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Abstract

The use of abstract syntax and a behavioral model is discussed from
the view-point of structuring the complexity in definitions of programming
languages. A formalism for abstract syntax is presented which reflects
the possibility of having one defining occurrence and an arbitrary number
of applied occurrences of objects. Attributes can be associated with
such a syntax for restricting the set of objects generated, and for
defining character string representations and semantic interpretations
for the objects. A system of co-operating automata, described by another
abstract syntax, 1is proposed as a behavioral model for semantic

definition.
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1. Introduction.

In abehavioral definition of a programming language, the meaning

of a program is defined in terms of its dynamic execution or interpretation.
In other words, a behavioral definition gives an abstraction of the
run-time behavior of programs, not only of the input-output mappings
performed by them. To be useful, the abstractions introduced by the
definition should provide appropriate mental tools for intuitive
understanding of program behavior. Such models and tools are needed
both when implementing and when teaching programming languages.

Rather than defining directly the meaning of a program given as a
character string, it is useful to introduce an intermediate level of

abstract programs. The meaning of an abstract program can be defined

by postulating a machine to execute abstract programs, or by giving an

interpreting automaton for them, or by providing an abstract compiler

which translates abstract programs into some kinds of automata. The

third alternative introduces to the definition another level which will

be called a behavioral model. This leads to the following levels of

definition:
- string representations,
- abstract programs,

- behavioral model.

The monumental definitions of PL/I [25] and Algol 68 [24] can both
be characterized as behavioral definitions. In the former, abstract EL/I
programs are essentially syntax trees of string programs, with some of
the complexities of string representations removed, and an interpreter
is provided to determine their meanings. 1In the latter, careful language
design and a powerful syntax formalism make it convenient to use syntax
trees themselves as abstract programs, and a machine, or "elaboration"
mechanism, 1is given for their execution. 1In addition, [24] has an
additional "surface level" in which actual representations are provided
for the "abstract" character set used at the other levels.

Levels of language description are intended to provide a natural
classification of language properties according to their "deepness".

It is assumed in the following that abstract programs are free from

features not essential to their structure and meaning. Those properties




which nre associabod with Lhe mapping between shring representalions and
abolract progreams can Lhen be called surfncee propervbics, while obhcr

propertics arce deep properties. Concerning the labler, Lhe behnvioral

model is a natural level for the most fundamental concepbs underlying
the l=nguage. Ideally, these concepts should be "universals”, common
to a sarger family of languages.

No language definition seems to have made Tull use of such structuriag
of language concepts by levels of language description. For instance,
abstract PL/I programs indicate such surface properties as the number of
redundant parentheses and the particular choices for identifiers. 1In
Algol68 Report, on the other hand, the powerful syntax formalism allows
extensive use of syntactic definition. For this reason there has not
been need for clear separation between surface properties and deep
properties. It appears to the author that the lack of such separation
is a greater difficulty for an uninitiated reader of [Eh] than the
formalism of w-grammars. The poscibility of including the most funda-
mental concepts in a behavioral model has not been utilized in any of
these two definitions, as abstract programs are interpreted or execuled
directly.

As mentioned above, a behavioral model should reflect some of the
most fundamental concepts in programming. If the mode.l is based on
"typical" properties of present computers, as the implicit models in the
definitions of Fortran and Cobol, it does not give any mental tools for
understanding programming and programming languages. Even when higher-
level models are used in a definition, they might be restricted by the
current technology. For-instance, a stack-oriented behavioral model
might be suitable for a language not requiring more general techniques
for storage allocation, but its use would be limited to a restricted
class of languages. Although no universally applicable behavioral model
is to be expected, it appears that useful models could be given for
families of languages based on the same conceptual backgrounds. An
important aspect of a behavioral model is the way it models parallel
processes. The emerging understanding o £ how to manape such procacoo:n

should provide appropriate ways ofincorporatingthc m in bo wmodeld.




The thesis of this paper is that the three levels of language
definition described above correspond in a natural way to the abstractions
that a language designer has in mind. Submitting such a vision of the
language to the reader would he very helpful in language definitions and
textbooks. The techniques proposed for this purpose are based on a
generalization of abstract syntax [17,18] with attributes associated with
the nonterminals [11l]. A simple example will be used throughout to
illustrate the techniques. A system of automata, communicating with each
other, 1is outlined as a behavioral model.

