Stanford Artificial Intelligence Laboratory
Memo AIM-264

Computer Science Department
Report No. STAN-CS-75-506

OPERATIONAL REASONING
and

DENOTATIONAL SEMANTICS

by

Michael Gordon

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

August 1975

OPERATIONAL REASONING
AND
DENOTATIONAL SEMANTICS

by

Michael Gordon
Department of Computer Science,
James Clerk Maxwell Building,
The King’s Buildings,
Mayfield Road,
Edinburgh EHS93JZ.

Abstract

“Obviously true” properties of programs can be hard to prove when meanings are specified
with a denotational semantics. One cause of this is that such a semantics usually abstracts
away from the running process - thus properties which are obvious when one thinks about
this lose the basis of their obviousness in the absence of it. To enable process-based
intuitions to be used in constructing proofs one can associate with the semantics an abstract
interpreter so that reasoning about the semantics’ can be done by reasoning about
computations on the interpreter. This technique is used to prove several facts about a
semantics of pure LISP. First a denotational semantics and an abstract interpreter are
described. Then it is shown that the denotation of any LISP form is correctly computed by the
interpreter. This is used to justify an inference rule = called “LISP-induction” = which
formalises induction on the size of computations on the interpreter. Finally LISP-induction is
used to prove a number of results. In particular it is shown that the function eval is correct
relative to the semantics = i.e. that it denotes a mapping which maps forms (coded as

S-expressions) on to their correct values.

ACKNOWLEDGEMENTS

Thanks to John Allen, Rod Burstall, Friedrich von Henke, Robert Milne, Gordon Plotkin,
Bob Tennent and Chris Wadsworth for helpful discussions and correspondence. John Allen,
Dana Scott and Akinori Yonerawa suggested improvements and pointed out errors in

preliminary drafts of this report

This research was supported in part by the Advanced Research Projects Agency of the
Office of the Secretary of Defense under contract DAHC 15-73-C-0435, ARPA order no.

2494.

The views and conclusions in this document are those of the author and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of

the Advanced Research Projects Agency or the US Government.

o NTS

SECTION PAGE
Lt INEFOQUCTION ettt |
2. SYNtax Of PUIE LISP ..o 2
2.1. Meta-variable CONVENTIONS ...t 2

2.2. BNF EQUALIONS et 2

3. Denotational Semant €8 Of PUIE LISP ... ieeeieeeisesssssesssssessssss s st sss e sssssssssss 3
3.1, SEMANE 18 couuieuiereiieie ettt st 4
3.1.1. DENOLAtION DOMAINS c-verereueeeiririeieieiseseeie et s st se s b e bbb s bbbt s s bt ees 4

3.1.2. ENVIrONMENT DOMEIN oovvirieririeeiritseeeiseeiseiseies st 4

3.1.3. SEMANLIC FUNCHIONS .vvuvveerceireiieeiessseeise sttt 4

3.1.4. SeMaNtiC EQUALIONS.......rveeerieeeieesseesteesssessssesssesss bbb 4

O T (o] (= 1= OSSR 5

4. An Interpreter for PUIE LISP ... 11
L I A\ (o] (=Y OO POPRPOPOPRPRR 14

5, Correctness Of the INTEIPreter ... 15
5.1. Reasoning via the INtErpreter ... 17

6. LISP-Induct ion.....ccecvieunnns LEONI40EIIEEE sear s et e asaseEeeas e e eE e as A eEee A A S eE eSS eEeE A A eEeE e A A eE e A A eE e s e nE e s s nEeeasanane s 18
6.1. SIMPle LISP-INAUCE 10N ...t 20

7. The Correctness Of @Yal and @PPIY . wrreeurrriieersesiessessseesssssssesssssseesssssssessssss s ssssssees 23
8. CoNCIUAING REMAIKS - vuevueieieiitei bbb 29

LS T (Y =Y =) 0 Lo =IO PO PSSP 30

1. Introduction

This paper contains examples of the use of operational reasoning to prove properties of a
¬ational semantic& By “operational reasoning” is meant reasoning which exploits notions
associated with the operations involved in running programs on interpreters. “obviously true”
properties are often rather hard to prove when meanings are specified by a denctational
semantics. One cause of this is that such a semantics usually abstracts away from the
running process = thus properties which are obvious when one thinks about this lose the
basis of their obviousness in the absence of it. One way to enable process-based intuitions
to be used in constructing proofs is to associate with such a semantics an abstract
interpreter so that one can reason about the semantics by reasoning about computations on
the interpeter. In what follows this approach is used to prove several facts about a

semantics of pure LISP. Doing this involves:

(A) Describing a set of semantic equations for pure LISP
(B) Describing an interpreter (expressed as a calculus) for mechanically evaluating
LISP forms.

Having done this | then prove that the denotation of a form (as specified by the semantic
equations) is always correctly computed by the interpreter. This result is then used to
formulate a special purpose induction rule for reasoning about LISP programs. This rule -
called “LISP-induction” - is induction on the length of computations on the interpreter.
Because the interpreter is correct LISP-induction is valid for reasoning from the semantic
equations. Using LISP-induction | outline how to prove the correctness of the LISP function
eval. This involves showing that the denotation of eval (as specified by the semantic
equations) is a mapping which maps LISP forms (coded as S-expressions) on to their correct

values.

