
| Stanford Artificial Intelligence Laboratory August 1975
Memo AIM-265

| Computer. Science Department
| Report No. STAN-CS-75-507

| TOWARDS A SEMANTIC THEORY

| of
DYNAMIC BINDING

by

| Michael Gordon

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University



TOWARDS A SEMANTIC THEORY

| DYNAMIC BINDING

Michael Gordon

Department of Computer Science,
] James Clerk Maxwell Building,

The King’s Buildings,

Co Mayfield Road,
i 3 Edinburgh EH9 3JZ.

| ~~ Abstract
The results in this paper contribute to the formulation of a semantic theory of dynamic

Ct binding (fluid variables). The axioms and theorems are language independent in that

| they don’t talk about programs =-i.e. syntactic objects = but just about elements in

| certain domains., Firstly the equivalence (in the circumstances where it’s true) of "tying

a knot” through the environment (elaborated in the paper) and taking a least fixed point

is shown. This is central in proving the correctness of LISP "eval" type interpreters,

| Secondly the relation which must hold between two environments if a program is to

| have the same meaning in both is established. It is shown how the theory can be

| applied to LISP to yield previously known facts,

i

oo



| ACKNOWLEDGEMENTS
Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Milne, Gordon

Plot kin, Bob Tennent and Chris Wadsworth for helpful discussions and

| correspondence. John Allen, Dana Scott and Akinori Yonezawa suggested

improvements and pointed out errors in preliminary drafts of this report,

This research was supported in part by the Advanced Research Projects Agency of the

Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order

no. 2494.

The views and conclusions in this document are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or implied,

- of the Advanced Research Projects Agency or the US Government.

|. .

| 2



| CONTENTS
B CONIENTS

I SECTION PAGE

| LINE OAUCTION.coviestissnmnnisnnnssssssisssmsssississmssmssnossssssssessssssssren.. |

| 2. Informal Discussion of LT IT-

3. FOrmalisation....niiiiississsssssisssssssssssssssssesssssesnenson.e,3

3.1. Knots and FiXed POINtS.....iiisscsssssissmmsmmsmsmmssmssssssssssssssssssssssssssssssmssssssssssssssnsasssssonses3

3.2. Equivalent EVIPONMENES.ccsrsrmsssseseseee 7
B. Proofs.niimsimmsmnimisisssisimssisssmssisssiossossssssssssssssssssssssssossesssonensenen. 8

5. APPICEHION 10LISP...1 |

BL 1. SYNEAX..ccuucririmssssssssssassesimimssssssssssssssssssssssssssssssssssssssssssssssmmsssssssssssssssssnssssssssssossssssssssmsennnnsenn | 2

5.2. SOME NOALION.......mssssssssmseenn. 1 2.

) 5.3. SOMANEICS....cororrrssrrrssrsmrssssmssssssmsssisson 1 3

- 5.3.1. Denotation DOMAINS.corer1 3
5.3.2. Environment DOMAIN. . . . . cusmsssessssmmmonsssssssssssssssssssssssssssssresssssssssssosesssenseennseeses | 3

} 5.3.3. Semantic FUNCLIONS.....mmnmmnississsossssssssssssosssssssssonssnen. 1 3

1 5.3.4. Semantic EGUBRIONS..cererrererresssmssmsssssesses13
6. Existence of Predicates....TFSO AOUOT ORO RTRRRURROYORRRRORS IF«|

i 7. CONCIUAING REMAIKS....vvciurrscersesmmrssmsmmmmssssssmssssssssssssssssssssssssssesmsssssssssmmsssssssssommseessssmmneeesssssssnns, 240
| 8. REfEIONCES...criss.25

i

:

|



| l.Introduction

The art of semantics is now sufficiently developed that most computer languages can be

given concise, elegant and intuitive formal descriptions. The theory of these

| descriptions is well enough understood that useful facts = such as the correctness of

| implementation8 = are fairly straightforward to prove. Unfortunately proofs tend to be

very long and the results obtained rather lacking in generality. For example the proof of

correctness of an implementation for one language has to be. redone for a similar

| implementation of another., Of course once -the proof idea is known no real creative

acts are needed in applying it and thus a certain amount of generality is. obtained.

However this generality isn’t of a type that’s easy to use (except, pehaps, by people

| with considerable knowledge of the underlying theory). A more direct way of being

| general is to isolate explicitly the assumptions used and then to prove the results from

| these, Then to apply such a result ‘one just needs to check the language satisfies the

appropriate “axioms” = and this will normally be much less demanding than redoing a

whole proof by analogy with an existing one.