It is understood that the separation of language properties according
to "deepness" is subject to similar non-objective criteria as language
design. In part, this is due to programming languages being man-made,
not something given to us like the physical world. In particular, any
suggestion for language universals can be contradicted by designing
another language specifically for this purpose. The behavioral model
outlined below will be directed towards block structured languages. Tt
is included mainly to illustrate the general ideas of the paper. FoTr
practical purposes it should probably be extended with further capabilities
reflecting some other fundamental concepts in programming.

The ideas developed in this paper have been induced and influenced
by & number of other papers, some of which are mentioned in the biblio-
graphy* To pick out the most important ones after Algol 60 [20], I would
like to acknowledge Landin's work on h-calculus models [13,1L4], Strachey's
efforts to single out fundamental concepts of programming languages
[22,25], the definitions of PL/I [25] and Algol 68 [2L], Johnston's
contour model [10], the class concept of Simulaf7 | 9] and its effect
on the development of programming-concepts [1,2,8,9,19], as well as

Knuth's idea of synthesized and inherited attributes [11].



2. Formalism for Abstract Syntax.

Abstract syntax deals with objects having certain kinds of structural

relationships. More precisely, an object may have other objects as its
immediate components. The transitive closure of this relation will be
called the component relation. The set consisting of an object x and

all its components will be denoted by c(x)

Generalizing the concept of an abstract syntax [1(], we shall allow
an object to be an immediate component of several objects. Also, it will
be possible for an object to be its own component, although we shall
introduce quite severe restrictions in these respects. Only finite
structures will be considered, i.e., it will be assumed that c(x) is
finite for each object x

Abstract syntax expresses structural relationships in terms of

structural productions resembling ordinary context-free productions

for formal languages. Fach nonterminal of an abstract syntax represents
a class of objects, and these classes are assumed to be disjoint for
different nonterminals. For each non-terminal there are productions
indicating the different ways in which objects of this class may- have
other objects as their immediate components. The productions for one
class are also assumed to be disjoint in the sense that no object will
consist of immediate components according to more than one production.

As an example, the production
e:Fxpr - SUM({el:Expr, e2:Expr)

indicates that an object of the class Expr may have two immediate
components, both belonging to this same class. The label SUM is uced
to identify the production, and labels e , el , e2 are introduced ho
identify objects in the context of this production. Obviously, triple
labelling -- nonterminal names, production names, and object names in
productions -- could be avoided in our notations. It is felt, however,
that this redundancy is a convenience when using the formalism.

In order to cope with situations when an object is an immediate
component of more than one object, we distinguish between two cases of
immediate component relation, called primary and secondary immediate

comporent relations. ffurthermore, we require that every object is a

N




primary immediate component of at most one object, and that the transitive

closure of the primary immediate component relation, called primary

component relation, is non-reflexive. This means that objects are

connected by a tree structure, with additional connections indicating
secondary components. The set consisting of an object x and all. its
primary components will be denoted by p(x)

In the productions a secondary component will be indicated by

enclosing a non-terminal in parentheses. For example, the production
s:St - ASS((v:Var), e:Expr)

indicates that an object of class St may consist of a secondary
component of class Var together with a primary component of class Expr.
Corresponding to whether a component is primary or secondary, it is

called a defining or applied occurrence of that object. Correspondingly,

occurrences of nonterminals in the right-hand sides of productions will
also be called defining or applied.
Corresponding to terminal symbols in a context-free grammar, an

abstract syntax has terminal sets which are disjoint from the sets

determined by the nonterminals. For instance, 1if N denotes the set

of nonnegative integers, the production
e:Expr - CONST{((n:N))

indicates that an object of class Expr may have an arbitrary nonnegative
integer as its only component. Such terminals are given as applied
occurrences to emphasize that they have no defining occurrence in the
syntax.

Another way to terminate a structure is provided by productions
indicating explicitly that an object of a non-terminal class is alomic
with regard to the component relation. This is illustrated by the

production
viVar - ATOM( ).