2. Svyntax of Pure LISP

The syntax of LISP described below is that of M-expressions as described in the manual [4].
| use the variant of BNF notation described in [8]

2.1. Meta-variable Conventions

A ranges over <S-expression> (as in page 9 of [4])
x,f,2 range over <identifier> (as in page 9 of [4])
e ranges over <form> (as defined below)
fn ranges over <function> (as defined below)
F ranges over <standard function> (as defined below)

| use meta-variables x,f,z to range over <identifier>; x is used in contexts where the

identifier is a form, f where it's a function and z where it could be either.

2.2. BNF Eauations

e = A | x | fn[e;...;e,] | [e)12€) 2585 €n2]
fn = F | f | A[[x5.s%.)se] | label[f;fn] | u[f;fn]
F ::= car | cdr | cons | atom | eq

(The purpose and meaning of functions of the form k[f;fn] is explained in [Note 16] below)

3, Denotational Semantics of Pure LISP

The formal definition of LISP described in this section is a “mathematical semantics” of the
type developed by Scott and Strachey [S]| have found that modelling data-types as
complete lattices [8] leads to minor technical difficulties and inelegancies [1] which disappear
if complete-posets (ie. partially ordered sets in which every directed set has a least upper
bound) are used. Consequently in what follows = and in contrast to the standard theory -
“domain” wi | | mean "complet e-poset”. The theory based on this notion of domain differs only

in obvious and trivial ways from the theory based on complete-lattices.

IfX is a set let flat(X) be the domain obtained from X by adjoining Ll to it and imposing the

ordering Lex for all x€X. Thus

x¢flat(X) <=>x=L o r x€X
XEY <=>x=L 0r x=Y

The following syntactic domains will be used later:

S=flat(<S-expression>)
1d=flat{<identifier>)
Form=flat(<form>)
Function=flat(<function>)

The semantics below should be read in conjunction with the explanatory notes that follow it.

4
3.1. Semantics
1 Den ion Domain
D=§+Funval [Note 1]
S=flat(<S-expression>)
Funval={S$*§] [Note 2]
3.1.2. Environment Domain
Env=[d=[Env=D/ [Note 3]
G:Form=[Env=S) [Note 4]
§:Function={ Env>Funval] [Note 43
4.Semantic E ion
(S1) ¢[Allo = A [Note 5]
(S2) &[x]p = pix)plS [Note 6]
(S3) GLtn[e.ie,]lp = FLinlo(CLe, Ip,..ELe,lp) [Note 7]
(S4) Gu:[ell"elzi---ienl"enz]:ﬂp = ((ﬁl[ela]P-*(flfeulep.m.(ﬁ[[em]]p-*@[[enz]]p) [Note 8]
(S5) Flcar]lp = As:S.car(s) [Note 9]
Eecdr]p = As:S.cdr(s) [Note 10]
Flcons]lp =)s,,8,:5.cons(s,,s,) [Note 11)
Sl atom]p = As:S.atom(s) [Note 12]
Fleqllp = As,,8,:5.eq(s;,s,) [Note 13]
66) Fltlp = o(fp|Funval [Note 14]
(57) 8[[)[[)(1;...)(,,];8]]:“ = lﬁ w"lsr\:s'(ﬁ [[6]]P [8| /X l]‘"[sn/xn] [NOte 15]
(S8) FLiabel[f;tn]]p = F[tnTp[F[tn]/ [note 16]
(S9) %ﬂ:u[f;fn]]]p = Y()\v:/Env—’Funval/.)\p':Env.i}ﬂ:fn]]p'[v/f])p

[Note 16]

3.2. Notes

Note 1

+" is the separated sum [6] If D;,D, are domains then:
D,+D, = {(1,d,)|d;€D;} U {(2,d;)]|d,¢D2} U {1}

which is made into a domain by imposing the ordering:
Le(n,d)

{n,d)=(n’,d’) <=> n=n* and d=d’

If deD, let (d; inD) mean (i,d)-i.e. the natural injection of d, into D,+D,

If d(D]’Dz let

dlD. = di y if d=(i,d,);
=1 , otherwise.

d|D; is the natural projection of d on to D;

Note 2

If L is a domain then:
L¥={(X| yo.;Xm) |M20 and x€L} U (1}
L* is made into a domain by imposing the ordering:

J-E(X | ,...,Xn)
(XX WEY gy) <=>N-m and Vi, XEY;

LA e .

R AR o

Note 3

The purpose of environments in the semantics is like the purpose of alists in interpreters.
Thus environments are used to hold the bindings of variables to their values. In LISP when a
function is bound to a name on the alist the values of the function’s free variables are not
determined. These values depend on the environment in which the function is activated and
this is unknown at definition time. To model this the objects which get bound to names on
environments are mappings defined on environments. These objects thus have type [Env=D)
and so Env has to have the circular type Id={Env=D] . This kind of environment also
handles the binding of form variables to S-expressions = the binding of A to xin p is
represented by arranging that p(x)p‘=A for all p*€¢Env. Bob Tennent has suggested [private
communication] that this somewhat unnatural representation of form variable bindings could

be avoided by letting Env have type given by Env=Id=>{S+{Env=>Funuval]).

