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James Eve

Abstract

An algorithm is presented for computing the transitive closure of

| an arbitrary relation which 1s based upon a variant of Tarjan's algorithm
[4] for finding the strongly connected components of a directed graph.

This variant leads to a more compact statement of Tarjan's algorithm.

If V 1s the number of vertices in the directed graph representing

the relation than the worst case behavior of the proposed algorithm

involves 0(v°) operations. In this respect 1t 1s inferior to existing
log, 7

algorithms [1,2] which require o(V / Log V) and O0O(V 2 log V)
operations respectively. The best case behavior involves only 0(V°)
operations.

This research was sup-ported in part by National Science Foundation grant
1 IR72-05T752 A02 and by the Office of Naval Research contract NRO4k-4o2.
reproduction in whole or in' part is permitted for any purpose of the

Ualted States Government.
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1. Introduction.

The origin of this transitive closure algorithm 1s 1n a paper by

Knuth [3] in which he defined certain sets, of interest in parsing

context free languages, in terms of the transitive closure of relations.

One class of sets and the method suggested by Knuth for computing it

are germane and will be reviewed briefly.

Let

X - XX, ERROR

denote a production of some context free grammar in which the nonterminals,

Xs 5» 1 <1i<n, derive the null string. Then X is said to left depend
uponY , denoted X{£Y . The class of sets to be computed is

first (a) ={acV, [AL a} for all a eV

_ where Vi and Vo as usual denote the non-terminal and terminal symbols
. of the grammar, + and ¥ appended to a relation denote respectively

L the transitive and reflexive transitive closures of the relation.
A necessary condition for top down deterministic parsing 1s that

: + :

| left recursion may not occur so that Xf X 1s precluded for all X
in Vi . This implies that the directed graph representing the left
dependency relation has no closed paths and, as a consequence, a

- convenient partial ordering of the vertices of the graph exists which

can be exploited in computing the required sets.

_ If A left depends upon Ap ees A then the latter are immediate
descendents of A in the left dependency graph and from the definition

in terms of left dependency

m

first (A) = U first(aA.) .
i=1 .

Given a partial ordering of the vertices in which descendents

SS TIRRRTY. always precede the ancestor, this identity may be used to
compute the class of sets during a single left to right scan through

the sequence of vertices 1n the-partial ordering. A recursive procedure
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FIRST (V) can be constructed which traverses 1n postorder a spanning

tree, rooted at vertex V , of that subgraph of the directed graph

accessible from V . Such a procedure would visit vertices in the

subgraph 1n an appropriate sequence and as each vertex corresponding

to a nonterminal symbol 1s visited the corresponding set can be

| computed. It merely remainsto ensure that each subgraph is treated.
The process 1s efficient in the sense that each vertex of the graph

1s visited once only and each arc 1s inspected once only.

If left recursion was not forbidden then Af B and B "A could

occur implying af4 and, thereby, closed paths in the left dependency
graph; however ALB and B ia imply that first (A) = first (B)
which reflects the equivalence relation induced on the vertices of the

graph by strong connectivity. If all vertices in such an equivalence

class are mapped-onto a single representative vertex then the resulting

directed graph 1s free of closed paths and can again be explored by

Knuth's efficient "topological sorting" algorithm.

The discussion above need not be restricted to the left dependency

relation, similar comments may be made with respect to any relation.

Algorithms for computing the transitive closure of relations based upon

these observations have been used by the author for several years; in

many cases the advantages accruing from inspecting each arc and vertex

once while computing the transitive closure offset inefficiencies in the

somewhat crude methods used to locate multiple vertex strongly connected

components. Tarjan's elegant algorithm for finding the strongly connected

* components of a graph makes this approach a great deal more attractive.

: For graphs with close to Vor V° arcs the computation involves

| 0(V°) operations. Worst case behavior involving 0 (Vv) operations
L would arise for the graph with > V(V-1) arcs but with no closed paths.

The following section describes a variant of Tarjan's algorithm and

I outlines a tedious proof of its correctness. Section 3 deals with its
use 1n computing the transitive closure of a relation.
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2. An Alternative Formulation of Tarjan's Algorithm.

