponding to nodes
adjacent to p and 0 to all other elements. In the data structure
described here, when a node p 1s labelled, any node adjacent to p is
either added to the empty block if it is not already in PRIVEC or marked
in PRIVEC if it is already there. Such nodes are found by procedure PULLUP,
described earlier. After all nodes adjacent to p have been found,
procedure SHUFFLE is called. This procedure scans PRIVEC and shuffles
the entries within each block so that the elements marked by the action
of ‘PULLUP are moved to the top of the block and the unmarked elements
are moved to the bottom. If these two sets of elements are both nonempty
the block is then split into two blocks, since the marked elements have
higher priority than the unmarked elements. After all blocks have been
shuffled, the empty block is checked for the presence of any new elements.
If some were added by the pull up operation, a new block is created to

accommodate them and the remaining zero elements become the new empty block.

20

’
!

r-

In order to avoid searching the entire vector PFRIVIC every time an

edge incident to p is pulled up, a new vector CROSSREF is introduced.
This is the cross reference to PRIVEC: at any time, if FRIVEC(i) = J > 0
then CROSSREF(j) = i

The description of the PRIVEC blocks is stored in a list of records,
pointed to by BIOCKLIST. Each record contains an integer field BLOCKFTR
and a link NEXTBIOCK. The BLOCKPTR fields are integers pointing to the
first element of each of the blocks in PRIVEC. The integer BILOCKPIR
(BLOCKLIST) points to the first element in the highest priority block
of PRIVEC; this element is not necessarily the first element of PRIVEC
as will be explained shortly. The pointer EMPTYBIOCK points to the last
record in the list. The integer BLOCKPTR (EMPTYBLOCK) points to the
first zero element of PRIVEC, unless every node has been entered in
PRIVEC in which\'case the pointer will have value nt+l .

Initially BLOCKLIST is set to point to a list of two blocks, the
first containing a node of maximum valence and the second the empty
block. At any stage in the search the pointer BIOCKLIST points to a
list of at least two records. The initial data structures for a certain
incidence matrix are shown in Figure 5.1.

After initialization, procedure CHOOSE is called. The node with
the highest priority is considered to be labelled and procedures PULLUP
and SHUFFLE are called to perform the actions described earlier. The
resulting data structures are illustrated in Figure 5.2.

At this point the block containing the labelled node is deleted from
the block list. (In fact the deletion is done in between PULLUP and
SHUFFLE since it is a bit simpler to do so, but this makes no difference.)
Now another node must be labelled so the first block of the modified
block list is examined. If it contains only one element, CHOOSE is called.
Ifl'it contains more than one element there are several pretenders to the
label, so PRETEND is called. Then PRETEND will call CHOOSE several times,
each time with the first block split into two blocks, one containing a,
single chosen pretender and the other containing the remaining pretenders.
In the comim search the valence check may reduce the number of calls to

CHOOSE (see Section 6).

21

[I

p) L
INCMAT NEXTEDGE
— =1«
316 |& — 5
e jle— 7 3
113 6——" [
116 le——" 5
213 le&= — z
2[5 [~ — 7 -
5k & — 7 3
b |5 & — 7
> .
516 |& — 1
CROSSREF PRIVEC
0 "’, 3
0 P 0
-
1|~ 0
0 0
0 0]
0 0
Figure 5.1. Example

22

LASTLABELLED

BLOCKLIST

of initial structure.

EMPTY-BLOCK

LASTLABELLED

NEXTEDGE

INCMAT

7

EMPTYBLOCK

BLOCKLIST

PRIVEC

CROSSREF

In first call of CHOOSE, after PULLUP and

SHUFFLE.

Figure 5.2.

—ded e d

25

Because of the recursive nature of the search, the crucial question
that one must ask here is: how much must be kept on the stack? The
answer is that when CHOOSE is calling itself or calling PRETEND only
three words must be passed (as value parameters): FIRSTBILOCK, EMPIYBLOCK,
and LASTLABELLED; when PRETEND is calling CHOOSE (i.e., at a branch in

the search tree), only a copy of the block list structure must be passed
in addition. At no time is it necessary to have more than one instance
of INCMAT, NEXTEDGE, PRIVEC or CROSSREF. This is very important, since
these arrays may be large and the search tree deep. It is not necessary
to keep a copy of INCMAT or NEXTEDGE because any changes made to the
linkedlistonly reorder the edges or reverse the pair of nodes incident
to an edge, producing an incidence matrix as valid as the original one.
It is not necessary to keep a copy of PRIVEC or CROSSREF because the only
changes made to PRIVEC take the form either of shuffling elements within
a block, or of adding elements to the empty block. Note that splitting
a block does not affect PRIVEC but only inserts a new record in the block
list. Since elements within one block have equal priority the shuffling
does not destroy the priority information. Any elements added to the
empty block of PRIVEC at a lower level may be deleted on return by saving
a pointer to the empty block before the call; corresponding new CROSSREF
entries may be deleted at the same time. An actual new copy of the block
list structure need be made only when PRETEND calls CHOOSE, since this is
the only point where the search tree branches.

The example of Figures 5.1 and 5.2 is continued in Figures 5.3 and
5.4, illustrating the situation after PRETEND has been called by CHOOSE,
'and after CHOOSE has been called again.

ok

r

o r—

INCMAT NEXTEDGE LASTLABELLED

— oy 0
[5]6 Je — — - . p

12 -~ = /

K - L

|’ Sjilel -~ - 7

116 & 7\ _ — //
=1, =" _[%

312 l&e \ 7/

215 |e D -
S e N8N

j _ - - N\)

5

= — 119

5 1F J& — —
CROSSREF PRIVEC BLOCKLIST EMPTYBLOCK

3

)
1
5
0
2

3 xt call
Flgure 5-3. 14 firgt call of PRETEND, just before ne

of' CHOOSE.

25

INCMAT NEXTEDGE LASTLABELLED

s 9

O\«T—“\NI’\)\N@\&NI—"\N
A 0N AC BN I = G2 0N BN AV B Sl B A B\ O)

-

CROSSREF " PRIVEC BLOCKLIST EMFTYBILOCK

passed to CHOOSE passed to CHOOSE

DN =W

v

1
1
\
1
1
wn {;Lns el IS

~

~ ~
~
-

~

\\
P

~
~ s>
~

/

\
\
/

4

or T (_r

BLOCKLIST EMPIYBIOCK
I saved by PRETEND saved by PRETEND

r_
-——
|
Y \

.
[]
v
.

Figure 5.k. In second call of CHOOSE, just before next call
of CHOOSE.

26

r

r—— r—— r— 1

Il

COnLin .

6. Differences in Implementation of the Search for the Romim and the

The previous sections showed that the same basic search tree can be

used for both the romim and the comim, and furthermore that the search

tree for the comim can be significantly pruned by making use of the node
valences. The pruning is done by considering the valences of the pretenderc
at the beginning of procedure PRETEND. The maximum valence of the
pretenders is found, and CHOOSE is called only for the pretenders with
this valence. The valences of all the nodes were computed at the
beginning of the program and stored in the array VALVEC.

The data structures described in Section 5 are particularly well

suited for the romim search. With a slight modification they may also

be used in the search for the comim. At a leaf of the search tree the

new matrix found must be compared with the maximal matrix so far. In
the romim case the maximal matrix so far is stored in MAXMAT, an array
with the same format as INCMAT, and as explained in Section 5 it is then
very easy to do the necessary row comparison. However the column

comparison for the comim search would be very inefficient using this

structure. A solution is to translate the row-ordered incidence matrix
found into an array of n linked lists, each corresponding to a column
and listing the rows with a 1 in this column. Then with the maximal
matrix so far stored in a similar array of linked lists MAXMATCOL, the
column comparison of the two matrices simply requires a series of scans
down the lists. The matrix comparison, together with a replacement of
the maximal matrix so far if necessary, is done by one of two versions

of procedure UPDATE -- one for the romim and one for the comim.

Advantages of the comim search are demonstrated by the running times

of an ALGOL W program which implements the search and data structures
described. One of the parameters to the program is a logical variable

whose value specifies whether to calculate the romim or the canim. The

"records and references" dynamic storage feature of ALGOL W is used for

the lists BLOCKLIST and MAXMATCOL. Integer arrays are used for all the
other list structures since they do not change size dynamically. The
program, listed in Appendix A, was run for several graphs on an IBM 370/165.
The results are summarized in Table 6.1. The computer printouts and an

explanation of the choice of graphs are given in Appendix B.

27

ROMIM COMIM

GRAPH NODES EDGES TIME LEAVES TIME LEAVES
1 9 .01 8 .01 L
2 7 .02 2L .01 L
3 17 22 .12 2L .02 2
Y 18 2L 12 2L .03 2
5 19 29 3L 14k .10 16
6 22 30 2.13 576 .03
7 23 31 3.10 1152 Nollt 2
8 2l 32 7.03 3456 .06 6
9 50 78 > 600 .81 L8

Table 6.1. Summary of the results of sample runs.

Time is shown in seconds.