To summarize, an abstract syntax consists of a finite family of

terminal sets, a finite set of' non-terminals, and a finite set of

productions, where each production indicates one possibility for objects

of a nonterminal class to consist of primary and secondary components of



ii7en nonterminal classes and/or terminal sets. These possibilities are
assumed to be disjoint in the sense that each object has components as
indicated by exactly one production. (However, several productions for

the same nonterminalmay be similar, except for production identifications.)

One of the nonterminals is designated as the starting non-terminal, and

an object x 1s generated by the abstract syntax, iff

- x belongs to the class of the starting nonterminal,
- the primary component relation imposes a tree structure on p{z),

- elements of c(x)-p(x) are elements of terminal sets.

Our previous examples of structural productions involved a fixed
number of components. IFor notational-convenience we introduce the

notation
lab: Object*

to denote a sequence of an arbitrary finite number of components of the
same class. For a sequence of n components, the individual members
are identified by indexing the label used: lab[l], . . .,lab[n| . When
used without indexing, the label will identify the whole set. The indez
set {1,...,n} of a label will be denoted by z(lab) .

At an example, let us consider the following abstract syntax, where

N denotes the set of nonnegative integers:
p:Prog - PROG(b:Block)

Al g ¥ ars * \,
b:Block BLOCK(v:Var”™,s:5t )
s:0t - COMP(b:Block)

i

- so({vivar),e:Ixpr)
e:Fxpr - CONST{((n:N))

— JAR( (v:var) )

+ SUM (el : Txpr, e? : fupr,

- PROD{el:Fxpr, e2:hzpr)
NEG{el:kxpr)
vivar - ATOM{ )

!

Intuitively this abstract syntax 1s meant to generate block structured
programs with assignment statements involving simple arithmetic expressions

over integers and integer variables. However, no scope rules for variables

have been incorporated at this stage.



Any object generated by an abstract syntax can be represented as
directed graph with suitable labelling in an obvious way. For instance,
one of the objects generated by the above syntax could be represented as
the graph of Figure 1. Each node in the graph corresponds to one object.
An object is marked by its nonterminal class or by a notation for an
element of a terminal set. Continuous lines indicate defining occurrences,
and dotted lines indicate applied occurrences. The productions involved
are indicated by production labels under nonterminal names. Obj ect
identification (in the context of productions applied) is given by
attaching appropriate labels to both nodes and edges.

Synthesized and inherited attributes [1l1l] can be associated with
this kind of abstract syntax in the same way as with conventional

context-free grammars. However, no attribute definitions should be

associated with applied occurrences of nonterminals. For instance,

we can associate an attribute ¢ with the above syntax as follows:

p:Prog - PROG(b:Block) ap =
b :Block - BLOCK(v: var', s:st ) dy = U g
i (e) T
s:0t - COMP(b:Block), a, i
- ASS{(v:var),e:lixpr) := (v} ua,
e lBxpr - CONST{((n:N)) a, := ¢‘
- VAR((v:var)) i {vi
- SUM{el:Expr, e2 :Expr) = a%]lJagg
- PROD(el:Expr, e2:Fxpr) = g%llJaL?
- NEG{el:Expr) t= g

v:Var - ATOM{

lor all nonterminals (except Var ) the attribute ¢ is set -valued und
synthesized. Association with different objects in the context of a
production is indicated by appropriate subscripting of 7 . The
intuitive meaning of ¢ is the set of those variables which have been

used but not properly declared in the structural unit in question. The
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cot ol objects
{er prop|a, - ¢}

wold now consist of exactly Lhose objecle of clase Prog which
intuitively corrcopond Lo prosrams whose variobloes rc used only when

they have been declared in an enclosing block.

e Associating String Representations with Abstract Frograms.

The attribute technique is also useful for associating concrete
character string representations with objects generated by an abstract
gyntax. Since one object may, in general, have many different represen-

tations, we shall use nondeterministic attributes. In other words, an

attribute definition may provide a set of possible values, preceded by
the monadic selection operator 0 . By this notation we understand that
any element of the set can be taken as the value of the attribute in
question. When an attribute value is determined by a conditiocnal
~xprescion, nondeterminism mayalso appear in the formthat more than
one or none of the conditions hold. 1If none of the conditions hold,
the attribute value is undefined, and some other choices for attributc
values must be changed to get out of this dead end. +vertical bars (i)
will be used to separate alternatives in conditional expressions, and
each condition will be separated from the corresponding expression by
a colon ( : ).

