Stanford Artificial Intelligence Laboratory July 1975

- Memo AIM-262

Computer Science Department
Report No. STAN-CS-75-502

Synchronization of ConCurrent Processes

by
Odd Pettersen

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University




SYNCHRONIZATION OF CONCURRENT PROCESSES
by
0. Pettersen

Stanford University
Artificial Intelligence Laboratory *

ABSTRACT:

' The paper gives an overview of commonly used synchronization primitives and
literature, and presents a new form of primitive expressing conditional critical regions.

A new solution is presented to the problem of "readers and writers", utilizing the
proposed synchronization primitive. The solution is simpler and shorter than other known
algorithms. The first sections of the paper give a tutorial introduction into established
- methods, in order to provide a suitable background for the remaining. parts.

Key Words and Phrases:

Scheduhng, process scheduhng, synchromzatlon, mutual exclusion, semaphores,
critical regions, parallel programming, multiprogramming, concurrent processes, process
communication, shared variables.

CR Categories: 3.80, 3.82, 4.30, 4.32

T his research was supported in part by the Advanced Research Projects Agency of the Office of the
Secretary of Defense under contract DAHC 15-73-C-0435. '

The view and conclusions contained in this document are those of the author and should not be
interpreted as mnecessarily representing the official polzczes either expressed or implied, of the
Advanced Research Agency or the US Government.

I Present address:
Stanford Artificial Intelligence Laboratory
Computer Science Dept.
Stanford University
Stanford, CA. 94305

Address after August 1975:
T he Technical University of Norway
Div. of Engineering Cybernetics,
7034 Trondheim - NTH
Norway



1. INTRODUCTION.

It has been shown by several authors, for example [1] to [7], that the internal synchronization
between concurrently executing processes in a multiprogramming and/or multiprocessor system can be
performed by the use of semaphores exchanged between the processes. Such synchronization becomes
necessary when processes interact intentionally through operation on the same set(s) of data. Commonly,
“critical regions" are being used to provide indivisibility, necessary for proper functioning of operations on
semaphores and other concurrent operations on shared data.

Hoare [3] has proposed a variant of crilical regions, by the introduction of conditions for the entry
into a critical region. This combines the effect of semaphores and critical regions, and this principle can be
used as an effective alternative to semaphores and simple critical regions, since it is more elegant and
powerful when the synchronization requirements are more complex. The difference between the two
concepts is explained and discussed by Brinch=Hansen in [4].

This paper will give a short raview of the principies mentioned, and show how a proposed solution in
[4] to a commonly encountered example, the "readers and writers" problem, has certain undesirable
etfects, as partly also shown in [5]. A new form of conditional critical regions is proposed, and examplified
by a new solution to the "readers and writers” problem. A proof of the solution is also included. The new
solution is hardly more complicated than the one proposed in [4].

A recent paper by Hoare [11] considers the synchronization from the operating system s viewpcint
and presents a semaphore-based solution to a new version of the "readers and writers” problem. | will
commant briefly on that paper and show that also the new version of the problem is easier and simpler
solved by the method proposed in the present paper.

Program constructs will be presented in the high-level language PASCAL ([8]), which was also used

in [4] and [11].
2. CRITICAL REGIONS.

Writing a set of data into a section of memory, or reading it out, generally takes some hme and is
performed through execution of a series of primitive operations.

More than one computational process may have a legitime need to operate on the same set of data,
and thesc cxecutions may overlap in time. If at least one such concurrent process modifies the shared data,
the resuits will be wrong, because reading processes have no way of knowing whether read data are "old"
or "new". The solution to this problem is to provide facilities to prevent such harmful simultaneous
oporations on shared data. One widely accepted method to prevent simultaneous operations is to let such’
critical operations be performed associated with a "critical region".

A critical region of some designation v is an abstract concept which can be assigned to some
different parts of different programs, but only to one program at a time. Different critical regions,
however, with different designations, are completely decoupled and have no mutual relationships.

in PASCAL, a critical region can be associated with a shared variable v, declared as follows:

var v ¢ shared T
A critical region is defined, and entered by tﬁe notation
region v do S ‘ (1)

where S is a statement executed during the critical region. S can consist of several statements by enclosing
them between hegin and end.