In this note I’ve formulated abstract versions of two results about languages which use

| dynamic binding of free variables. Initially these were proved for LISP (they were

| needed in proving the correctness of an implementation). The abstract versions

| described below can be instantiated to yield the LISP ones. At hough the two results

proven are completely language-independent (in that they don’t talk about programs =-

i.e. synt actic object8 = but just about elements in certain domains) they aren‘tas

| general as one might hope. Some situations in which dynamic binding is used and which

| intuitively should fall under their compass don’t. This is a defect of the present work =|

don’t think it’s a necessary difficulty.



i 2 Informal Discussion of Results

When reasoning about programs it’s often useful to be able to exhibit the denotation of

a recursive procedure as the least fixed point of some functional. Doing this enables,

for example, computation-induction to be used. The first result to be discussed helps

| with this as it concerns the equivalence (in certain circumstances) of “tying a knot”

through the environment (elaborated below) with taking a least fixed point. Besides

being of interest in its own right, this result is at the heart of the correctness of LISP

| eval type interpreters. ‘Hopefully the abstract version wiill assist in proving the

correctness of similar interpreters for other languages.

| The way recursive definitions are handled by many LISP implementations is to bind the
B body of the function to its own name on the alist. This creates a circularity or “knot” in

| which places inside the function body (namely recursive calls) point back to the

| beginning of the function, Now the standard analysis of recursion is via the Y-operator

(i.e. In terms of least fixed points) and consequently in proving the correctness of

“knotting” interpreters with respect to standard semantics it’s necessary to ascertain

| the conditions under which “knotting” and fixedpointing are equivalent. Contrary to what

one might expect they arent always the same. This is shown below,

The second result concerns what relation needs to hold between two environments a,a’

| (alists in the case of LISP) for a form e to evaluate to the same values in both a and ge.

| Call this condition "a=*a*".



A first guess might be that the two environments must agree on the free variables of e

| (as is the case for terms in predicate-calculus or the h-calculus). This won‘t do

- however for although a and a’ might agree on @’s free variables the things they bind to

these might depend on other variables not free in and on which a and a’ differ (e.g. if

| e=X, a and @’ both bind x to y but a binds y to 1 whilst @® binds it to 2). What is

| clearly needed is that a and &’ agree on @’s free variables and on the variables free in

the things bound to these variables ... ... etc.

To formulate this for LISP one just needs a recursive definition like:

a=*a’ <=> Vx. [ x free in e=>a(x)=a’(x) and a=*"a’]

Now given a syntax for e’s its easy to formalise "x free in @" =~ the difficulty arises if

| one wants a syntax independent definition. What’s needed is an abstract notion of
| : free-ness applicable to elements of the type denoted by e (and ‘hopefully denoted also

by programs from languages other than LISP). | describe such a notion below.

3. Formalization

3.1. Knots and Fixed-points

| | Before proceding with abstract formulations of the above it’s necessary to describe the
| environments needed to handle dynamic binding. Let D be an arbitrary domain of

| expression values and let Env=Id=V; be the associated domain of environments,
Elements of Vp are= in the case of dynamic binding = denotations of objects which may

| contain free variables and so might still depend on the environment. Hence Vpy=Env=D

- and thus Env must satisfy Env=Id={Env=D).



4

_ It turns out to be necessary (see lemma 8 below) to require in addition that if

p¢Env then p is strict i.e. p(L)=d thus if [D;*D,/ is the domain, of strict

oo continuous functions from D; to D, then Env must have type satisfying:

Env=Id=>»{ Env=D].

From this one can immediately formulate what it means for “knotting” and fixedpointing

to be the same viz. we require for v€V/p and p€¢Enu:

v(p[v/x]D=Y(F(v)p where F(v)=av.rp".v(p’[v'/x])

ro 1
knot fixedpoint

here p[v/x] is p updated to bind Vv to X. Unfortunately this equality isnt true in

- general.

For example if:

v=XAp’.p’(y)p’ (where yéld)
p=L[(Ap’.d)/x][(Ap’.p°(x)p)/Y] (where L#dé¢D)

Then it turns out that Y{p[v/x])=dZL=Y(F(v))p.

For we have: Y(p[v/x]D=(p[v/xD(yXp[v/x]) (by definition of v)
=p(y)(p[v/x])
=(Ap’.p*(x)p)}p[Vv/x]) (by definition of p)
=(p[v/x])(x)p
=v(p)
=p(y)p : (by definition of v)
=(Ap’.0°(x)p)p (by definition of p)
=p(x)p

=a .d)p (by definition of p)

And-as YF(v))p=LF(v)"(L)p an



5

F(v)NL)p=4 implies

Fv) aL) p=F (vIF (v)"(L))p
=v(p[F (V)™(1)/x])

=(p[F (INL)/xDy)pF {v)L)/x]) (by definition of v)
=(Ap.p*(x)p)(p[F (V)NL)/x]) (by definition of p)
=F Av)NL)p=L

It follows by induction on n that: Vn. FAv)NL)p=L and so YF (v))p=L.