The domain equation Env=Id=>{Env=>D] may have many solutions. These solutions can be

ordered by regarding them as retracts (and hence members) of a universal space. Then the

Env intended here is that represented by the retract Y{(Ae./d—~/e=D})- see [1]or[8] for

further explanation. This minimality is needed in the proof of the Main Theorem (see below).
Note 4

Relative to an environment p€Env the semantic functions G¢,& map forms e, and functions fn,
onto their denotations G[e]lp¢cS, F[fnllp€Funval respectively. The semantic equations
consist of a recursive, syntax-directed definition of & and & G[[L =L and SF[L]=L. The
“emphatic” brackets [[,]] are a device due to Scott to increase the legibility of complex

expressions - [[:ﬂ always enclose pieces of LISP code.

Note B
S-expressions denote themselves in all environments.

Note 6

"p(x)p|S" means the projection into S of p(x)p€D=S+Funval. Since S-expressions are
constant (i.e. their meaning is environment independent) they get represented by constant
functions in [Env=S/ (see [note 3]). Thus for any p*€Env"p(x)p*" would do just as well as
the right hand side of (S2). However when fis a function name "p(f)p" is needed (see (S6)
and [note 3]) and so it seems more elegant to have (S2) as it is so that it resembles (SB).As
mentioned in [note 3] this arbitrariness is eliminated if the type of Env is changed to satisfy

Env=Id=[S+[Env>Funval}).

Note 7

If S 1peersSn€S then (S;,e8)€S* and for f€/S*28/ f(s},.y5) means H((s},...,8,))
Note 8

(8, |8 2980 *8n2) = if 8;;=L or (8;;#T and 8,;#F) then L else if 8;;=T then s, else
if 8p;=L or (85,¥T and 8;#F) then L else if 85;=T then 8,, else

if g, =L Or (8,,#T and 8,;#F) then L else if 8, =T then s,; else L

Note ©

See [note 15] for explanation of A.

car:S—S is defined by: car(s) = A, , if s=(A.Ax);
= 1 , otherwise (i.e. if s=.1 or s is atomic),

e

NorelO

See [note 18] for explanation of A.
cdr:S-S is defined by: cdr(s) = A, | if s=(A.A);
=1 , otherwise (i.e. if s=L or s is .atomic).

Note 11

See [note 15] for explanation of A.

cons:SxSOS=is tRfivgdd by: __f 8;#L a n d s.#L;
= L | otherwise,

Note 12

See [note 15] for explanation of A.

atom:S-S is defined by: atom(s) = T, if s is atomic;
=F ,if 8 is of the form (s,.85);

= 1 , otherwise (i.e. if s=1).

Note 13

See [note 153 for explantion of A.

eq:SxS—S is defined by: eq(s,,8,) =T, if 8; and 8, are atomic and §;=8y;
=F, if 8; and s, are atomic and $;#s,;
=L , otherwise.

Note 14

p(f)p|Funval is the projection into Fund of p(f)p¢D=S+Funval. Forming p(f) modeis

looking up f on the alist, applying p(f) to # to get A(f)® models looking up the free variables

in the act ivat ion environment.

R T T R T S —

Note 18

Suppose E(s,,..8,) is an expression which takes values in the domain D, whens,,..,s,range
over domain D, then ASy..,8q:D ;. JE(s),...,8,) denotes the function f:D,¥-D, defined by
f(s) = E($},-8n) , if 8=(8,...8,) where m2n and Vi, s#1;
= L . otherwise.

Thus A8y,..,8n:D;-B(8},..,8,) is a function which always returns L when one of its arguments

is L {this is to model call-by-value) and which can take any number of arguments 2n (this is

a property of LISP functions).

| shall use A$jy..y8n:D;B(s},..,8,) (i.e. with A instead of A) in the usual way to mean the
function f:D,"=D, defined by

(85008 = (8,048

If p¢Env, v€¢/Env=>D/ and z¢ld then

plv/z]=Az":ld. If z=L or 2’=L then L else if Z=2’ then v else p(2*)

In (§7) [I've wused the “coercion conventions” that if 8¢S then p[sf/z] means
p[(Ap*:Env.sinD))/z]. Thus, as discussed in [Note ‘3], for the purposes of binding to

variables in environments S-expressions are represented as constant functions.

T

10

Note 16

There are two natural ways to analyse recursion. One of them is to mimic in the semantic
equations what the LISP eval function does - viz bind the function to it’s own name on the
alist. The other way is to take the denotation of a recursively defined function to be the
(minimal) solution of the equation which defines it. Both these approaches have something to
be said for them and fortunately they turn out to be equivalent in practice (what “in
practice” means will be elaborated later -it’s also discussed abstractly in [3]). To simplify
the investigation of this equivalence two kinds of recursive functions, label[f;fn] and u[f;fn],

are included in the syntax of LISP. label[f;fn] is given an analysis which mimics the eval

function whilst u[f;fn] receives a minimal-fixed-point treatment.

