ON COMPUT ING THE TRANS IT IVE CLOSURE OF A RELATION

by

James Eve

STAN-C S-75-508
SEPTEMBER 1975

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORDUNIVERSITY

On Computing the Transitive Closure of a Relation

James Eve

Abstract

An algorithm is presented for computing the transitive closure of
an arbitrary relation which is based upon a variant of Tarjan's algorithm
[4] for finding the strongly connected components of a directed graph.
This variant leads to a more compact statement of Tarjan's algorithm.
If V is the number of vertices in the directed graph representing
the relation ghan the worst case behavior of the proposed algorithm
)

involves O(V operations. In this respect it is inferior to existing

log2 7

algorithms [1,2] which require O(Vj,/log V) and O(V log V)

operations respectively. The best case behavior involves only O(VE)

operations.

This research was sup-ported in part by National Science Foundation grant
1IR72-03752 A02 and by the Office of Naval Research contract NROLL-LO2.

reproduction in whole or in' part is permitted for any purpose of the
Uaited States Government.

TR

1. Introduction.

The origin of this transitive closure algorithm is in a paper by
Knuth [3] in which he defined certain _sets, of interest in parsing
context free languages, in terms of the transitive closure of relations.
One class of sets and the method suggested by Knuth for computing it
are germane and will be reviewed briefly.

Let

lX2 ...XQYG

denote a production of some context free grammar in which the nonterminals,

Xi » 1 <i<n, derive the null string. Then X is said to left depend
upon Y , denoted X£Y . The class of sets to be computed is

, ~ +
first (A) = {a.GVT ‘AZ al for all A EVN

where VN and V& as usual denote the non-terminal and terminal symbols
of the grammar, + and * appended to a relation denote respectively
the transitive and reflexive transitive closures of the relation.

A necessary condition for top down deterministic parsing is that
left recursion may not occur so that X2+X is precluded for all X

in VN . This implies that the directed graph representing the left

dependency relation has no closed paths and, as a consequence, a
convenient partial ordering of the vertices of the graph exists which
can be exploited in computing the required sets.

If A left depends upon Al"“’Am then the latter are immediate
descendents of A in the left dependency graph and from the definition

in terms of left dependency

m
first(A) = U first(a.)
i=1 1

Given a partial ordering of the vertices in which descendents
Al,
compute the class of sets during a single left to right scan through

..«yA always precede the ancestor, this identity may be used to
m

the sequence of vertices in the-partial ordering. A recursive procedure

p——

FIRST (V) can be constructed which traverses in postorder a spanning
tree, rooted at vertex V , of that subgraph of the directed graph
accessible from V . Such a procedure would visit vertices in the
subgraph in an appropriate sequence and as each vertex corresponding
to a nonterminal symbol is visited the corresponding set can be
computed. It merely remains to ensure that each subgraph is treated.
The process is efficient in the sense that each vertex of the graph
is visited once only and each arc is inspected once only.

If left recursion was not forbidden then A1+B and B £+Acould
occur implying a1" A ang, thereby, closed paths in the left dependency
graph; however .AI+B and B I+A imply that first(A) = first(B)
which reflects the equivalence relation induced on the vertices of the
graph by strong connectivity. 1If all vertices in such an equivalence
class are mapped-onto a single representative vertex then the resulting
directed graph is free of closed paths and can again be explored by
Knuth's efficient "topological sorting" algorithm.

The discussion above need not be restricted to the left dependency
relation, similar comments may be made with respect to any relation.
Algorithms for computing the transitive closure of relations based upon
these observations have been used by the author for several years; in
many cases the advantages accruing from inspecting each arc and vertex
once while computing the transitive closure offset inefficiencies in the
somewhat crude methods used to locate multiple vertex strongly connected

components. Tarjan's elegant algorithm for finding the strongly connected

* components of a graph makes this approach a great deal more attractive.

For graphs with close to V or V- arcs the computation involves

O(V?) operations. Worst case behavior involving o(v5) operations

would arise for the graph with % V(V-1) arcs but with no closed paths.
The following section describes a variant of Tarjan's algorithm and

outlines a tedious proof of its correctness. Section 3 deals with its

use in computing the transitive closure of a relation.