3. SEMAPHORES.
A semaphore is a shared single integer variable, declared as follows in PASCAL:

2rar § : semaphore

A semaphore is initialized to a value, Cs, determined by the intended type of synchronization.
Two primitive (indivisable) operations for the manipulation of a semaphore are wait(s) and signai(s).
Their operation can be described very simply by: )

wait(s): .

si=s-1; ' '

while s <0 do SUSPEND; o (2)
signal(s):

si=5+] s (3)

The use of this can be demonstrated by the foilowing example, borrowed from [2].
A communication buffer is organized as a circular linked list of frames, at least 2 frames long. Two
pointers indicate:

F The first empty frame to insert a message into
R The frame before next frame from which a message is to be withdrawn.

A function, succ(x) supplies the link of the next element.

The synchronization must guarantee that the buffer neither overflows nor underflows. The latter
involves that a message can not be withdrawn before it is deposited. Since we are concerned with two
constraints, two semaphores must be used: Deposit is preceded by wait(frame), and followed by
signal(ready). Accept is preceded by wait(ready) and followed by signal(frame). The initial constants and
conditions are: frame = Cframe = buffersize, and ready = Cready = 0, and F = succ(R).

The two programs could be:

deposit: wait(frame);
buffer[F] := message;
F := succ(F);
signal(ready);

accept: wait(ready);
R := succ(R);
received := buffer[R];
signal(frame);

The operations on semaphores may be visualized as follows:

frame: ; ' li
) 0 Cframe
ready: il
0
Crcady

Fig. I



-4-

The two pointers shown indicate the positions after one deposit more than the number of accepis.
Initially, the pointers are located at Cframe and Cready. It is easy to see that deposit can be traversed
several times (i.e. Cframe times) before congestion occurs, and accept must be activated. Until then, the
wait(frame) operation will not activate SUSPEND. Similarly, as long as accept lags behind deposit,
signal(rcady) will have been traversed more than wait(ready), consequently ready > 0. However, as soon as
one more accept is attempted, ready will become -1, and the further processing will be deferred.

As already mentioned, the semaphore operations wait(s) and signal(s), or at least parts of them, must
be indivisable. Otherwise, if for example two different processes simultaneously were performing the
operation s:=s+1 on the same variable s, the result could be s(k+2) = s(k)+l or s(k+2) = s(k)+2, depending
on the arbitrary interleave of the basic primitives constituting the operation s := s+1. The correct result of
n operalions, obviously, should be s(k+n) = s(k)+n, but, if these n operations are arbitrary interleaved in
time, the result may be anything between s(k) and the correct one. The problem is resolved by ensuring
that the wait(s) and signal(s) operations are indivisable. This preserves the integrity.

If the operations wait(s) and signal(s) themselves are not indivisable, then the consistence is
preserved by performing the operations on semaphores within critical regions, which, by definition, are
indivisable. o

The two programs of the example should then be modified to:

deposit: region v do wait(frame); -
buffer[F] := message;
F := succ(F);
region v do signal(ready);

accept: region v do wait(ready);
R := succ(R);
received := butfer[R];
region v do signal(frame);

~ An alternative way of expressing essentially the same would be to require the wait and signal
subroutines to be handled by a scheduler (monitor), for example like [11]. Also then, however, some
mechanism must be provided to ensure the integrity, for example by granting monitor access to oniy one
process at a time. .

Y CONDITIONAL CRITICAL REGIONS

Conditional critical regions represent a method to synchronize interacting processes, more advanced

than those methods explained in the previous paragraphs.
As suggested by Brinch-Hansen [4], regions could be made conditional by changing the form (1) to

region v when B do S : ‘ (4)
with the symmetrical complement:
region v do S await B (5)

The first form allows the program to enter its critical region v. If condition B does not hold, the critical
region will be exited immediately. The article calls it "busy waiting", indicating that the program will loop,
testing for the condition B to occur. This "busy waiting” is obviously a great disadvantage. Fortunately, it
can very casily be avoided, as will be explained later in this paragraph.

The complementing construct (5) causes statement S to be executed, and then further execution of
the process to be delayed, until condition B becomes true. '

Apparently, conditional critical regions are quite different from semaphores and unconditional critical
regions. It is then appropriate to ask: what are their relative advantages, and when is the one method
better suited than the other? As Brinch=-Hansen has discussed in [4), semaphores are well suited for simple
cases, and conditional critical regions superior when the synchronization structure is more complex.

To demonstrate the difference, paper [4] gives two solutions to the so-called "readers and writers™
problom, one with semaphores and unconditional critical regions, and one with conditional critical regions.



