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: Some Linear Programming Aspects of Combinatorics

| V. Chvdtal

Abstract

This 1s the text of a lecture given at the Conference on Algebraic

Aspects of Combinatorics at the University of Toronto in January 1975.

The lecture was expository, gimed at an audience with no previous
knowledge of linear programming.

1. Introduction: Two Examples

In 1928, Sperner [33] answered the following question Let F be
a family of distinct subsets of {1,2,...,n} such that

| S;TeF = SET ; (1.1)
how large can |F| pe? Sperner proved that

Fl < n

. 7] < (Loos) (1.2)
. (To see that this 1s the best possible result, consider all the subsets

s of {1,2,...,n} with IS| = Ln/2] ®@ ) In 1966, Iubell[28] gave a
very elegant proof of this result; slightly recast, Lubell's argument

goes as follows. Tet us denote by A the family of all 2% subsets

of {1,2,...,n} ; let us call a family Ff feasible if it satisfies

(1.1). With each familyF = feasible or not, associate the vector

(5: Sed) defined by

1 if Sef ,

0 if SEF .

Thus obviously

[Fl = 2 x ° 1.Sea © (1.3)

A family of sets SUSPLIPIN bt | with

gp =T,cT, C.-C T = {L,2,...,n]



will be called a chain. (Clearly, there are n! distinct chains, each

SeA is included in |8|t(n - S|)! of them. Furthermore, F is
feasible if and only 1if

| 2 X, <1 for every chain C . (1.4)
SEC

The sum of all these n! inequalities (1.4) reads

2 |s|t(n- [s]) xq < n!
Sel

or, equivalently,

2 = Xo < 1 .
Sel ( 3 )

Since every Xq 1s nonnegative and every o < ( y ) , we haveIs] J = \Ln/2}
1

2 trx <r ,E_,
sea © Tosea [0% ) 5

Ln/2] IS]

| Thus (1.4) implies

2x, < 9
| s = \ Ln/2] )

| which, by virtue of (1.3), is the desired result.

Our second example goes back to the thirties when Erdos, Ko, and

| Rado [15] answered the following question. Let F be a family of

| k—-element subsets of {1,2,...,n} such that

| S;TeF = SNT # ¢ ; (1.5)

: how large can |7| be? Erdos, Ko and Rado proved that (in. the

nontrivial case n > 2k)

| n-1

os (31)
| (To see that this is the best possible result, consider all the

= k—element subsets S of {1,2,...,n} with 1leS .) In 1972, Katona

| [25] gave a very elegant proof of this result; slightly recast,

Katona's argument goes as follows. Let us denote by A the family
n

| of all (x) subsets of {1,2,...,n) having k elements; let us

y



- call a family F feasible if it satisfies (1.5). For simplicity,

| let us assume (unlike Katona) that k divides n and let us set

m= n/k . A family ofpairwise disjoint sets T)5Tpr wees €A will
| be called a partition. (Clearly, there are exactly

(3)( ( 7) (x) ntk k k so \ kJ oa
| (xt)™

ordered partitions; every ges is included in

m (nk)
(x1)"

of them. Furthermore, F is feasible if and only if

2 Xo < 1 for every partition P .
oeP

The sum of all these inequalities reads

Tk) |

m — 2 xq < ne
(k!) S EA (kt)™

or, equivalently,

mos n(x)- (5)g ~~ =
SecA m\ k CU k-1

| which 1s the desired result.
In each of our two examples, the proof came out rather effort-

lessly. Was it just plain luck, one may wonder, or are we actually
t

onto something? The answer to this ill-posed question is ambiguous.

| We were lucky indeed: proofs like that are not to be found for every
~ combinatorial theorem. at the same time, however, we are onto

something. We are onto the duality theorem of linear programming.
.

| 2. The Duality Theorem of Linear Programming
In each of the two introductory examples, we have argued that a

~ertain set of linear inequalities (corresponding to the assumptions

~f our theorem) implies another linear inequality (corresponding to

the desired conclusion). 1p general, we shall say that a set
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3 n

= 2, a,x .<b
| j=1 133° Hd lsigm (2.2)

| of linear inequalities implies an inequality

| n

| 2 ex, < d
| j=1 JY (2.2)

if, and only if,

(1) there is at least one solution of (2.1) and

(11) every solution of (2.1) satisfies (2.2).

