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Numerical Experiments With The Spectral Test-

Abstract

FollouwingMarsagliaand Dieter, the spectral test for linear
congruential random number generators is developed from the grid or
lattice point model rather than the Fourier transform model, Severa I
modificat ions to the published algorithms were tried, One of these
ref inenients, which uses results from lesser dimensions to compute
higher dimensiconat ones, was found to decrease the computation time
substantial ly. A change in the definition of the spectral test is
proposed in the section entitled “A Question of Independence”.

Background

The values of the LCRNG (Linear Congruentiat Random Number Generator)

X = ax +C mod m
i+1 i
when plotted on the x axis, | ie on a one dimensional grid. That s,

the difference betueen any pair of them is a multiple of some integer 3:

x -x =1L Jd

for some integer L. & is 1 for a maximum period RNG, but is

at least 2 if ¢ = 0 andmis a power of 2, Depending upon the number
theory underlying the choice of a, ¢, and m, it is possible t hat

not al | of the m/d grid points between 0 and m-1uill be generated,
If instead we plot consecutive pairs of values

(<, x ), 0y X ), ue, oy x ), ..
12 23 i i+l

a s (x, y) coordinates, we will get a two dimensional grid. This means
that the (vector) difference between any pair of points is the sum o f

integer multiples of tuo constant vectors, called basis vectors, which
.define the grid. To find these basis vectors, we have

X =ax+ Cc - Km
i+l i

X =axtc - Mm
jtl j

for some i n tegers K and M, and so

(x, X ) - (x , x) =(L3 a L 3-(MK)m
j j+1 i i+l

= L df{l,a - (MN-K) (B, m)
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a sum of integermuttiples of the basis vectors
3 (1, a and (8, m

Sim tarly, if consecutive triplets are plotted in 3 space, we Wi II
find a three dimensional grid with basis

) .
dl, a a ), B, m 8), and (8,8, ml

This pattern extends to n dimensions. We will call such agr i d
basis F and denote its vectors by f,l<js<n,

We can regard an n dimensional grid as an x dimensional grid of
n - x dimensional grids and say that x of the n basis vectors
"connect" identical copies of the n - x dimensional subgrid
generated by the remaining n - x basis Vectors. This even
works uhen x = n, if ue define a zero dimensional grid to be

a point. (Try rereading this with n=2 or 3 and x=1 or 2.)

Note that the only way that these vectors, and thus the grid’s
structure, depend on the "increment" ¢ is in the value of 3, the
smal lest difference between RNG outputs. Ifc is chosen so that
dis greater than 1, ueuill only generate every dthsubgrid on
the one dimensionalgr id generated by

2 3
a ,e..)

The only other effect of varying ¢ is to shift the entire grid
and t o change t h e orde n which the grid points are generated.

There are infinitely many bases for a given grid, for

if cl and c are tuobhasis vectors in an n dimensional grid, then
we can rep | ace d by d- ¢ and sti | | reach the same points,
since e can a lwaysreur i te

Kd + L ¢ as Ki(d-c¢)t (K+L) ¢

We could repeat this process ¢ times to replace d by d -qgc¢,and
we could also involve other pairs of vectors, |In the particular
case of the basis

2
d(l, a, a ), B8, m 8), and (8,8, m)

wecould reduce the pouers of a modulom by subtracting appropriate
multiples of the latter two vectors from the first.

Now suppo se, for examp le, that we are examining the three dimensional

griclof some LCRNG. Itwil || ie entirely within the cubicalr e gi on
0 s x<m,0 csy<m, B<z<n

since al | of the RNG values are modulom.



We could imagine as a physical model a clear plastic cube containing
m/d dots (in one to one correspondence with the one dimensional
gridl. Asue rotate the cube in various ways, we uii | see the dots
arranged in var i ous p lanargr ids, corresponding to various Choices of
bases.

If ie can orient this cube so that al | of the points fal | in a few
wide |l yseparated planes, ue should be dissatisfied with the RNG that
put themthere, since the gaps hetueen these planes represent large
regions of impossible triplets of consecutive outputs, Concomitantly,
these few planes would be undesirably crowded with the pointst hat
should be occupying the intervening gaps. Thus, the widest
separation betueenn-1 dimensional subgrids is a measure of the
uniformity of the RNG, when its outputs are grouped n at a time,

The determination of this distance is the spectral test in n dimensions.