In [1] and [2] it is shown that for ¥’s and p‘s which are the denotations of LISP

} functions and alists respectively the equation W(p[v/x])=Y(F(v))p does in fact hold.
The proof used was very specific to LISP (being essentially an induction on the size of

computations on a certain abstract interpreter). Now hopefully the result should hold

for dynamic binding in general rather than just for LISP. Thus the problem arises of

RN isolating and stating those properties of dynamic binding which, when possesed by v
and p, entail v(p[v/x])=Y(F,(v))p. To do this we need to introduce recursively

= defined (but not necessarily monotonic) relations of the type first studied by Milne [5]

| and Reynolds [7] Using these we can then provide a (partial) abstract characterisation
| of dynamic binding by defining a notion of “regular” for which:

L v,p regular => v(p[v/xD=Y(F.(v))p |

i From now on X,%*,%X* ,..., ¥,¥*,¥** etc. will range over Id. X,Y will range over subsets of
| ld. p,p’,p**will range over Env. V,v',¥* will range over Vp=Env=D and d,d’,d** will

- range over D.



| 6
Using techniques developed by Robert Milne of Oxford [5] one can show that there

exist predicates of types:

oCEnv x Enu
a*cl/y x Vp (one for each x€ld)

| <«CEnv x Enu

«cVp X Vo

which are directed-complete (i.e. if they hold of each member of ‘a directed set then

they hold of the union) and satisfy:

pap’ <=> yx. p(x)a*p’x)

vary’ <=> Yp 0’. [ p op’ => v(p[v/x]) = v(p[v/x]) ]
. pep’ <=> yx. p(x)<p’(x)

veve  <=>Vp,p’.[pap® => v(p) =v(p*)]

- One can then show that:

§ vev => va'Y (F(v*))
- vey => Y(F(v*))a'v

| And as it also turns out that p€p’=>p39p’ we have:

] vev,pep => vip[v/xD=v(p[Y(F(v)/xD=Y(F(v}}
Thus a definition of “regular” which works is given by;

t Definition |

| viEnv=>D and p:Env are regular <=> vey and pe<p
.

To apply this to LISP one just shows that the denotations of forms and alists are
h

regular, this is done in section 5.

In the next section proofs of the above assertions will be given relative to the

existence of the predicates. This existence (which can't be shown with the Y-operator,

as the necessary functionals aren’t continuous) will be proved in section 6.



7

3.2. Fauivalent Environments

. The formulation of the result about free variables also requires the use of Milne style

recursive predicates Vviz.:

” ®clVp x {X|Xcld}

=Xc Enu x Enu (one for each X¢cld)

Where intuitively ®(v,X) means the free variables of v are included in X and p=%*p*

means Pp and p* “strongly” agree for all x€X. Formally we require that:

&(v,X) <=> VY,p,0°. [| XY => | p="p* => v(p)=v(p*) ]]
p="p’ <=> VxeX. p(x)=p*(x) and &{p(x),X)

In section 5 below Ill show that if e is a LISP form which denotes G[[e]] and if

vs(e)={x|x is free in e} then &(G[e],vs(e)). From this it follows (via the definition of

: p="*®)p7) that:

Vo,p'. [ p="“p’ =>C[e](p)=C[e](p) 1

In particular if e has no free variables then vs{@)={} and (since it’s clear that for any p

and p’: p=Up’)we have GleJ(p)=C[[e(np).

Somewhat less trivially: if Yx€vs(e).p(x)=p*(x) and also p(x) is & constant function (i.e.

is an environment independent quantity) then again p="®*®p’ and so

Gle]l(p)=CG[e]l(p"). This last example corresponds to the case for static binding - i.e.

when objects have all their free variables bound by the time they themselves are

bound. The existence of @ and =* will be discussed in section 6.



8

= 4. Pr oof s

Readers from now on are assumed to be familiar with notations commonly employed in

the literature on Mathematical Semantics.

A “domain” is a partially ordered set in which each directed subset has a least upper

bound. This notion of domain is used (rat her than complete lattices) for minor and

nonessential technical reasons (see [1] for a discussion).