In both (S8) and (S9) I've used the “coercion convention” that if v€/Env=>Funval] then

p[v/f] is to mean p[(Ap*:Env.(v(p’) inD))/f].

In (S9) Y:/[Env= Funval)=[Env>Funval]]/ Env>Funval) is the usual minimal-fixed-point
operator AF.U,,F"(.L). Note that the fixed point extraction is done “before” the free variables

are looked up (i.e. the result of applying Y is applied to p, rather than Y being applied to
something which has already been applied to p). This is necessary to correctly model dynamic

binding (fluid variables).

Note also that from the fixed point property of Y we have:

SLultstn]le = SLinpIFLulfitn] 1/D

The right hand side of this differs subtly from that of (S8).

11

4, An Interpreter for Pure LISP

The interpreter described below is designed so that reasoning about computations on it is
convenient. Its purpose is to aid in the formulation of a special purpose induction rule for

LISP (“LISP-induction”). It is formalised as a calculus consisting of rules for simplifying terms

of the form {e| a> where e is a LISP form and a an alist. The rules of this calculus are

intended to correspond to the obvious simplifications that one would perform on expressions
of the form (ﬁ[[e]]p. An example of such a simplification is:

G A[[xLilatomx]+x;T=cdr[x17]((1 2)]](L)
=G [[atom[x]=x;T-cdr[x]]](LL(1 2)/x])
=@ [edr[x]I(L[(1 2)/x])
=§9.2l;:cdr[(1 2)JI4[(12)/x]

Let the meta-variables p,a range over the strings defined by:

p:=A| <e | a>
a::=NIL | a[A/2] | a[fn/z]

p will be said to range over <term> and a over <alist>. Define B[[pJleS and A[aJcEnw by

BLAT=A
Blce |a]=GLel(ulal

aNIL]=1
u[a[A/z]]=u[all[A/2]
u[a[fn/z]]=u[al[F[tn]/z]

In the last two equations |*veé used the “coercion conventions” described in [note 15] and

[note 16] above.

The following definition describes a binary relation —® defined on terms, p—)p’ means that

p simplifies to p’. If one likes one can think of the p’s as states of a machine then “p—bp*"

means “in state p move to state p’’, final states are p’s of the form A.

12

| shall immediately follow the definition of = with an explanation of the notation it jg

written in; then | will give some notes which should be read in conjunction with the definition,

Definition 1 (Definition of —b and %)

-%b is the reflexive, transitive closure of —b.

(P1) <A | a>—DA
(P2) a(x)=A

(P3) .E(Ah-"tAn)=A
CF[A;wiAd 1 2> —DA
(P4) [Vi.<e;|a>-2pA]and [Ji. o#A]

< n[€ ;...;0,,] I a> =X fh[A I i"-iAn] |8

(P5) <e,; | a>=pT and [Vi<m. e, | a) =HF]

<A[[xﬁ"'3xmlie][Ali'";An] | &> —<e I a[AI/xI]m[Am/xm] >
(P8) <(label[fifn][A;..;A,] | @ —p{fn[A;..;A,] | a[fn/f] >
(P9) Cu[fifn][AiA] | > —p<{fn[A};.5A]| a[u[fifn]/f] >

(P10) [n=1]or[1<n and p;,—>Poy-sPpr.i =P Pul

[note 17]

[note 18]

[note 19]

[note 20]

[note 21]

i3
Each clause P1-P10is a schema and the meta-variables in them range over their previously

defined sets (e.g. A ranges over <S-expressions).

A schema of the form p—pp’ (i.e.P1, P8 or P9) means that any instance of it is a pair for

which —$ holds.

A schema of the form:

conditions

(i.e. P2-P7,P1 0) means that any instance of it which satisfies the conditions is a pair for

which —» holds.

An example computation, which corresponds to the simplifications described above, is:

{A[[xL[atom[x]=x;T=cdr[x]]1][(1 2)] I NIL)
—b< [atom[x]>x;T=-cdr[x]]INIL[(1 2)/x] > (by P7)

—bdcedr[x] I NIL[(12)/x] > (by P5)
—><cdr[(12)] I NIL[(12)/x] > by P4)
—>(2) (by P3)

Notice that this computation can be mechanically and deterministically generated from its

initial term = the definition of — makes explicit the intuitions which were previously used

in simplifying & [A[[xJi{atom[x]+x;T=cdr[x]11[(1 2)1](L) above,

14

4.1. Notes

Note 17

a(x) is defined by structural induction on a as follows:
NIL(x) =4

(a[A/z])(x) = if x=2 then A else a(x)
(a[fn/2])(x) = if x=z then fn else a(x)

Thus a(x)€{L} U <S-expression> U <function>. The reason P2 rather than "{x | 8 —p a(x)"

is used is that with the latter if a(x)=L or a(x)=fn then {x|a) —bL or {x|a> —bfn and

neither L nor fn are terms.