-5-
4.1. The "readers and writers" problem.

The "readers and writers” problem tends to become a classical example, and has appeared in
several papers, as for example [4], [5], [6], [9], [10], [11]. it was apparently mentioned first by Courtois
et al. in [6]. It is stated as follows:

Several writers are depositing messages into a buffer, from which several resders will read.
Any number of readers may access the buffer simultaneously, but a writer shall have oxclusuvo
access. Further, writers have priority over readers.

Several possible solutions exist. One of the simplest encountered is Brinch-Hansen's solution with
condmonal critical regions in [4]. Although his solutions represent a somewhat snmpllflod example, this fact
does not affect the ability to compare the two synchronizing concepts. It is shown in [4] that conditional
critical regions give a far simpler solution than the use of only semaphores. The solution presented in [4]
1S2

declaration.
var v : shared record rr, aw : integer end

reader:
region v when aw =0 do rr :=rr + 13
read;
region v dorr:=rr-1;

- writer:

region v do aw := aw + | await rr=0;
write;

region v do aw = aw = 1;

where the identifiers are:

v is the critical region
rr denotes number of "running readers"

aw indicates the number of "active writers”, i.e. writers that have been granted access or are
actually writing. :

In his later work [10], Brinch-Hansen uses a somewhat different form, apparently as an effort to
eliminate certain undesired effects. This will be discussed later in this paragraph For our purpose here, 10
explain the operation of conditional critical regions, the earlier form is chosen, since this is more snmlar to
the form | will propose in the following.

Unfortunately, as pointed out by the authors of [6], Courtois, Heymans, and Parnas, in a comment [5]
to Brinch-Hansens article [4), Brinch-Hansens simple solution is incorrect, or has at least certain
undesireable effects:

As far as the algorithm is concerned, the order of admitting waiting readers and writers into the
critical region is quite unpredictable. Thus, it is possible that a writer may wait indefinitely during a stream
of incoming readers. This conflicts with the requirement of priority for writers. Paper [5] points out the
error in [4]) but gives no solution, other than referring again to the solution in [6], with semaphores.
Another consequence; but not mentioned i [5], is that region-calls from outgoing readers (second
rvmon-ca“) may well be blocked from the region by a burst of incoming readers, thus preventing the
number of “running readers” to be counted down.



4.2. Discussion of undesirable effects.

it is not mentioned in [4), but it seems necessary to require the dispatcher to release region v at
the entrance of the await function. Otherwise, a deadlock will occur: The controlied variable of B is a
shared variable, changed by some other computational process. This operation will usually be placed within
region v. If region v were not released, no other process could enter it, and condition B would remain false

for ever.

But, one could ask: Could not the operation on the controlled variable of B be performed outside
region v? No, that would only exceptionally be possible. Generally, that would contradict the purpose of
applying critical regions: To prevent spurious errors, due to uncontrolled interleave of operations on
shared variables. Since the controlled variable of B is a shared variable, it would impede the correct
synchronization, if it was changed outside the critical region.

It should be concluded, then, that for statement (5), the critical reguon should be released upon
entrance of the waiting state.

Then, no reason remains for keeping the await function linked to the region cail of form (5) They
should be separated making 1hom two individual statements:

region v do S (6}
and ,
await B (73

Statement (6) is identical to the original unconditional region call, of form (1). This splitting would
provide some increased flexibility, since it would permit the use of the aweit function more freely. One
could argue, that the linking to the region call has the advantage that the await function can more easily be
recognized as a terminal part of the region call, so that the dispatcher will not re-enter the process again,
until condition B has become true. With two separate statements, an extra and thus unnecessary operating
systems call is a natural consequence. However, it should be a trivial task for a moderately intelligent
compiler to recognize consequtive region and await statements, thus eliminating the superfluous
user=-program entry followed by a new operating system call. -

Regarding "busy waiting”, it should be noted that a critical region is a resource, competed for by
several computational processes. This conflict can only be resolved by some dispatching program, usually a
part of the operating system. This means that the region statement (4) is handled as a call to the
dispatcher, which generally enters the call into a queue. It should, then, be very easy to implement B as a
condition for leaving the queue. Thus, the calling program is completely inactive, until the operating system
activates it again, by assigning region v to it, after the condition B has become true. '