The domain intended by Env=Id=*{ Env=D}is the minimal solution of the equation i.e. if

id,d are retracts of a universal domain (eg Scott's By) which represent Id andD

respectively (in t h esencet h a t Id={x|x=id(x)} and D={x|x=d(x)}) then

X Y()e.id>(e=d)) represents Enu. (here a—=b=Au.Ax.b(u(a(x))) and

_a=*b=Au.Ax.b(str(u)(a(x))) where str{u)=Ax.(x=L-L,u(x))). From this minimality it

follows that there are mappings Ap.p:Env=Env such that:

(Pl) L=Pp EP; Ew EPp Ewen EP | | |
(P2) p= Lp, | | EE
(P3) (Pn)=P minir,m} |
(P48) po. i(X)p'=p(x)p’,

In fact if Enu is represented as above then p,=(Ae.id=*(e=d))L)(p). For vé¢/Env=>D)

v, is defined by vy(p)=v(p,). (P48) can thus be written as: p,.(X)=p(x),anditis easy

to show (see [1] for details) that: p{V/X]n1=Pneil Val %].

| shall prove [ vev’ => va*¥(F (v*))] by showing (by induction on n) that [ vev’ =>

v,@*Y(F,(v))] and then take a limit. Similarly [ vev’ => Y(F (v))<*v*] will be

proved by showing that for all n: [ vev? =>F (v)YL){v)<*v*].



9

The following rat her ad-hoc looking definition enables the clean statement of some of

the lemmas below:

Definition 2

F:iVpoVp is “invarient at x" <=>Yp,v. F(V)(p[F(v)/x])=v(p[F(v)/x]) |

The useful applications of this definition are given in the next lemma.

Lemma 1.

For all x (Av.v) and (AV.Y(F (v))) are both-invarient at x. |

Proof’

Trivial for (Av.v), for (Av.Y(F ,(v)) use the fixed-point property of Y.

QED.

Lemma 2

If Fis invarient at x and vev’ then Vn. v,9*F(v’).

Proof

n=0: Must show vpa*F(v’)

i.e. pap’ => vo(p[ve/x]) = F(v')Xp[F(v)/x])

i.e. pap’ => v(L) = v*(p[F(v’) /x])
OK as vv’ and Lap[F(v*)/x]

n>0: Assume true for n-l. Let pap’. Must show Vv(pLv,/x])= F(v)(p[F(v’)/x])

..v(p [V1 /x]) & v(p[F(v*)/x])
need p,[v,.; /x]ap[F(v’)/x]

need Vp; 9*F(v’) = OK by induction.

QED.



: 10| : Lemma 3
If Fis invariant at X and vev’ then v<*F(v’)

oC Proof

Trivial from lemma 2 as va=llv, and <* is directed-complete.

| QED.

Lemma 4

Vx, [ vey’ => vay’ ]
vx. [ vey’ => va'¥(F (v’)) ]

Proof

Trivial consequence of lemmas 1 and 3 ,

) QED.
18 Lemma S

i If Fis invarient at x and vv’ then Vn, F (VIL) F (ve).
Proof

L n=0; Trivial

[ n>0: Assume true for n-1. Need pp’ => F (VIN L)p[F (v)(L)/x]) = FV NRF (ve) / xD)
ie. pap’ => v(p[F(v)™(L)/x]) E V(p[F(v*)/x])

¢ OK if F Av)™{L)<"F(v*) - true by induction

QED.

Lemma 6

| If F is invarient at X and v<v’ then Y(F (v))<*F(v*).
Proof

Trivial from lemma 5 as Y(F (v))=UF (v)"L) and <* is directed-complete,

QED.



| 11
vx. [vey => Y(F (v))o*v ]

Lo VX. [vevt => Y(F(v)«Y(F(v)) ]

Proof

Trivial application of lemma 1 and lemma 6.

QED.

Theorem 1

If v and p are regular then vip[v/xD=Y(F (v))p

Proof

. By lemma 5 and lemma 7 we have:

Y(F (v))<*v

: var¥(F(v))

~ hence from the definition of <¥

| Y (Fv) LY(F (v)/x] & Wolv/x])| v(p[v/x] = YFANpLY(F(v)/x])
hence

| Y (F(WNoLY(F (vw)/xD=v(p[v/x])
Finally, using the fixed-point property of Y on the left hand side of this, we get:
YF(v)p=v(p[v/x])

QED.

- 5. Application to LISP

y In this section D will be specialized to a domain appropriate for pure LISP and then the

| abstract results described above Will be shown to hold of the denotations of LISP

programs.

The semantics of LISP used here will only be described in barest outline, For furthur

details, motivation and justification see [1] and [2].



| The syntax of LISP (as described in the manual [4] and in the notation of [9]) is given

| by the equations: |

e i= A |x] fn[e;..;e)] | [e,2ez...ien ep]
fn = F | f | A[[X};---s%n;€] | label[f;fn]
F ::= car | cdr | cons | atom | eq

where the ranges of the variables @,A,%,fnF,f are as follows:

A ranges over <S-expression> (as in page 9 of [4]
| x,f,2 range over <identifier> (as in page 9 of [4))

e ranges over <form> (as defined above)
fn ranges over  <function> (as defined above)
F ranges over <standard function> (as defined above)

| use meta-variables x,f,2 to range over <identifier>: x is used in contexts where the

| identifier is a form, f where it’s a function and z where it could be either.