28

r

We see from the results that the comim search is substantially

faster than the romim search. However the data structures in the prograr

were designed primarily for the romim search. we could expect significant

improvements in the performance of the comim search if more suitable data

structures were used. A particularly attractive idea is to compare the
maximal matrix so far with the new incidence matrix found as it is built
up, and thus have the possibility of abandoning unuseful labellings
early. This could be done if more of the priority information was kept.
The idea of abandoning labellings early might also be applicable to the
romim search, for example if the edges were labelled first instead of
the nodes.

Highly symmetric graphs (graphs with many automorphisms) will require
search trees with a large number of redundant leaves corresponding to
automorphic permutations of nodes. A way to eliminate some of these
leaves by keeping track of automorphic permutations as the search

progresses is discussed in [3].

Acknowledgment.

We are grateful to Prof. D. E. Knuth for his constructive criticism

and encouragement.

References.

[1] Proskurowski, Andrzej, "The Maximal Incidence Matrix of a Graph, "

Technical Report No. 70, December 1973, Royal Institute of
~ Technology, Stockholm.

(2] Proskurowski, Andrzej, "Search for the Unique Incidence Matrix of
a Graph," BIT 2 (1k4),197k.

[2] Proskurowski, Andrzej, "Graph Symmetries in the Search for the
Maximal Incidence Matrix," Technical Report No. 75, April 197k,
Royal Institute of Technology, Stockholm.

29

Appendix A

The Program.

20

CIMIMENT

FIND LG THE MAXIMAL INCIULNCE MATKIA OF A LAKRULE LKAPH
MICHAEL OveRTUN ANL ANUKZLEJ PRUSKUROWSKI
CUMPUTER SCLIENLE UEPAKI MENT
STANFULRU UL VEROSLTY
JULY 1S 7L

ueGIN

e JCEDUKE KLAPFERSLANGE (INTEULK ARKAY INCMAT ¢ MAXMAT(%, %) ;
INTEGER ARFAY PeRMUTATIUN(*); INTEOGER VALUE NOUODES EUGES:
LAGICAL VALUE RUMIM: INTEOLEK RESULT LcAVES):
CUMMENT TAKES THE INCIDENCE MATRLIX INCMAT OF A GRAPH ANU KRETUSNS Tiit
(RUMIM Of CUMaA) MaX IMAL MATR IX MaaMAT AND THE LABelL PERMUTA TIUNS
CUMMENT LEAVES [S SET TuL THt NUMBewk OF LEAVES IN The SEARCH TREE:
BEGIN
INTECEK ARRAY NEXT EUGLELG: sbuoL S)
COMMENT THESE POINTERS TrRANSHURM INCMAT INTO A LINKED LIST
IMTEGEr La>STiAbcelel
COMMENT PCIN S TU LAST EULE "PULLED UP™ 3Y NUDE LABELLINLS

INTECGER ARKAY PRIVeCoCRUSSOKEF. VALVEC (12 :1.400ES)
CUMMENT PRIVEC IS THE PealUxiIY VECTUOR. CROSo>wEF THE (CxOSS
REFERENCE TU PRIVELs AlNu VALVLC THE VECTOR UF VALENCES:

SECORLC BLOCKUINTEGER SBLLUKPTR; REFERENCE(BLOCK) NEXTBLJICK) ;
KREFERENCE(BLUCK) BLUCKLISTEMPTYBLUCKS

COCMMENT BLUCURLEST PUINTO TU THE LIST OF BLOUKS UF PKIVEC.
EMPTYBLGCK PUINTS TU THE LAST ELCMENT CF THE LIST:

RECCKRD INCELCECINT EUER EUGENUS REFERENCE(INCEJUGE) NEXTUNE) 3
REFERENCCUINCEUGE) AksAY MAXMATCUL (L 3 :NUUES):

CUMMENT FcAL> OF Tht LIST RePRESENTATION OF MAXMAT -

USED ONLY IN THE CUMIM SEARKCH:

PRCCEDURE CHCLSE (REFERENCE(BLUCK) VALUE BLOCKLIST.EMPTYBLOCK ;
INTEGER VALUE LASTLABeLLEDL) G .
COMMENT L AdtlL THE UNLY eLEMenT OF THE FIRST 8LOCK IN BLOCKUIST.
- REARRANGE ThHE INCILENLE MAT&IX AND MUDIFY PRIVEC AUCIKDINGLY
BY CALL INuG PULLULP AND SHUFFLE:
BEGIN

PRULEUUKE PULLULP (INTELER VALUE CHCSEN);

CUMMENT SCAN LOaN INUCIUENCE MATRIX STARTING FRUM
LASTLABELLEUS UPUN ENCUUNTERING AN EDLE INCIDENT TO Nuot
CHLSENy PRCCEEU U "PULL UPY THE EOGE TUu LASTLABELLEU.
AFTbr LOCKING AT THE UTHER NODEt CF THE ELUGEs MUUIFY PRIVEC
ALCLURDINGL Y

EEGIN
INTEGEKR P o REV.PRIVECLAST;
PREV:=LASTLABELLEU s Pe=NEATEDGE(LASTLABELLED);
FRIVECLAST:=pLUCKPTRIEMPTYBLOCK) s CUMAENT POINTS TO
THE FIRST (KU bELEMENT CF PRIVEC:
wHILE P=-] JUJd
BELGIN INTELEK FUOUNDJX
FLunbs= [F LWCMAT (P4 L)=CHOSEN THEN 1 ELSE IF
INCMAT (Poc) = CHOSEN THEN 2 ELSE U3
LF FUUNU==0 THEN

31

oEGLIV
INTEueEx TEMP;
LUMMENT PUT CHUSEN NOUOCE IN FIRST COLUMN
IF FUUND=2 THegN
OEGIN INCMAT(P +2):=INCMAT(Py L)
INCMAT(Pos1l):=CHOSENS ENUS
COMMENT MOUIFY PRI VEC
S=INCMAT (Pe2) s
IF CRUSSKEF (X)=2 THEN CUMMENT NOT | N
Prlviee 50 ADD T3
BEGIN
PRIVEC{PRIVECLAST) :=X:
CRUSSKEF(X):=PRIVECLAST;
rRIVECLAST :=PRIVECLA>T*1
cND
L LSE CUMMENT ALREAUY | NPRIVECS O M ARKITS
PRIVCCUCKUISSREF (X)) :=-PHI VECLICROSSREF (X))}
LOMMENT PuLl EUGE HIGHEK UP N LISTS
IF Pke v~=LASTLABELLED THEN
BEGIN
TE4P e =NEXTEUGE (LASTLABELLED) ¢
NEXTEDGE(LASTLABELLED)I=P S
NEXTEOGE(PREV) :=NEATEVUGELP)3
NeEXTEVGE (P 3=TEMP;
LASTLABELLED: =P
= Pi=NEXTEDGE(PREV)
END
ELSECUMMENT P UL L UPNJTNLCESSARY S
bEGIN
LASTLABELLED:=PREVEI=P]
pPi=NEXTEDGEL(P)S

tND§
£ND
eLSe CUMMENT CAUSENN O TFQOQUND IN EDGES
BEGIN
PrREVSE =Ps PI=NEXTEOGE(P);
cNU

EivL ¢
CCMMENT 1+ ANY NEW ELEMENTSH A V EGMEEN ADUDEU TU PRIVEC
TFEN CREATE A NEWBLDOCKFURTHE M ;
It PRIVECLASTOBLUCKPTR(EMPTYBLOCK)ITHEN
EMFTYELGOKS =NEXTBLOCK (EMPTYBLUCK) =
BLCCKEFRIVECLAST oNULL) S
END PULLUP

PRCCEULRE SHUFF A L KEFERENCE (BLOCK) VALUCEP)}
. COMMENT SCAN UUWN LIST UF BLUCK PCINTERS. rOR ANY BLOCK
CONTAINING NLOGAT IVE eLEMENTSy SHUFFLE THeBLJUCKSPLITTING
| T inTO TwU BLUCKSe THe FIRST CUNTAINING THE NEGAT | V E
ELEMENTS A N DIneE SUCUND THE POSITIVE - ALSU RESET THE
NEGATIVE ELEMENIS TU PUSITIVES
WhILENEXTBLUCK(P)~=N U L LDU

CEGIN INTELER A oBUKDER: CUMMENTAFTEK SHUFFL |

SLUCK tbL EMENT Se BUKDERWILLB E J H EINDE X J

NCANNEGATIVE ELEMENT 3

BURDER :=b LUCKPTR(PI S

FOR I3& BLULKPTREP) UNTIL BLOCKPTR{NEXT3LUIK(P)) - 1

D CLILFPRIVEC(IIKUTHENCOMMENTMUVEMARKcY
Nuue UP TUNCGATIV tHALFO FBLGCKS
bEGIN IF L1-= BORUER THEN

Ti
"z

32

bLtuOlIN INTEGE
| EMP:=PRIVEC
PRIVEULLT) :=PRIVEUL(BAORGER)
PRIVECL(IBORDER)= - TEMP3
CRUSSKREF(PRIVEC(TI))z=12
CRUSOSKEF(PKRIVEC(BORDER) ¥ $=BORDER
END
ELSE PRIVECLL):==PRIVEC(I)
BUKDER: =BURDER+ 1
ENUS
COMMENT IF BUTH THE POSITI VE AND NEGATI VB HALVES
OF THE oLuUuCK ARE INUNEMPTY THEN SPLIT THE SLUCK;
IF (BCRDER~=BLOCKP IR(P)) AND (BOKDER~=8LUCKPTR (
NEXTBLOCK(P))) TheN NEXTBLOCK(P) :=BLUCK(BURDER,
NEXTBLUCK(P))3
Fi=NEXTBLCCKL P}

