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- Abstract

The use of abstract syntax and a behavioral model 1s discussed from

the view-point of structuring the complexity in definitions of programming

languages. A formalism for abstract syntax is presented which reflects

the possibility of having one defining occurrence and an arbitrary number

| of applied occurrences of objects. Attributes can be associated with

| such a syntax for restricting the set of objects generated, and for

defining character string representations and semantic interpretations

for the objects. A system of co-operating automata, described by another

| abstract syntax, 1s proposed as a behavioral model for semantic

definition.
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u 1. Introduction.

| In a behavioral definition of a programming language, the meaning

| of a program is defined in terms of its dynamic execution or interpretation.

. In other words, a behavioral definition gives an abstraction of the

| run-time behavior of programs, not only of the input-output mappings

performed by them. To be useful, the abstractions introduced by the

| definition should provide appropriate mental tools for intuitive
understanding of program behavior. Such models and tools are needed

| both when implementing and when teaching programming languages.
Rather than defining directly the meaning of a program given as a

character string, it is useful to introduce an intermediate level of

abstract programs. The meaning of an abstract program can be defined

by postulating a machine to execute abstract programs, or by giving an

interpreting automaton for them, or by providing an abstract compiler

which translates abstract programs into some kinds of automata. The

third alternative introduces to the definition another level which will

be called a behavioral model. This leads to the following levels of

definition:

- string representations,

- - abstract programs,

- behavioral model.

- The monumental definitions of PL/I [25] and Algol 68 [24] can both

: be characterized as behavioral definitions. In the former, abstract PL/I

programs are essentially syntax trees of string programs, with some of

the complexities of string representations removed, and an interpreter

u 1s provided to determine their meanings. In the latter, careful language
design and a powerful syntax formalism make it convenient to use syntax

| trees themselves as abstract programs, and a machine, or "elaboration"
mechanism, is given for their execution. In addition, [24] has an

[ additional "surface level" 1n which actual representations are providedfor the "abstract" character set used at the other levels.

Levels of language description are intended to provide a natural

| classification of language properties according to their "deepness".
It 1s assumed in the following that abstract programs are free from

| ~ features not essential to their structure and meaning. Those properties

i



which are ascocialod with Lhe mapping between cbring reprecoentabions and

| abolract programs can then be called surface properbics, while olher
properties are deep properties. Concerning, the dalbber, the hoehoyioral

3 model is a natural level for the most fundamental concepls underlying

the language. Ideally, these concepts should be "universals”, common

] to a iarger family of languages.

No language definition seems to have made full use of such structuriag

of language concepts by levels of language description. For instance,

| abstract PL/T programs indicate such surface properties as the number of

redundant parentheses and the particular choices for identifiers. In

] Algol63 Report, on the other hand, the powerful syntax formalism allows

| extensive use of syntactic definition. For this reason there has not
been need for clear separation between surface properties and deep

| properties. It appears to the author that the lack of such separation

is a greater difficulty for an uninitiated reader of [oh] than the

formalism of w-grammars. The poscibility of including the most funda-

| mental concepts in a behavioral model has not been utilized in any of

i these two definitions, as abstract programs are interpreted or executed

directly.

| As mentioned above, a behavioral model should reflect some of the

most fundamental concepts in programming. If the mode.l 1s based on

: "typical" properties of present computers, as the implicit models in the

definitions of Fortran and Cobol, it does not give any mental tools for

| understanding programming and programming languages. Even when higher-

| level models are used in a definition, they might be restricted by the
current technology. For instance, a stack-oriented behavioral model

might be suitable for a language not requiring more general techniques

for storage allocation, but its use would be limited to a restricted

1 class of languages. Although no universally applicable behavioral model

is to be expected, it appears that useful models could be given for

families of languages based on the same conceptual backgrounds. An

important aspect of a behavioral model is the way it models parallel

processes. The emerging understandingo ff how to managesuch prococoo:s

should provide appropriate ways ofincorporatingthcm in bo amodel,



The thesis of this paper 1s that the three levels of language

definition described above correspond in a natural way to the abstractions

that a language designer has in mind. Submitting such a vision of the

language to the reader would be very helpful in language definitions and

textbooks. The techniques proposed for this purpose are based on a

generalization of abstract syntax [17,18] with attributes associated with

the nonterminals [11]. A simple example will be used throughout to

illustrate the techniques. A system of automata, communicating with each

other, 1s outlined as a behavioral model.