When 1230s ceo are nonnegative reals, we call the inequality

n m m

2) ( 2 Via.. JX. < 2. v.Db.

a linear combination of (2.1) with multipliers

Furthermore, an inequality Y12 prc ea¥y
n

2 a.x. <b
i J=1 J J

1s called a combination * *

1 | = of le. l) 1f, for some b with b <b ,the inequality Z a2 <b is a linear combination of (2.1).
Clearly, 1f (2.1) has at least one solution then 1t implies each

| of 1ts combinations.

I THE DUALITY THEOREM (first version). If (2.1) implies (2.2) then
(2.2) 1s a combination of (2.X).

y Customarily, the duality theorem 1s stated in a slightly different

form. This form arises in the study of linear programming problems

(or LP problems for short) such as -

oo n

maximize 2, c¢ x, subject to the constraints
21 9 JJ=

n

Zags <b (1 <i <m) | (2.3)J=

xs > 0 (L< Jj <n) y



J With (2.3) one associates another LP problem, called the dual of
| (2.3):

m

minimize 2, LLY, subject to the constraints
i=1 tt

m

24 a, > C (1 < 1 (2.4)I Ei =

A solution to the constraints in (2.3), resp. (2.4), is called a

feasible solution of (2.3), resp. (2.4). A feasible solution which

maximizes cc 555 y resp. minimizes 2,b,y, , is called an optimal
feasible solution of (2.3), resp. (2.4). Note that for every feasible

. * *¥ *

solution X15X5s0 esx Of (2.3) and for every feasible solution
x 0% *

MERRY SRR RA, of (2.4), we have

Sex. < Ya xy <p (+ C.X. < cL X.Y, < Ys : 2.3 J J 1,3 1d JL po 101 5)

THE DUALITY THEOREM (second version). If (2.3) has an optimal

: feasible solution X] 9 Xpy vey Xo then (2.4) has an optimaln

feasible solution Y12 Yh) oo oy and
n m

*

| It 1s easy to see that the first version implies the second.
* _% *

Indeed, let Kross Xy be an optimal feasible solution of (2.3);
* ®

set d = 2 C5 %; . Then the inequalities
n

2, a..x <.Db :
Fs 2 Ma (1 <1 <mi j=l 1J J 1 = _ )

: Hy = 0 (1 <3 <n)

~ imply the inequality



u n

Z ex, <4

| By the first version of the duality theorem, there are nonnegative

| reals yi» ¥ps 0 [fee such that

5° *a, =~ = C, :
gop 113 "Vm J (1<3sn)

and

m
a

2 y.b.,< d*

Thus Y12 V5 N) Tat is a feasible solution of (2.4) _..p

m x n

BY (2.5), the last inequality pugt hold with sign of equality and
* x * .

| Y12Y5s ER is an optimal feasible solution of (2.4).
To deduce the first version from the second, let us assume that

I (2.1) implies (2.2) and let us consider the following LP problem:
n

maximize 2) ¢,(u, =v.)
j=1 J J J

A

2subject to a..(u -

| i=l

“5 20, vv, 20 (1 <j <n).

For every real =o , we may write Xy = Us Vs with Uss Vs > 0 .
Therefore our problem has an optimum feasible solution u vr

(1 < j <n); in fact, 2 c (ur -v¥)< d
J 3 ? ! Gres Vs) = . By the second version

of the duality theorem, there are nonnegative reals
ARRLY "reo ¥n

with



m

| 2) a..y. > c.
| - 1594 2 C50

n

2 (-a,.)y. > -c
= 13094 2 3?
m n

*  *

2 by, = 2 c.(u,-v.) .
i=l Yt 5=1 ddd

Hence (2.2) 1s a combination of (2.1).

Finally, we shall restate the duality theorem in yet another form.

The set (2.1) of linear inequalities 1s called inconsistent if

there are nonnegative reals Ys (1 < i< m) such that

m

2 a. .y = 0 (1 < 5VY. j <nj=] td == ) ’
m

2 b.y. < O .
i=1 + °

Trivially, an inconsistent set (2.1) 1s unsolvable; again, the converse

1s given by the duality theorem.

THE DUALITY THEOREM (third version). The set (2.1) is unsolvable if

and only 1f it is inconsistent.