2. An Alternative Formulation of Tarjan's Algorithm.

Tarjan's algorithm involves traversing a spanning tree (or forest)
of a directed graph, accumulating the vertices visited on a stack, and
periodically it emits sets of vertices corresponding to strongly
connected components from the stack. The traversal is postorder resulting
in the strongly connected components being emitted in the desired
sequence, i.e., 1if strongly connected components A and B are connected
by one or more arcs from A to B then B will be emitted before A .
Thus Tarjan's algorithm includes the required topological sort. It does
not however maintain a list of the strongly connected components
defining the ordered sequence.

Assuming that such a list is required for a graph of n vertices
then, since a vertex is never simultaneously on the stack and in the
list, both the stack and the list can be represented in an n element
array. This conceptually undesirable mixing of data structures permits
an extremely convenient encoding of necessary status information. It

-will suffice in the subsequent application if each strongly connected
component is represented in the list of strongly connected components

by a single vertex; however, for each vertex of the directed graph it
must remain possible to locate its representative in the list of strongly
connected components.

During execution of the algorithm each vertex passes from one to

the next of three states.
State 1. The vertex has not yet been placed on the stack.

State 2. The vertex is present on the stack as part of some as yet

incompletely determined strongly connected component.

State 3. The vertex has been removed from the stack and is represented

by a vertex in the list of strongly connected components.

As part of the process of finding vertices belonging to the same
strongly connected component, that vertex of the component which arrived
on the stack first is eventually identified and is used to represent all
vertices of the component in the list. This identification is achieved

7y maintaining an index for each-vertex in state 2; INDEX(v) will

r—

will designate some vertex on the stack which belongs to the same
strongly connected component as v and which arrived on the stack no
later than v . By the time that all vertices of a strongly connected
component have been visited only thatuvertex of the component which
arrived on the stack first will have an index value which designates
itself on the stack.

Clearly all vertices in State 2 will have index values designating
vertices in the stack; when vertices are removed from the stack the
corresponding index values can be changed to indicate the position of
their representative in the list. By adopting the convention that
INDEX(v) = 0 if v is a State 1 vertex, the array INDEX encodes all
state information and eventually defines the mapping of vertices onto
representatives in the list of strongly connected components.

For each vertex v of the directed graph a set, SONS(v) , is
assumed to exist such that weSONS(v) precisely when the directed
graph contains an arc from v to w . The topological sorting of
the strongly connected components of directed graphs specified in this
way 1s achieved by the procedure TOPOLOGICALSORT in Figure 1. Elements
n,n-1,... of the array VERTICES represent the stack; elements 1,2,...
are used to build the list of strongly connected components.

To facilitate proof that strongly connected components are correctly

identified by this procedure, the following notational conveniences are

adopted.
-1. X = y denotes the existence of an arc from vertex x to vertex y
2. x < y denotes that vertex x immediately precedes y on the stack.

3. . INDEX(y) wused as an operand with < is to be interpreted as a
reference to the vertex on the stack designated by INDEX(y) ,
i.e., to VERTICES(INDEX(y)).Likewise INDEX(y) # y is understood
to mean that INDEX(y) does not designate itself on the stack.

L, y e sce(x) denotes that y belongs to the same strongly connected

component as x .

EEQEEQHEEITOPOLOGICALSORT;
begin integer stackindex, listindex, 1i;

integer array VERTICES, INDEX(1::n);
Procedure ORDERVERTICES(integer value x);

begin integer W;
INDEX (x) « stackindex . stackindex -1; VERTICES(stackindex) < X;
for w e SONS(x) do

begin if INDEX(w) = 0 then ORDERVERTICES(w);

if INDEX(w) > INDEX(x) then INDEX(x) - INDEX(w);

comment if the preceding test is satisfied then w is on the
stack and INDEX(w) designates a vertex which arrived on the
stack earlier than that indicated by INDEX(x). As this earlier
vertex belongs to the same strongly connected component as x,
INDEX (x) 1s updated to designate this earlier vertex;

end;

e el

comment the implicit assignment TREATED(X%_ occurs here:
[anan e Vo W) 14
if x = VERTICES(INDEX(x)) bthen

Eggglx is the vertex of a strongly connected component which

arrived on the stack first. pop the vertices of the component

from the stack updating the index of each to indicate the next

list position until x itself is popped then insert x in the next

list position;

listindex « listindex + 1;

repeat w < VERTICES(stackindex); INDEX(w) « listindex;
stackindex « stackindex+ 1;