Tarjan's algorithm involves traversing a spanning tree (or forest)

of a directed graph, accumulating the vertices visited on a stack, and

periodically 1t emits sets of vertices corresponding to strongly

connected components from the stack. The traversal is postorder resulting

in the strongly connected components being emitted in the desired

sequence, 1l.e., if strongly connected components A and B are connected

by one or more arcs from A to B then B will be emitted before A .

Thus Tarjan's algorithm includes the required topological sort. It does

not however maintain a list of the strongly connected components

defining the ordered sequence.

Assuming that such a list 1s required for a graph of n vertices

then, since a vertex 1s never simultaneously on the stack and in the

- list, both the stack and the list can be represented in an n element

array. This conceptually undesirable mixing of data structures permits

u an extremely convenient encoding of necessary status information. It
will suffice in the subsequent application if each strongly connected

i component 1s represented in the list of strongly connected components
by a single vertex; however, for each vertex of the directed graph it

must remain possible to locate its representative in the list of strongly

} connected components.

During execution of the algorithm each vertex passes from one to

| the next of three states.

State 1. The vertex has not yet been placed on the stack.

State 2. The vertex 1s present on the stack as part of some as yet

incompletely determined strongly connected component.

State 3. The vertex has been removed from the stack and 1s represented

by a vertex in the list of strongly connected components.

As part of the process of finding vertices belonging to the same

strongly connected component, that vertex of the component which arrived

on the stack first 1s eventually 1dentified and is used to represent all

vertices of the component in the list. This identification is achieved

7y maintaining an index for each-vertex 1n state 2; INDEX (v) will
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will designate some vertex on the stack which belongs to the same

strongly connected component as Vv and which arrived on the stack no

later than v . By the time that all vertices of a strongly connected

component have been visited only that vertex of the component which

arrived on the stack first will have an 1ndex value which designates

itself on the stack.

Clearly all vertices 1n State 2 will have index values designating

vertices 1n the stack; when vertices are removed from the stack the

corresponding index values can be changed to indicate the position of

their representative in the list. By adopting the convention that

INDEX(v) = 0 if v is a State 1 vertex, the array INDEX encodes all

state information and eventually defines the mapping of vertices onto

representatives in the list of strongly connected components.

For each vertex v of the directed graph a set, SONS (v) , is

assumed to exist such that we SONS(v) precisely when the directed

graph contains an arc from v to w . The topological sorting of

the strongly connected components of directed graphs specified in this

way 1s achieved by the procedure TOPOLOGICALSORT in Figure 1. Elements

n,n-1,... of the array VERTICES represent the stack; elements L,2,...

are used to build the list of strongly connected components.

To facilitate proof that strongly connected components are correctly

identified by this procedure, the following notational conveniences are

adopted.

-1. X = y denotes the existence of an arc from vertex x to vertex y .

2. x < y denotes that vertex x immediately precedes y on the stack.

5.. INDEX (y) used as an operand with < is to be interpreted as a

reference to the vertex on the stack designated by INDEX(y),

| i.e., to VERTICES(INDEX(y)).Likewise INDEX(y) # v is understood
- to mean that INDEX (y) does not designate itself on the stack.

| hh. y ¢ sce(x) denotes that y belongs to the same strongly connected
component as x .

p
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procedure TOPOLOGICALSORT;

begin integer stackindex, listindex, 1i;

integer array VERTICES, INDEX(1::n);

procedure ORDERVERTICES (integer value x);
begin integer Ww;

INDEX (x) = stackindeX « stackindex -1; VERTICES (stackindex) “ X;
for w eSONS(x) do

begin if INDEX(w) = 0 then ORDERVERTICES(w);
if INDEX (w) > INDEX (x) then INDEX(x) - INDEX(w):;
comment if the preceding test is satisfied then w is on the

stack and INDEX (w) designates a vertex which arrived on the

stack earlier than that indicated by INDEX(x). As this earlier
vertex belongs to the same strongly connected component as x,