This version follows easily from the first version. Indeed,

- assume that (2.1) 1s unsolvable and let k be the largest subscript

I such that the set
n

& a; 5X; _<by (1 <i <k) (2.6)
1s solvable. The set of all the solutions of (2.6) is a closed convex,

| and possibly unbounded, subset of Rr ; the assignment

= maps this set onto a closed interval I with

ft



3 z <b = Zz ET

| Hence there is some d with d >b, such that (2.6) implies
n

| zl (ay 5)x, < -d .
By the first version of the duality theorem, there are nonnegative

reals vy, (1<i <k) such that

k-1

= a3 5 = "8 (1<3j <n),
k-1

5 fy E74

Setting Vie =1 (and yy = 0 for 1 > k ) we conclude that (2.1) 1s
_ inconsistent.

Particular cases of the duality theorem may be traced back to

i Gordan [23] and Farkas [16]. The notion of a dual LP problem was
<introduced by John von Neumann in conversations with George B. Dantzig

| in October 1947;it appears implicitly in his working paper [36].
Gale, Kuhn and Tucker [19] formulated, and proved, an explicit version

of the duality theorem (our "second version"). OQur "third version"

L comes from Kuhn [27]. For a wealth of information on the subject, the
reader is referred to Dantzig's book [9].

_ The duality theorem 1s a very natural principle, pervading a

large area of mathematics. For instance, the necessary and sufficient

conditions for solvability of systems of linear equations are just a

very special case of the duality theorem. Averaging arguments,

counting of pairs in two different ways, and "Lubell's method"

illustrated in Section 1, are rudimentary applications

of the duality theorem. Like M. Jourdain who, for more than forty

years, had been talking prose without any idea of 1t, we may often

be unaware that our arguments rest, in fact, on the duality theorem.

8



3. Linear Programming as a Methodological Tool

oo Linear programming problems may come up 1n various gulses.

| | Sometimes thelr constraints are only implicit in the problem

2 formulation and it may take considerable effort to uncover them.

x However, once we recognize the linear programming nature of a

problem, we gain a valuable guiding principle: the duality

| theorem. The following case story of a geometrical problem with

an underlying LP structure will 1llustrate the point.

We shall consider the infinite square grid in the ordinary

plane; by definition, each cell in this grid has eight neighbors.

A coloring of the cells red and blue will be called feasible if

(1) there 1s at least one blue cell,

(ii) every blue cell has at least six blue neighbors.

Trivially, coloring all the cells blue we obtain a feasible

i coloring. A nontrivial feasible coloring, constructed by Fejes Toth

| [18], is shown in Figure 1. (The cells marked by crosses are red,

y . the unmarked ones are blue.) In this coloring, "four out of every

fifteen" cells are red. Introducing the notion of density (as in

. [17], pp. 161-162), one can make the last statement more precise.

To do so, begin with an arbitrary cell; let its Cartesian coordinates

] be a,b . For every nonnegative integer k , define Ste to be the
set of all those (2k+1)° cells with coordinates i, J that satisfy

| li-a] < kx , |i-p| <_kx .
If X 1s a set of cells then the lower and the upper limit of the

| sequence

xns,| | xns, | Co xns, | Co
- = S41 5,|

1 do not depend on our choice of a and b . These two limits are

called the lower and the upper density of X ; if they coincide then

| their common value is called the density of X . The set of the red
cells in Figure lhas density 4/15; Fejes Tdth conjectured that the

red upper density of a feasible coloring never exceeds L/15 |

9
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2 Familiarizing ourselves with feasible colorings, we find that
they cannot contain various clusters of red cells. For instance, 1if

we begin with three red cells 1n a row (as 1n Figure 2) then the

: feasibility constraint (11) forces us to paint the entire plane red,

| thereby violating the constraint (1).

BE

Figure 2

Similarly, we find that no red cell may have more than three red

neighbors. In fact, the red cells with exactly three red neighbors

come 1n two by two quadruples flanked by layers of blue cells as

in Figure 5. (The cells marked by a questionmark may be red or blue.)

HBEBHAR
JHBRNN
HEHENAD

: sls ]als [os
annnBnn

ee

| Figure 3
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| If r (resp. Db ) is the red upper (resp. blue lower) density of
some feasible coloring then trivially

| rb = 1 .