It is understood that the separation of language properties according

to "deepness" is subject to similar non-objective criteria as language

design. In part, this 1s due to programming languages being man-made,

not something given to us like the physical world. In particular, any

suggestion for language universals can be contradicted by designing

another language specifically for this purpose. The behavioral model

outlined below will be directed towards block structured languages. It

is included mainly to illustrate the general ideas of the paper. [OT

practical purposes it should probably be extended with further capabilities

reflecting some other fundamental concepts in programming.

The 1deas developed 1n this paper have been induced and influenced

by a number of other papers, some of which are mentioned in the biblio-

graphy* To pick out the most important ones after Algol 0 [20],T would

like to acknowledge Landin's work on h-calculus models [13,1h4], Strachey's

efforts to single out fundamental concepts of programming languages

[22,23], the definitions of PL/I [25] and Algol 68 [24], Johnston's

contour model [10], the class concept of Simulaf7 | 9] and its effect

on the development of programming-concepts [1,2,3,9,19], as well ac

Knuth's idea of synthesized and inherited attributes [11].



2. Formalism for Abstract Syntax.

Abstract syntax deals with objects having certain kinds of structural

relationships. More precisely, an object may have other objects as its

| immediate components. The transitive closure of this relation will be

] called the component relation. The set consisting of an object x and

i all its components will be denoted by c(x) .

Generalizing the concept of an abstract syntax [10], we shall allow

an object to be an immediate component of several objects. Also, it will

be possible for an object to be its own component, although we shall

introduce quite severe restrictions in these respects. Only finite

| structures will be considered, i.e., it will be assumed that c(x) is

| finite for each object x .

Abstract syntax expresses structural relationships in terms of

structural productions resembling ordinary context-free productions

: for formal languages. [ach nonterminal of an abstract syntax represents
a class of objects, and these classes are assumed to be disjoint for

different nonterminals. For each non-terminal there are productions

1 indicating the different ways in which objects of this class may- have

other objects as their immediate components. The productions for onc

class are also assumed to be disjoint in the sense that no object will

consist of immediate components according to more than one production.

As an example, the production

| e:Fxpr - SUM(el:Expr, e2:Expr)

indicates that an object of the class Expr may have two immediate

| components, both belonging to this same class. The label SUM is uced
| to identify the production, and labels e , el , e2 are introduced ho
| identify objects in the context of this production. Obviously, triple

labelling —- nonterminal names, production names, and object names in

productions -- could be avoided in our notations. It 1s felt, however,

that this redundancy 1s a convenience when using the formalism.

In order to cope with situations when an object 1s an 1mmediate

component of more than one object, we distinguish between two cases of

| immediate component relation, called primary and secondary immediate
| B compor.ent relations. furthermore, we require that every object is a



primary immediate component of at most one object, and that the transitive

closure of the primary immediate component relation, called primary

component relation, is non-reflexive. This means that objects are

connected by a tree structure, with additional connections indicating,

secondary components. The set consisting of an object x and all. its

primary components will be denoted by p(x) .

In the productions a secondary component will be indicated by

enclosing a non-terminal in parentheses. For example, the production

s:St —» ASS ((v:Var), e:Expr)

indicates that an object of class St may consist of a secondary

component of class Var together with a primary component of class BExpr.

Corresponding to whether a component is primary or secondary, it is

called a defining or applied occurrence of that object. Correspondingly,

occurrences of nonterminals in the right-hand sides of productions will

also be called defining or applied.

Corresponding to terminal symbols ina context-free grammar, an

abstract syntax has terminal sets which are disjoint from the sets

determined by the nonterminals. For instance, 1f N denotes the set

of nonnegative integers, the production

e:Expr — CONST((n:N))

indicates that an object of class Expr may have an arbitrary nonnegative

integer as 1ts only component. Such terminals are given as applied

occurrences to emphasize that they have no defining occurrence 1n the

syntax.

Another way to terminate a structure 1s provided by productions

indicating explicitly that an object of a non-terminal class is alomlc

with regard to the component relation. This is illustrated by the

production

viVar — ATOM( ).