In a more recent work, [10], Brinch-Hansen has apparently eliminated the "busy waiting", by
invoking the dispatcher. He also seems to have tried to avoid the inherent deadlock of his await. His
solution in [10] has certain other drawbacks, however. He has rearranged the form of the conditional

" critical region cali, to: . '

region v do begin await By S1 end (8)
cooperating with an unconditional region call like (1):
region v do S2 (9)

where S2 is supposed to alter condition B. This looks like a deadlock again, referring to the definition of
critical regions. The author circumvents this by defining a special temporary release of region v while the
first process is awaiting for condition B, thus allowing the second process to alter B. This temporary
release is, however, inside begin and end of region v, and this seems rather unlogical. It seems unlikely to
guess thls kind of operation from merely reading the program text, and it gives an unclean internal
operation of the dispatcher, manipulating the calling program from the main queue and over to another,

temporary queue.



-7-

A remark in [11] points out, that transferring the responsibility for testing of condition B over to the
monitor or dispatcher may impede the efficiency, because expression B must be re-evaluated after every
exit from a procedure of the monitor. There might even be several similar expressions throughout the
program that required similar re-evaluation. Fortunately, this can be improved considerably. Firstly,
efficiency can be improved by the user himself, by applying only simple conditions as B, like X = specified
integer, boo = true, etc. The second approach to improvement requires some explanation: The inefficiency
is hardly linked to where a testing is effected, whether this is in the application program, or within the
operating system. In any case, this is basically "busy waiting". An alternative to testing of condition B inside
the monitor is to enter the function (wait or region) itself, and perform the testing there. This "busy
waiting" is definitely no more efficient than doing it inside the monitor. Considerable higher efficiency can
be obtained by another and different approach:

The compiler could generate a list for each procedure, containing controlling variables of wait

and conditional critical regions, affected by the particular procedure, together with references to

the wait and region functions. At each procedure exit, only the conditions for the wait and region

functions referred to in the list should be re-evaluated. '
More philosophically, one might perhaps say, that there are totally three different methods to effect an
action upon the occurrence of a certain condition or event:

. - Interrupt generated by the event.
+ "Busy waiting" with repeated testing.
+ Prior to run-time, prepare a list showing functions affected by a change of value of a variable

within a certain code body, like a procedure. At run time, this list provides the ability to refer
actions directly, rather than testing the conditions from the opposite direction.

4.3. Conditional critical regions with priority.

So far, nothing really new has been mentioned about critical regions. | have merely explained certain
consequences and restrictions of methods published earlier, although these restrictions do not seem to have
been fully recognized in the published articles.

It seems now appropriate to propose a form of conditional critical region calls that has none of the
defects mentioned above. The new form is simple to use and to understand, because it is natural and
directly attacks the problem, besides it should give a very efficient code. -

The new form introduces priority into forms (4) and (6) above and comprises three system calls:

region vi=p when B do S ' . (10)
region vi=p do S ' (1)
await B ' (12)

Corresponding to the remarks about flexibility of eweit B, form (7), the await function can arbitrarily
be used in connection with the conditional (10) or unconditional (ll) region call.

The new element, p, is an integer or integer expression denoting the relative priority for grantmg
the region among competing programs. The assignment v:=p is not effected until the critical region is
entered, and the scheduler should arrange the queue of requesting access to the region, according to
decrecasing values of p, such that that one with the highest value will be picked first. The result is a
selection according to relative priority. The value of p must be defined before use, and dynamic priority
should be ecasy to apply.

Naturally, only p-values belonglng to calls within the queue are considered, and calls eniermg the
queue after a region is entered will be queued normally and only considered after the region is released,
‘even if the priority of the process currently in the region has lower priority than the approachmg process.
Aithough this non-preemptive mterpretahon of priorities should be quite self-evident, it is mentloned here,
to emphasize the fact before starting proving the algonlhms in the next section,

With this method, the "readers and writers” problem has a solution that is simpler than other
solutions frequently encountered in the literature, besides it has none of the defects cited. In section 4.5, |
will present an efficient and simple solution to a new version of the problem, presented in [11].



-8-
The solution to the original version of the problem is:
declaration:

var v : shared record rr, aw : integer end
initial values:

aw:=0; rr:=0;

reader: '
region v := | when aw 2 0 dorr :=rr+ 13
read;

region v :=3 dorr=rr-1|;

writer: .
region v := 2 when aw = 0 do aw := 1;
await rr=0;
writes
aw := 0;

Since the forms (10) and (11) are similar to (4) and (5), it should not be surprising to find the rewv
solution quite similar to the one presented in [4). Some signficant differences exist, however:

* The program for readers deviates only in the inclusion of priorities.