Given a positive € , we may choose an arbitrarily large nxn square
1 2

with at least (r-€)n red cells. Let N be the number of

(unordered) pairs of neighboring cells colored by different colors

and coming from our square. Since each red cell has at least five

blue neighbors, we have

2

N > 5(r-e)n -4(n+l) , (3.1)

the negative term discounting the blue cells that fall just outside

of our square. Since each blue cell has at most two red neighbors,

we have

2

N < 2(b+te)n” . (3.2)

Since € may be chosen arbitrarily small and n may be chosen

arbitrarily large, we conclude that

or < 2b . (3.3)

L Thus we are led to the following LP problem:

| maximize r subject to the constraints
r >0 , b >0

| (3.4)™b = 1
(N-

or -2b < 0

. Trivially, the solution to this problem is 2/7 and so every feasible

A coloring has density at most 2/7 ; unfortunately, 2/7 1s just a

tiny bit bigger than 4/15. Nevertheless, we may hope that the LP

problem (3.4) 1s, 1n fact, a poor model of the geometrical problem.

To begin with, we may try to prove that there 1s no feasible coloring

with red upper density 2/7 . For this purpose, let us investigate

the properties of such a hypothetical coloring.

12
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Since r = 2/7 and b = 5/7 satisfy (3.3) with the sign of

equality, it appears that the bounds (3.1) and (3.2) must be, 1n some

| sense, tight. Pursuing this line further we find arbitrarily large

squares (100x100 will do nicely) where every red cell has exactly

three red neighbors and every blue cell has exactly two red neighbors.

Close to the middle of such a square, we shall find the configuration

of Figure 3. Next, each of the four cells marked by a questionmark

must actually be red (otherwise we would have a blue cell with seven

blue neighbors). That is, each of these cells must come from another

red quadruple. The blue layers surrounding these quadruples will

create blue cells with eight blue neighbors: a contradiction.

The crucial point in our argument was that in the vicinity of

each red quadruple, there must be either a red cell with fewer than

three red neighbors or a blue cell with more than six blue neighbors.

Now that we have established the existence of such defects, we may

try to estimate their frequency. For this purpose, we define the

order of a red (resp. blue) cell to be the number of its red (resp.

- blue) neighbors. In a big nxn square with at least (r-€)n°

red cells, let rn’ (resp. bn” ) be the number of red (resp. blue)
cells of order 1 . A careful analysis of the above argument leads

to the conclusion that, with only a negligible error,

hr, + 2ry+ 2b,+ bog > rs

(The proof of this inequality 1s not instant; for details, the reader

is referred to [7].) In addition, the constraints of (3.4) find their

: natural counterparts in terms of the new variables. Thus we are led

: to a new LP problem:

i

L

|
13
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i maximize rotor grr 3 subject to

r —

0 + Tp + Tp + Tz + bo + by + bg = 1 ,

| 8rg + Tr, + 6r. + 5r3 - 2b. - 57 =
1 2 6

r

hr - 2r) + 73 - 2_ - bog <0 ,

Multiplying the first constraint by four, the second by two, the

third by one, and summing up the lot, we arrive at the inequality

16r, + 16r, + 16r,, + 157, < Lo.

Hence r+r,+ ror, < 4/15 which is the desired result.

4. The Importance of Being Discrete

Reviewing the two examples of Section 1, we find that in the

proofs, no use has been made of the fact that our variables Xx
| Ss were

| integral. Unfortunately, we cannot expect to get away with that every

| time we solve a combinatorial problem by LP techniques. Consider, forinstance, the problem of finding the largest size of a stable

(independent) set of vertices in the graph G = (V,E) of Figure 4

| (A set of vertices 1s called stable if no two of them are joined by an
edge.)

L 8 1

6 Q 3

p] L

Figure L
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In the straightforward LP formulation of this problem, we have to

8

maximize 2. 2. subject to the constraints
i=1 7

| Xs 20 for every vertex 1 , (4.1)

Xi tx <3 for every edge 1]

and

X. = integer for every vertex i . (L.2)

Disregarding the integrality constraint (4.2), we may obtain a

solution of (4.1) such that

8

2. X; = oo.
i=1

However, 1t 1s not difficult to see that the size of the largest

context, the integrality constraint (4.2) must be taken into account.

v In the field of discrete mathematics, we deal with discrete

| variables; whenever their discreteness 1s relevant, 1t must find its
way into our arguments. It often does so via the pigeon-hole

principle: if mntl objects are distributed among n boxes then

L some box contains at least mtl objects. pegcribing this principle
in LP terms, we denote the number of objects in box j by x. ;i’

_ since the boxes are unlabelled, we may assume that

X) 2X, 2 Cee > xX .