INDEX (x) 1s updated to designate this earlier vertex;

comment the implicit assignment TREATED (X),_; 1a occurs here;
ifx = VERTICES(INDEX(x)) then

begin x is the vertex of a strongly connected component which

| arrived on the stack first. pop the vertices of the component
L from the stack updating the index of each to indicate the next

list position until x itself 1s popped then insert x in the next

| list position;
listindex « listindex+ 1;

repeatw — VERTICES(stackindex); INDEX (w) « listindex;

} stackindex « stackindex+ 1;

- VERTICES(listindex)« X

end;

listindex « 0; stackindex «n+l; For 3 ~ 1 until n do INDEX(i) - 0;
for i «1 untiln do if INDEX(i) = O then ORDERVERTICES | 1) /
end:

Figure 1
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A major obstacle to understanding this algorithm' and indeed Tarjan's

original version appears to be that certain variables recording the current

status of the computation are never referenced and so do not appear

explicitly in encodings of the algorithm. For purposes of proof it is

convenient to insert them. Conceptually there exists within the

procedure TOPOLOGICALSORT a Boolean array TREATED; TREATED(x) 1s assumed

to be initialized to false for each vertex x . An implicit assignment

TREATED(x) « true

immediately follows the forstatement of the procedure ORDERVERTICES
in Figure 1.

The proof that strongly connected components are correctly identified

depends upon the following properties of the procedure ORDERVERTICES in

. Figure 1. )

| 1. For any vertex x , immediately after TREATED(x) is assigned the

- value true , if INDEX(x) designates x then x will be removed

i from the stack at that time.
| 2. As a consequence of the postorder traversal any true descendent y

| (in the spanning tree) of a vertex X on the stack will arrive on
the stack after x ; when TREATED(x) is assigned the value true

| then TREATED(y) = true . A true ancestor y (in the spanning
- tree) of a vertex x on the stack will precede x on the stack;

when TREATED(x) 1s assigned the value true , TREATED(y) will

A be false . TT
: 5. For each vertex x , when x is placed on the stack, INDEX(x) is

initialized to designate xX itself; subsequent assignments to

"INDEX (x) preserve INDEX(x) < x.

Lemma 1. When TREATED(x) 1s assigned the value true , if INDEX (x)
designates vertex =z then for all y for which z < Vo,

(1) ye sce(x),

(ii) if TREATED(y) = true then there exists no arc y - r in
the directed graph such that r < z and x < yo.
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Proof. Assertion (1) 1s proved by induction on the hypothesis that it

holds for all vertices vvfor which TREATED(v) = true .
Consider the processing of vertex x . The conditional call on

ORDERVERTICES ensured that any son of" Xx is either on the stack or

represented in the list of strongly connected components prior to 1its

inspection with a view to updating INDEX(X) . Since TREATED(xX) is

about to be assigned the value true , it must be shown that INDEX(x)
is left with a value consistent with the assertions.

Case 1. No assignment changing the initial value of INDEX (x) 1s made.

This case arises 1f x has no sons or only sons which are either

represented in the list of strongly connected components or sons such

as Ww, which are on the stack, but for which INDEX(x) < INDEX (w) .
If x 1s the last vertex on the stack then the assertions are

vacuous.

If x 1s not the last vertex on the stack then there exists

} . Wy € SONS(x) for which

| (a) x < LON
L :

(b) INDEX (w ) < Ww, , since wl has not been removed from the stack,

L (c) TREATED (w ) = Lrue so that the inductive hypothesis applies to Wy .
(a) and (b) imply that INDEX (w) < X , but since no assignment to

} INDEX (x) occurs, INDEX (w ) must designate x . Consequently the
inductive hypothesis applied to wl establishes that, for all y

satisfying x < V y € sce(x) 3 assertion (i) then is true in this
case.

The following cases cover the three distinct situations in which a

new value, TINDEX(w) , is assigned to INDEX(x) after its initialization;

such assignments are conditional upon INDEX (w) by INDEX (x) where

w € SONS(x) . In that this new value is potentially the value z in the

assertions of the lemma, it will be shown that in each case

(1) x escc(t) where t is the vertex designated by INDEX (w) ,



(2) any vertex y on the stack which follows t and precedes Xx

which 1s not covered by the inductive hypothesis belongs to the

| same strongly connected component as t . TREATED(y) 1s true

| for x <y so the inductive hypothesis applies to such y .