Note 18

F ranges over car,cdr,cons,at om,eq. "(F[A;..;A,] | a) —DE(A;,..,A)" won't do because it

would vyield e.g. {cons[NiL]|a> —pL - and L isn’t a term.
Note 19

The reason for the condition "[di. e#A]" in P4 is to exclude unending computatiens of the
form:

{In[A ;AL | @> =D {In[A A] la> —D . ..
and also to make =P deterministic (i.e p=—Hp’ and p—Pp*’ => p’=p’*). Thus | exclude the
nondeterminism:

(label[fifn][A ;A | & = fa[A;.iA] 1a[fn/f] >
{label[f;tn][A ;...;A,] | a> —blabel[f;fn][A.;A,] | 8 >

SRR R T .

15

Note 20

a(fy is defined as in [note 17] (with x replaced by f in the definition of a(x)).

"CHA AL L as> —D<alf)[A ;. ;A] | @)” will not do for P6 because of the possibility that

a(f)=L or a(f)=A (c.f. [note 17]).

Note 21

It follows from P10 that Vp. p%bp (take n=1in P10) and p-%pp‘andp’—Ephp* =>p-2pp

5. Correctness of the Interpreter

The following result shows that — fulfils its design requirements i.e. that {e|a) simplifies

down to A if and only if Glel(u[a])=A

Theorem 1 (Main Theorem)

p-=pA <=> PB[p]=A

Proof outline

The theorem splits into two parts, viz:

(a) p=pA=>B[p]=A
(b) Bp=A => p-2pA

(a) is essentially trivial = one just checks that rules (P1)-(P10) preserve the denotation of

terms. | discuss how to organize this argument in section 6.1. below.

16
(b) is less straightforward and | shall only indicate the main idea of the proof. This idea is
due to Robert Milne [private communication] and considerably shortens the original proof

given in [1]. Similar ideas have been developed independently by Reynolds[7].
The main idea is to construct predicates FPmPpfncton onqg ¥Peist gefined on

[Env=S) x<torm>, [Env=>Funval] x<function> and Enux<alist> respectively such that;

(1) Py, 0) <=>Yp,a.[P**(p,a)=> VA [V(p)=A=>(e|a)=pA T 1

(2) Proction(y fn) <=>Vp,a. [*(p,a) => [v(p) is strict] and YA,A},., A,
[V(p)A A=A => (fn[A i 5A]| a> 2HAT]

(3) ®*p,8) <=> Yz,A. [if a(z)=A then B"™(p(2)|/Env=S/,A) and
if a(z)=fn then P¥"*(p(2)|/ Env=>Funval),fn)]

In (3) above "p(2)|//Env>S]" an d "p(2)|/Env>Funval]" are abbreviations for

"Ap*:Enuv{p(2)p’|S)" and "Ap":Env.p(z)p’|Funval)" respectively.

From (1)-(3) it is straightforward to show by structural induction that:

(4) Yec<torm> PG [e],e)
(5) Vfne<function>. reion(E [tn]l fn)

(6) Yac<alist>. iU [a],a)

and then by taking v=G[e] and p=%[[a]] we have by (1),(6) and modus ponens that:

GlelkuLal)=A => <e | a>=pA

as desired.

17
The only non trivial part ot this proof is showing that there exist relations ¥Rform
iR function yalist gatisfying (1)=(3). Lack of monotonicity prohibits the simple use of Y to do
this. General techniques for solving recursive predicate equations (such as (1)-(3) above)
have been developed by Robert Milne (and also by Reynolds). The reader is referred to [5]

and [73 for further details.

CGQED”
B5.1. Reasoning via the Interpreter

{*ll start by illustrating the use of the Main Theorem on a totally trivial example - determining
Sabel[f;f]](L) - less trivial examples are theorems 2, 3, 4, 5 below. Intuitively

S [[1abel[f;f]](L)=1 as label[f;f] terminates on no arguments - to rigorise this observe that

by P8 we have for arbitrary Aj,...,A,
{label[f;£1[A jisA]| NIL> =D f[A 5.5A,] I NILLE/] >
and (by P6) if p=f[A;...;A,] |NIL[f/f]D then the evaluation of p just leads to the unending
computation:
p—Hp—dp—bh...
so by the Main Theorem there’s no A such that (5[[label[f;f][A,;...;A,,]]](.L)=A. and so:
VA, B G [abel[f1LA ;5.5A, 1T INIL) =8 [1abel[1 T(LIA . A) =L
hence & [label[f;f]J(L)=L
To prove the intuitively obvious fact that 3‘ﬂ:Iabel[f;f]:ﬂ(J.)=.L without using the Main

Theorem one needs to exploit the minimality of Env. The Main Theorem packages-up this

minimality in an easy to use form.

18

. LISP-Induction

LISP-induction is an attempt to formalize certain kinds of intuitive arguments about LISP

programs. A very simple example of such an argument is the reasoning used at the end of
the last section to prove that &[[label[f;f]1](¥[al)=L. A less trivial example is the “proof’

that
Va,f,tn. S[label[;tn] I U [al)=F[ulf;n] I®[a])

which is based on the intuition that for all A,,..,A, if one starts “evaluating” both sides of the
equation
F1abel[f;n] I La (A A =S Lulfitn] X Lal)A ,.0AL)

then either both “evaluations” will stop with the same value or both will go on for gver.

To convert this argument into reliable proof one needs a formal notion of evaluation (which
has the property that unending evaluations only arise from terms which denote .1). The
definition of ——p is designed to provide such a notion and the Main Theorem shows that it

has the desired property.