: Now, let us

| minimize x, subject to the constraints

xq "Xp > 0

X

*p J %5 20
LL (4.3)

An-1 i *n 2 0

+ +...+ =
SR x mn+1

15



and the constraint

x, = integer (L<i<n) .

| The linear combination of (4.3) with multipliers

n-1 n-2 2 1 1

mn7" ’n’n’qg

reads

X, > m+ 112 oc (L.14)

At this moment, let the discreteness come into the play: +f x,
1s an integer satisfying (4.4) then, in fact, x, > ml.

Proving, as we have just done, the pigeon-hole principle by

LP techniques may be reminiscent of the use of a sledge-hammer to

| crack the proverbial walnut. We have done so, however,

L to illustrate a point. The point is that the integrality
, constraint, together with our linear constraints, may imply

| inequalities which are not implied by the linear constraints alone.
This important 1dea seems to have appeared for the first time in the

| work of Dantzig, Fulkerson and Johnson [10]. 1ater it was
developed by Gomory [20],[21],[22]into an algorithm for solving LP

problems in integers. Gomory's algorithm provides a systematic way

- of generating the new "implied" constraints (commonly called
cutting planes) until the integrality constraint becomes superfluous.

(For an excellent coverage of the ILP techniques, tne reader is

| referred to [30].)
We shall use the idea of implied constraints to formulate a

theorem which, in the context of integer LP problems, parallels the

duality theorem. To begin with, let

n

Beggsby (1<i<m) (1.5)
be a set of inequalities whose solution set 1s nonempty and bounded.

We shall say that (4.5) implies some inequality

16



2, ec.x, < d L.6
2S (4.6)

| over the integers if every integer solution of (4.5) satisfies (4.6)

| For instance, the inequalities (4.1) imply
8

| 2. xX, < 3 | L

over the integers. (When.S is a set of linear inequalities, such

as (4.5), we define the elementary closure e(S) of S to be the
set of all the inequalities )

3 m2. MNa,. |x, < d
j=1 ( j=1 + J J

such that

. M

(1) oh 8 Am are nonnegative reals,

(ii) each 2 M3 is an integer,

C (111) d 1s at least the integer part | = Abs | of 2, hb. .id

| For instance, the inequality| 2

2X, < 2

belongs to the elementary closure of (4.1); indeed, the inequality

p)

Zz x, < 2
. j=1 J

1s a linear combination of (4.1). Clearly, if an inequality belongs

, to e(S) then S implies this 1nequality over the integers However. ’

the converse 1s not true: for example, it can be shown that the

inequality (4.7) does not belong to the elementary closure of (4.1).
0

We shall define e (8) = 3S and, for every positive integer k ,

k k-1
e (8) = e(sUue (8) .

The set

© -

U et (8)
i=0

17



will be called the closure of S . Again, it is easy to see that

every 1nequality belonging to the closure of S 1s, in fact, implied

by S over the integers. This time, as asserted by our next theorem,

| the converse 1s true. The theorem may be deduced from the finiteness
of Gomory's algorithm; a direct proof is given in [5]. (For a thorough

analysis of the relationship between Gomory's "fundamental cuts" and

our implied constraints, the reader is referred to [32].)

THEOREM. Let S be a set of linear inequalities whose solution 1s

1 nonempty and bounded. If some linear inequality is implied by S over

the integers then this inequality belongs to the closure of S.

| For example, if S is the set (4.1) then (4.7) belongs to 2 (8) :
To see this, consider the inequalites

| Xp + X53 SL

Xt¥g <1

| Xg + Xe < 1 ,

| +

| Xe x < 1,

| tgs Lo |

x,t x+ x+ x+ x,< 2 .

| All of them belong to e 1s) 5 taking thelr linear combination with
multipliers

1/3, 1/3, 1/3, 1/3, 2/3, 1/3, 2/3

] we—-obtailn
| 8

2 x, < 1
; j=1 J ; .

Since the integer part of 11/3 is 3, we see that the implied constraint

| 4.7) indeed belongs to e2(3) |

| 18



a The concept of elementary closure 1s motivated by the work of

| Edmonds [12] on the interplay of linear programming and matching theory.

