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| The following problem was raised by H.- J. Stoss[ 3]

in connec tion with certain questions related to the

) complexity of Bocleanfunc Lions . An acyclic directed graph

G 1s said to have property i?(m,n) if for any setX of m

vertices of G, there 1s a directed path of length n in G which

- does not intersect X. Let (m,n) denote the minimum number of

edges a grapnwi th property (m,n) can have. The problem is
| - ys .

to estimate fm, n). :
t

| Hor the remainder of the paper, we shall restrict—

ourselves to ‘hie cade vos pn, We shall prove

(1) cyn log nS , << Tlnyn) < eon log n

(where CisCns «vn, ¥ill heresfier denote suitable positive
constants), In fact, ihe graph we construct in order to

[9
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= + establish the upper bound on f(n,n) in (1) will have just

g Can vertices. In this case the upper bound in (1)is

| essentially best possible since it will also bé shown that for

c, ‘sufficiently large, every graph on C0 vertices having

| property (n,n) must have at least Cen log n edges.
‘A PRELIMINARY LEMMA

In order to establish the upper bound in (1)

we rirst need the following result.

Lemma. For all ® > O there exists ¢ = ¢(8) such that for

all t sufficiently large, there exists a bipartite graph

B = B(63t) with vertex sets A and A’ so that:

(1) 1A] = [a7] = ¢;

— (11) B has at most c(6)t edges;

| (111) 16 xC a, x2 C ar with |X| > 8t, |X’ > 6%

} then (X,X’) = {{x,x’) :xeX,x’eX’) containsan edge
| of B.

Proof: We use a simple probabilistic argument to show the

L existence of B. Form a bipartite graph B on the vertex
| sets A and A’ with [A|= |A’]| = t by selecting for each

aeA a random subset Ba) C A’ of cardinality d = d(0)

(to be specified later). call B "bad" if there exists

xCa, x» C a’, with |X| > Bt, |X'| > ®t, so that (X,X’)

| contains no edge of B. For fixed X and X’, the probability
that B is bad because of these two subsets is at most

Cb (Hh ) (oey™d da t-d )
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Hence, the total probabiliiy that B is bad is at most

| / EN2/ ry eG
(4) [ (1-8) 1) . 22 1-5 \400 :| ot) "Ea, I-d7t)

| A simple commutation shows that if d 1s chosen suitably

| large, for example, so that
5 db

(1-8 ) < 1/4,

then for t sufficiently large this

probability 1s less than 1, and so, a graph B = B(5;t)
2

must exist which satisfies the requirements of the lemma. [i

CONSTRUCTION OF G

“ The next step in the proof of (1) is the construction

| of the directed graph G. For large n, G = G(n) will have ag
1ts vertex set the set V = {o, 1, coon, If v and m are

L positive integers, then D,(m) will denote the set
x

Lv, v1, . . ,v4m-1)MV. Similarly, D_(m) will denote the

- denote suitably chosen fixed positive constants to be specified

- later. "The edge set E of G is formed as follows:

(1) For wveV, the pairs (v, x), xeD 4 (%n), are in Es
(ii) For each t with n/2 < ote 21 and each i as specified

T

below, a copy of B(e;2) is formed between the
. _ t tets A = —

vertex s h Dy.ot(2 ) and A’ = Dimers) ot (2 ),In- .
Od m<2 » Where 1 = 1,2,...,10 (or if i cannot

assume the value 10 because (m+10)2" > 2H, then it
n-t

ranges from 1 to 2° “-m). All edges are directed from

X to yv with x <y.
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| An elementary calculation shows that

; |E| < c n2". :

Theorem 1. For a suitable e > 0, G(n) has property

| P(e-2" 6.2") for all sufficiently large n.
Proof: The theorem will be proved by a sequence of

claims. First we show that G(n) shares with the graphs

B(es;t) the following property.

Claim 1. If m > 2n and XC D_(m),x’ C D..m( ) satisfy
- |X | > em, |X|> eo, then [X,X’] = U(x, x") xeX, x7ex’ )

contains an edge of G(n).

- Proofof Claim: Let 2° < m/2 < pt Thus, m/4< 2%so
at most five of the intervals Pr ot (2%) intersect D_(m)

and at most five of them intersect D, (m). Since [X] > em
L then some D. t(2%) and D., (27) have

L (3) ID. te (2%) NX] > e,m/5, ID, (2°) MX’| > HE m/5
L But we must have [r’-1 < 10 50 that by the construction of
| G(n) there is a copy of B(e, 32%) between PD. st(2%) and
- Ds ot(2Y). Thus, 1fe; /5> €1 ang m > 2° then the property

of B(e, 32") guaranteed by the Lemms implies that [X,X’]
] contains an edge of G(n) provided that t is sufficiently

| large (which is guaranteed by choosing n large enough).
| This proves the claim. BB



| Next,, let us choo an arbitrary fixed set X
EK a : Pye
| of vertices with |X] < esa, The verticeg in X will be

| referred tO as the marked verticeg of G; the remaining

vertices of G will be called the unmarked vertices of 4g.

| Let us call an unmarked vertex yeV bad if

for some m > 1 either at least eqn vertices in D (m)
Eva

are marked or at least eqm vertices in Dy, (m) are marked.
Otherwise, an unmarked vertex of G is called good.