6
E

R TEMPS
(his

END SHUFFLE 3

INTEGER NEWNLLES:

NEWNUULESS=BLOCKPTR(EMPT YBLUCK) ¢ COMMENT POINTEK TO
FIRST Z26RU ENIRY [N PKIVEC TO BE USED FUKk RESTUORING:

IF TKACE THEN WRITE ("cNTER CHOOSE W ITH CHOSEN NJODE =%,
PRIVEC(BLGCKPIR(BLUCKLIST))G

PULLUP(PRIVECIBLUCKPTR(BLOCKLIST)))

CUMMENT NUW THE FIKST BLUCK HAS BEEN DEALT WITHSOD E L ETE
I1T; BLOCKLIST :=NEXTBLULA(BLUCKLIST)

IF NEXTBLOCK(BLULKLIST)~=NULL THEN CUMMENT THERE ARE STILL
UNLABELLELC NUDES S

BEGIN INTEGER PRETENDERSS
SHUFFLE(BLUCKLIST)
COMMENT PRIVEC HAS NUOW BEEN UPDATEU AS REQUIRED BY
THE LABELLING OF THE NUDE. I+ THE FIKRST BLOCK OF
The MUDIFIGCu PRIVEL CONTAINS UNLY ONE ELEMENT THEN
LABEL LT BY CALLING CHOOSE - OTHERWISE THERE ARt
SEVERAL PKEI ENUDEKS
FRETENDERS :=bLOCKPTKINEXTBLOCK (BLUCKLIST))~BLOCKP T (
BLUCKLIST) ¢
IF PRETENLERS = 1 THENCHOOSE(BLOCKLISTEYPTYBLOCK 4
LASTLABELLEV) ELSL PRETENDIBLOCKLISTLEMPTYBLOCK,
LASTLABELLEUWPRETCNDERS)
CCMMENT IT IS NUT NECESSARY TOUO PASS A NEw COPY JF THE
BLOCK LIST,
ENC
CELSE CCMMENT ALL NUDESH A VE BEENULABELLED SU CALCULATE
THE INCIUENCE MATK IX FUUND AND UPDATE MAXMAT [F NECESSARY:
IF RCMIM THEN UPDATE_RKUMIM ELSt UPDATE_COUMIM;

COMMENT KeSTure PRIVEC AND CRUSSREF wHi(CH HAVE BEEN
MCDIFIEC BY SEARCH ON UEEPLER LEVELS. UELETE THE NEw
NLUOES FROM PRIVE(ANU veELE Te THE CURRESPUNDI N6
ENTRIES IN URUSSKEF: .

WHILE (NEWNGUE S<=NUDES) AND (PRIVEC{NEwWNUDES)-=01 DO

BEGIN
CRUSSREF(PRIVELINEWNNODES) J: =03
PRIVEC{NE nNULES) 2=03
NEWNUDES :=NEWNUDES* 1
END S ‘
IF TRACE THEN WRITEL"EXIT CHUQSE")
ENC ChUCSE &

33

PRUCECURE PReTENU (rtFeRENCE (BLOCK) vALUE BLUCKLIST 4 eMPTYBLUCK S
INTEGER VALLE LASTLADLLLEU»PRcTENDERS) S

CCMMENT adSIuN inexl cabel TJU tACH JF THE PreTeNuvERS IN TURN BY
CREATING A nEw BLULK cuUnTALnING THE CHUCSEIN tLEMENT uUNLY AND
CALLING LrtudSkes

BeoulnN

REt EKENCE(BLUCK) PrutLcuUxe COPY (REFERENCE(BLUCK) VALUE P
REFERENCE(BLUCLK) KESJLT Q)
CCMMENT CUPY T HE LIST PUINTED TO BY P o RETURN A POINTEK
T 1T AS THE PRUCEUURE VvALUE, AND SET ¢ Tu POINT TUO THE
LAST tbLEMenT Ui ThbE LIST G
I+ P = NULL ThinN
stLliv We=ihvUbLi ¢ wublL END
ELSE [F NexlbLLOK(P) = NULL THEN
BEUIN Wi=pLUCKIBLULKPTRIP) oNULLY: O END
ELS>t BlLULKIBLULKPTRAP I SCUPYINEXTBLUCKLP) 9Q)) 3

REFEKENLE(BLULR) HEAD TALL: CUMMENT PUINTERS TuU NEW INSTANCES
CF BLLCKLIST ANU EMPTYBLUCK ;

INTEGL R ARRAY BLOCKPREIS(L::PRETENDERS)

INTEGER MAX o KEPIT 3§

IF TRALE THEN WRITC("ENTER PRETEND WITHY,PRET ENDERS,

pPReTENUERS")

CCMMENT CCPY THE FIRSI BLUCK OF BLCCKLIST (CONTAINING THE
PRETENDEK S) "Tu BLULKPKRETS:

FurR [:=1 UNT 1L PreleNvek> DO BLOCKPRETS(I) :=PRIVECIBLOCKPTR{
BLOCKLLST)®i—-1)s

CUMMENT INTROLUUCE A NEW BLUCK FOR THE CHUSEN NOUEs
NEXTBLUCKEBLUCKLIST Ji=plLUCK (BLOCKPTRIBLUCKLIST)+ 1, NEXTBLUCKI(
BLOCKLIST) ;

CCMMENT FUOR THE COMEIM UNLY FIND T H ESTRICT SET OF PRETENUEKS
TOTHE NEXT LAaBEL BY LUNSIDERINGT H EVALENCES:
I F~<xkCWMIMTHEN
BEGIN INTEGEK V3
CCMMENT FINU THE MAX VALENCE OFT H E PRETENIDERS - KEPT
LSTHENUMBEK UF PFRETENDERS WITHTHEM A X VALENCE:
MAXs=KEPT :=(s
FCK 1 : = AUNTIL PRel ENDERS DO
stoln
- Vi=VALVEL(PKLIVEC(BLOCKPTR(BLUCKLIST)+I=-1)):
IF VoMaX Tntiv 8EGIN MAX:=V; KEPT:={: END
eidt 1F V=MAX THEN KEPT=KEPI #.;
ENL
[+ TRACE THeWN wRITE("VALENCE CHECK:",KEPT,
* PREITENDEK(S) TU Bt CONSIUEKREDLY)
ENCs
IF RCMIMUR (VALVEU(BLOCKPRETS(L))=MAX)T H E N
CUMMENT C A L L CHUUSERPASOINGT H EFIRSTPRETENDER~T T
EISNECESSARY 7 - uPASS ANEWC C P YCFT H EBLUCKLIST
BECALSE UF THE TeENTATI YV E ASSIGNMENT UNLESS (FUR
The CCMIM) CANLY UNE PRETENDER HAS . THEM A XVALENCES ...
It--kCMIMANU(REPT=L)T H E N
CRUUSE(BLUCKL I>T s EMPTYbLULK sLASTLABELLED)
LLSE

BEGIN

FEALS=CLPY (OLUCKLIST,TAILD)S
CHuUUSE(HEAU s TATL +LASTLABELLED)
EnD s

34

Furn CHUSEiIvE=¢ UNTIL PReTENDERS OC
iF RUMIM UK (VALVECIBLULKPRETS{CHCSFEFN)) =MAX) THEN

Eroln INTEGER 16 LUGICAL FOUND;
1:=1: rtuUNUS=FALDE: . R e . .
COMMENT PREVIOUS CaALLS TO CHUUSE MAY HAVE CHANGED Trr
Orukbr Ur THL clEMeNTS IN THt FIRST BLUCK UF PRIVEC
SC IT. IS NEULESSAKY T} SEARCE FOR THE JHOSEN NUDE
WHILE -HUUND VU I+ PRIVECIBLUCKPTRIBLUCKLISTI+I)=
BLOCKFPKRETIS{CHOSEN) THEN
BEGIN cumiMbn] "INT ERCHANGE CHOSEN NUODE WITH THe
PREvIUUSLY CHUSEN NOUE IN THt FIRST POSITIUN OF
Tht vLuCK;
PRIVELIBLUCAPTR(BLCCKRLUIST) #[)2=PRIVECIBLOCKRPTRI
bLUCKLIST))
PRIVEC(BLUCKPTR(BLOCKLIST) I:=BLUOCKPRETS(CHISEN) ;
CRUDSOKEFIPKIVELCIBLUCKPTRIBLOUKLIST)+L)): =
BLUCKPTRABLOCKLIST)+I;
CRUDSREFIBLUCKPRETS(CHCSEN))=
BLOCKPTRIBLUCKLIST) §
FCUND:=TwUE +
EiND
ELSE {:=1+1}:
LOMMENT CALL CHUOuoLc PASS ING THE PRETENDER - IT
IS NECE>>ARY TU PASS A NEw CLPY OF THE BLOCK LIST
BECAUSE OF T HE TENTATIVE ASSIGNMENT UNLESS (FOK
Tkt CUMIM) UNLY UNF PRFTENDFR HAS THF MAX VAl FNCE:

IF ~RCMIM ANU (xEPT=1) THEN o
CHUJSE (b LUCKLL ST o EMPTYBLOCK o LAS TLABELLED)

ELSE
sELIN
hEAUS=CUPY(BLOCKLIST,TAIL) ;
CHUUSE(HEAD JTAILLASTLABELLED)
civG 5

ENUS

I[F TRACE THEN WRITc(YEXII PRETEND"):
ENU PRETENDS

PROCEDUKE UPLA Te_RCMiM;
COMMENT COMPARETRHE INCIDENLEM ATRIXOBTAINEDBY N E W LABELLINGTO
THE MAXIMAL MATRE X FCUNUSUFRA RMAXMAT) ANDREPLACET H ELATTER
| FNECESSARY
CIMMENT ThIS I S FLK THE ROMIM OiLY
BEGIN
CUMMENT BECAUSE UF THE ALTIONO FPULLUPs THE FIRST COLUMN
OF INCMAT IS AkRANGEU IN THE JESIRED (LINKEU) URDER WwITh
ThHE LABEL PERMUTAT ION GIVEN BY CRUSSREF;
CUMMENT IN THIS PrOCEUWUKE THE TERM "BLUOCK" IS USED T O MEAN
A >elTIULNO k INCMAT Wl TH ALL ELEMENTS UF THE F IRST CULUMN
EWUALe ANC THE RELATIUN "MAXMATONEW MATRIX” 1 S USED TUMEAN
MAXMAT 1S BETIER THANTHENEWM A TR I X ;
INTEGER ARRAY RELABELLED(1 : sMAXVAL)
CUMMENT RclABbobiu 1S USED FUR SORTING THE SECUND COLUMN OfF
Tt CURRENT BLUCLK UF INUMAT BEING EXAMINED;
INTEGER [9JoJUeK: COMMENT | PUINTS TO INCMAT, v AND J oty
MAXMAT aND K Tu ReiLABELLED;
INTEGEK EL T LoUMP ¢
COMMCNTELTLY 3 THe eLeMENTINT H EFIRSTCOLUMNIFT H E
CURRENT BLULK OF INCMAT BEING EXAMINEU:
CCMMENTCOUMP IS SeTPOSITIVETL F MAXMATONEWM A TRI X
ANU NEGATIVE IF MaXMaT<NEW MATRIX:

35

PRUCEULRE Sukli
CULMMENT SURT KELABELLEL FROM 1 -0 K IN ASCENDING
STRALOGHT INSEKTIUN SUKT*
FUn L23=2 UNTIL K DU *
BEGIN INTELER KEY .1
le=L-1s
KEYS=ReLABELLED (L) S
wHiLE (I > 0) AND (KEY < RELABELLED(I)) DJ.
BEGIN
webAbELLEU (I +l) =xELABELLELI(I);
lL:s=l-1s
EnbL s
RELABELLEULLI+ 1) t=REYS
ENCs

PrUCEUDURE COMPARE 3§
CLMMENT CUMPARE THE PAKT UF THE INCIDENCE MATRIX

URDER BY

IN

RELABELLEL TUGETHER wiTH THE FIRST CULUMN ELEMENT
CRUSSREF{ELTL) wilhn ITHE CURRESPONDING BLUCK UF MAXMAT,
COMP 1S S5cT PUSITIVE Ir YAXMAT IS BIGGLER AND NEGAT IVE

ILF MAXKMAT 1S SMALLEKR:
tEGIN
WHlLE (CUMP=u) ANL (J<JO+K]) 0O
BEGIN

CUMP:==((MAXMAT(J oL)-CRCSSREF(ELT L)) * NUDES +

MAXMAT(J+2)-RELABELLED(J~JO+1));

CUMMENT waTCH JUT FOR UVERFLUW FJR LARGE GRAPHSS

Jei=dtis
ENU 5

IF CCMP-=U THEN CUMMENT SET J TUO FIRST ENTKY IN MAXMAT

VIFFEKENT FruM THAT [N THE NEw MATRIX:
Jr=d-li
ENU CCHMPAKE 3

LCGICAL FIRSTSAME;

CLMP:=03
SSNEXTELGELO) S

JU3=4s KI=US

whHiLE (I-==1) ANU (CumMP <=) DO CCMMENT CUNTINUE UNLESS

IT 1S ESTABLISHED THAT MAXMAT > NEW MATRIX:

BEGIN

FIRSTS AME: =TRUE

Je=JiLi=uutK: Ki=us

ELTLS=INCMAT (Lol) s

wHiitk FIKSTSAME vU COMMENT CCPY >eCOND

CULUMN GF A BLJULK UOF INCMAT TO RELABELLED:
BeGIN
KS=K+ s
RELABELLEVD (RN 0:=CRUSSREF(INCHAT(I1+2))3

CUMMENT CUNT INUE TILL FIRST cLEMENT JF COPIED

LtULE CHANOLE 53
FIKSTSAME: = LIVEXTEDGE(T)~==-1) AnND

(IENCMATINEXTEDGE(I) 41) = ELTL);

[:=NEXTEUGE(1)3
ENLG
SURT 3
IF CLMP=U THEN LUMPARE;

iF CUMPCU THLN CUMMENT NEWw MATRIX > MAXMAT SO REPLACE

The LATTEKS

36

‘%
|

Fuk M=y UNTIL O¢K-1 DU
seGIN
MAAMATAMer) s =CRIOSSKEF(ELTL)
MAXMAT(My 20 i=RELABELLED(M=JO+ L)

ENUJ
END ¢
Ir LeAFTRACE THEN
BEGLIN

wRITE("LEAF UF StAKCH TREE - LAbEL PERMUTATION IS:");
FUr I3=1 UNTIL NuukS DU
BLOGIN oF I REM 12 = 1 THEN I[UCGNTRUL(2);
WRITECNIPRIVEC(T))
ENU ¢
END
I fCCMPKU THEN
BEGIN CUMMENT UPUDATE PERMUTATICN:
Fur 12=1 UNTIL NuULES DO PERMUTATION(I) :=PRIVEC(I};
[F TRACE THEN WKITE("MAXMAT UPDATEDY):
conbU .
ELSE 1F TRACE ThEN WRITE("MAXMAT NOT UPUATED")
LF. TRACE THEN WRITE(Y" %)
LEAVES :=LEAVES+L
ENU UPLATE_RUMIM;

PRUCEDURE UPUATE_CUMIM
CUMMENT CCMPARE THE INCILUENCE MATRIX OBTAINEL BY Nrw LABELLING TU
THE (CLMIM) MAX IMAL WMATKIX FUUND SO FAR (STURED IN MAXMATCOL)
AND REPLACE THE CATTER IF NECCSSAxY:
BEGIN
CCHMMENT BECAUSE UF THE ALTION OF PULLUP. THE FIKST CCLUMN
Uk INCMAT [S ARKANGEU iiN THE DESIKED (LINKED) JIRDER wWITH
THE LAdEL PEKMUTAT IUN GIVEN BY CROSSREF:
COMMENT IN THIS PRUCEUURE THE TERM "BLOCK"™ IS UStDU TO MEAN
A SELTICN OF INUMAT wlin ALL ELEMENTS CF THE FIRST CULUMN
EQUALy ANU Tht KoL ATIUN "MAXMATONEW MATRIX® [S USED TU MEAN
MAXMAT IS BETTEx THAN THE Ntw MATRIX: .
INTzGEr ARRAY RELABELLEUL 123MAXVALYD; .
CUMMENT RELABELLEDL IS USED FUR SURTING THE SECUNU COLUMN UF
TRE CUKRENT BLULK OF INCMAT BEING EXAMINED:
INTEGER [+J0O K3 COMMENT 1,40 POINT TO INCMAT,
- AND K TU RELABELLED;:
INTEGEK ELTLoRELLsLASTUGHMPARED ,COMP
COMMENT ELTL IS THt ELEMENT IN THE FIRST CULJUMN UF THE
CURRENT B8LUCK UF iNLMAT BEING EXAMINEU, AND RELL IS ITS
ReLABELLEU VALUE. LASTCCMPARED IS THE LAST CULJMN OF THE
MATR [X CUMPARELU Su FAK:
COMPENT CULMP IS SET PUSUTIVE IF MAXMATONEW MATRIX
ANU NEGATIVE 1+ MAXMATSNEW MATRIX:
REFERENCECINCEDGL) ARRAY INCMATCUL oCOLTAILL L3 SNUJES);
COMMENT INCMATCUL I> rUn THE HEADS UF THE (T EMPURARY)
LIST REPRESENTATIUN UF INCMAT AND CULTAIL IS FOK THE TAILS:

PROCEDUKE SCKT;
CCMMENT SCRT KELABELLED FROM 1 TO K IN ASCENDING ORDER BY
STRALGHT INSERTIGN SOKI;
FUK L3=2 UNTIL K DU
 BEGIN INTLGER KEY 413
t=L-13
REY:=KELABELLEDIL 3
WHILE (1 > 0) ANU (KEY < RELABELLED(I)) w0

37

BEG N
rclAoELLEUCI¢1) s =RELABELLEU(])S

1:=1-1s

ehU s
sbELABELLEUL I+ L)S=KEY S
ENL 3

PRULCELLRE TKANSKELL
CUMMENT EXPANL THe LIST UF INCMATCCL CORRESPUNUVING T3
CuLumMnN RebL s
FCR L3s=L ULNTIL ~ UU -
CULTALLIKELL)® NthUNL(COLTAlL(RELl)).-
INCECGELJUHL=LonULL)5

PRUCELULRLE TRANSKELABLLLEUS
CUMMENT EXFANL Tht LIST> CORRESPUNDING TO THE CILUMNS
SPECLFLIEY Iiv kELAbELLEDS
FUR L3=1 UnliL K DU
CCuLlaliLlkeeABebLLEVIL))=
Ne XTUisE tCULTAT Lk LABELLEDIL)) 3=
INCECGCE(JC *L-LoNULL DS

PRCCEDURE CUMPAKE
CLMMENT CCMPARE CULUMNS LASTCOMPAREUL+L THROUGH RELL JF
Tre Thu LiSi S>Thw Ture> INCMATCOL ANU MAXMATCOL.
CCMP IS SET PuSIIIVE IF MAXMATCUL I> BIGGER THAN
INCAATCUL s lebe MAXMATD>NEW MATRIX, ANL NEGATIVE IF
IT IS SMALLEKS .
BeOLIN
ReFERENLE(LINCEVULE) PL,P2;
INTECER w3
LOGICAL ENLCULUMNSG
Ci=LASTUULMPARED .
wHiLE (CuMe=u) aNL (Q<CRELL) LO
BEGIN
wi=Wtls
PLI=MAAMATCUL(J)
PLs=NEXTUNE(INCMATCOL(Q))
chhbCULUMNG =t ALSE;
wHilLkt {CuMP=u) AND ~ENDCOLUMN DO
BEGILN
ir PL=NULL THEN
BEGIN
I1F P2=NULL THEN ENDCOLUMN: =TRUE
LLSE CuMp:i=-]

£ND

cl>E 11 P2=Nuli THEN COMP:=

[Y ‘
bEGIN
LOMP :=EDGENC (P2)-EJGENU(PL)3
PL:=NEXTCNE(PLI s P2:=NEXTONE (P2
ENUS

LNUS

eND $
LASTCCMPAKED : =KELL:
END CUMPAKL S

LUGLICAL FIKSI>AMES
CLMPI=U3
LASTCCPPAREL: =0

—————

[s=NEXTELGE (L) s
JGi=Lls KRi=U;
FUR L: = AUNTILU NLueD Uu INCMATCOL(L) s=COLTAILIL) =
INCEUCE(OINULL)3 CcuMMEnT UUMMYR ECOR 33
wHiLE (L~==1) ANU (LUMP <= U} DU CUMMENT CUNT INJE UNLESS
IT1 5 ESTAEBLISHEUL THAT MAXMATONEWMA TR X ;
BEGIN
FIRSTSAME:=IKUE 3
JO:=JO+Ks K2=03
ELTLS=INCMATEL 90 3
RelL3=ChRUSSKEF(ELT L)
WHILE rIKkSTSAME ou CUMMENT CLPY SECOND
COLUMIN UF A odLUCLK OF INCMAT TO ReLABELLED:
BELLIN *
K3I=K+ 13
RELABELLED (K 2:=CROSSREF(INCMAT(I,2)):
CUMMENT CUNTINUETILLF | R S TELEMENT UF COPILEU
ELGE C HANLE 5%
FAIRSTSAME s =(iWEXTEOGE(I)~==10A N D
(INCHMAT(NEXTEOGEL(L) oL) = ELTL)
Is=NEXTEDGE(L)
tNU s
TRANSKEL L ;
iF CCME=U THEN CUMPARE;
~1F CLMPL=Q THEN
BEGIN
SUKT:
TRANSRELABELL EI):
END;
eNUD 3
| fLEAFTKACE THEN
BEGIN
sRITE("LEAF UF >SEARCH TREE ~LABEL PERMUTATION IS:*):
FOR 12=LUNTLLNQUESD O ‘
BEGINI Fl KeM 2= 1 THEN IQOCONTROL(2):
WKITECN(PRIVEC(IN) S
END;
END
I F CCME<SO THEN
BEGIN CUMMENIT UPuATE PERMUTATION:
FUR [3=1 UNTIL NULES DU PERMUTATION(I) s=PRIVEC(I):
CCMMENT UPUATc MAXMATCOL:
FOR [:=1 UNTLL NdueS vU
MAXMATCLL L T)=NEXIONECINCMATCOL(I
CUMMENT DKOUP LUMMY RECORD;
IF TRACE THEN WwRITE("HAXMAT UPDATED")
END
ELSE IF TRACE THEN wRI TE("MAXMAT NCT JPDATED™);
IF TRACE TFHEN WRITE(" ")
LEAVES:S=LEAVES+ i
ENC UPCATE_CLMIiM;

PROCEDUKE TRANSLA TE_MA XMAT ;
CCMNMENT TRANSLAT £ The (COMIM) L IST REPRESENTAT IUN
MAXMATCCL I NTG THE ARKAY MAXMAT;
FCR 1:=1 UNIL NCLES LU
BEGIN
REFERENCE(INCELGE) P3
I=MAXMATCOL LT
WHILe P~= NULL LU

39

teECInN

I MaxXMATlcuoenUdP) oL) =NUDES+L THEN
MAAMAT(EuLENUIP) o L 2=

ELSt MAAMAT(EDLENUL{(P) 202=13
Pi=NEXTUNE(P)
. enNDs
ENU s

PRUCEDUKE PRINT (KREFEKENLE(BLOULK) VALUE BoEs INTEGER VALUE LI 3
COMMENT PrINT OUT The uATA STRUCTURE CONTENTS [F veBJdo IS SET;
IF Jtsut ThoiN .

BEOLIN
WR ITe("BLUCK LI>T 153"
whiLt gen=hull LG
BEGIN
wRITEUN(OLUCKPIR(UL) DS
gs=NEXTLLLCK{BIS
END
WRITE("EMPTYDBLULK [S:'*)3
[r eMPTYDLULKR=NULL ThHEN wRITEON("NULL ") ELSE
WRITcUNIBLUCKrTR{E D) S
wrITE(®"PRIVEL 1S:3%") 3
FOR [2=1 UNTIL NUDL> DU wRITEON(PRIVEC(I}IS
wRITE("CRGSSREF 153"); .
FCx 13=4 UNTIL NuuesS vu wRITECNICRCSSREF{I1)):
ARITE(NEXTELLESS") :
FUR 1220 UNTIL EUGLES Uu WRITEON(NEXTEUGE(I))S
Wikl TEU"LASTLADBELLED =" 0L S
wRITE(" ")
ENUS

INTEGFK MAXVALS: CUMMENT MAXIMUM VALENCE OF A NuDE:

CUMMENT 1wl TLALIZL UATA SInUCTURESS

FCR T:=1 UNTIL kLeeS DU FOK Ji=1 UNTIL 2 DU MAXMAT(Isd):=NODESHLS

[F =<0OMIM ThHEN FUR t2=i UNTIL NOUDES DU MAXMATCuUL{I):=nulLlL:

LEAVES:=Q3 .

COMMENT LSt NEXTELCGe TU MAKE INCMAT A LINKED LISTS

Fur l3=u UNTIL EDGES=L U NEXTEDGELL)S=1+43

NEXTEDGeteuCEsdi=—1{3s

LASTLABELLEL =0

FUR [2=1 unTIL NULES DU PRIVECCTI)2=CROSSREF{I)z=VALVECLI):=0g

COMMENT CALCLLATE VvALENCES UF NOODES S

MAXVAL :=u3s

FOk I2=1 UNTiL £ELGES LU FUK J3=1 UNTIL 2 DO

Beoln

VALVECLINCMAT (led) dssVALVECCINCMAT(L 4d))+l

Ir vVALVECUINCMAT (L ,d)) > MAXVAL THEN MAXVAL:=VALVECI
INCMAT(Lo d))

ENLS .

CIMMENT INITIALIZE BLOCK LIST TO A LIST OF Twl BLOCKS, THE FIRST
CCNTAINING A NULE wliTH The ALlOHEST VALENCE ANU THE S5eCOND THt
EMPTY bLCGUK: .