As an example, let us assign a string-valued attribute T and an
integer-valued attribute { to the previous abstract syntax, as given
in Figure 2. The following clarifications should be added to the

notations used:

4

- The notation c“(>L<V)(xi) stands for the concatenation

i
xlzxgz "'ZX‘L(V)I if [L/v)| >1, for 71 it ‘L(T)\ 5
and for the empty string if |o(v) |- ¢ .

Symbols L and D stand for the sets of lotters and digitc,

corresponding+

10
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the czprescinne (sets) given for strinec-valued atbribiives e

bo be underctood as strinps (cete of gbrings) . No notabional
distinction has been made belween string expressions and

arithmetic expressions.

- Attributes can alsobe associated with element=; of terminal sets.
In this example, attribute J is defined for objects nclN | and
its definition involves making use of arithmetic operations

defined in N .

For any X ¢ Prog , the possible values of TX are now defined as
the possible string representations of X . Nondeterminism in attribute
definitions allows for arbitrary redundancy in parenthesizing, and for
arbitrary variable names . The definition of TBlock guarantees that
tLhe same name cannot be used for two different variables in bhe same block.
In this particular case it can be easily verified that Tx has
values for all objects » « Prog . In general, this would not nced 1o

be the case, because of the "dead ends" involved in attribute del4initions.

Une possible value of Txiﬁu‘the particular X given in Pigure 1 is

begin new a;
a+« 1;
begin new b;
b - atl

endd

end

L, Behavioral Models.

A: mentioned previously, one would wish u behavioral model Lo
reflect fundamental concepts of a language which would be common for s
larger group of languages. Typically, such deep properties would be
related to concepts like block structure, data types, and sequential

and parallel act ions
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Models based on h-calculus [13,14] and the more visual contour
model [10] mainly reflect block structuring, and it would be very
difficult to understand block structured languages without these or
similar mental models. However, data types and parallelism seem to
require different kinds of models.

The main problems with data structures are associated with sharing
through explicit or implicit pointers, and with control over access and
updating. Sharing can be expressed in terms of relations which can be
visualized as directed graphs, as e.g. in [4,5,12].

As an example, let us consider some properties of data structures
in Algol68- For simplicity, routines will be omitted from the discussion.
The relations used in the behavioral model are the following: a "name"
"refers to" a value, and a "structured" or "multiple" object has
components together with selectors. Superficial knowledge of these
relations and analogy with other languages with similar structures
might lead to the incorrect visualization given in l'igure 5. Different
data objects are grouped there into "plain wvalues" V , non-structured
names N , and into "structured" and "multiple" objects § . Arrows
starting from N indicate the relation "to refer to" for non-structured
names, and those starting from § indicate component relations. All
"refer to" chains and component chains are assumed to be finite.

Objects in V are assumed to exist independently of any program;

objects in N and S are "created" during program execution. The
relation "refer to" is changed by assignments; assignment to an element
of s is understood as simultaneous assignment to all of its components.

This visualization is shown insufficient by the existence of
structured objects to which no assignment can be made, even if the
components can be updated individually. This leads to the modification
given in Figure 4. Non-updatable structured objects are grouped into o'

it

elements of S are restricted to have no components in v or § R

elements of N are restricted not to refer to any object in S' ; each
element x of s is postulated to refer to an object x' ES' such that
the components of x' are the values referred to by the components of x

Objects x and y in Figure 4 are otherwise similar, but y can be

updated only by individual assignments to its components.

-
(S
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lizamples of this kind show Lhe usefulness of graphs as viouol

ai ds in understanding data structures, especially when dealing with
several languages where similar structures are understood differently.
Such a model is suitable for expressing properties of sharing, but it
is insufficient for indicating aspects of protection on data access and
updating, except for very limited special cases. Also, it tends to
treat data objects as passive objects, and this causes difficulties in
dealing with routines or procedures as data.