E In the program for writer, a new condition when aw=0 is included, making the region call simile~-
to that of the readers.

* The assignment aw:=1 replaces aw:=aw+], since aw will never need to have values different

from O or 1. Thus, a simple boolean varlablo could be adequate, provided the language syntax
would permit.

* The assignment aw:=0, terminating the write statement, need not be performed inside the critical
region.

4.4. Proof of correctness of new solution for "readers and writers" problem.
Let us use the following definitions of “active” and "rqnning" processes, slightly modified from [4]:

A process is active from the moment its request of a resource is acknowledged, until tha
resource is released.

A process is running from the instant it has been given permission to use the resource, until it
is released.

The definitions can be visualized:

roquest acknowledged .
permission to use

request 1 resource release

L 4

- time

running

x
e Sl

aclive

x

Fig 2.




-9-

With respect to the programs for readers and writers, active and running processes are:

A reader is active from the moment it has entered its region v before reading, until it has left
region v after reading. A reader is running from the moment it Ieavos region v before reading,
until it has left region v after reading.

A writer is active from the instant it has entered its region v before writing, until it has
executed statement aw:=0 after writing. It is running from the instant it has ended the await
function and is to start writing, until it has executed statement aw:=0 after writing.

In addition to identifiers introduced earlier, the following identifier is used in the proof:

rw

the number of running writers, according to definition above.

The proof will follow these lines:

1.

2.

3.

A set of crn(ena is established, believed to constitute sufficient condmons for tho proof to be

~complete.

A set of lemmas is established.
Based on the lemmas, each criterion is shown to be satisfied.

CRITERIA FOR CORRECTNESS OF PROGRAMS:

Cl.

Cc2.

c3.
cs.

Mutual exclusion of running processes follows two invariants:
X1 = (0<rw(l) {or: X1 = {((rw=0) v (rw=1)) )
X2 2 ~(rr>0 A rw>0)
X1 and X2 are both invariant true.
(overlaps partly what is expressed by Cl:)
Several readers can be active simultaneously, but as soon as a writer has applied for access,
further access of new incoming readers, as well as other writers, is prevented. Running readers
are allowed to conclude. When all running roadors have terminated, the pending writer is given
exclusive access.
No interference (i.e. unwanted or uncontrolled interaction) exists for use of shared variables.
No deadlock can occur.
Incoming writers have priority over incoming readers. (Aiso expressed implicitly in C2.)



LEMMAS:

L1
L2,

L3.

L4

LS.

L6.

L7.

L8.

L9.

~Lio.

L1l

-10 -

Initially, aw=0 and rr=0. This follows directly from the program text.

Since any change of rr is performed only inside the same critical region, these operations will
not intertere. ‘

Because of L2, and since a read funclion is embraced by the statement rri=rr+1 ahead of the
function and rr:=rr=1 following the function, a completing reader will leave rr undisturbed.
Further, rr will always indicate “number of active readers”, which is the number of readers
having finished their entry critical ragnons but not yet finished their terminating region. Thus,
rr20 is invariant.

What is said about readers in L3, is also true for writers. For a moment, let us assume that the
statement aw:=1 were aw:=aw+l. It is performed inside a critical region, where the condition for
entering this region is aw=0. If we could ensure that aw would not change, from the moment it
was tested aw=0 and until ending the execution of aw:=aw+1, the result would be the same if the
last statement were substituted by aw:=1 which is slightly simpler.

After one writer has entered, and made awe1, no more writers can enter, until the first one has
terminated, by executing the statement aw:=0. Thus, there can never be more than 1 writer

" active, i.e. aw can only attain the values O or 1.