To summarize, an abstract syntax consists of a finite family of

terminal sets, a finite set of' non-terminals, and a finite set of

productions, where each production indicates one possibility for objects

_ of a nonterminal class to consist of primary and secondary components of



;iven nonterminal classes and/or terminal sets. These possibilities are

assumed to be disjoint in the sense that each object has components as

| indicated by exactly one production. (However, several productions for

| the same nonterminalmay be similar, except for production identifications.)

One of the nonterminals 1s designated as the starting non-terminal, and

| an objectx 1s generated by the abstract syntax, iff

| - X belongs to the class of the starting nonterminal,

~- the primary component relation imposes a tree structure on pix),

- elements of c(x)-p(x) are elements of terminal sets.

Our previous examples of structural productions involved a fixed

number of components. For notational-convenience we introduce the

notation

| lab: Object*

to denote a sequence of an arbitrary finite number of components of the

| same class. For a sequence of n components, the individual members
are identified by indexing the label used: lab[l], . . .,lab[n]| . When

used without indexing, the label will identify the whole set.The index

: set {1,...,n} of a label will be denoted by ¢(lab) .

| Ac an example, let us consider the following abstract syntax, where

N denotes the set of nonnegative integers:

p:Prog -— PROG(b:Block)

b:Block -— BLOCK(v:Var®,s:5t”)

| s:0t —~ COMP{(b:Block)

— ASS ({v:var), e: Expr)

| e:Tixpr — CONST((n:N))

: — YAR (v:var) )

- SUM (el: lpr, e2 : fupr

| ~ PROD{el:Fxpr, e2:lupr)
] - NEG(el:kxpr)
g vivar — ATOM{( ) .

Intuitively this abstract syntax is meant to generate block structured

programs with assignment statements involving simple arithmetic expressions

| - over integers and integer variables. However, no scope rules for variables

have been incorporated at this stage.

| 7



Any object generated by an abstract syntax can be represented as

directed graph with suitable labelling in an obvious way. For instance,

| one of the objects generated by the above syntax could be represented as

the graph of Figure 1. Each node in the graph corresponds to one object.

An object is marked by its nonterminal class or by a notation for an

element of a terminal set. Continuous lines indicate defining occurrences,

and dotted lines indicate applied occurrences. The productions involved

| are indicated by production labels under nonterminal names. (bj ect
identification (in the context of productions applied) 1s given by

| attaching appropriate labels to both nodes and edges.

] Synthesized and inherited attributes [11] can be associated wilh

: this kind of abstract syntax in the same way as with conventional

context-free grammars. However, no attribute definitions should be

| associated with applied occurrences of nonterminals. For instance,

we can assoclate an attribute (¢ with the above syntax as follows:

p:Prog - PROG(b:Block) a, t= (7

| b :Block-» BLOCK{(v: var , s:5L ) a, i 1) ZA - vy

5:51 -»  COMP(b:Block, A. te

| —  ASS{(v:var),e:lxpr) = {viva

et bxpr  — CONST{((n:N)) a, = 9 |

—  VAR((v:var)) i= {vi

~ SUM{el:Expr, ec?:Expr) te 2, Ua,

~ PROD(el:Txpr, e?:Fxpr) =, Ud,

- NEG(el:Expr) t= Ad

vi Var  - ATOM{( )

"or all nonterminals (except var ) the attribute ¢ is set -valued znd

: synthesized. Association with different objects in the context of a
production 1s indicated by appropriate subscripting of 7 . The

intuitive meaning of ¢¢1s the set of those variables which have been

used but not properly declared in the structural unit in question. The

3
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cet ol objects

(x propa, - ¢)]

| wottld now consist of exactly Lhose objecle of clas Prog whieh

intuitively correepond to programs whose variables arc uccd only when
they have been declared in an enclosing block.

Je Associating String Representations with Abstract Programs.