One way to overcome the problems mentioned above is to treat data
objects as active objects, as suggested by the class concept in Simula /]
[7]. This leads to the view that each data object is some kind of an
automaton, which is initialized when created, and which is thereafter
able to communicate with other automata by responding to certain requests.
Access to the "value" of an object or to its "components", and any
updating, would only be possible through such requests sent to the data
object in question. Operations defined for data types could also be
evoked by such requests only. This kind of a behavioral model also
provides a natural framework for parallelism, as all data objects would
be envisaged as automata ”living” simultaneously. Notice that such a
model deviates in several respects from Simula 67, where only
quasiparallelism is allowed, unrestricted external access to "attributes”
of' data objects is permitted, and primitive data items are not treated
as independent active objects.

Primitive values like integers, reals, Booleans, etc., can now be
considered as primitive automata, existing independently of any program.
In other words, no such automata can be created or initialized by a
program. The only way such automata can communicate with other
automata is to respond to certain requests. Parameters associated with
such requests, and the responses, are always automata themselves. For
instance, if the automaton for an integer i is asked for its negation,
the response gives the automaton for -i . Similarly, if an automaton
for a-truth value is sent a request corresponding to jf-then-elge
-operation, together with two automata as parameter:;, it return:: oune

of the parameters as the response.

15



variabl co are now thoupghl 0 I' as aulomata whi ch can be "e reabod by

aoopropooeam in other words, amoryr Lhe objeeteoxicbing" ouloide o
progrram, Lhere are " schemes ' which can be ugsed Lo cercatce "new'" aulomnatba.
Using such a scheme results in the creation and. initialization ol an
automaton, which can thereafter respond Lo certain requests. f'or

instance, there are primitive schemes for integer variables. Aftler
initialization, an automaton created by such a scheme is capable of
responding to requests about its "value", and to update this value.
Structured objects and arrays have somewhat more complicated schemes,
which must also be primitives in the behavioral model.

A block structured program can now be viewed as a hierarchical
structure of schemes of automata, such that each new automaton has
certain schemes available for the creation of further automata. Program
execution is then modelled as the creation of a system of automata
communicating with each other and creating new automata. All the "real"
work of the program is done by the primitive automata existing
-independently of the program.

Parallel operation of a system of automata is conbrolled by allowing
each automaton to process only one request at one time. Iurther requests
are thought of as waiting for their turns. Since a response is expected
for each request, the requestin¢ automaton has to wait for the request
to be processed. Parallel processes can be created by allowing the
initialization of an automaton to proceed simultaneously with continuing
the process which evoked this initialization.

Comparing with the definition of Algol 68, it is pointed out that
its behavioral definition is essentially based on monoprogramming, as
"collateral elaboration" is defined by "merging" the sequences of
primitive actions corresponding to the constituents. When the
constituents involve updating the same data objects, that model doe::
not determine what happens, ao the primitive actions are not specificd.
T the model proposed here, ull operations on Lhe same data item o lway
excluie each other in time. Since integers, [(or instance, are concideoerod
as individual automata, we get the curious restriction of parallelicr ,
however, that two operations involving the same numbers rcannct he

performed simultaneously. This situation could be avoided by letting
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different occurrences of the same number correspond to distinct but
similar automata.

This kind of a model for programs is compatible with many of the
current views of operating systems and data bases, and with the principles
of structured programming. In fact, similar extensions of the ideas in
Simula 67 have been applied to control parallelism in the programming
of operating systems [1,2, 9], and in the design of languages for
structured programming [6,15].

An operating system can be characterized as a collection of
processes communicating with each other. Although these processes are
usually executed on a single processor, this view becomes especially
clear when thinking of each process as having a processor of its own.
Such a view has advantages even when used only as a mental model to
understand a conventional operating system, since it seems easier to
introduce restrictions on parallelism into an inherently parallel model,
than to introduce suitable quasiparallelism into a basically sequential
model. However, it also appears to be quite feasible to construct
multiprocessors where different kinds of operating system duties have
been distributed to different processors. In particular, it seems
promising to use dedicated processors for data bases. In such & case
parallelismof the model would correspond to real parallelism in the
operating system. Note, however, that aspcctc of protection in operaling
systems would need further elaboration of the model.