When an outgoing writer is to execute the statement aw:=0, other writers can only be inactive
or waiting for access, because of L5. Thus, the statement aw :=0 will not interfere with any other
operation on aw. Consequently, the statement aw:=0 can be performed outside the critical region,
and the condition for the simplification made in L4 is valid, even though aw is changed, by aw:=0,
outside the reglon
If region v is available, a runnmg reader can always termmate, since the entry to region v is
unconditional. It may be delayed if v is unavailable, i.e. v is currently granted to some other
process. The duration of such a delay will only be very short, however. since no process
executes more than a single assignment statement within v.
Because of the invariant rr20 (see L3), and rr is an integer that only changes its value by unity,
the initial value of rr (which is 0), will eventually be attained, if further access for incoming
readers (executing rri:=rr+1) were blocked from some point on, and provided that all read
operations are executed in a finite time.
A blocking of incoming readers, as mentioned in L8, will be performed by an active writer. Since
incoming writers have priority over readers, an incoming writer will be granted access to v
before any incoming readers, so that aw:=1 will be performed before further incoming readerc
will be considered. Then, further access to region v will be denied for all incoming processes,
and the blocking mentioned in L8 will be effective. Thus, an incoming writer may be delayed in
its await-function, but it will remain here only a finite time, because rr=0 will eventually become
true, as stated in L8. It is also important to note that the "blocking” of incoming readers will be
effective until the active writer has terminated its writing and executed aw:=0, and this can only
happen after it has passed the await rr=0, which involves the necessity of rr=0. Thus, the
blocking of incoming readers will, once started, remain until rr has been counted down to rr=0,
as stated in L8.
A running writer is also active.-l.e. state running is a subset of state active, implying the
mvarlant true: .
= (0<rwaw)

The Booiean X2 can be changed to:

X2 = (rr}0) v (rw}0)
by De Morgan’s theorem. Since rr and rw are non-negative integers,
rr}0 implies rr=0 and rw}0 implies rw=0. Thus
- X2 = (rr=0) v (rw=0) :



PROOFS:

PI.

P2.

P3.

Pa.

P5.

P6.

-11 -

Because of Lemma L5, stating that aw can only attain the values 0 or 1, invariant ¥ (see L10)
gives immediately

rw = { ? } as only possible values.
This proves invariant X1 in Cl.
Proof of X2=true invariant:
According to L11, the proof is complete if we can show that either rr=0 or rw=0. The program
for writer shows, according to the definition for running writers, that when a writer is running,
i.e. after the passing of await rr=0, then rr=0. This must last at least until the writer is no longer
active, since awg0 blocks mcommg readers, according to L9. When a writer is running, then
rwp0, by definition.
This shows that either:

rr=0 or rw=0
which implies X2 = (rr}0) v (rw}0) is invariant true.
This completes the proof of Cl.

" The invariants X1 and X2 are proved in Pl and P2. X1 expresses that only one writer can be

running at a time. Even stronger, L5 states that anly one writer can have access (i.e. be active)
at a time. L9 states that further access of incoming readers is blocked when a reader is active.
This lemma further states that the active writer becomes running when ali running readers have
terminated. Thus, C2 is satisfied.

Proof of C3:

Shared variables are: rr, aw, buffer.

L2 and L6 states no interference for rr and aw. The buffer is changed only by a writer, when it
is running. We have already proved (P3) that when this occurs, no other process has access to

* the buffer. This completes the proof of C3.

Deadlock (Criterion C4):
One necessary condition for deadlock is that a program holds resources while waiting for other
programs to release resources. If this is proved not to be true, then deadlock will not occur.
Resources common to the program, and of significance for the deadlock problem:

rr=0, regionv, aw=0
The only place rr=0 is a condition for proceeding is at the await rr=0 in the writer's program. At
this point, the writer is neither in the region, nor is aw any condition for the execution whlch
leads to rr=0. Thus, the waiting for rr=0 will not induce deadlock.
region v: Accass to region v can be denied, either because the region is granted to some other
process, or because awp0. If the region is granted to some other process, this will never last
long {L7). If awf0, a writer must be active, and then aw:=0 remains to be done. Since we have
shown that await rr=0 will not involve deadlock, the writer will proceed normally, and finaliy
execute aw:=0. Thus, the awaiting for aw=0 will not cause deadlock. This shows that the cited
condition, necessary for deadlock, is not satisfied. Deadlock is prevented, and criterion C4 is
satisfied.
Incoming writers have priority over incoming readers:
This follows directly from the definition of conditional critical region with priority, and the fact.
that p=2 for wrl’ters and p=1 for readers. Thus, C5 is satisfied immediately.

This completes the whole proof.



SRS

-12 -
45. A solution to a modified version of "readers and writers".

Hoare, in [11], has presented a slight modification of the "readers and writers" problem:
The writers have priority over readers, as originally. However, readers waiting at the end of a
write are given priority over the next writer. The purpose is to avoid the danger of indefinite
exclusion of readers, in a burst of successive writers.