VERTICES(listindex) « X

end ;

la s

. end;

ot e

listindex ~ 0; stackindex « m+l; for i « 1 until n do INDEX (i) « O;
PSS NN ’

~N

for i ~ 1 until n do if INDEX(i) = O then ORDERVERTICES ' 1)

end:

S

Figure 1

r-

A major obstacle to understanding this algorithm' and indeed Tarjan's
original version appears to be that certain variables recording the current
status of the computation are never referenced and so do not appear
explicitly in encodings of the algorithm. For purposes of proof it is
convenient to insert them. Conceptually there exists within the
procedure TOPOLOGICALSORT a Boolean array TREATED; TREATED(x) is assumed

AN

TREATED (x) « true

e e

immediately follows the for statement of the procedure ORDERVERTICES

in Figure 1.
The proof that strongly connected components are correctly identified

depends upon the following properties of the procedure ORDERVERTICES in

Figure 1.
1. For any vertex x , immediately after TREATED (x) is assigned the
value true , if INDEX(x) designates x then x will be removed

from the stack at that time.

2. As a consequence of the postorder traversal any true descendent y
(in the spanning tree) of a vertex x on the stack will arrive on
the stack after x ; when TREATED(x) is assigned the value +true
then TREATED (y) = true . A true ancestor y (in the spannin&NNV
tree) of a vertex x on the stack will precede x on the stack;

when TREATED (x) is assigned the value true , TREATED(y) will

be false
5. For each vertex x , when x is placed on the stack, INDEX(x) is

initialized to designate x itself; subsequent assignments to

'INDEX (X) preserve INDEX(X)<? X

Lemma 1. When TREATED (x) is assigned the value true , if INDEX (x)

designates vertex gz then for all y for which z < v,
(i) y € sce(x) ,
(ii) if TREATED(y) = true then there exists no arc y = r in

*
the directed graph such that r < g and x <y

Proof. Assertion (i) is proved by induction on the hypothesis that it

holds for all vertices v for which TREATED(v) = true

Consider the processing of vertex x . The conditional call on
ORDERVERTICES ensured that any son of" X is either on the stack or
represented in the list of strongly connected components prior to its
inspection with a view to updating INDEX(x) . Since TREATED (x) 1is
about to be assigned the value true , it must be shown that INDEX(x)

is left with a value consistent with the assertions.

Case 1. No assignment changing the initial wvalue of INDEX(x) 1is made.
This case arises if x has no sons or only sons which are either
represented in the list of strongly connected components or sons such
as W, which are on the stack, but for which INDEX(x) < INDEX (w)

If x is the last vertex on the stack then the assertions are
vacuous.

If x is not the last vertex on the stack then there exists

. W, €80NS(x) for which

(a) x<w1,

.) + .
(b) lNDEX(wl) < W since wl has not been removed from the stack,

l 14
(c) TREATED(wl) = true so that the inductive hypothesis applies to Wy o

(a) and (b} imply that INDEX(wl) < x , but since no assignment to
INDEX (x) occurs, INDEXOH) must designate x . Consequently the
inductive hypothesis applied to wl establishes that, for all y
satisfying x < Y, v e sce(x) ; assertion (i) then is true in this

case.

The following cases cover the three distinct situations in which a
new value, TINDEX(w) , is assigned to INDEX(x) after its initialization;
such assignments are conditional upon INDEX (w) <+ INDEX (x) where
w e SONS(x) . In that this new value is potentially the value z in the

assertions of the lemma, it will be shown that in each case

(1) x esce(t) where t is the vertex designated by INDEX (w) ,

—

r——

(2) any vertex y on the stack which follows t and precedes x

which is not covered by the inductive hypothesis belongs to the

same strongly connected component as t . TREATED (y) is true

for x <y so the inductive hypothesis applies to such y

(1) and (2) suffice to complete the proof of assertion (i) of the

lemma.

Case 2. weBONS(x) and x < w

Since only descendents of X in the spanning tree follow x on
the stack, TREATED(w) is Erv%g and the inductive hypothesis applied
to w together with INDEX (w) <t INDEX (x) <* b 4 <+ W establish that
x € sce(t) . The inductive hypothesis for w suffices to demonstrate

that any y satisfying t < y and y < x also satisfies yescc(t) .