(1) and (2) suffice to complete the proof of assertion (1) of the

lemma.

+

Case 2. weBONS(x) and x < Ww .

Since only descendents of Xx in the spanning tree follow xX on

the stack, TREATED(w) is true and the inductive hypothesis applied
aaa xX +

to w together with INDEX (w) <' INDEX (x) < X < W establish that

x € sce(t) . The inductive hypothesis for w suffices to demonstrate

that any y satisfying t < yv and yv < x also satisfies ye scc(t) .

+

| Case 3. Ww eSONS(x) where w < x and INDEX (w) # w .
{

L INDEX (w) # w implies that TREATED(w) = true . For x to follow w

.in the stack when TREATED(w) is true there must exist in the spanning

| tree some vertex v with distinct sons uy and u, » and paths such that(-

*

(a) v - u; =» Ww , where TREATED (s)= true for any vertex s in the
path Uy A Wo,

*-

(b) wv =U, —X , where TREATED(s) = false for any vertex s in the
¥% lana ae WW

- path Uy = Xo

*

The inductive hypothesis applies to u; ; INDEX (u, ) < Vv since ug
remains on the stack and so we sce(v) implying that wv is a path

in the directed graph. Combining this with (b) above and the fact that

w&Ok (x) , we have

* *

(¢c) WV ou, 2X ow

so that x e sce(w) . But the inductive hypothesis applies to w so

w e¢ scc(t) . Hence x esce(t) .

Only vertices in the path U, » X can satisfy both of the conditions,
that they precede x on the stack and were not present on the stack when

TREATED(w) was assigned the value true . These vertices are therefore

9
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not known to be members of the same strongly connected component as ©

by virtue of the inductive hypothesis applied to w ; they clearly do

belong to secc(t) by virtue of (c) and wesce(t) .

Case 4. w eSONS(x) where w < x and INDEX (w) =w .

| w must be an ancestor of Xx in the spanning tree. (Ww < x precludes
1t being a descendent and as seen 1n Case 2, INDEX (w) = w rules out the

only other possibility.)

Thus w > x and w e SONS(x) implies x esce(w) . In this case
Ww=1t so x € sce(t) . As a consequence of the postorder traversal any

vertices on the stack between t and x lie on the path t it X and so
also belong to sce(t) .

Assertion (11) follows from observing that 1f any vertex y has

several sons We , 1<i<m, when TREATED(y) becomes true ,
INDEX (y) <" INDEX (w ) for 1 <i <m.

Assume that an arc y =» r exists such that r < z and XxX << yo.

. When TREATED(y) becomes true since r eSONS(y) then INDEX (y) Jor
Nowx <" y 1mplies

elther

. (1) that x = y in which case INDEX(x) <r , but then when
TREATED(x) 1s assigned true since INDEX (x) designates z

| we have z < r —-- a contradiction,
or

| ) (2) x is an ancestor of y in the spanning tree, i.e.,
X = uy 2Uy = vee SU = y 1s a path in the spanning tree.

Since by the same observation, for 1 < j <n-1,

- INDEX (u,) < INDEX (us, 1) when TREATED (u.) is assigned true;
it 1s clear that the same contradiction will arise. C]

Theorem 1. The procedure ORDERVERTICES correctly identifies strongly

connected components of an arbitrary directed graph.

Proof. If INDEX (x) designates x when TREATED(x) is assigned true

then the theorem follows from Lemma 1 since TREATED(y) = true for all y
satisfying Xx < vy. [1

10



3. Computing the Transitive Closure ofa Relation.

Let R be a given relation and RPLUS be a two dimensional array

initialized so that all elements have the value false ; RPLUS(4,j) is to

be assigned the value true 1f and only if 1 R' . It is assumed
that R 1s specified by sets

SONS (i) = (J| iRj} .

If ORDERVERTICES in Figure 1 is replaced by the procedure CLOSURE

Figure 2 then invoking TOPOLOGICALSORT will achieve this objective.