EMPTYBLULK:=oLUCK(ZeNULL) 3+ BLULKLISTS=BLUCK(L eMPTYBLUCK)

CUMMENT ChOLSE FCK Tht FIRST LABCLLED NOOE EACH UF THE NUDES wlITH
THE rioHeST vALENCE IN TUKRNS

FOR I:=1 UNTIL NGCL> DU IF vaLVvEC(I) = MAXVAL THEN

SculN

Privetllis=1l;

CCSSKEFRLLIZ=0

CAUUSE (BLUCKLLSTLEMPTYBLUCKLASTLABELLEDI) S

40

T r—

COMMENT REST Lkt CRUSSKEF:
END
LF ~RCMINM THEN TRANSLAT E_MAXMAT;
END KLAFPERSLANGE

INTEGER NCDES+EDGESLEAVES
INTEGER ARRAY lNCHAToHAXMAT(lzilUUoli
INTEGER ARRAY PERMUT AT ICN(L3: LU0
LOGICAL DEBUG, IhALEoLtAF?RALtqnuMIM.
INTFIELDSIZE:=23;
LEAFTRACE:=FALSE:
IkACc :=FALSE;
VEBUG:=FALSE;
KEAD (NUDE S+ EDGES KLMiIM);
wHILE NOUESDT 00
BEGIN
IOCONTRUL(3) 5

IF RCMIM THEN WRITE("* * RUMIM * =*») ELSt WRITE("* = CJWIM * *")'

CRUSSREF(I): =0

12);

WRITE("NUMBER UF NUDES =",nN0bESe"

EDGES)

FOF T:=L UNTIL EUGES U0 FUR J:=L UNTIL 2 DO READUN(INC“IATb(hJH;

WRITE("INCIVENCE MATRIX 15:%);

NUMBER . GF EDGES. .

FCR I2=1 UNTIL ELGES DU WRITE(INCMAT(I,1)9INCMATII,2)):

KLAPPERSLANGECINCMAT y MAXMAT ¢ PEKMUTATION ¢ NUDES ¢ EDGES ¢ KUMIMy LEAVES) 3

WRITE("MAXIMAL MATKIX [S53%);

FOk T:=1 UNTIL cDGeS LU uRth(MAXMAT(I.l).HAXHAT(IoZI).

WRITE("LABEL PERMUTATIUN IS :%);

FOR T2=1 UNTIL NLUES CO

BEGIN IF | REM L2 = 1 THEN IOCONTRCL(2) ;

WRITcUN(PERMUTATIOUNCL Y
END S

WRITE("NUMBEK OF LEAVES IN SEARCH TREE =%,LEAVES);

READ (NODES ¢bUGES yRUMIM) 5
END3S
END .

41

Appendix B
Sample Runs.

The examples given below are not intended to serve the purpose of
a systematic analysis of the program's performance. However they

illustrate the difference in efficiency of the romim and comim searches.

An attempt at a more systematic analysis of the basic search algorithm,
by means of "random graphs", is given in [1]

Maximal incidence matrices were computed for several graphs.
Graph 1 is the example used throughout Section 5 (see Figure 5.1 (a));
a trace of the program flow is shown for this example only. Graph 2

was mentioned in Section 2 as having unequal romim and comim (see

Figure 2.1). Graph 3 represents the structure of an electrical filter,
which indicates a-possible application. Graphs 6, 7 and 8 are subgraphs
of Graph 9, which is the largest graph we have tested and has arbitrarily
chosen edges.

The results of the computer runs follow.

ko

x® % RGMIM % ®

NUMB L

K OF NODES = ¢

tNCIDeNCE MATRIX IS

3

e NN e

5
ENTER
ENTER
ENTER
ENTER
ENT ER
ENTER
ENTER

LEAF UF StARCH TREE - LABEL

3
MAXMA

EXIT
eXIT
EXIT
EXIT
EXIT
ENTER
ENTER
ENTER
ciNl ER
ENTER
ENT ER

CVUEVLOENO

CHUUSE WITH CHCSEN
PKETEND WITH 4

CHULSE WITH CHCSEN
CHUUSE WITH CHCSEN
CHUUSL WITH CHOSEN
CHLLSE WITH CHOSEN
CHUOSE Wl TH CHOSEN

) i 2 4
T UrLAalED

CH3:ISE

CHLOSE ™

CHUUSE

CHOUSE

CHQOSE

CHOUSL wITH CHOSEN
PRETEND WITH 2
CHUOSE WITH CHUSEN
CHUUSE WITH CHOSEN
CHUUOSE WITH CHCSEN
CHLUSE WITH CHUSEN

NUMpek UF LUGLES

NCUE

FKE TENDE

NUDE
ANUDLE
Nndut
NDce
NuDE

P

NuUt

(TR T I TR 1]

3
Rr
&
i
Z
4

S

i

S

PRETELNUERS

NCoc
Nuut
NLLE
NuDE

O
2
4

[}
-

9
1

PERMUTATICN 152

LEAF OF SEARCH TREcC - LABEL FErMUTATICN 1S5:

3

L 6 2 4

MAXMAT UPLATED

EXET
CexI1
EXIT
EXIT

CHOUJSE
CHUUSE
CHOOSE
CHUQSE

9

ENTERCHOUSEWITH CHCSEhNLLE=¢
ENTER CHIOSE «ITH CHOSEN nuDt
ENTERCHUCSEWNITHC HC S E hNLUE =

ENTER CHUOSE WI TH CHOSEN NOOE

o)
4
5

LEAF OF SLARCHT R E E—- LABEL PERMUTATIUNTIT S

3
MAXMA

i 2 6 4
T RUT UPDATED

EXI T LHUOSE
£EXIT CHOOSE

eXIT

CHOUUSE

EXIT CHUOSE
ix ITPRET END

EXLTY

CHJU>SE

3

ENTER CHUGUGSE WITH CHCSEN NUDE
CHUUSE WD TH CHCSEN NOCE
ENTEK CrAuuSE WITH CHUSEN NUDE

LNTER CHUOSE WITH CHCSEN NCOE

t NTER

L3

N ¢ Ll)N

cindex CHIOuSE WwITH CHUGSEN nuocE = &

Locak UF SEtARTCH TRFEE — LABEL vPermUTALILN 153
3 Pl 1 t 4 P)

AX MAT wWaT UPCATLELD

LEXIT CHil)SE
eXIT CcrluSE
EXIT CHOOSE
EX 1T CHJJ>tL
e X[V CHGJSE

cNTER CHCUSE WITH CHOSEN wNuve = 4

tiNnTER PheTEND WITH 3 FRETENUDERS

cNTEXK LHULSE A1 TH CHCSEN Nude = L

SNTER PReTEND WITH 2 PReTENUERS

ENTER GAUGSE WITH CHCSEN ANLOEL = o

ENTER CHOUSE WITH CHUSEN Nuve = £

einfer CHULSE WITH CHOSEN NULCE = 5

LELAF OF SEARCH TREE - LAptl rFexkMULTATION 153
> 4 1 6 2 2

MAXMAT NUT UPDATED

ExLT CHUOSE

exIT LHSE

EXIT CHUUSE

ENTER CHLLUSE WITH CHOUSEN ANCLE = 2

enTeEx CHUUSE-WITH CHOSEN Nuve = ¢

LINTER CHGUSL ALTH CHOSEN NJJE = 5

LLAF OF StArCiH TREE - LAgelL PERMULTATIUN U>:3
3 4 1 2 6 b}
MAXMAT NJOT UPJATED

EXLT CHISE
eXIT CHtlSE
cXIT ChHUGSE
EXIT PRETEND
cxIT CHUOSE

ENTER CHUUSE WITH CHUSEN NUDE = €
ENTEX CHUJSE AITH CHUOSEN Nlwe = 1
eiNTER CHJUSE WITH CHOSEN NuDE = 2
eNTeR CHGUSE WITH CHCOSEN NOODL = O

LEAF Ut SEARCH TRFEF - LASLL PermJuTATIUN 53
3 4 6 1 2 5
1aXMAT NUuT UPDATED

eXIT CrniJuskE
EXIT CHuUSE
EXIT LHUOSE
eXIT CHUJSE

ENTER CHULSEL WITH CHUSEN Nuvk = 2
SNTERK CHUCSE WwITH CHCSEN NDE = L
ENTER CHOUWSE WITH CHUSEN NOOE = &
ENTEX CHUUGSE WITH CHCSEN aLLb = 5

LLAF UF SEARCH TREE — LABEL PcRMUTATIUN 153
35 4 Z 1 6 5
MaXMAT NJOT UPDATED

ex IT CHOUSE
txIlT CHOUSE
cALT CHUISE
e XIT CAGJISE

44

EAIT PRETENU *
cEXIT CHOUSE

EXIT PRULTEND

EXIT CHUUSE
MAXIMAL MATRIX IS:

1 2
1 3
i 4
1 5
2 3
2 “4
3 o
4 o

6

LABEL PLRMUTATION IS :

u

3 1 1) 2 4

NUMBEK JF LEAVES IN SEARCH IxEE

00005 SECUNDS IN EXECUTICw

5

L5

8

* & COMIM * %
NUMRER N NODFS = 6 NUMBER CF ENGES = 9
INCTIRFNCE MATRIX TS

3 6

1 ?