4
Case 3. WweSONS(x) where w < x and INDEX(w) # w
INDEX (w) # w implies that TREATED (w) = true . For x to follow w

e atad

.in the stack when TREATED(w) is true there must exist in the spanning

tree some vertex v with distinct sons Uy and U, » and paths such that

*
(a) v SU W, where TREATED (s)= true for any vertex s in the

*
path U, = W,

1
*
(b) v = u, - X, where TREATED (s) = false for any vertex s in the
* ONININININ
path u2 - X

*
The inductive hypothesis applies to u, ; INDEX(ul) < v since uy
remains on the stack and so wesce(v) implying that w % v is a path
in the directed graph. Combining this with (b) above and the fact that

w&Ok (x) , we have

* *
(¢) WSV ou, X oW

so that x e sce(w) . But the inductive hypothesis applies to w so
w ¢ sce(t) . Hence xesce(t) .

Only vertices in the path Uy, » X can satisfy both of the conditions,
that they precede x on the stack and were not present on the stack when

TREATED (w) was assigned the value true ., These vertices are therefore

A

T A T T
.)

not known to be members of the same strongly connected component as t

by virtue of the inductive hypothesis applied to w ; they clearly do
belong to sece(t) by virtue of (c) and wesce(t) .

Case 4. w ¢ SONS(x) where w <" x and INDEX (w) =w .
w must be an ancestor of x in the spanning tree. (w Q_x precludes
it being a descendent and as seen in Case 2, INDEX(w) = w rules out the
only other possibility.)

Thus w 5% and w € SONS(x) implies xesce(w) . In this case
w=1t so x € sce(t) . As a consequence of the postorder traversal any

, +
vertices on the stack between t and x lie on the path t - X 3pd so

also belong to scec(t)

Assertion (ii) follows from observing that if any vertex y has
several sons L , 1<i<m, when TREATED(y) becomes true ,
* ININININS
INDEX (y) < INDEX(wi) for 1 <i<m
. + *
Assume that an arc y - r exists such that r < z and x < y .
*
When TREATED (y) becomes true since r e€SONS(y) then INDEX(y) < T .
* . .
Now x <" y implies

either

(1) that x = y in which case INDEX(x) < v » but then when
TREATED (x) 1is assigned E&ls since INDEX(x) designates z
we have z <f r -- a contradiction,

or

(2) x 1is an ancestor of y in the spanning tree, i.e.,

X = uy 2U, » ... »u =y is a path in the spanning tree.
Since by the same observation, for 1 < j < n-1,
INDEX(uj) < INDEX(uj+l) when TREATED(uj) is assigned true ;

e o el

it 1is clear that the same contradiction will arise. O

Theorem 1. The procedure ORDERVERTICES correctly identifies strongly

connected components of an arbitrary directed graph.

Proof. If INDEX(x) designates x when TREATED (x) is assigned true
then the theorem follows from Lemma 1 since TREATED(y) = true for all y

* e
satisfying x < y . QO

10

JRI w«“"“'-

-

3. Computing the Transitive Closure of a Relation.

Let R be a given relation and RPLUS be a two dimensional array
initialized so that all elements have the value false ; RPLUS(i,j) is to
be assigned the value true if and only if i R+j . It is assumed

e a el

that R is specified by sets
SONS (i) = (j | iRj} .

If ORDERVERTICES in Figure 1 is replaced by the procedure CIOSURE
Figure 2 then invoking TOPOLOGICALSORT will achieve this objective.
CIOSURE is merely an elaboration of ORDERVERTICES. While processing
w € SONS(x) , RPLUS(x,w) is assigned true . Subsequently two

SN

possibilities arise,

either

(1) w is on the stack and so we scc(x) in which case no
assignment is made to RPLUS at this time

or

(2) w is represented in the list of strongly connected components
and the assignment
RPLUS(x,*) < RPLUS(x,*) or RPLUS (w, *)
is necessary. RPLUS(z,*) denotes row z of RPLUS; for
convenience availability of bitwise Boolean operations on

Boolean vectors is assumed.

Finally, whenever a vertex w , in the same strongly connected component

as the representative vertex X , is removed from the stack the assignment
RPLUS(x,*) « RPLUS(x,*) or RPLUS(w,%)

is executed.