CLOSURE is merely an elaboration of ORDERVERTICES. While processing

w € SONS (x) 5 RPLUS(x,w) is assigned true . Subsequently two

possibilities arise,

either _

(1) w is on the stack and so we sce(x) in which case no

assignment 1s made to RPLUS at this time

L or

(2) w is represented in the list of strongly connected components

| and the assignment
RPLUS(x,*) + RPLUS(x,*) or RPLUS(w, *)

| is necessary. RPLUS(z,*) denotes row z of RPLUS; for

convenience availlability of bitwise Boolean operations on

| Boolean vectors 1s assumed.

Finally, whenever a vertex w , in the same strongly connected component

as the representative vertex x , is removed from the stack the assignment

RPLUS(x,*) « RPIUS(x,*) or RPLUS (w, *)

1s executed.

11
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procedure CIOSURE (integer value x);

begin integer W,

INDEX (x) « stackindex = stackindex -1; VERTICES(stackindex) « x;

for we SONS(x) do-

= RPLUS(x,w) + true; if INDEX (w) = 0 then CLOSURE(w);
if INDEX (w) < stackindex then RPLUS(x,%*) « RPLUS(x,*) or RFPLUS(w,*)

else if INDEX (w) > INDEX (x) then INDEX(x) « INDEX (w);

~ peg ~~
if x = VERTICES (INDEX(x)) then

begin listindex « listindex+ 1;

repeat w + VERTICES (stackindex); INDEX (w) « listindex;

RPLUS (x, *) « RPLUS(x,*) or RPLUS(w,*);
stackindex « stackindex+ 1;

VERTICES (listindex) « x;

end;

end;

Figure 2

. Theorem 2. If Xx 5 y 1s a path 1n the directed graph representing

relation R then the procedure CIOSURE leaves RPLUS(x,y) = true for

any xX 1n the list of strongly connected components. oT

Proof. For any vertex v on the stack maintained by the procedure

CLOSURE, when all members of SONS (v) have been examined then by

construction RPLUS(v,t) = true iff

elther (1) t € SONS (v)

or (2) weSONS(v) and RPLUS(w,t) = true and wf scc(v) .

Since a ¢SONS(b) implies bRa , apart from the constraint that w¢ sce(v)
this 1s simply the usual recursive definition of RT. Tt follows from

12
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this and the work of Knuth cited that if v- Up= ove 2 4 is a path
in the directed graph corresponding to R , in which, for 1 < Jj <n,

u, { scc(v) then RPLUS (v, u.) is true . -
If vo sce(x) for 1 < k < m then by construction

m

RPLUS(x,*) = V RPLUS (vy 5%)
k=1

from which it follows that if x y is an arbitrary path in the directed

graph corresponding to R then RPLUS(x,y) = true . U

In computing the transitive closure of R , each arc and each vertex

of the directed graph corresponding to R are visited once; for each

strongly connected component of k vertices, k-1 Boolean vector

operations are performed each involving Vv elements. One Boolean vector

operation 1s needed for each arc connecting distinct strongly connected

components. One Boolean assignment 1s made for each arc.

If there are t strongly connected components each with more than

. one vertex and these account for V, of the total of V vertices; if
in addition EB of the total of E arcs connect vertices 1n the set Ve
then the number of operations needed 1s bounded by

X
k (E-E)V + KE + ks (Vg —t) V+ kV+ ke

!

_ for some constants ks 1<i<5.
Worst case behavior occurs when the vertices can be placed in a

—-sequence 1n which each member 1s connected by an arc to 1ts successors

and itself, then BE = ve = t = 0 and E = V(W#1l) . Best case
behavior occurs when E = V-1 and E = V =t = 0 or when E = E = ve ,

Vy =V andt = 1 . The number of operations needed therefore ranges
between 0(V*) and o(v°) :

This algorithm has brevity as one recommendation (compared with the

algorithms in [1,2] which improve on the worst case behavior). It offers

occasional conveniences when compared to methods involving incidence

matrix representations of R . For example, Knuth's sets first (A) are

relations on Vy XV, rather than (Vy UV) x (Vy UV) . It is easy to

13



vases advantage of thls wilh the present algeria, Many conan ors

offer Boolean vector operations for moderately large un go 4 primis lve
operation, thus in many practical situations the effective behavior is

more like O(V) to 0(V°) operations.
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