. 5.2. Some Notation

| In the semantics below:

| flat(S)=S U {1} ordered by Vs¢S. Les.

AS | 30eySpJB (8098p) =A8;,y8p(81=L Or 8p=Lor...ors,=L-L E(s,,.s,))

car,cdr,cons,atom,eq are the appropriate functions on S=flat(<S-expression>).

| Whenever an expression v of type S, [Env?§) o r [Env=Funval/ occurs

in -a context requiring something of type [Env=D/ then v means (i.e should be

“coerced” into) (Ap.vinD),(Ap.v(p)inD) and (Ap.v(p)inD) respectively.



| 13

- S.3. Semantics

_-- 5.3.1. Denotation Domains

D=S+Funval

y S=flat(<S-expression>)

Funval={S¥-§]

Env=]/d=*[Env=D)

&:Form=[Env=S)

§:Function={ Env=Funval/

To 5.83.4. Semantic Fanatfons

(S1) GIAlp= A

| (S2) G[xIe = o(x)plS

(S3) G¢[tn[e;.;e.llp = FLinJp(CLe, Ip,...C[e, Ip)

(S4) Elle, ,~e;zi-i€ni"€n2] UP = (GLe;, Jp~Cle,.lp,...CLe, Jp-CLe,. lp)

(S5) ScarJp = car
Slcdr]p = cdr

[conslp = cons
S[atomlp = atom

S[eqllp = eq

. WwW) Ftp = p(f)p|Funval
(S7) SIAL 3% Se1]p = 28yy8,:5.C Le JpLs,/%,1..[8,/%,]

(S8) ¥[iabellin1]e = Y(FASLnI)e



3 | | 14
Lo Theorem 2 below shows that the denotations of LISP, forms and functions are regular

and so Theorem 1 can be applied to them.

Theorem 2

Gle]l«Ge] and Stn«SF tn]

Proof

A straightforward induction works, The details are as follows:

Assume p<p’.l must show G[elloc Geo’ and ¥[fnlpcE [tn]p".

(1): G[A]lp=A=A=CG[e]p*

(2): G[[x Jlp=p(x)p|S

u Gx Jp =p(x)p’IS
Now pap’ => p(x)a*p*(x) => p(xNp[p(x)/x]) = p*(x){p’[p*(x)/x])

> => p(x)(p)= p*(X}p’ by lemma 8 below
he

i =F tno (Ce, Jo’,...¢[e,Jo)=G[ tn[e;;...;e,]Ip

L (4): G[[e, 12@ zien 28m] Jo=(GlLe, Dp-Ce,,]p,..CLe, Jo-C Le, ]p)
= (Cle, lor-G[e,,]p",..CLen Joo-G[e..]p"

| =¢[[[e, 1=@ 25.38, ] JIrY
(5): $[[FJlo=F = F=&[F Jp’

6): Sltlo=p(fp|Fun
SLto’=p"(f)p’|Fun
and p(f)p=s p’(f)p’ as in (2) above,

(7): SALIX5.5% Je] Dp=2s8.CLepls, /x,]..[80/,]
| FLALLX 5. ixn lie] Dp=28,,...,8,E[0 Jp Is, /%,]..[80/%,]

so it suffices to show p[8;/X;]..[8,/%Jp [8,/%,]...[8,/%,]
and for this it suffices to show Ap.(s;inD)<a*Ap.(s, inD)

i.e. pap’ => (Ap.s)p[(Ap.s)/x]) = (Ap.s)(p’[(Ap.8)/x])
i.e. pap’=>g.8 - which is true,



| | 15
| oo (8): liabel[f;in]Jp=Y(F (Fn Np| S[abel[fiin]Jp =Y(F (Stn)p"
Co hence result by lemma 7,

QED.

Lemma 8

Vox. p=p[p(x)/x] |

Proof
Follows trivially from definition of "p[p{x)/x]" and strictness of p.

QED.

. Theorem 3 below shows that if vs{e) is the set of free variables ine then in the

i abstract sense discussed above the free variables of Gle] "are included in” vs(e).
. The following lemma is needed for the proof. The definitions of ® and =X are on page 7.

i L ee m m a9
| (1) Yv,X,Y. [ ®(v,X), XcY => &(v,Y) ]

(2) Vd. #{((7p.d),{})

- (3) Vv,X. [ &(v,X) => &(Y(F (v))X\{x}) I

Proof

(1): Trivial,

| (2): Trivial.