WhenG = (V,E) is a graph, we associate a variable x. with each

| edge Je€E ; a set of edges with a common endpoint is called a
: star. Let S denote the set of inequalities

X, > 0 for every edge JjeE ,
(4.8)

2 x, <1 for every star T .
jer 2 7

| Clearly, a zero-one vector (x.: jeE) satisfies S if and only if it

1s the characteristic vector of some matching 1n G . In particular,
1f m 1s the size of the largest matching in ¢ then the inequality

2 x; Sm (4.9)
JeE

i 1s implied over the integers by S |. Hence, by the above theorem,

| (4.9) belongs to the closure of S. In this case, however, 3 much

L stronger statement can be made. Indeed, it follows at once from

Berge's generalization [3] of Tutte's perfect matching theorem [35]

I, that (4.9)is a linear combination of inequalities from the elementary

closure of S . This fact has been pointed out and generalized by

‘ Edmonds who proved that the closure of S consists of combinations
of e(S) .

| One may interpret Edmonds' theorem by saying that in matching

" problems, the integrality constraint is important (it cannot be dropped)

but not all that important (unlike (4.2), it may be done away with in

just one '*generation" of cutting planes). This interpretation leads to

! ranking all the integer LP problems according to the "importance" of

their 1integrality constraint. More precisely, when gg is a set of

linear constraints, we define the rank of S to be the smallest k

such that the closure of S consists of comblnations of e¥(5) .
Let us see how this notion of rank applies to the problem of

finding the largest size a(G) of a stable set in a graph G = (V,E) ;

“his problem 1s sometimes called the vertex packing problem. ye shall

write V = {1,2,...,n} ; with each vertex J , we shall associate a

19



CL —————————————

5 variable % . Clearly, a zero-one vector (x. : jeV) satisfies the
constraints

| 0 <L X <1l for every vertex J
(4.10)| Xgtx, <4 for every edge 1] }

if and only 1f it 1s the characteristic vector of some stable set

in G . The rank of (4.10) is zero if and only if G is bipartite.

It 1s not difficult to find graphs for which (4.10) has arbitrarily

high rank. Indeed, ifG is a complete graph with n vertices then

(4.10) has rank 1+ | log, (n-2) | . (The upper bound is not difficult
to establish; the lower one follows fram Lemma 7.1 of | 51.) However,

the vertex packing problem is trivial for complete graphs and so (4.10)

does not seem to be a well-chosen constraint set. Furthermore, the

matching problem for G 1s the vertex packing problem for the

_ line—-graph of G ; however, the constraints (4.8) for G do not

reduce into (4.10) for the line graph of G . For these reasons,

the stronger set of constraints

0 < %, <1 for every vertex j , )LC (4.11)
2, x. <1 for every clique C

| jeC J =
may be preferred to (4.10). Since (4.10) and (4.11) have the same set

| of integer solutions, the rank of (4.11) does not exceed that of (4.10);
in some cases, it is considerably smaller. For instance, ifG is

| complete then the rank of (4.11) is zero. More generally, (4.11) has
- rank zero if and only if G is perfect. (This is Theorem 3.1 of [6].

An alternative proof, due to Fulkerson, may be found in [3L4].) It is

not entirely trivial to find graphs with high rank of (4.11) but they

do exist.

|
THEOREM. For arbitrarily large n , there are graphs with n vertices

such that the rank of (4.11) is greater than c¢ log n .
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For a proof, the reader is referred to [5]. The theorem puts

vertex packing problems in a sharp contrast with matching problems:

i while the latter have rank of most one, there 1s pg upper bound on
the rank of the former. In the next section, we shall allude to a

theorem which suggests that the vertex packing problems are very

| hard to solve.

5. Good Algorithms and Good Characterizations

Finally, we turn our attention tomeasuring the difficulty of

solving combinatorial problems. In this context, a problem consists

of an input together with a "yes or no" question. For example,

Input: a graph G and an integer k .

(5-1)
Question: is a(@) > k ?