11

procedure CLOSURE(integer value Xx);
begin inteﬁer W
INDEX (x) « stackindex < stackindex -1; VERTICES(stackindex) « X;
for we SONS(x) do-
= RPWOS(x,w) + true; if TNDEX(w) = O then CIOSURE(w);
if INDEX(w) < stackindex then RPLUS(x,*) « RPLUS(x,*) or RPLUS(w,¥)
else if INDEX(w) > INDEX (x) then INDEX(x) < INDEX (w);
ond; e
if x = VERTICES(INDEX(x)) then
m listindex « listindex+ 1;
E,‘:’;R%%EW + VERTICES (stackindex); INDEX(w) « listindex;
RPLUS(x,*) « RPLUS(x, *) or RPLUS(w,*);
stackindex « stackindex+ 1;
wtEL W= x;
VERTICES(listindex) « x;

end;
end;
Figure 2
+
Theorem 2. If x -y is a path in the directed graph representing

relation R then the procedure CLOSURE leaves RPLUS(x,y) = true for

any x in the list of strongly connected components.

Proof. For any vertex v on the stack maintained by the procedure
CLOSURE, when all members of SONS(v) have been examined then by
construction RPLUS(v,t) = true iff

either (1) t € SONS(v)
or (2) weSONS(v) and RPLUS(w,t) = true and wf scc(v) .

Since aeSONS(b) implies bRa , apart from the constraint that w/sce(v)

this is simply the usual recursive definition of R . It follows from

12

this and the work of Knuth cited that if v- Uy~ . . - =W is a path

in the directed graph corresponding to R , in which, for 1 < j < n,

ui/ sce(v) then RHIB(Vﬂﬁ) is true

L v « sce(x) for 1 < k < m then by construction

m
RPLUS(x,*) = vV RPLUS(vy,*)
k=1

, , , +
from which it follows that if x - y is an arbitrary path in the directed

graph corresponding to R then RPLUS(x,y) = true . O

In computing the transitive closure of R , each arc and each vertex
of the directed graph corresponding to R are visited once; for each
strongly connected component of k vertices, k-1 Boolean vector
operations are performed each involving V elements. One Boolean vector
operation is needed for each arc connecting distinct strongly connected
components. One Boolean assignment is made for each arc.

If there are t strongly connected components each with more than
one vertex and these account for VS of the total of V vertices; if
in addition ES of the total of E arcs connect vertices in the set VS

then the number of operations needed is bounded by
k. (E-E _
1E-BIV + kB + ks (V, —£)VH KV + Ko

for some constants ki’ l<i<s.
Worst case behavior occurs when the vertices can be placed in a

-sequence in which each member is connected by an arc to its successors

and itself, then ES =\% =t =0 and E = % V(W1l) . Best case

behavior occurs when E = V-1 and E = V =t = 0 or when E = E = Vﬁ ’
. S S S

V.=V and t =1 . The number of operations needed therefore ranges

between O(VZ) and O(VE).

This algorithm has brevity as one recommendation (compared with the
algorithms in [1,2] which improve on the worst case behavior). Tt offers

occasional conveniences when compared to methods involving incidence

matrix representations of R . For example, Knuth's sets first (A) are
relations on i
Vy XVp rather than (VN(JVT);c(VﬁlJVT) . It is easy to

13

tazs advaniage oF this wilh the present algeriius. Many coriv ces
offer Boolean vector operations for moderately large 0 gaq o4 primic Lve
operation, thus in many practical situations the effective behavior is

more like O(V) to O(V2) operations.

References

[1] V. L. Artazarov, E. A. Dinic, M. A. Kronrod and I. A. Faradzev,
"On economical construction of the transitive closure of a

directed graph," Soviet Math. Dokl. 11 (1970), 1209.

[2] M. E. Furman, "Application of a method of fast multiplication of

matrices in-the problem of finding the transitive closure of a

graph," Soviet Math. Dokl. 11 (1970), 1252.

(3] D. E. Knuth, "Top-Down Syntax Analysis," Acta Informatica 1 (1971) ,
79-

[4] R. Tarjan, "Depth-first search and linear graph algorithms," STAM J.

Corn-put. 1 (1972), 146.

1k