The attribute technique 1s also useful for associating concrete

character string representations with objects generated by an abstract

syntax. Since one object may, in general, have many different represen-

tations, we shall use nondeterministic attributes. In other words, an

attribute definition may provide a set of possible values, preceded by

_ the monadic selection operator 0 . By this notation we understand that

any element of the set can be taken as the value of the attribute in

| question. When an attribute value is determined by aconditional
-

2xprescion, nondeterminism mayalso appear in the form that more Lhan

. one or none of the conditions hold. If none of the conditions hold,
the attribute value is undefined, and some other choices fur attribute

values must be changed to get out of this dead end. Vertical bars (1)

) will be used to separate alternatives 1n conditional expressions, and
each condition will be separated from the corresponding expression by

[ a colon ( : ).
As an example, let us assign a string-valued attribute T and an

| integer-valued attribute { to the previous abstract syntax, as given
in Figure 2. The following clarifications should be added to the

| notations used:
. 4

- The notation Cs of) (Ey) stands for the concabenation

Xq 2X52 NP “Xlo(v) | if | (vr) > 1, for 74 if | 2.0) | 1,

| and for the empty string if io (or) |= 0.
. Symbols L and D stand for the sets ofl lettersand digitc,

corresponding+

10
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a - ihe cuprescione (gets) given for ctrine-valued atbributes noe

| to be understood as strings (sete of brings). No notabionad

distinction has been made belween string expressions and

| arithmetic expressions. |

- Attributes can also be associated with element=;of terminal sets.

In this example, attribute TJ 1s defined for objects ncN | and

its definition involves making use of arithmetic operations

| defined in N .

For any Xx ¢ Prog , the possible values of J are now defined as
X

the possible string representations of X . Nondeterminism in attribute

definitions allows for arbitrary redundancy in parenthesizing, and for

arbitrary variable names . The definition of T8lock guarantees that
Lhe same name cannot be used for two different variables in the same block.

In this particular case jt can be easily verified that T, has
values for all objects » « Prog . In general, this would not nced to

be the case, because of the "dead ends" involved in attribute definitions.

. Une possible value of 7, for the particular x given in ligure1 is

i begin new a;

a +« 1;

. begin new bj;
b — atl

end

|

| I. Behavioral Models.
A: mentioned previously, one would wish ubehavioral modelLo

| reflect fundamental concepts of a language which would be commonfor a
larger group of languages. Typically, such deep properties would be

| related to concepts like block structure, data types, and sequential
andparallelact ions .

| oo
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—_——————

: Models based on h-calculus [13,14] and the more visual contour
model [10] mainly reflect block structuring, and it would be very

difficult to understand block structured languages without these or

similar mental models. However, data types and parallelism seem to

require different kinds of models.

The main problems with data structures are associated with sharing

| through explicit or implicit pointers, and with control over access and

updating. Sharing can be expressed in terms of relations which can be

visualized as directed graphs, as e.g. in [4,5,12].

As an example, let us consider some properties of data structures

in Algol68. For simplicity, routines will be omitted from the discussion.

The relations used in the behavioral model are the following: a "name"

"refers to" a value, and a "structured" or "multiple" object has

components together with selectors. Superficial knowledge of these

relations and analogy with other languages with similar structures

might lead to the incorrect visualization given in ligure 5. Different

data objects are grouped there into "plain values" V , non-structured

names N , and into "structured" and "multiple" objects S . Arrows

starting from N indicate the relation "to refer to" for non-structured

. names, and those starting from § indicate component relations. All

"refer to" chains and component chains are assumed to be finite.

Objects 1n V are assumed to exist independently of any program;

objects in N and S are "created" during program execution. The

relation "refer to" is changed by assignments; assignment to an element

of s 1s understood as simultaneous assignment to all of 1ts components.

This visualization 1s shown insufficient by the existence of

structured objects to which no assignment can be made, even 1f the

components can be updated individually. This leads to the modification

given in Figure 4. Non-updatable structured objects are grouped into O'

elements of S are restricted to have no components in Vv or &°! ;

elements of N are restricted not to refer to any object in S'; each

element x of s 1s postulated to refer to an object x' ES such that

the components of x' are the values referred to by the components of x

” Objects x andy in Figure 4 are otherwise similar, but y can be
updated only by individual assignments to its components.

i.

g
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lxamples of this kind show Lhe usefulness of graphs ag vicual

| aids in understanding data structures, especially when dealing with
| several languages where similar structures are understood differently.
: Such a model is suitable for expressing properties of sharing, but it

| is insufficient for indicating aspects of protection on data access and

4 updating, except for very limited special cases. Also, it tends to

treat data objects as passive objects, and this causes difficulties in

dealing with routines or procedures as data.

One way to overcome the problems mentioned above is to treat data

objects as active objects, as suggested by the class concept in Simula 7

17]. This leads to the view that each data object is some kind of an

automaton, which 1s initialized when created, and which 1s thereafter

able to communicate with other automata by responding to certain requests.