1 3

1 &

2 3

2 5

3 4

4 5

5 6
ENTER CHNOSF WITH CHOSEN NODE = 2
ENTER PRETFND WITH & PRETENDERS
VALENCF CHECK: 3 OPFTENDER(S) 10 RF CONSIDERFED
ENTER CHNOSF WTITH CHOSEM NCDE = 6
ENTER CHOOSE WITH CHAOSEN NODE = 1
ENTER CHNOSE WTITH CHOISEN NODE = 2
ENTER CHNNSE WITH CHMNSEN NDDE = 4
ENTER CHDNSE WITH CHOSEN NODE = S

LEAF NF SFARCH TRFF -- LABEL PERMUTATION IS:
3 6 1 2 4 5
MAXMAT UPDATED

EXIT CHNOSE™

EXTT CHONSF

EXIT CHNNSE

EXIT CHONSE

EXIT CHODOSE

ENTER CHNNSF WTTH CHOSFN NONE = 1

ENTER PRFTEND WITH 2 PRFTENNERS

VALENCE CHFCK: 2 PRETENDER(S) TN BE CNONSIDERFD

ENTEP CHNNSFE WITH CHMSEN NODE = 6
ENTFR CHNNSE WITH CHOSEN NCDE = 2
FNTER CHNOSE WITH CH(ISEN NCDE = 4
ENTFR CHONSF WITH CHOYSEN MODE = 5

LEAF OF SFARCH TPEE -- LABEL FERMUTATION IS:
3 1 6 2 4 5
MAXMAT UPDATFD

EXIT CHPNSE

EXIT CHOOSE

EXIT CHONSE

EXIT CHONSE

ENTER CHANSE WITH CHOSEN NODE
ENTER CHONSE WITH CHOSFN NODF
ENTFR CHODSE WITH CHOSEN NODE
ENTER CHOOSE WITH CHOSEN NODE
LEAF NF SFARCH TRFE - LAREL PFRMUTATION IS:

3 1 2 6 4 5
MAXMAT NOT UPDATED

A0 N

o onn

EXIT CHONOSE

EXIT CHNNSE

EXIT CHOOSE

EXTY CHONSE

FXTIT PRETEMD

EXIT CHNOSE

ENTFR CHONSC WITH CHNSEN NGDE
ENt R CHNOSE WITH CHOSEN NODE

E
L6

it
-

-

ENTER CHONSF WITH CHOSEN NADE
ENTER CHPOSE WTITH CHOSFN NODF
ENTYER CHONSF WITH CHNSEN NODE
LEAF OF SEARCH TRFE - LAREL PFRMUTATINN I§:
&
MAXMAT NDT UPDATED

3 2 1

FXIT CHPNSE
FXTT CHANSE
EXIT CHORSE
EXIT CHODSE
EXTY CHNOSF
EX | TPRFTEND
EXITCHCNSF

MAXIMAL MATRIX TS:

/

D WMNON s —
OO DWW NV

LT

4 5

LARFL PERMUTATINN IS

3 1 6
NUMRER NF LFAVES |

2

4 5
N SEARCH TREE =

000.02 SECONDS INEXECUTION

k7

n oo

P

K oKk QNOMIM % %
NUMRER NF NODES = 7 NUMBER NF EDCES = 7
INCINDENCF MATRIX IS:

1 2
1 3
1 4
2 &
2 7
3 4
WAXTMAL MATRTX | S - 2
1 2
1 3
1 4 6
1 5
2 3
4 6
4 7

I ABFL PERMUTATION IS @
1 3 4 ? 5 6 7
NUMRER OF L FAVES IN SEARCH TREF = 24

000,02 SECONDS | NEXECUT ICN

48

|
E
:

— r—— r—

oK CUMIM % *
NUMBER UF
INCIUENCE MATRIX

i

W NN - e

MAX [MAL MATRIX IS:

i

NN - -

LABEL PERMUI

1

UUU U1l SECUNDS

oF ELGLS T

L T A VO N

FNC VS UN

ATION IS
) ‘ 7
NUMBER UF LEAVES IN SEARCH Tatk =

IN EXECUT Jun

* %k ROAMIM * &
NUMBFR NF MODES = 17 NUMBFR CF ENGES = 22
TMCIDFENCE MATR T X T S

1 3
3 3 2
3 5
4 6
5 6 3 5 7 9 1
5 7 1~
6 8
7 8
7 Q
8 10
S 10
9 11 L 6 8 10 12
10 12
11 13
12 14
13 14
13 15
14 16
15 16
15 17)
11 12 B
MAXIMAL MATRIX | S :
1 2
1 3
1 4
1 5
2 6
2 7
3 6
6 8
7 8
7 9
8 10
9 10
9 11
10 12
11 12
11 13
12 14
13 14
13 15 \
14 16
15 16
15 17
LABEL PERMUTATINN [S =
3 5 4 2 1 6 7 8 9

13 14 15 16 17
NUMBFR NF LFAVES | NSFARCH TREE =2 4

000.12SFCNNDSIN EXFCUTINN

50

¥ ok CiM[M & »

NuMbe Jr NUODZS
MATRIX [S:

PhcloEnce
1 >
< 3
b} “
3 b
“4 (¢}
5 o
2 7
o 8
i d
7 9
d lu
E] Ly
9 il

il 1
1i ls
L l4
1o L4
i3 |)
la ilo
15 lo
i 17
il Le -

MAX 1 MAL MATRIX
1 <
L 5
1 4
1 5
2 0
Z {
3 6
) o
{ 3]
7 9
3 10
Y iJ
9 11

19 i2
id le
i1 1>
id 14
i3 la
L3 1o
la 15
15 lo
L5 L7

LAGBEL

3 2 4
1o 14 15

NUMBER GF LEAVES [N SEARCE TREd

OVUu U2 SECUNDS

iS:

PExMUT AT JUN IS :

2 1
Lo 17

IN eXECUTICN

51

P Ja X0 £4

NUMRER 7T
INCINENTE MATRTXY TS
1 2
1 1)
1 1?2
? 3
3 4
3 5
4 5
4 15
b} 6
6 7
7]
7 16
8 0
9 10
10 11
10 12
11 12
12 12
12 13
13 14
14 15 .
18 17
17 16
16 5
MAXIMAY MATRIX 1S:
1 ?
1 3
1 4
1 5
1 b
2 2
2 4
2 7
3 o
5 0
6 1C
7 11
2] 12
9 13
10 14
11 13
11 15
12 14
12 14
13 15
14 16
15 17
16 15
17 1R
| ARFL PFRMUTATICN TS
12 10 1 11
16 15 7 4

NUMRE? QOF LEAVES

NI

NODES = 15

13
b 5
IN SEARCH TREE =

NIMPRER 5 FDGES =

o

13 (9 1?7

24

000.12 SFCONDS IN FXECUTTON

52

24

14

 r r—

oo LM & ow
WUMBER LF NLOES = Lo
EnCTubNLL MATRIX I35
L é
L Llu
i 12
Z >
23 +
3 L5
4 >
+ i
5 13}
o] 7
{)
i 16
5] F]
) LG
1) il
Ly le
i1l 12
Le Lo
i2 lo
1o Lo
i4 Lo -
io 17
17 Lo
lo &
MAX TMAL AT wIX 1S
L d
i 3
1 “
1 9
L ¥}
2 3
2 +
Z [4
3 O
9 y
6 10
7 ii
9 Le
) | 5
1 L+
1a 13
il 15
1< L4
12 lo
13 15
L4 Lo
15 7
lo 13
o 1d
LABEL PERMUIATIUN IS
L2 L9 1 11
L0 L> 7 4
NuMpbx OF Lo AVES

Jule 3 SLCONDS

IN

IN SEAKCF

WSS Uk cueS

13 9 <
B}
[l\Lt = <

EXECUTIUN

53

L4

IR L B B P

NMRFD I CEI)p R = 10 SHERTe OF TOGYS = 2y
ITNCTPANCE MATETY IS '
1 3
1 9
7 3
3 %
4 5
5 ¢
& 7
R el
3 10
3 n
4 11
4 12
) 1=
5 1¢
[14
9 1
9 19
2] c
a 19
10 11
11 12
12 13
13 14
14 15
15 15
16 17
17 12
1R 12
16 2
MAXTMAL MATRIX T5:
1 >
1 3
1 4
1 5
1 6
? 3
7 4
? 7
3 7
3 o
4 c
5 10
é 11
7 12
R 1J
R 13
R 14
9 15
9 16
9 17
10 11
13 1R
1?2 18
13 V4
L3 13
14 16
15 16