Using —P one can give a more rigorous version of the above “proof” by showing that to any
computation of the form
(label[f;fn][A;..;An] | &> =D P =D P2—D .. =D P —DA
there corresponds one of the form
<ulfitn][AjiiAnd | 2> —Dp) =P’ —D...—Hp,"—DA
and vice versa, where (roughly!) pi’ is got from P; by replacing some occurrences of label by

4 and replacing some alist bindings of the form [fn/f] by [u[f;fn]/fn].

19
The LISP-induction rule to be described provides a reasonably clean way of rigorously
organising such arguments. In order to state it let p’@p mean intuitively "p’ has to be

evaluated in the course of evaluating p ". More precisely let & be the transitive closure of

< where;

p'cp <=> either (1) p—dp’

or (2) p=(fn[e;;..;e,] | a> and p’=e;| a> for some i.

or (3) p=X[e; 1€, zi-i€n>8p] | @) andp*e{ e | @)y Oy | @ }
where (eyl a> =T and Yi<m.<e;;| a> -2HF

Thus p*cp <=> AP ,,yPp P'=P; CP2<...CPp=P (n>1)

LISP-induction is structural (or Noetherian) induction with respect ot the ordering &« applied
to expressions of the form "p-%2pA=>R(p,A)" where B(p,A) is some sentence involving p

and a. Thus the rule is:

Vp. [[¥Yp ap. [p"2pA’ => R(p*,A)]] => [P2DA=>R(p,A)]]

Vp. [p=HA => R(p,A)]

By considering the various ways in which we can have p’¢Cep the above rule can be

instantiated to:

20

6.1,8imple LISP-Induction

TO INFER: Vp.p-2£bA => R(p,A)

PROVE:

(1) R(AA)

(2) RCA | a,A)

(3) a(x)=A => R{(x | a),A)

(4) E(A;.5A0) => R(CFIA3A,] | 8),A)

(5) R{<Ce; | ADA), RIn[A;5A,] | @,A) => R{{fn[e;;...;e,] |a>,A)

(6) Vicm.RR(<e; | 8)/F), Ri<en | 8,T), Rienz | a,A) => R[e)5e5..5e,7€,,] |D,A)
(7) R el a[A/x;]..[A/x] >\A) => RA[[X5..%.Jie][A..5A,] T a>,A)

(8) R(In[A j5...A,] | a[fn/f] D,A) => R(label[f;fn][A;...;A,] | a>,A)

(9) R fn[A;...A\] | a[u[fitn]/f] >,A) => R(Cu[f;n][A};..5A,] | 8>,A)

The above instance is somewhat less general than full LISP-induction and so it’s called simple
LISP-induction. Simple LISP-induction, however, is powerful enough to be used to to prove a

number of interesting facts, for example here’s the easy half of the Main Theorem:

Theorem 2

p-2pA => B[p]-=A

Proof

Take ¥R to be such that ®(p,A) <=>B[p]l=A, then the result follows from a trivial

application of simple LISP-induction.

QED.

21

Theorem 3

SLultitnlT(w [a]) =8 [Iabel[f;fn]] [a])

Proof

For the induction to go through one needs to prove a stronger result. If w, w’ are forms or
functions let w~w” if and .only if W’ can be got from wby changing zero or more occurrences

of u to label and zero more occurrences of label to u.
If a,a’ are alists define a~a’ <=> for all z:

(1) a(z)=A <=> a’(z)=A (A¢<S-expression>)
) if a(z)=fn then [a’(2)=fn* or a’(2)=u[f;fn’]] where fn~fn*

(3) if a*(2)=fn" then [a(z)=fn or a(z)=u[f;fn]] where fn~fn".
If p,p’ are terms then p~p’ <=>[p=A=p’ or p=<e| a) , p'=<e’|a"> where e~e’,a~a’].

Now one can use simple LISP-induction to verify that p-2pA => $R(p,A) where.

R(p,A) <=>[Vp’. p-p’ =>p'2HA]

The result follows.
QED.

The previous theorem can’t be generalised to:
Vo,ftn. FLulftn]]o=8[label[f;tn]]p
A counterexample is got by taking fn=g,p=Y()\p".J.[>\p'.p'(f)p“/g]['n}[[car]]/f]). Itis then

straightforward to show (see [1] or [3]) that

¥Lultig]Tp=L#T [car J=8[Iabellf;g]To

22
Thus it's not the case that &[u[f;fn]]=8[label[f;n]]]. A detailed and LISP-independent

discussion is given in [3].