(3): | show &(v,X)=> &(F (v)NL),Xu{x}) by induction on n. Assume @(v,X).

n=0: ®(L,X\{x}) is clearly true.



a

16

n>0: Assume true for n=1.

&(F (v)NL),X\{x}) <=> p=X\lgr => F(v)(L)p=F(v)"(L)p"

<=> p=X\xlgs => V(p[F(v)"™ (L)/xD=v(p[F Lv)" (L)/x]).
a <= p=A\pr => p[F (vV)™ (1) /x]=*p[F (v)™(L}/x])

which is true by induction and (1) above.

QED.

Theorem 3

Veec<torm>.  ®(G[el,vs(e))
Vec<funct ion>. (FT [Lfnl,vs(fn))

Proof

A straight forward structural induct ion works. Let vs( e)cX.

e=x:

Must show p=%*p’ => p(x)p=p‘(x)p’. Now vs(e)={x}cX so if p=*p*:
p(x)=p’(x) and ¥(p(x),X) hence p(x)p=p(x)p =p’(x)p".

e=A:

Must show p=¥p* => G[AJp=G[[Alo’ - which is clearly true.

e=f n[ e ;.j@n): | |
we have by induction that #(S[fnll,vs(fn)) and &(G[e],vs(e)).
Hence by lemma 9 ®(F [fn ],X) and (Ge, 1X) as vs(tn),vs(e)cvs(e)cX.
So if p="p”’ then SLtnJo=8[ nlp and Ge Jp=Cle Jo*
and hence GJ ello=GLeJp"

e=[e, Sud 3 230003=e]:
Argument as above.

Now let vs(fn)cX.

fn=f:

Simi tar to "e=x" case above.

fn=F:

Similar to "e=A" case above,



| 17

SE fa=A[[X:..iX Jie):

SIAL 5...x Jie 10 = 281,835. Ele lps, /x,]..[80/x,]
| vs(fn)=vs(e)\{X, Xn} 60 v8{@)XU{X,, Xu}.
Lo Now by lemma 9(1,2) if Y=XU{X,,...,.X,} then

p="p’ => p[s,/%,]..[82/%n]00 [8 /%,]..[8,/%,]

so as ®(CG[ellvs(e)): Elle]lols;/x;][sn/x,]=CeJo Ls, /x,]..[5./x,].

fn=label[f;fn,):

We have by induction (Stn, I,vs(fn))) where vs(fn)\{f}=vs(fn)cX.
So by lemma $(3) and induction S(T [tn ],vs(fn,)\{f})
hence $(S[fn ],X).

QED.

Asan application one can show that adding new definitions to an environment doesn’t

change the values of the old ones as long a8 previously used variables aren’t

] overwritten. This is an important lemma needed in proving the correctness of eval.

Here it’s a trivial consequence of Theorem 3 but originally (see [1}) it needed a long

| ad-hoc proof which confused general arguments with LISP specific ones. To see how it

follows consider an environment p which defines a set of functions all of whose free

i variables are included in X¢lId. Suppose x is a new function not included in X. We wish

to show that if eis a form (or function) then as long as vs{e)cX(i.e.e only uses the

old functions) we have for any v: Glelp=GLeJp[v/x]. But this is now trivial for

| &(G[[e JX) and p="p[v/x]. Saying this formally yields the following theorem (in which

| | "o[v/x]" above is replaced by "p*").



| 18

Lo Theorem 4

suppose p,p’¢Env, e¢<form> are such that for some X¢Jd we have:

(1) ¥YxeX.3fn,e<function% p{x)=p*{(x)=F[tn, J and vs{tn)cX.
(2) vs{e)cX

then GeJo=G[[eJp".

Proof

By theorem 38(G[[e]X) and p=*p*. The result follows from the definition of &,

QED.

6. Existence of Predicates

| In all the above the existence of the predicates 9,9% <,®,=* has been assumed,

B However this existence cannot be deduced immedeately from the recursive definitions

| 8s the predicates being defined arnt necessarily monotonic . The existence proofs to

be described are directly based on techniques developed by Robert Milne [5]. Similar

L methods have recently been independently discovered by Reynolds [7]. For the current

| purposes it’s only necessary to know that the required predicates exist, however
Milne’s work shows one can expect them to be unique also. | havnt checked this for

| the predicates used here.

| We define by induction on n predicates:
9, C€ EnvuxEnv

| a, € VpxVp

r



: 19

oo | and then set:

| pap’ <=> Vn. pap’
| vary’ <=> Vn, va*v’

it follows (details below) that 99" satisfy the desired equations and are

| | directed-complete.