54

15
16
tABEL
3
15

17

19

PEPMYTATINN IS ¢

1 4 13 1 2 ’
]_f.‘ lq 12 3 14 }.?, ’ j

NUUMRER OF LFAVFS TN SFARCH TRFF =144

000.34 SECINDS IN FXFCUTINN

55

13

N X o,umiodo
I I et
IV BN IF T DS I I
i 3
L)
B -+
+)
))
& f
s ¢
2 i
3 it
- La
“+ L.
2 L
p) lo
) e
P 13
’ L+
Y] 7
Y/ tu
i il
il L
s i
] L+ -
L~ 1.
Fp) Lo
Lo if
Li Lo
] L7
L)
CoaA LYol il e L X
L .
i 2
L ‘+
IS J
L o
« 2
. +
< {
) {
3 B
“+ '/
p) Lo
1) il
{ Le
(6] LJ
o 1o
3 Loe
k] Lo
7 Lo
3 ol
) L
iJd Lo
lc [
i3 L+
i3 L
it L
D Lo

I5H

-

NG

56

ri

~

L

¥

Ciivot >

4%

)
15

LAagdel
3
LD
U Mo ot

SUde 1) St oS

i

L
PeamyTATLION 15
i) i1
lo Ly P9
JELEAVES IN

.
s

1 <
3 L4
SLARCE Theo

IN exCCUTIen

iz
il

lo

13

%

T A “

POMRFD O

TEOTOENCE

Q:r-"-‘b:‘~).)<ﬂ.pi5!"dr-‘

s g 4
N o— O

e _
OIS N NN

—

~

DL U W I N e e e e e Xy (D) Fo 0 Sl SRS I

VA

10
L1
12
l4

?
-

AP P NN S

18
19
20
’1
22

TNAL

20

A X ow

= NnEe

MATRITX

MATET X

1

W

58

~

r

——

- —

1¢ 20

16 71

17 21

19 22
LABFL PFRMUTAT TON 1§ :

3 5 4 ? A 15 6 11
13 14 12 13 R 22 2¢C 17
NiJMRFP Nr LEAVES IN QEARCH~~TQEE =576

0J32.132 SETONDS IN EXFCUY TON

59

19

18

x ok COMIM * %
NUMBER (0F NJIDES = 22 NUMBER 0Oc ENGES = 3o
INCIDENCE MATRIX IS

1 2
2 3
3 4
4 5
3 5
3 6
6 7
4 K
i 4
1 8
8 9
9 10
10 11
11 12
12 13
13 14
7 14
2 5
3 14
14 15
15 L6
1o 17)
10 L7
3 11
3 15
4 18
4 19
19 20
20 21
7 22

MAXIMAL MATRIX IS:

—
OCVOVWIOXINOWMSHEWN

11

Pt gt
S e o

15
16
10
17
18
19
15
20

,...
COCNNITUVVNSTSWNNNNNP -~~~
[

(o JRVe RN S V)

e
S wr-

—

16 20
16 21
17 21
19 22
LABEL PERMUTATION IS :
3 4 5 2 14 15
13 16 12 19 8 22

NUMBER UF LEAVESINS E A R C HTREE=1

000,03 SECCONDS IN EXECUTIGN

61

17

21

19

18

LRI R
U T LE U E Y E g NS ER boebuto = ot
gJunCo MaT I 1452

—

LN
i 4
2 >
J +
+ P
3 b}
3 o
o {
4 /
1 <+
i o
[§) K/
J Ly
L L
s L
i< Ls
i L
{ LG4
I4 o]
] L«
L)
LD LO
id L7
i L7
3 il -
3 i
* lo
& 13
iy yAy]
PRV 1l
7 22
7 2
snX LAAL 4ATKIX To:
L Z
L 3
i “+
L bl
1 N
L {
! 3
<]
Z ‘t
5 Y
3 1
3 il
3 Le
+ 9
2 ©
P 1)
b |)
%) L4
{ Ly .
3] i»
%) Lo
] L7
L J L
LJ 19
L PAV)

62

—«

P 1>

- L4 21
Lo <l
Lo 2Z
17 22
J 29

i Lubel PERaUL AT [ON TS]

3 5 4 P PO o 1l L I 19 1v
L3 io il Lo 8 <3 £c <U Lt 4 21

wUMbCoR U LEAVES IN SEARCE TREE =1i0g

Juldeld SLCUNLS IN EXECUTICN

r— r— r—

S

63

% % CCMINM * %
NUMAREER CF NODES = 23 NUMBER OF EDCES = 21
INCICENCE MATRIX IS:

1 2
? 3
3 4
4 5
3 5
3 6
6 7
4 7
| 4
1 8
a 9
) 19
10 1
11 12
12 13
13 14
7 14
2 5
3 14
14 15
1¢ 16
16 17
10 17
2 11
1 15
4 18
4 19
16 20
30 21
7 22
7 33
MAXTMAL MATRIX IS:
1 2
1 3
f 4
I [
| 6
1 7
| 8
7 3
2 S
2 10
2 11
2 13
3 4
4 9
5 6
€ 10
5 13
6 14
7 15
7 16
8 10
G 17
10 18
10 19
11 29

6L

r r— r—

———

13
14
1é
16
17
20
LABFL

3
12

15

2]

21

é?

22

23

PERMUTATION IS :

4 5 ’ 14
1o 12 10 8

L5
22
NUMEFR NF LEAVES [N SEARCH -TREE

J00.34 SECCNDS IN EXECUTION

65

ok ROMIM % %
NUMEFR PF ONIDFS = D4 NJUNAER CF FOGFS = 22
INCTRFRCE MATRIX TS:

NN
AN N

o}

vy
pol
~
2

>
DX S 4N

bk et et gk s ot et pes

£ W WOT AP WNNWN D O
Pt et et bt b b pt pons Pt
NT AL TP N

P =

COOVELO~NP AN AND D NWRNN o e s Xy 9~ O

MAXTNAL MATRIX 1S:

16

1°
1o

e

66

10
11
13
14
16
16
17
21
FABFL

3

13

24

DERMTATINN TS @

5 4 2 14 15 € 11 1
1€ 12 10 8 24 23 22 20

NUMBER NF LEAVES IN SEARCH TRFF =3456

07,02 SFOONDS IN EXECUTIOM

67

18

2

1

£ % CCMIM % &
NUMRER CF NPFDES

24

INCINDENCE MATRIX ISz

p—
CO W) OO e et I) DN P

—
i

Ll]
WNdWwN

Ll N]
[© e NEE I)

N -
~NO 0> N

7
7

MAXIMAL MATRIX IS:

_
OC N DI T A NN AR LRIV — — P — —

S e I e S e SRRV N NN V)

19
11
12
13
14
14
5
14
15
16
17
17
11
1¢
18
19
2¢
31
2?
33
34

—
PO PN~ COWDT NS WV

NUMBER NF ELGES

32

1C Zc

1 21

13 15

14 22

16 22

16 23

17 23

21 24
ABFL PERMUTATION IS :

13 16 12 2 14
NUMREFR OF LEAVFES10 8

t5
22
IN SEARCH TREE

C0C.Cé SECONDS IN EXECUTION

69

* ok (MMM X %

NUMBFR OF NONDES = 59 NUMBRER CF ENGLES = 73
INCINDFNCFE MATRIX IS:
1 2
7 2
3 4
4 5
k) 5
3 f
6 7
4 7
1 4
1]
8 9
Q 10
10 11
11 12
| 1?
13 14
7 14
2 9
3 14
14 15
15 16
16 17
10 17
3 11
3 15
4 18
4 19
19 20
20 21
7 22
7 23
7 264
7 25
7 ¢
7 ?
8 28
9 20
19 29
30 31
29 32
28)
27 24
26 25
26 4
26 Rk
25 32
24 31
22 23
15 6
36 27
36 2R
38 19
29 49
11 41
12 42
11 41
12 44

70

—

11 45
12 46
13 47
14 48
15 49
9 4R
R 47
7 46
é 45
48 49
1 50
27 48
36 47
25 46
21 4?2
11 10
12 20
232 25
23 26
ed 27
25 27
MAXTINMAL MATRIX IS:
1 ?
| 3
1 4
! 5
| 6
1 7
1 a
| 9
1 10
t 11
2 12
2 12
2 14
2 15
2 16
3 4
3 5
3 6
3 17
4 L1
4 7
5 18
A 19
7 18
7 27
1 21
8 12
2} 2?2
8 23
8 24
Q 12
9 25
10 26
11 27
12 13
12 22
12 e

12 29

13
14
14
14
15
15
17
19
19
19
19
19
20
21
??
22
23
24
24
24
25
26
26
29
29
2('\
20
30
30
32
213
34
17
37
37
30
41
43
47
40

LABEL

7

5
45
36
39

ba

2R

20

21

29

22

33

22

29

22

34

15

EY)

a7

28

29

490

28

4

4?

29

27

43

43

44

45

26

40

41

46

41

4h

49)

42

47

49

43

49

40

57

PERMUTAT TOMN
4. ?5 23
1 19 13

20 31 2

49 16 47

4N

NUMEF? 0OF | FAVES T

02,91 SEFCANDS TN

15 @
27 4A
32 34
11
n 37
N SFARCH

EXECUTINN

72

35

29

43

22
15
42
21

24
13
4%
3R

48
29

17