Access to the "value" of an object or to its '"components', and any

updating, would only be possible through such requests sent to the data

object 1n question. Operations defined for data types could also be

evoked by such requests only. This kind of a behavioral model also

- provides a natural framework for parallelism, as all data objects would

: be envisaged as automata "1 4ving" simultaneously. Notice that such a

L . model deviates in several respects from Simula 67, where only

quasiparallelism 1s allowed, unrestricted external access to "attributes"

i of' data objects 1s permitted, and primitive data items are not treated
as 1ndependent active ob,jects.

| Primitive values like integers, reals, Booleans, etc., can now be
considered as primitive automata, existing independently of any program.

[ In other words, no such automata can be created or initialized by a
program. The only way such automata can communicate with other

automata 1s to respond to certain requests. Parameters associated with

| such requests, and the responses, are always automata themselves. For
. instance, if the automaton for an integer i is asked for its negation,

I the response gives the automaton for -i . Similarly, if an automaton
for a-truth value 1s sent a request corresponding to if-then-elge

—operation, together with two automata as parameter:;, it return:: one

of the parameters as the response.

15



Variabl ce are now Lhoughl, 0 I' as aubomata whi ch can he "eo reabod by

qopropooram In other words, among: Lhe object oxicbings" ouboide

program, Lhere are " schemes' which can be used Lo create "new" aubomata.

Using such a scheme results in the creation and. initialization ol an

automaton, which can thereafter respond to certain requests. lor

instance, there are primitive schemes for integer variables. After

initialization, an automaton created by such a scheme is capable of

responding to requests about its "value", and to update this value.

| Structured objects and arrays have somewhat more complicated schemes,
which must also be primitives in the behavioral model.

A block structured program can now be viewed as a hierarchical

structure of schemes of automata, such that each new automaton has

| certain schemes available for the creation of further automata. Program
execution is then modelled as the creation of a system of automata

communicating with each other and creating new automata. All the "real"

work or the program is done by the primitive automata existing

—independently of the program.

: Parallel operation of a system of automata is controlled by allowing
each automaton to process only one request at one time. mrther requests

are thought of as waiting for their turns. Since a response 1s expected

for each request, the requestiny automaton has to wait for the request

to be processed. Parallel processes can be created by allowing the

: initialization of an automaton to proceed simultaneously with continuing

the process which evoked this initialization.

| Comparing with the definition of Algol 68, it is pointed out that

| its behavioral definition 1s essentially based on monoprogramming, as

"collateral elaboration" is defined by "merging" the sequences of

| primitive actions corresponding to the constituents. When the

constituents involve updating the same data objects, that model doe::

not determine what happens, ac the primitive actions are not speciflicd.

| In the model proposed here, all operations on Lhe same data item oo lway o

exclui.e each other in time. ince integers, (for instance, are conpidoroed

] as individual automata, we get the curious restriction of parallelicr,

) however, that two operations involving the same numbers ranncthe

: performed simultaneously. This situation could be avoided by letting

16



different occurrences of the same number correspond to distinct but

| similar automata.

This kind of a model for programs 1s compatible with many of the

current views of operating systems and data bases, and with the principles

of structured programming. In fact, similar extensions of the ideas in

Simula 67 have been applied to control parallelism in the programming

of operating systems [1,2, 9], and in the design of languages for

structured programming [6,15].

An operating system can be characterized as a collection of

processes communicating with each other. Although these processes are

usually executed on a single processor, this view becomes especially

clear when thinking of each process as having a processor of 1ts own.

Such a view has advantages even when used only as a mental model to

understand a conventional operating system, since 1t seems easier to

introduce restrictions on parallelism into an 1nherently parallel model,

than to introduce suitable quasiparallelism into a basically sequential

model. However, it also appears to be quite feasible to construct

N multiprocessors where different kinds of operating system duties have
been distributed to different processors. In particular, it seems

i promising to use dedicated processors for data bases. In such a case
parallelismof the model would correspond to real parallelism in the

[ operating system. Note, however, that aspccte of protection in operaling
systems would need further elaboration of the model.