: Definition 3

pap’ <=> Vx. p(x)<*p’(x)

va¥ovs <=> w(L[vy/x]) = v/(L[v'/x])
| var, V' <=> Yp,p%. [ pap’ => Vo(pv/x]) = vi(p’[v'/x]) ]

| The following two lemmas are needed to prove Theorem 5 below,

| Lemma 10

| | (1,) Vp,0°. [ pap 1p’ => pap’ ]

| | (2,) p,p’. [ PIP’ => Pp %%.P° ]

| ( 3 ’ ) Vv,v’. [ vaXo vi => vat ve ]

| (4,) Vv,v’. [ va¥ vy! => Vn nei vi ]
Proof

| | show that (3p), (4), (B)=>(11), (4)=>(2), (2,.)=>(3,), (1,.,)=>(4})

; (3,): Must show va*,v’/ =>va*v’, Clearly 19d and we have:
va*, VV, Lapgl => v,(L[v/x]) & v(L[v*/x]) |

=> v(L[v,/x]) & v{L[v'/x])

<=> va¥,v’



| 20
ue (4p): Must show va*,v’ => y,a* v’,
| Assume Vv<¥,v’ and p<yp’.

| Must show Voilp[Va/Xx]) ev {p‘[v'/x])
" i.e. v(L) g v/(p’[v’/x])

but v(L) = v(L[ve/x]) = v/(L[v'/x] = v(p’[v’/x]).

| (3p)=>(1,): Assume (3,). Toshow (1,) let pa,,,p".
Must show p<,0” 1.€. ¥x.p{x)<* p(x).

} But if pa, 1p’ then Vx.p(x)<*,,;p%(x) so Vx.p(x)<* p*(x) by (3,).

(4)=>(2,): pe,p’ <=> Vx. p(x)" p(x)

i => Vx.p(x),<*,.1p"(x) by (4)
=> VX.p,,,(x) 9%, p(x)

~ => VX.P 041919”

(2,.1)=>(3,): Assume (2,.;). To show (3,) let v<*,,,v* and ps, ,p’.

i. Then p,9,p’ from (2,.;).
So Va ipa [v/x]) = vi(p’[v'/x])

L Le. v(p,[vo/x] = v(p’[v'/x])
hence vo(o[v/x]=v(p[v,.;/x])

| = V( 8 o[Va/x])
=v/(p[v/ x).

| (1,.,)=>(4,): Assume (1,;). Toshow (4,) let va*,v* and pap’.
Then pa, ;p* so v,(p[v/x]) = v*(p[v'/x])
hence (vy);(p [Va/XD=V(p[V,../X])

L =vy(pLv/x)
sv (p[v'/x]

- QED. |

| SE



| 21

—— Lemma 11

| If {v,} is directed then [[Ve. Vv a*v'] => [Uv )<e* ve] 1

| Proof

Cases on n:

n=0; va*v* <=> v_(L[v_o/x]) € v'(p [v'/x])

so Uv(LIUv. o/x] = vi(p[v'/x).

n>0: Let pa, 1p’ then Yee. v(p[v /x]D = v(p’[v'/x]
80 (LUvadlol Uovu/x) € vi(plvi/x)
hence Lv o%, ve.

~~ QED. |

Lheorem§

” .9 and <* are directed-complete and satisfy:

. pap’ <=> vx. p(x)a*p’(x)
varve <=> VYppt. [ pap’ => vp [v/x]) vip ’[v'/x])]

L Proof

| To show <* directed-complete we have:
L

Voc.v a*v! <=> Yor.Vn. v a*v*

| <=> YnaVe. vov .=> Yn, Lv ov’ by, lemma 11

i <=> Ll vav’
Showing [[Vec.va*v? J=>[vaXU v1] is trivial.

| The difected-completeness of@ follows directly from its definition and the
directed-completeness of <* for all x.

rr

i.

> —



22

| To prove the rest of the theorem we have:

| pap’ <=> Vn.Vx. p(x)<* p*(x)

So <=> \x.Vn. p (X)9*p*( x)

| <=> vx. p(x)<"p*(x)

LL - To show verv’ =>Vp,p*.[pap’ => v(p[v/x])& v*(p’[v*/x])] assume v<*v* and pap”.
Then Vn. ve*,v/,p<p’

so V,, (p[v/x]) = v(p’[v’/x])
| hence unioning over n: v{p[v/x]) g v/{(p’[v*/x]).

To show Vp,p’. [p2p’ =>v(p[v/x]) = v(p*[v'/x])] => va*v’ ‘assume
pap’ =>v(p[v/x] ev (p’[v'/x]). | show Yn.v<*v’ by induction on n.

n=0: Lal so V(L[v/x]) = v/(L[v*/x]) so v(L[va/x]) & v(L[v/x]) & v(L[v*/x])
SO va*,v,

. n>0: By lemma 10: pap’ => pa, p* => p,9.p* =>Vm.p ap".