Cleim 2. There are at most £2" bad vertices.

Proof of Claim: ret y; denote the least unmarked vertex

L of G (if it exists) for which for some my; > 1, at least

| egy vertices in Py, (m1) are marked. In general, if
Js 0 HAE and fly o cay have been defined, let Yel be the
least unm ve of G fT i + m| S arked rtex Ollowing Yi kK - 1 (if it
exists) for which for some m, ,. > 1 at least

| +1 = qm4 Vertices
q in Dy ny Mel are marked. We continue this process until

it no longer can be applied, so that, sa

>. *

and M15 ...am, have been defined, Similarly, let y, denote
| the greatest unmarked vertex (if it exists) for which for

* * * *

some my 21, at least €3ly, vertices in Dx(m, ) are marked,
: xtc. *

etc In this way, we define pss ¥ax and Mise ym,.
It follows from the preceding construction and

. . . | t 1
the definition Of a bad vertex that all bad vertices are
contained 1n the set



5 Y = D_. (mm ) D. (m

Thus, there are at most

¥*M = \’he ) My

bad vertices. However, by our construction there are at

least (e5 /2)M marked vertices in Y,. Since by hypothesis there
‘are at most g.2" marked vertices in V then we have

(ex oM < g.2"“ 3/2 SN € P

{ M < (2e/eq)2" < ey",

| which proves the claim. [Jj
For an unmarked vertex Xx, let P (m) denote the

i set of all unmarked vertices in D, (m) which can be reached |
I from x by directed paths which contain only unmarked

vertices.

Claim 3. If x is a good vertex and |D,(m)| = 1 then

(4) Pp(m) I > em

Proof of Claim: If m ¢ 4n then since x is good, least
(1-e5)m vertices in D,(m) are unmarked and x has edges

directly to all of them. Suppose m > 4n. Tet m’! denote

(m/2]. since [D.(m’)| = nm’ then by induction

|P(m”)| > €sMm’. Since x is good then



- at most em vertices in D, (m) are marked. Hence, at most

| €,Mm vertices in Dim? (m”) C D, (m) are marked. Since

Bn m’ > 2n and Eg 2 En then there are edges from P_(m") to
| at least (l-g,)m’ vertices in Dy .r(m’), But at

| eg < 34m’ vertices in BE (m’) are marked. Hence,
i P (m’) must have edges to at least (1-e5-3e5)m’ unmarked

vertices in D, ,(m”). Since 1-e,-3¢, >3eg then

The claim now follows by induction, []
%

In exactly the same way it follows that if P(m)
- denotes the set of all unmarked vertices in D: (m) which are

| connected to the unmarked vertex x by a directed path

- containing only unmarked vertices, and x 1s a good vertex

| and *nd |p, (m)] = m, then-

*

(47) |P. (m) | > Eg.

Claim 4. Let x -and x’ be good vertices with x < x’. Then
~ n

x'eP (27).

Proof : If x’-x < 4n then the claim is immediate since by

construction there 1s an edge from x to x’. Assume

X'-x > 4n. Let y = [(x+x’)/2] and let m = y - x+ 1 «
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| ~ Consider the intervals D (ui) and D_, (m). Either they are
3 adjacent or they have the single element y in common.

| Since x and x’ are good then by (4) and (47 )

| (5) P(m)| > ecm, Po, (m)| > em.

Since eg > €p then by Claim 1, there is an edge in G from

a vertex of P_(m) to a vertex of P_, (m). Thus, there is
a directed path from x to x’ containing no marked vertices

and the claim is proved. [J ]

The proof of the theorem is now immediate. By

Claim 2 there are at least (1-g)y-e)2" good vertices in G.
By Claim 4 we can form a directed path which contains only

unmarked vertices and which contains all the good vertices

. (since x’ can always bc chosen to be the next good vertex
following x). Since l-gy-e > e then the theorem follows

L (where it is easily seen how the appropriate values of £1

| and ¢, can be chosen). |i]
THE LOWER BOUND

.The following result will establish the lower bound in (1).

g Theorem2. Let H be anacyclic directed graph with at

ost cn log n/log log n edges where n is a large fixed
| integer. Then there is a set of at most n vertices of H

which hits every directed path of length n.

Proof: Let us denote the vertex set of H by V = (1,2,...,v]},

We may assume that H has at least cg n log n/log log n edges.

We may also assume that all edges are of the form (i,j) with



1 < J. For an edge e = (i,]) of H, let length (e) be

a defined to be J-1. partition the edges of H into classes

| | Cos C1 . +50, where |

Cc, = (e sot log log n length(e) < p%(k+1l) log log n,

and r = [log v/4 log log n].