Because variables are fluid in LISP it isn’t true that if p,@’ agree on the free variables of fn

then SLtnlp=%Ltn]p’ (e.g. consider fn=f, p=91[[NIL[g/f]'[car/g]]] ,
p'=U[[NIL[g/f][cdr/g]]). The following definition gives sufficient conditions on a set

Zc<ldentifier> so that if a,a* agree on Z then 5}[[fn](?fﬂa]])%‘ﬂ}n]](ﬂ[[a']),

Definition 2

If Ze<ldentifier> and p,p’ are terms then define p=;p’ <=>
either p=p'=A

or p=<ela>, p’=(ela” and (1),(2) and (3) where;
(1) Z contains all the free variables in e
(a variable is free if it isn’t bound by A, or label)
(2) VzeZ. a(2)=a'(2)
(3) Yz€Z. z contains all the free variable in a(2)

Theorem 4

p=p’ => [p-thA <=> p'2HA]

Proof

Use simple LISP-induction to show that p-2pA => R(p,A) where:
R(p,A) <=> V¥p’. [[3Z. p=zp'] => p*2HA]

The result then follows from the symetry of =,

QED

23

Corollary

Let fne<function>, a, a’€<alist> then if there is a Zc<identifier> such that:
(1) Z contains the free variables of fn
(2) Yz€Z. z cornt ains the free variables of a(2)

(3) Yz¢Z. a(z)=a’(2)
Then S[tn (¥ [al)=F[tnT(uLa*])

Proof

By previous theorem {fn[A;.;A]| a> *pA <=>{fn[A;.;A,] |a®> +A hence result by

Main Theorem,
QED.

Results similar to Theorem 4 and its corollary are proved in @ more general setting in [3].

7. The correctness of eval and apply

The properties of eval and apply which constitute their correctness are:

¢[evalle¥a*] (p,,0=CLe (% [al)
VA jpsB e G[apply[fn*(A,...A);a*1 10, =S [tn (¥ [a])(A,,... A,)

where e¥,a* are S-expression representations of @ and a and p, is an environment binding
the names of the various functions used in the definitions of eval and apply to their values

(see below)

24

The proof to be outlined is not an instance of simple LISP-induction but is a general

Noetherian induction with respect to the ordering <. The full details are very long and
boring {see [1]) and are not given here - hope that | describe enough so that it would be

quicker for the reader to generate the proof himself than to read through it.

In fact the above properties are not true for if e=x (so e*=X) and a=NIL[fn/x] (so
a*=((X.fn¥))) then

¢[eval[e*;a*1](p) =tn*#L=G[x J(¥[a])
However if we adhere to the constraint (violated above) that an identifier can't be used both

as a form variable and a function name in the same program then the property holds.

To enable us to say this precisely we make the following definition:

Definition 3

{e| a> is “nice” if the intersection of the sets FORMVARS, FUNVARS are empty, where;

FORMVARS={z|z is a form variable in e or a{z)¢<form>}
FUNVARS={z|z is a function name in @ or a(z)€<function>}

The next definition extends the translation of M-expressions into S-expressions which is
given in the Manual [4] to include alists. This is necessary for the statement of the

correctness of eval and apply - viz. Theorem 5 below.

25

Definition 4 (definition of e*,fn*, a*)

The S-expression representation e*, fn¥, a* of e, fn, a are defined by structural induction as

follows:

e¥:
A* =(QUQOTE A)
x¥ =X
fn[e;;...;e,J* =(fn* o,*..0,%)
[e; 2@ 2i.i@,2@,,]*=(COND (e, |* 8;;%)..(6,* €,,%)

fn*:
car'=CAR
cdr*=CDR
cons*=CONS
at om¥*=ATOM
eq*=EQ

ALDX 5%, e T*=(LAMBDA (x,*..x,¥) e¥)
label[f;fn]*=(LABEL f* fn*)

%

NIL*=NIL
a[A/z]*=((z*.A).a%)
a[fn/z]*=((z*.tn¥).a%)

ainpy Which is specified in the next definition, is an alist containing the definitions of the
functions which make up a basic LISP interpreter - namely those functions needed in defining

eval and apply. The environment denoted by &y iS Pint

3 Definition 8 (Specification Of @i Pint)

Pint=Y [[aint]]

where:

Qint= Nu—[fnesso:/assoc][fnpaivlis/pairlis][fnequallequal]
[fnnull/nu”][fncadar/cadar][fncaddr/caddr][fncadr/cadr]
[fncdar/Cdar][fncaar/caar][fnovlis/ev“s][fnnvcon/evcon]
[fnavallevalJ[fnepply/appl)']

where fn,,me is the definition of name given in the manual [4].

for example:

=A[[fmxial;
[atom[fn]~[eq[fn;CAR]~>caar[x];
eq[f ;COR]-cdar[x];
eq[fn;CONS]~cons[car[x];cadr[x]];
eq[fn;ATOM]~atom[car[x]];
eq[fn;EQ]~eq[car[xJ;cadr[x]];
- T ~apply[eval[fn;a]ix;a]];
eq[car[fn;,LAMBDA]~eval[caddr[fn];pairlis[cadr[fn];x;a]]);
eq[car[fn];LABEL]—»apply[caddr[fn];x;cons[cons[cadr[fn];caddr[fn]];a]]]]

fnepplv

fnoval___k[[e;a];
[atom[e]-cdr[assoc[e;a]];
atom[car[e]]-[eq[car[e];QUOTE]>cadr[e];
eq[car[e;COND]~»evcon[cdr[e];a];
T ~apply[car[e];evlis[cdr[e];a);a]];
T - apply[car[e];evlis[cdr[e];a)ia]]]

feveon=r [[cia);
[eval[caar[c];a]~eval[cadar[c];a];
T -evcon[cdr[c];al]]

fnovlis=A[[m;a];
[null[m]-=NIL;
T -cons[eval[car[m];a];evlis[cdr[m];a]]]]

26

Theoremb (correctness of eval, apply)

If {e | a> and < fn[A;...;A\]| a> are nice then:

G[evalle*a*] 1o =CLe (U [a])
GLapply[fn*(A,...A)a*11(p) =S [in (U [aINA,,....A)

Proof
The theorem follows from lemma 1 and lemma 2 below.
QED.