In addition to parallelism, this model reflects the principle of

} information hiding [21] in a natural way. Besides being an important
design principle, information hiding is needed to describe data

| independence in programs using data bases. In this case it is not only
a property of the model that direct access and updating of passive data

| items 1s prevented. On the contrary, it is then an essential feature
of the system to be modelled, that all external access must take place

| through explicit requests. For instance, a program cannot "know"
whether a piece of data, which is accessible to it, 1s actually stored

in the memory, or whether it is computed each time it is requested.

Similar independence of data representation 1s an essential feature in

"structured programming", and. several efforts are being made towards

17



incorporatingouch ldeas into programming languages| 0,7,15 | From Lhe

view point of formal deceriptionit does not matter whether this

independence of representation is a run time feature, ac it typi cally

1s 1n data base systems, or whether program compilation is allowed to

optimize object programs by making use of actual representations, as

it should be done in programming language implementation.

H. Abstract Syntax for a Behavioral Model.

The discussion in the previous section can be made more precise by

describing a system of automata as a structured object. Then we have

an abstract syntax both for the language to be defined and for the

objects 1n terms of which we wish to define its semantics.

A system of automata 1s a dynamic object which 1s modified during

its operation. New automata can be added to the system during execution,

and they can be in different stages of execution at different points of

tine. Initially, the system consists of only one automaton, which is in

its initial stage of execution. This initial system is given as the

semantic attribute of a program.

As terminal sets of an abstract syntax for the behavioral model we

have the set of primitive automata P , the set of primitive schemes

for automata &§ , and the set of operation identifications of automata I .

Let us now consider objects with the following structure:

5 System 3 SYST (a:Automaton”, (p: PF) )

a: Automaton ~ AUTOM({sub:Scheme”, e:Tixpression  ,op:Operation’ )
s: Scheme 3 SCHEME (£: formal”, sub:Scheme™, e:lprecsion’ ,op:Oparation’
op:Operation - OPER{s:Ocheme, (id:T))

f:Formal 3 FORMAL{ )

e:BExpression — PRIM{(p:P))

- AUT {(a:Automaton))

—- FORM((f:Formal))

—NEW{(s:Scheme),par:Expression”)

~ NEWPR{(s:9),par:Expression’ )

- OP(target :Expression, (1id:I), par:Eipression™)
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| cuncreta poF 0 ZELn ~utomaTon 2onsists oF a oseononce oF NUroae ona,
| which are "evaluated" during initialization,of Operations, and of

| Schemes for the construction of further Automata.A Scheme iscimilar
to an Automaton, except for having Formals for parameterization. An

Operation 1s simply a Scheme together with identification 1d ¢I . An

Expression can be an automaton, a Formal, a scheme together with

parameters, or a request for an operation of a target automaton. We

| shall require that every Formal appearing as a secondary component 1s

a primary component of an enclosing Scheme. Also, the identifications

of Operations within one automaton and scheme are required to be distinct.

(Except for primitive automata and schemes, these requirements could

easily be expressed in terms of attributes associated with the syntax.)

The behavior of a System can now be defined as follows. Initially

a System consists of exactly one Automaton and of no primitive

automata peP . Its behavior is defined as the sequential evaluation

of Expressions e[i] of this automaton.

The evaluation of an Expression gives an automaton as a result, and

1s defined as follows:

i If the Expression 1s an AUT (or a PRIM), the result is the

Automaton a (or the primitive automaton p ).

| No Expression of the form FORM will ever be evaluated, since

} such an Expression cannot appear as an eli] of an Automaton.
| If the Expression is a NEW (or NEWPR), a new Automaton (or

- new primitive automaton) is created using the scheme s and
parameters par{i] | and the initialization of this new automaton

1 will be started. This new automaton is attached to the current

System as another component afi] (or pli] ), and it will

| itself be the value given by the evaluation of the Expression.
If the Expression 1s an OP, the target and all par[i] are

| at first evaluated 1n sequence. Then the id-operation of the
target 1s evoked using parameters par[i] . The value given by

| the OP-Expression will be the value obtalned as a response from
this operation.
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An operation of an automaton 1s evoked as follows:

Each automaton is assumed to have a mechanism delaying

| operations so that no operation 1s started while the automaton

| 1s being 1nitialized, or when another operation is being performed.

: For primitive automata, operations will not be specified further.

Evoking an Operation on a non-primitive Automaton means

creation of a new Automaton using the Scheme of that Operation and

the parameters par[i] given in OP. The value given by the

Operation 1s the value given by the evaluation of the last

Expression of this new Automaton.