Since H has at least Cg Nn log n/log log n edges
1/2

then 1t follows that v > Cg / and r > cio log n/log log mn.
Hence some class C, with 0 < @ <r has at most cq D elements,

Let us delete all vertices 1n H incident to any of the edges

in C,- Furthermore, we also delete those vertices x e V

which satisfy

i 0 < x-m. ota log log N142° log log n) < Sta log log n

L for some integer m > 0. This latter step removes at most

(

L ( ’ }
i 2 Tog Tog n _ JV = °(n)

vertices, since v 2 ¢, n log n/log log n. Hence we

i have deleted at most Cqp N vertices altogether. However,
any directed path remaining has at most

(fe?) log log n _ ,4a log log-4(a+1l) Tog log n Oe = o(n)



_ | ~ 10 -

j edges, since we cannot go me vo than o(Ha+2) log log n _ nha log log r

a steps without using an edge whose length exceeds Hla log log nm.
| and the length of such an edge actually exceeds Sl (a+l) log log n

| : This proves the theoren.

| | By using a different partition of the edges of H,

namely, into the classes Cor vv vs Coy where

Cy = (0:0 13 < length(e) < 2135+),

for a suitable constant C133 we can establish the following
result.

= Theorem 3. If cy) is sufficiently large then any graph G

] on cq,n vertices having property (n,n) must have at least
| ¢qgn log n edges.

L The graphs G(n) used in Theorem 1 show that the
| result in Theorem3 1s best possible to within constant
~ factors.

SOME RELATED QUESTIONS

: We now consider several problems for ordinary

| (undirected) graphs. Let Fo(n,n) (resp., F_(n,n)) denote
the smallest integer for which there js a graph with F_(n,n)

(resp., F, (n,n) ) edges so that with the deletion of any n of its

vertices there still remains a connected component of n

edges (resp., vertices). We shall prove by probabilistic methods

that

(6) Fo (n, n) < cqen, F(n, n)< Cy on.

The methodwe use is the same as that in the

“work of Erdos and Rényi [1], [2]. It turns out that almost

all graphs have the desired property.



: Theorem 4. For every € > 0 there is a ¢ = cg) so that

((2+e)n \| all but o 2 graphs G with (2+e)n vertices and cn
cn J/

edges have the property that after the omission of any n

of its vertices, a connected component of at least n vertices

remains.

Proof: It suffices to show that if n vertices are omitted

and the remaining n(l+e) vertices are split into two |

. classes Sq and So with 8 1 > En, 155 | > en, then there

is at least one edge joining a vertex of S51 to a vertex

) of S,.

Consider a random graph G on (2+g)n vertices

| and cn edges (where c¢ will be specified later). There are

_ [(2+e)n ) ways that n vertices of G can be deleted. mpe
remaining n(l+e) points can then be split into two sets

5S, and S, in at most on(1l+e) ways. Thus, the total number

| of splittings 1s at most

i ((2+e)n)pn(14e) ¢o(2+e)ngn(l+e) ¢ p3(1+e)n
Between Sq and So there are at least ert potential edges.

The probability that none of these edges actually occurs- en
: C

in G is less than : - we . Thus, if c¢ is chosen so
h that

| 2
(lve) , En»3(1+e)n _ C



B as n = o then we easily sec Lhat almost all graphs cannot

a be split in such a way.
Since

| | en” eC

| ( _ C , ~{(55=)n
then for ¢ large enough, e.g., Cc > 18 (e+e 1),

_s EC

zen o~3(1+e)n

‘and (7) holds. This proves the theorem. |}

The other half of (6) is proved in a similar

way. It would be interesting to determine the best possible

value of c¢ but this does not seem to be too easy.

We mention here the undirected analogue of (1). Let

N g(n,n) denote the smallest integer for which there is an

i undirected graph of g(n,n) edges so that if we omit any n
of its vertices then there always remains a path of length n.

| We believe .

| g(n,n) — 00 g(n,n) | 0
n ’n Jog n

_ asn =» o and hope to return to this question in finite time.

- A related question 1s the following: (Consider

random graphs on n vertices and Cn edges. 7s it true that

| for large C almost all of these graphs have a path of length

n(l-g)? It is known [ 4] that almost all graphs on n vertices

and (5 + ¢) n log n edges are Hamiltonian.
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| It 1s possible to Introduce another parameter

2 into these questions. Let F,(tsn,n) denote the smallest
| | integer for which there is a graph with t vertices and
| F. (tsn,n) edges having the property that if any n vertices
| are deleted there still remains a connected component with

| at least n vertices. If t/n » ¢ > 2 then F_(tsn,n)/n - A(c)
| where Ac) —»« as ¢ - 2, (The behavior of F(tin,n)/n is

similar). We could also omit edges instead of vertices

‘but leave the formulation of these questions to the reader.
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