1s a problem. Customarily, the size of the input is measured, roughly

{ speaking, by the number of times we must hit the keys of our typewriter in
order to describe the input. For instance, a graph G with n

i vertices may be described by a binary sequence of length at most nr ;
similarly, the ordinary decimal expansion of a positive integer k

| has 1+ L log, k] digits. It has become a common practice to
consider a problem solved 1f there 1s an efficient algorithm for

r solving it. In particular, Edmonds [13] pioneered the distinction

i between "finite" and "better-than-finite" algorithms; he proposed to

: call an algorithm good if there 1s a polynomial p such that, given

any input of size m , the algorithm terminates within p(m) steps.

For instance, Edmonds! algorithm [15] for solving the problem

Input: a graph G and an integer k .

Question: is there a matching of size k ?

is good: indeed, if G has n vertices then the algorithm terminates

within on steps. On the other hand, no good algorithm for solving
"he problem (5.1) 1s known.

Another important concept, also introduced by Edmonds [11] is that

of a good characterization. If we manage to find, by accident or
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| perseverance, a stable set S in G such that |S| > k then we know
that the answer to the question in (5.1) 1s "yes". More importantly,

we can use the set S to convince others, in 0(n") steps, that ihe
answer 1s "yes". Indeed, there is a good algorithm(or solving Lhe

problem

Input: a graph G = (V,E) , a subset S of V and an

integer k .

Question: 1s S a stable set of size greater than k ?

This fact makes us say that (5.1) has a good characterization. The

difference between good algorithms and good characterizations reflects

the contrast between the difficulty of-finding a solution to a problem

and the ease of checking that a proposed solution to a problem 1s correct.

It may be worthwhile to point out that there 1s no known good

characterization of the problem

Input: a graph G and an integer k . } (5.2)Question: is a(G) < k ?

Indeed, 1f the answer to this question turns out to be affirmative,

we have no easy way of convincing others that this 1s so. Ip other

words, no efficient way of proving (not to mention finding the proof)

that @(G)< k is known.

| How does linear programming fit in this framework? begin with,

) no good algorithm for the problem

| Input: a set S of linear inequalities. } (5.5)Question: is S solvable?

| 1s known. Indeed, the simplex method (with its standard criteria for
column selection), although extremely useful and efficient in practice,

| takes super-polynomial time on certain artificially constructed examples
[26],[27]. Nevertheless, (5.3) does have a good characterization. That

I 1s rather obvious: in order to prove that §S is solvable, it sufficesto exhibit some solution to §S . Then it does not take long to verify

that the numbers we pulled out of a hat do indeed constitute a solution

" tos. (To be a little more honest, we should admit that there is a

slight catch here. For example, one might proudly present
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x = 3.14159 26535 89793 23846 26433 83279 50288

in order to prove that the inequalities

1 2x = 7 <0

8x +25 < 0

are solvable. That would be not only silly, it would also be quite

inefficient. Fortunately, whenever § is solvable, at least one of

its solutions can be described by a number of digits which does not

exceed a certain polynomial in the size of the input.) TILess trivially,

the, "opposite" of (5.3), that is, the problem

Input: a set S of linear inequalities.

Question: is S unsolvable?

has a good characterization. This fact is just a corollary-to the

duality theorem. Indeed, S is unsolvable if and only if it is

inconsistent; the inconsistency of S may be proved simply by

exhibiting the appropriate multipliers of reasonably small size.
L

'Let us summarize: (5.3) has a good characterization, its opposite

| has a good characterization and yet we don't know any good algorithmfor solving (5.3). This seems to be a rather rare phenomenon; the

| only other instance known to the author is the problem
Input: a positive integer n .

I Question: 1s n composite? (5.4)
Trivially, this problem has a good characterization; a good characteri-

| zation of its opposite (is n a prime?), basedon the Lucas-Lehmer

. heuristic, has been developed by Pratt [31]. Thus we have good characteri-

zations for both (5.4) and its opposite and yet we don't know any good

| algorithm for solving (5.4). However, there is a reasonable chance that
such an-algorithm exists. Quite recently, Miller [29] proved the following:

1f the Extended Riemann Hypothesis 1s correct, then there 1s a good

algorithm for testing primality.