A simple solution of this, applying the method of conditional critical regions with priority, is

' presented without a formal and complete proof:

declaration:

var v ¢ shared record rr, aw : integer end
initial values: ‘

aw:=0; rr:=0;

reader:
rogion v := | do;
region v := 3 when aw = 0 dorr:=rr+ |3
read; ’
regionv = 4dorr=rr-1;

writer:
region v = 2 when aw = 0 do aw := |;
await rr=0;
write;
aw := 03

This solution appears simpler than that in [11] which, moreover, does not deal with the contention
problem at all. '
. When comparing with the solution of the original problem, shown in section 4.3, one note
immediately the following details:

* The increase of the highest priority, that one of outgoing readers, from 3 to 4. This should make
no difference, since it is the highest priority in each case.

X The "writer"'s program is unchanged.

* "Reader"'s program is extended with a preceding region call, without ‘action statement.

* Following the first region call for incoming readers is the conditional region call, as originally.
However, the priority is increased beyond that of the writers.

Region call of priority 1 has the same purpose as that of the original solution: Preventing the
continuation in the program if a reader arrives to this point simultaneously with a writer being on the point
of entering the region. Then, the writer will prevail. After the writer has left the region, the reader will
continue but will be suspended in the next region call, waiting for aw=0, as previously.

If a reader arrives slightly before a writer, the reader will enter its region the first time. After this
point, it is guaranteed to continue, also into the next entry of the region, despite the waiting writer,
because of the higher priority 3. Thus, the two region-entries will not be separated, and the reader is
allowed to continue until termination, together with other active readers, before the write is acknowledged.
Readers arriving later must first enter region v with priority 1, however, and this is prevented at this time
by the pending writer, which will be granted access first. This separates incoming readers into two groups:
Those who have not entered the region the first time: these must wait until the writer has changed aw,
upon which they will be trapped at the next entry of the region. The other group consists of those having
arrived before the writer; these will continue until termination.

While a writer is active, readers may freely enter region v the first time, since this is unconditional.
Then, they will wait for aw=0. Assuming that another writer arrives together with readers during a write,
the situation is, at the instant when the active writer terminates: Pending readers applies for region v with
priority 3 and thus dominates the waiting writer. Possible new readers, however, having yet not entered
the region the first time, will be delayed, because of the low priority =1, until the writer has passed the
region. At this time, however, aw=1 and the new readers must wait until completion of the writer.



- -13-

Consequently, also this time we have eHechver separated applying readers info two groups: Those who
entered during the previous write, and those arriving after. The effect is as raqmrod

5.

&3]
Q)
(7

(8]
(9]

(10]

-]

REFERENCES

Dijkstra, E.W.: Cooperating Sequential Processes. In Programming Languages (F. Genuys, cd.),
Academic Press, N.Y. 1968, pp. 43-112.

Habermann, AN.: Synchronization of Communicating Processes. Comm. ACM 15, 3 (March 1972),
rp. 171-176. '

Hoare, C.A.R.: Towards a theory of parallel programming. International Seminar on Operating
Systems Techniques: Belfast, Northern Ircland, Aug.-Sep. 1971.

Brinch-Hansen, P.: A Comparison of Two Synchronizing Concepts. Acta Informatica 1 (1972), pp.

190-199.
Courtois, Heymans and Parnas: Comments on "A Comparison of Two Synchronizing Concepts .

" Acta Informatica 1 (1972), pp. 315-376.

Courtois, Heymans and Parnas: Concurrent control with "Readers” and "Writers".'Comm. ACM
14,10 (Oct. -71), pp. 667-668.

Coffman, E.G. and Denning, P.J.: OPERATING SYSTEMS THEORY. Prentice-Hall, N.J. 1973. pp.
68-74.

Wirth,N.: The programming language PASCAL. Acta Informatica 1, (1971) pp. 35-63.

Griffiths, P.: SYNVER: A System for the Automatic Synthesis and Verification of Synchronous
Processes. Proc. ACM’74 pp. 1671-113.

Brinch-Hansen, P.: Operating System Principles. Prentice-Hall 1973,

Hoare, C.A.R.: Monitors, An Operating Systems Structuring Concept. Comm. ACM 17, 10 (Oct.
-14), pp. 549-551. '