In addition to parallelism, this model reflects the principle of
information hiding [21] in a natural way. Besides being an important
design principle, information hiding is needed to describe data
independence in programs using data bases. In this case it is not only
a property of the model that direct access and updating of passive data
items is prevented. On the contrary, it is then an essential feature
of the system to be modelled, that all external access must take place
through explicit requests. For instance, a program cannot "know"
whether a piece ofdata, which is accessible to it, is actually stored
in the memory, or whether it is computed each time it is requested.
Similar independence of data representation is an essential feature in

"structured programming", and. several efforts are being made towards

17



incorporating cuch ddeas into programming lanuages | 0,7,15 | . from the
viewpoint o forma | deceription it does not matter whether this
independence of representation is a run time fealure, ac it typi cally
is in data base systems, or whether program compilation is allowed to
optimize object programs by making use of actual representations, as

it should be done in programming language implementation.

(

5. Abstract Syntax for a Behavioral Model.

The discussion in the previous section can be made more precise by
describing a system of automata as a structured object. Then we have
an abstract syntax both for the language to be defined and for the
objects in terms of which we wish to define its semantics.

A system of automata is a dynamic object which is modified during
its operation. New automata can be added to the system during execution,
and they can be in different stages of execution at different points of
tine. Initially, the system consists of only one automaton, which is in
its initial stage of execution. This initial system is given as the
semantic attribute of a program.

As terminal sets of an abstract syntax for the behavioral model we
have the set of primitive automata P , the set of primitive schemes
lor automata § , and the set of operation identifications of automata I

Let us now consider objects with the following structure:

6 :Oystem 3 SYST(a:Automaton*,(p:Pﬁ))
a:Automaton - AUTOM(sub:SCheme*,e:Expression*,op:Operation*>
s:Scheme 3 SCHEME(f:Hbrmal*,sub:Scheme*,e:HXpression*,op:Operatiwnx)
op:Operation - OPER(s:Schenme, (id:1))
f:Formal 3 FORMAL({ )
e:Expression - PRIM{(p:P))
- AUT{(a:Automaton) )
- FORM{(f:Formal))
- NEW((s:Scheme),par:Ixpression” )
- NEWPR((s:3),par:Expression”)

- OP(target :Expression, (id:I), par:kxpression™)

18
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which are "evaluated" during initialisation,cor Operations, and o ¢

Schemes for the construction of further Automata. A Scheme issimilar

to an Automaton, except for having Formals for parameterization. An

Operation is simply a Scheme together with identification id ¢I . An

Expression can be an automaton, a Formal, a scheme together with

parameters, or a request for an operation of a target automaton. We

shall require that every Formal appearing as a secondary component is

a primary component of an enclosing Scheme. Also, the identifications

of Operations within one automaton and scheme are required to be distinct.

(Except for primitive automata and schemes, these requirements could

easily be expressed in terms of attributes associated with the syntax.)
The behavior of a System can now be defined as follows. Initially

a System consists of exactly one Automaton and of no primitive

automata peP . Its behavior is defined as the sequential evaluation

of Expressions e[i] of this automaton.

The evaluation of an Expression gives an automaton as a result, and

is defined as follows:

If the Expression is an AUT (or a PRIM), the result is the
Automaton a (or the primitive automaton p ).

No Expression of the form FORM will ever be evaluated, since
such an Expression cannot appear as an e[i] of an Automaton.

If the Expression is a NEW (or NEWFR), a new Automaton (or

new primitive automaton) is created using the scheme s and

parameters par[i] and the initialization of this new automaton

>
will be started. This new automaton is attached to the current
System as another component a[i] (or ©pli]), and it will
itself be the wvalue given by the evaluation of the Expression.

If the Expression is an OP, the target and all par[i] are

at first evaluated in sequence. Then the id-operation of the

target is evoked using parameters par[i] . The value given by

the OP-Expression will be the value obtained as a response from

this operation.
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An operation of an automaton is evoked as follows:

Each automaton is assumed to have a mechanism delaying
operations so that no operation is started while the automaton
is being initialized, or when another operation is being performed.
For primitive automata, operations will not be specified further.
Evoking an Operation on a non-primitive Automaton means

creation of a new Automaton using the Scheme of that Operation and

the parameters par[i] given in OP. The value given by the
Operation is the value given by the evaluation of the last

Expression of this new Automaton.