Lemma 1

a[A isA] 18 2b A => G[apply[fn¥i(A;...A)ia*1](p 0 =A
<e | >-2pA => GLevalle*a*1](p;)=A

Proof

The lemma can be put into the form p-&pA=>R(p,A) by defining

R(p,A) <=> i f p=(fn[A;;..;A| | a> 2D A then G[[apply[fn¥i(A,...A);a*11(p,.) =A
and it p=Ce|a) 2pA then G[evalle*;a*]](p,)=A

A straight forward (but tedious) LISP-induction then yields the lemma.

QED.

27

Lemma 2 below is a kind of generalised converse of lemma 1. The extra generality consists

in proving the result for certain alists of the form au[w;/2,]..[w,/2,] instead of just for a

This extra generality is needed to enable the induction to go through.

int*

28

The alists in question are those of the form a,.a’ where a’ is “safe” - here "a,.a’"is

defined by structural induction by:

ain-NiL=a;y
ain-(a[A/2])=(a,8)[A/2]
an-(a[fn /2])=(a,y.a)[fn/z]

Also an alist a is called “safe” if when

Z={assoc,pairlis,equal,null,cadar,caddr,cadr,cdar,caar,evlis,evcon,eval,apply}

then: Vz¢Z. a(z)=.l.

These definitions imply that if Z is as above then for any safe a: a;,=;(a,.a). This fact needs

to be used in the proof of lemma 2 below.
Lemma 2

If <fn[A;...;A,] | & and (e | a) are nice and a’ is safe then:

< apply[fn¥i(A, ..A)a] | apa?> DA => F[tn(W[al)(A,,...,A)=A
<eval[e¥a*] | a8 =HA => GLel(u[alh=A

Proof

The lemma can be put in the form:

pEHpA => R(va)
by defining

BR(p,A) <=> it p=Capply[fn*;(A,..A);a*] | a,.a"> 2DA (where @’ is safe)
then SLtnl®[al)A,,..A)=A
and if p=eval[e*;a*]|a,.a"> 2PA (where a* is safe)
then G[e (¥ [a])=A

This can then be proved by a straight forward (but extremely tedious) LISP-induct ion.

QED.

29

8. Concludin

Although these proofs formalize intuitive arguments their size, when all details are filled in, is
excessive. As these details are fairly mechanical and don’t require creative acts for their
generation a proof production system (such as FOL at Stanford or the new LCF at Edinburgh)
should be able to help us cope with them. Another possibility is that abstract “high level”
notions can be developed which encapsulate some of the facts (proved here for LISP) in a
language independent form. A start at this has been attempted in [38] Abstract notions help
in the handling of arge masses of detail by assisting in the isolation of those things which are
| anguage specific from those which are more universal. When the proofs of language
independent facts are factored out from the proofs of the theorems described above the
latter are made shorter and more direct (see [3]). The formulation of such high level,
language independent notions should also assist in the design of proof construction systems -
research into proof generation needs to proceed hand in hand with research into the

structure of the proofs whose generation is desired.

30

8. References

[1] Gordon, MJ.C. (1973) Models of pure LISP. Experiment al Programming
Report s:No.31. Department of Machine Intelligence, School of Artificial Intelligence,
University of Edinburgh.

[2) Gordon, M.J.C. (1975) Operational Reasoning and Denotational
Semantiocs. Presented at the International Symposium on Proving and Improving
Programs, Arc-et-Senans, France (proceedings available from IRIA). Revised as Memo
AIM 264, Computer Science Department, Stanford University.

[3] Gordon, MJ.C. (1975) Towards a Semantic Theory of Dynamiec Binding.
Memo AIM 265 , Computer Science Department, Stanford University.

[4] McCarthy, J. et.al. (1969) LISP 1.5 Programmer’s Manual. MIT Press.

[5] Milne, R. (1974) The formal semantics of computer languages and
their implementations. Oxford University Computing Laboratory, Programming
Research Group, Technical Monograph PRG- 13 (available on microfiche),

[6] Reynolds, J.C. (1972) Notes on a Lattice-Theoretic Approach to the
Theory of Computation. Systems and Information Science, Syracuse University.

[7] Reynolds, J.C. (1974) On the Relation between Direot and Continuation
Semantics. Second colloquium on Automata, Languages, and Programming.
Saarbrucken.

[8] Scott, D. (1974) Data Types as Lattices. Toappear as Springer Lecture Notes.

[9] Scott, D. and Strachey, C.(1972) Towards a Mathematical Semantics for

Computer Languages. Proc. Symposium on Computers and Automata, Microwave
Research Inst it ut e Symposia Series, Vol.21,Polyt echnicinstitut e of Brooklyn.