In order to define how new automata are created, we need some

notations for constructing structural objects of thelr components.

i In general, given a production

c:Class - PROD(cl:Classl, ® ..,cn:Classn)

— and some objects xleClassl,..., xneClassn , the expression

| ¢ = PROD{cl:x1,..., cn:xn)
will denote an object cc « Class with components x1, . ..,xn according

| Lo the production PROD. (Although not indicated above, all components
x1 need not be primary.) As each object can be a primary component of

i at mcst one object, it is required that for each ci with a defining
occurrence 1n PROD, the corresponding x1 is not a primary component

of any other object.

| In addition to constructing objects of components, we need a
. notation for "copying" objects and "replacing" some of their secondary

| components by others. More precisely, given objects x, a, b , another
object y is obtained of x by replacing applied occurrences of a

| in x by Db , denoted as y = x0 , 1ff there 1s a one-one mapping
f:p(x) -» p(y) with the following properties: (i) f(x) = v 3

(ii) for each z c¢p(x) , objects z and f(z) belong to the same

nonterminal class; (iii) for each z e¢p(x) , if z consists of

components zl,...,zn , then f(z) consists of components ul,...,un

such that
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- 1f zi=a is a secondary component, then ui = b ;

- else, if zi is a secondary component and zi/ p(x) , then

ul = z1 ;

- else, ui = f(zi);

- the production for £(z) is the same as that for =z , or, in

case z has a as a secondary component, a production uniquely

determined by the object classes of ui .

In other words, primary component relations and secondary component

relations "within" x are copied into corresponding relations "within" y ;

secondary components outside p(x) will be taken directly as corresponding

components in the "copy". Notice that the last condition above prevents

the use of the notation xba if ambiguities would arise from productions

with similar right-hand sides. When applied occurrences of more than

one object are replaced, ordered sets of the same size can be used

instead of a and b .

With these notation, the creation of a new automaton can be defined

as follows:

When a new automaton 1s created, it 1s attached as another

component ali] or pli] to the current System, and its

initialization 1s started. For a non-primitive automaton

initialization means sequential evaluation of its e-Expressions.

If |f| # |par| , the creation of a new automaton is not
defined.

For primitive schemes the creation of a primitive automaton

will not be further specified.

Given a non-primitive scheme s Scheme with the structure

s = SCHEME (f:Formal , sub:Scheme®, e: Expression”, op:Operation” ) /

together with parameters par{i] , such that |f| - |par| , tlhe
new Automaton will be

a = AUTOM (sub: subl ere, op:opy
In other words, a is obtained of the sub-, e-, and op-components

of s by replacing each (applied) occurrence of f[i] in them by

the corresponding par([i].

21



Having defined a behavioral model, we can use 1t for the semantic

- definition of our example language of Section 2. 'This can be done by

| associating sultable attributes with the abstract gyntax, a:: piven in

"igure 5. The primitive automata in the model are thoce corresponding

1.0 integers, denoted as P, and those which can be created by the
: primitive scheme new. The former are assumed to have operations with

| ldentifications plus, times, and neg, and the latter are assumed
to have operations value , and assign .

Most of the nonterminals have only one semantic attribute (for

semantics). In addition, the nonterminal Block has an attribute

(for request), and St has an attribute / . Notice that blocks are

interpreted as schemes with one operation, with identification execute .

As an example, Figure 6 gives the value of the semantic attribute

J for the object x of Figure 1. For clarity, all terminal objects
are repeated in Figure 6 for each occurrence.

.

I

L

|

L
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B | 0. Summary and Conclusions.

| Different kinds of methods and tools are being used for the
definitionof programming languages, depending on the intended audience

! and on personal preferences. Some general principles seem to have

| ~ emerged, however, which can be applied independently of the particular
| ~~ choices.