In order to define how new automata are created, we need some
notations for constructing structural objects of their components.

In general, given a production
c:Class - PROD(cl:Classl, ® ..,cn:Classn)
and some objects xleClassl,..., xneClassn , the expression

¢ = PROD{cl:x1,..., cn:xn)

will denote an object ¢ « Class with components x1, .. .,xm according
Lo the production PROD. (Although not indicated above, all component:
xi need not be primary.) As each object can be a primary component of

at most one object, it is required that for each ci with a defining
occurrence in PROD, the corresponding xi is not a primary component
of any other object.

In addition to constructing objects of components, we need a
notation for "copying" objects and "replacing" some of their secondary
components by others. More precisely, given objects x, a, b , another
object y 1is obtained of x by replacing applied occurrences of a
in x by b , denoted as y = xz ;, 1ff there is a one-one mapping
f:p(x) - p(y) with the following properties: (i) f(x) = ¢ ;

(ii) for each z e¢p(x) , objects z and f(z) belong to the same
nonterminal class; (iii) for each z ¢p(x) , if z consists of
components zl,...,zn , then f(z) consists of components ul,...,un

such that
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- 1f zi=a 1is a secondary component, then ui = b ;

else, 1if zi 1s a secondary component and zi/ p(x) , then
ui = zi ;

else, ui = f(zi) ;

the production for f(z) is the same as that for =z , or, in

case z has a as a secondary component, a production uniquely

determined by the object classes of ui

In other words, primary component relations and secondary component
relations "within" X are copied into corresponding relations "within" vy ;
secondary components outside p(x) will be taken directly as corresponding
components in the "copy". ©Notice that the last condition above prevents
the use of the notation xba if ambiguities would arise from productions
with similar right-hand sides. When applied occurrences of more than
one object are replaced, ordered sets of the same size can be used

instead of a and b

With these notation, the creation of a new automaton can be defined

as follows:

When a new automaton is created, it is attached as another
component ali] or pli] to the current System, and its
initialization is started. For a non-primitive automaton
initialization means sequential evaluation of its e-Expressions.

1t |f] £ |par| , the creation of a new automaton is not
defined.

For primitive schemes the creation of a primitive automaton

will not be further specified.

Given a non-primitive scheme s Scheme with the structure
* ¥
s = SCHEME(f:Formal ,sub:Scheme*,e:Expression*,op:Operation/} ’

together with parameters par[i] , such that |f| - |par| , the
new Automaton will be

ar ar ar
? s e:eg , op:op? N

In other words, a 1is obtained of the sub-, e-, and op-components

of s by replacing each (applied) occurrence of f[i] in them by

a = AUTOM{sub:sub

the corresponding par[i] .
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Having defined a behavioral model, we can use it for the semantic

definition of our example language of Section 2. 'This can be done by
agsociating suitable attributes with the abstract gyntax, a:: given in
Pipgure 5. The primitive automata in the model are thoce corresponding
to integers, denoted as P, and those which can be created by the
primitive scheme new . The former are assumed to have operations with

identifications plus , times , and neg , and the latter are assumed

to have operations value , and assign .

Most of the nonterminals have only one semantic attribute 2 (for
semantics). In addition, the nonterminal Block has an attribute R
(for request), and St has an attribute / . Notice that blocks are
interpreted as schemes with one operation, with identification execute .

As an example, Figure 6 gives the value of the semantic attribute
J; for the object x of Figure 1. For clarity, all terminal objects

are repeated in Figure 6 for each occurrence.
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6. Summary and Conclusions.

Different kinds of methods and tools are being used for the
definition of programming languages, depending on the intended audience
and on personal preferences. Some general principles seem to have
_emerged, however, which can be applied independently of the particular
- choices.

One question which is often discussed, 1s the appropriate level of
generality of definition methods. If the definition is intended to be
used by mechanical aids for compiler constructian, then too powerful
methods lead to undesirable complexity of algorithms. Experience has
shown that no single tool has the right generality for defining all
aspects of a programming language for such purposes, and the only
solution is then to divide the definition into several stages, each
using its own methods and tools tuned to an appropriate level of
generality. On the other hand, when the definition is intended for
human audience, it is not the generality that counts, but how this
power can be "structured" to be used in an understandable way. In this
case, it would also be a disadvantage, 1f too many different methods
would be needed. The particular methods discussed in this paper are
intended purely for human audience, and it is understood that they are
much too powerful for mechanical manipulation, unless essential
restrictions are imposed.