SO ppp”.

i Hence v{p.[v/x] = vi{p’[v'/x] so Vs(pL[va/x]) = v(p,[v/x]) = v(p’[v"/x]).
Thus v<¥, v’.

- So Vn. v<*v* and hence va*v’,

QED.

| The construction of ® and =* is very similar to the construction above. As before we
start by defining “finite” approximations to the relations viz.

Definition 4

| B.(v,X) <=> VY,p,0%. [ XY => [p="0" => v(p)=v,(p’)] ]
p="p" = {rue

. p=X 1p" <=> VYxeX. p(x)=p’(x) and &(p(x),X)

. We then prove a lemma similar to lemma 10 viz.



23

-- Lemma 12

oo ( 1.) YX.[ @pi(V,X) => &,(v,X) 1]

(2,) Vv,X. [ $,(v,X) => ®p (VX) ]

(3) Vo,0"X. [ p=%0 10’ => p="pp’ |

OT (4,) Vp,p’X [ p=*p’ => ICL |

Proof

Same as lemma 10 (mutatis mutandis).

QED.

From this it follows that if we define ® and =* by:

. &( v,X) <=> Vn. §,(v,X)

then & and =* have the desired properties.

7. Concluding Remarks

We have presented above a partial axiomatization of dynamic binding. What has been

| shown is that if v€/Env=D/ satisfies vev (i.e. is regular) and &{v,X) for some Xcid

then useful theorems follow. What is left open is just how many other axioms will

eventually be required. To answer this we need first to know which theorems we want

and to answer this we must attack “real” problems such as the correctness of compilers

and interpreters. Doing this should reveal the general theorems about dynamic binding

: that must follow from any adequate theory.



24

: The theorems proved here are not yet general enough. For example if we consider

the obvious extension of the semantics to handle funargs (see [ 1]) then the proofs

| that G[e] and &[ fn] are regular fail. in fact by replacing the occurences of "c”

in the definitions of 9,9* and < by another predicate (which needs to be defined

| recursively) it’s easy to cover this case. Unfortunately | don't at present see a

| uniform way of defining <9,9* and < to cover ail useful D.

| Having to separately prove the existence of all predicates is a big nuisance, One

step toward a general justification of -recursive predicate definitions has been

provided by Milne and Reynolds. Both give uniform accounts of how to construct

recursive predicates from their defining equations. In fact the constructions given

above are (more or less) instances of Milnes techniques. It would help a lot if

] syntactic criteria on definitions could be developed to decide if the things purported

to be defined actually exist. Milne [private communication] has made progress toward

this by anaiysing the structure of some of the expressions which occur in definitions

and showing that these legitimate instances of his general construction.

| It’s clear that many of the above proofs can’t be done in existing fomalisms (eg LCF)

| - the required predicates can’t be defined in them. One way to fix this would be
to develop extensions, another would -be to develop a translater from proofs using

| predicat es to proofs which don’t. The latter probably won't be adequate because
| theorems. may require the use of predicates in their statement at the general level
| ) (even if ail their useful instances don’t). :



| 25

8. References

[1] Gordon, MJ.C. (1973) Models of pure LISP. Experimental Programming
| : Report s:No.31. Department of Machine Int elligence, School of Artificial Intelligence,
| University of Edinburgh.

i [2] Gordon, MJ.C. (1975) Operational Reasoning and Denotational
Semantios. Presented at the International Symposium on Proving and Improving

| Programs, Arc-et-Senans, France (proceedings available from IRIA). Revised as
| Memo AIM 264, Computer Science Department, Stanford University.

| [3] Gordon, MJ.C. (1975) Towards a Semantic Theory of Dynamic
Binding. Memo AIM 265 , Computer Science Department, Stanford University,

| [4] McCarthy, J. et.al. (1969) LISP 1.6 Programmer’s Manual, MT Press.

[6]Milne, R. (1974) The formal semantics of oomputer languages and
their implementations. Oxford University Computing Laboratory,

3 Programming Research Group, Technical Monograph PRG-13 (available on
! microfiche).

[6] Reynolds, J.C. (1972) Notes on a Lattice-Theoretic Approach to
i the Theory of Computation. Systems and information Science, Syracuse

University.

[7] Reynolds, J.C. (1974) On the Relation between Direct and
] Continuation Semantios. Second colloquium on Automata, Languages, and
: Programming. Saarbrucken.

| [8] Scott, D. (1974) Data Types as Lattices. To appear as Springer Lecture
Not es.

| [9] Scott, D. and Strachey, C. (1 972) Towards a Mathematical Semantics
for Computer Languages. Proc. Symposium on Computers and Automata,
Microwave Research. Institute Symposia Series, Vol.21, Polyt echnic Instit ut e of

| Brooklyn.