: One question which is often discussed, 1s the appropriate level of

| | generality of definition methods. If the definition is intended to be
used by mechanical aids for compiler constructian, then too powerful

methods lead to undesirable complexity of algorithms. Experience has

shown that no single tool has the right generality for defining all

aspects of a programming language for such purposes, and the only

] solution 1s then to divide the definition into several stages, each

| using 1ts own methods and tools tuned to an appropriate level of
3 | generality. On the other hand, when the definition 1s intended for

human audience, 1t 1s not the generality that counts, but how this

] power can be "structured" to be used in an understandable way. In this

: case, it would also be a disadvantage, 1f too many different methods

would be needed. The particular methods discussed in this paper are

oo intended purely for human audience, and it 1s understood that they are

much too powerful for mechanical manipulation, unless essential

restrictions are imposed.

| Language definitions usually consist of syntax and semantics.
There 1s no sharp distinction between these two parts of definition,

in principle; syntax is just a first approximation. In fact, what 1s

included in syntax, is usually strongly influenced by the particular

| definition methods selected. For instance, features not describable

by a context-free grammar are often left to semantics. On the other

: hand, w-grammars are an example of a syntax formalism which is powerful

| enough to include the whole definition 1n syntax, 1f one sc wishes.

i B . For a mechanical processor, syntax determines a set of character
j strings, and semantics associates meanings to a subset of syntactically

: correct strings. For a human reader, syntax has another important

function in providing a basis for abstraction. In fact, it is this
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|

function, not the generation of syntactically correct strings,that o a

Justify starting language description for humans by syntax. an abstract

| conception of programs 1s essential for understanding a programming

language, and this seems to be the natural starting point in designing,

learning, and using a language. While it is a translator's task to

inspect arbitrary programs and to determine their meanings, 5yser

| proceeds in the reverse direction: he has an abstract -program in mind

and wants to exprecs it in the lanpuage.

Unfortunately,it scems impossible to provide g guitable abotraction

| ol' a complex language by its ctring syntax. TInpaleol (4 Report, [Cox

instance, this abstraction becomes quite complicated because of gceveral

aspects of external string representations, such as coercion rules,

equivalence of modes, and the correspondence between defining and applied

occurrences of identifiers and operators.

A natural conclusion of the above 1s to separate the description of

the abstract structure of programs from the string syntax of the language.

This means that language description should be started with an abstract

Loymb ax In addition to providing suitable abstraction, an abstract syntax

divides language properties 1n a way which seems more natural than Lhe

classical separationof syntax and semantic s . Properties dealing wilh

charact cr string representations olf abstract programs can be called

surfucc —properties, while the rest will be decp propertics. Again,i |,

depends on one's abstraction, how different -properties are clascified

into these categories. In any case, such a classification should not be

based on limitations in the tools used for the definition, but on an

intuitive understanding of what are the essentials in an abstraction of

programs.

As an example of a general formalism for abstract syntax, we have

proposed a system of structural productions which allows both defining

i and applied occurrences of objects. Surface properties can then be
defined by attributes associated with these productions.

= Since abstract programs may still be too complex for direct semantic

definition, another level of abstraction, called a behavioral model, is

proposed. In some sense this corresponds to the idea of compiled programs,

and the same behavioral model might well be used for the semantic

L
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: definition of several languages. 'This level divides the deep properties

of a language into two subsets: those which are inherent in the behavioral

model, and those which are associated with the mapping of abstract programs

| into this level. Again, there is no unique way to determine this

: | classification. Being an abstraction of compiled programs 1n execution,

: the behavioral model should reflect what 1s considered conceptually most
| important in such processes, and it should suppress practicalities like

| those imposed by the bounded memory size of real computers.

We have presented a simple example of a behavioral model. 14 1s

based on envisaging program execution as creation and interaction of a

collection of automata. This view is extended to primitive values, which

are also considered as independent automata. Creation of new variables

corresponds to creation of new automata, based on some primitive schemes

for automata. Including primitive values (together with the operations

allowed on them) and primitive schemes for variables in the behavioral

model, means that at least some aspects of the concept of type will be

a inherent in the behavioral model. However, "static" aspects of type
| consistency can best be discussed as theorems concerning the mapping

L . between abstract programs and the behavioral model. As another example
we notice that memory allocation strategies are not reflected in any wiy

t by the behavioral model. All automata will continueto helong Lo the

system indefinitely, once created, even if they remain "passive"and

| inaccessible to the rest of the system. Again, sufficiency of certain
memory allocation strategies could be stated as theorems about the

| mapping of abstract programs into the behavioral model.
| No attempt has been made in the present paper to define a complete |

| programming language using the methods and principles advocated.
Therefore, the formalisms and models proposed should only be taken as

hints and fragments to be considered when defining a complex language.

In particular, we believe that the general principles presented would

help to structure the complexity of a programming language definition

| in a more manageable way.
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