Language definitions usually consist of syntax and semantics.
There is no sharp distinction between these two parts of definition,
in principle; syntax is just a first approximation. In fact, what is
included in syntax, 1s usually strongly influenced by the particular
definition methods selected. For instance, features not describable
by a context-free grammar are often left to semantics. On the other
hand, w-grammars are an example of a syntax formalism which is powerful
enough to include the whole definition in syntax, if one sc wishes.

For a mechanical processor, syntax determines a set of character
strings, and semantics associates meanings to a subset of syntactically
correct strings. For a human reader, syntax has another important

function in providing a basis for abstraction. In fact, it is this
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function, not the generation of syntactically correct gtrings, that ¢ an
Justify starting language description for humans by syntax. an abstract
conception of programs is essential for understanding a programming
language, and this seems to be the natural starting point in designing,
learning, and using a language. While it is a translator's task to
inspect arbitrary programs and to determine their meanings, 5 yser
proceeds in the reverse direction: he has an abstract -program in mind
and wants to exprecg it in the lanpuage.

Unfortunately, it seems impossible to provide g suitable abobraction
ol a complex language by its ctring syntax. InAlego] (8 Report, fox
instance, this abstraction becomes quite complicated because of scveral
aspects of external string representations, such as coercion rules,
equivalence of modes, and the correspondence between defining and applied
occurrences of identifiers and operators.

A natural conclusion of the above is to separate the description of
the abstract structure of programs from the string syntax of the language.
This means that language description should be started with an abstract
symtax . In addition to providing suitable abstraction, an abstract syntax
divides language properties in a way which seems pore natural than the
classical separation of synbax and cemontic s . Propertics dealing wibh
charact er string reprecentations ol abstracl programs can be called

surfucc —properties, while the rest will be decp propertics.  Apain, il

depends on one's abstraction, how different -properties are clascilicd
into these categories. 1In any case, such a classification should notl he
based on limitations in the tools used for the definition, but on an
intuitive understanding of what are the essentials in an abstraction of
programs.

As an example of a general formalism for abstract syntax, we have
proposed a system of structural productions which allows both defining
and applied occurrences of objects. Surface properties can then be
defined by attributes associated with these productions.

Since abstract programs may still be too complex for direct semantic

definition, another level of abstraction, called a behavioral model, is

proposed. In some sense this corresponds to the idea of compiled propgrams,

and the same behavioral model might well be used for the semantic
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definition of several languages. 'This level divides the deep properties

of a language into two subsets: those which are inherent in the behavioral
model, and those which are associated with the mapping of abstract programs
into this level. Again, there is no unique way to determine this
classification. Being an abstraction of compiled programs in execution,
the behavioral model should reflect what is considered conceptually most
important in such processes, and it should suppress practicalities like
those imposed by the bounded memory size of real computers.

We have presented a simple example of a behavioral model. 141 g
based on envisaging program execution as creation and interaction of a
collection of automata. This view is extended to primitive values, which
are also considered as independent automata. Creation of new variables
corresponds to creation of new automata, based on some primitive schemes
for automata. Including primitive values (together with the operations
allowed on them) and primitive schemes for variables in the behavioral
model, means that at least some aspects of the concept of type will be
inherent in the behavioral model. However, "static" aspects of type
consistency can best be discussed as theorems concerning the mapping
bhetween abstract programs and the behavioral model. As another example
we notice that memory allocation strategies are not reflected in any wiy
by the behavioral model. All automata will continue to belong Lo the
system indefinitely, once created, even it they remain "passive" und
inaccessible to the rest of the system. Again, sufficiency of certain
memory allocation strategies could be stated as theorems about the
mapping of abstract programs into the behavioral model.

No attempt has been made in the present paper to define a complete
programming language using the methods and principles advocated.
Therefore, the formalisms and models proposed should only be taken as
hints and fragments to be considered when defining a complex language.

In particular, we believe that the general principles presented would
help to structure the complexity of a programming language definition

in a more manageable way.
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