Concurrently with finding good algorithms for various combinatorial

problems, Edmonds [14],[4],[13] conjectured the nonexistence of good

algorithms for other combinatorial problems. (These include the traveling

23



salesman problem, testing graph isomorphism and finding, 1n a family of

a triples, the largest subfamily of pairwise disjoint triples.) A few

2 years ago, Cook[8] proved a remarkable theorem whose immediate corollary

goes as follows: if there is a good algorithm for (5.1) then there is a

good algorithm for gvery problem that has a good characterization. e

conclusion of his corollary is stunningly strong. To appreciate its
i strength, we may recall that there are problems with a finite characteri-

: zation but without a finite algorithm. (In other words, there are
recursively enumerable sets which are not recursive. The proof may be
found in [2], Chapter 4.) By analogy, one may be tempted to conjecture

that the same statement holds with "finite" replacedby "good". 1f this

is the case then, by Cook's theorem, there is no good algorithm for (3.1).

(At this point, a word of warning may be in order: yop though Cook's
theorem may be interpreted as evidence that there is no good algorithm

for (5.1), it by no means constitutes a proof of the nonexistence of such

an algorithm. Edmonds' original conjecture to that effect still remains

open. In passing, we may also point out that there 1s nothing exclusive

about (5.1)in Cook's theorem: it may be replaced by many other "difficult"

- . combinatorial problems, such as "Is G hamiltonian?", For an impressive

: list of such problems, see [1] or [2k].)

L Another corollary to Cook's theorem states the following: if there
1s a good characterization for (5.2) then there is a good characterization

| for every problem whose "opposite" has a good characterization. This
conclusion, although not quite as strong as the previous one, may be still

| found hard to accept; in the rest of this section, we shall speculate
about the assumption. In the spirit of integer linear programming, we

shall propose a system of inference rules which are strong enough to prove

- a(G) < k whenever true. TILet G = (V,E) be a graphwith V = {1,2,...,n} .
r With each vertex i of G , we shall associate a variable x. ,with

| the graph itself, we shall associate the system of inequalities

| 0 < x, <1 for every vertex 1

Xx, + x, <1 for every edge ij . (5:5)
A system of linear inequalities (in the x, 's) will be called an
ILP proof of a(G) < k if
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E (i) each of these inequalities belongs either to (5.5) or to

the elementary closure of previous inequalities in the

sequence,

n

(11) the last 1nequality reads 2 x, < k .
i=l

For example, 1f G is as in Figure 4, then

Xy + X, < 1

Xp Xy < 1
+4

Xs Xx) < 1

xX) = Xg < 1
X, + x. + +

1 o Xz xy FX; <2
+

x + Xg < 1

bh.

xy +t Xg < 1

X, +X, +x, +x,+ + + +| 1 o 3 } Xg Xe *o Xg < 2

is an ILP proof of ®(G) < 3 . In this case, it can be shown that every

| ILP proof of a(G) < 3 takes at least twelve lines. In general, when G
| 1s a graph with a(G) = k | we shall mean by the complexity c(G) of

| the smallest number of inequalities in an ILP proof of a(G) < k . This
notion of complexity 1s somewhat related to that of rank introduced in

the last section.

= Indeed, an ILP proof may be arranged into an n-ary tree (rather than

a line& sequence) of inequalities ch inequality being in the elementary

. closure of its immediate descendants. gp. depth of this tree is at most

the rank of(5.5) plus one. Conclusion: .¢ iy. rank of (5.5) is r then
| r+

c(G)< 2 nt.

| 1=0

25



2 This bound may be far from best possible. For instance, if G is

complete then r = 1+ | log, (n-1) | whereas
| n

c(G) < (,)+ (n-2) . (5.6)

3 From (5.6), we easily conclude the following: if the rank of (4.11)

is s then

n stl i
c(@) < ((3)+ (@m-2)) Z a". (5.7)

1==(0

Unfortunately, s may grow beyond every bound and so 5.7) does not.

provide a polynomial upper bound on c¢(G).

CONJECTURE. For every polynomial p there 1s a graph G with n

vertices such that c(G) > p(n).

This conjecture 1s somewhat related to the conjecture that there 1s
[.

no good characterization for (5.2); the differences between the two go

as follows.

.

1. It 1s conceivable that the above conjecture 1s true and yet

| there 1s a good characterization for (5.2). (Necessarily, such a
characterization would have to use more powerful inference rules than

| those based on our cutting planes.)
2. It 1s conceivable that the above conjecture 1s false and yet

the shortest ILP proofs of a(G)< k do not provide a good characteri-

- zation for (5.2). (Necessarily, these shortest ILP proofs would have

| to involve excessively large coefficients.)
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