If the grid were a regular cubic one, there wouldbea basis of three
mutual ly perpendicular vectors of equal length. Since the whole grid
would contain m/d points, there would be about

173
(m/3)

points along each one dimensional subgrid, making the basis vectors about

1/3 273

d m

in length. Unfortunately the (unreduced)} basis vectors defined by the
LCRNG are anything but short and regular. In fact, they are so long

2
that they al | protrude from the cube of interest! (Assuming a > m as
Knuthetal recommend.)

In order- to resol ve such a grid into more widely separated, more
dense | ypopu | at edsubgrids, we must find shorter and more nearly
perpendicular basis vectors. HWe can do this with an algorithm
analogous to Euclid's GCD--hy replacing a given basis vector with
the "remainder" resulting from subtracting some other basis vector
_from it as many times as Wi | | minimize the remainder’s length, By
analogy with ordinary division, this number of possible subtractions
can be called the “quo tient” g, and can beconputed directly instead
of hy tedious iteration:

¢
c = round ( ---)
d.d

where cl is the divisor, ¢ is the dividend, and ¢ - q d is the
remainder. cl is the component of the dividend par-al lel to the
divisor, divided by the length of the divisor, then final ly rounded
to the nearest integer.

This wi | | leave the remainder with the least possible component parallel
to the divisor, subject to the quotient being an integer to preserve
the grid,
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Trad ition suggests that once ad visor is chosen,
it should be remaindered with al ofthe ot her basi s vectors.

Eventual |y this process, callitthe F process, wi I I get stuck when
al | quotients of pairs are =zera. It wuld be nice if, after all this
work, we could be sure that the resulting basis contained the vector
I inking the most 1idely separated subgrids. Unfortunately, exanple 8

wil I showuthishopeto be vain. W have, however, two more weapons.
The neater of them is another collection of n vectors, computed from
the basis, and called the dua! basis. We will denote it byEand its
elements by e . They have the following magic property:
for 1 <i,j < n,

e f =8 if i = j,  but

P

e .f =1,

This means that the jth dual basis vector is perpendicular to the
n-1 dimensionalsubgrid copies connected by the jth vector of the
original basis, -andconveniently, the length of the dual vector is
just the reciprocal of the perpendicular separation between these
cop i es. Thus, to perform the spectral test, we need merely find the
shortest vector in the dual grid, (Technically, thereare many dual
gr ids corresponding to shifting al | of the points by any constant,
but the vectors betueen them, and hence the dual basi s, remain the
same. )

First e find the dual basis from its definition, by forming an n by
n matrix, f, whose rous are the original basis vectors. Then we
invert and transpose it to form the dual matrix e. Repeating this on
e gives f again, ver i fying the dual i ty. Since subtracting the ith
vector from the jth in one basis corresponds to adding the jth to the
i th in the other basis, wewui | | sti | | have a basis if we run the F
process on the dual basis instead of on the original one. Call this
the E process. The recipe for the spectral test now might read:
Compute the dual basis from the original grid basis, run the E
process unti | al | the dual vectors are of minimal length, and return
the reciprocal of the shortest. Unfortunately, there is no way to
guarantee that the vectors are minimal when the E process gets stuck
(example 2, n = 4).

As Knuth has observed (3.3.4, ex. 22, 23), a good strategy is to
maintain both bases, andsuitch from E to F when E gets stuck, simply
by interchanging the two matrices with respect to the remaindering
operat ion. Then, if F gets anywhere, return to the E process. When
F getsstuck, the algorithmquits, even though F's dying attempts may
have unstuck E. Sad to say, after all of this there is still a slim
chance that the shortest vector left in the dual basis is not the
shortest expressible as a sum of integer multiples of dual vectors
(al though the author has never seen this except in cases where the
matrices uere first transformed by an experimental process which wa s
neither E no F. Remember to see example 8.) Thus we resort to the
ul ti mate weapon: exhaustive search.



Fortunately, Coveyou &ndMacPherson have shoun that i f aninteger
combination of the vectors e,I<j< n, is to be of minimal

length, the coefficient of e cannot exceed
J

c =1[Qle 1 11
j min j
i nmagnitude,uhere e is the shortest e and f isthejth vector

min i ]

of the dual basis (in this case the dual of the dual, i.e. the

current basis for the LCRNG grid). Thus ife is the square
matrix with basis vectors as rows, we must minimize the l ength

of the vector z e over allnonzero vectors of integers z with

We can om it those z uhich are merely the negatives of ones already
tr i ed, for atotalsearch of

(2 ¢c + 12 c + 1)...2¢c +1)-1

| 2 n
2
cases. Fortunately, only one ¢ hasever been as large as 2 in
the author's experience with the combined E and F strategy, (We have

been us'ing stuck to mean n consecut ive fai lures to reduce the searc
vo I ume, rather than n - 1, hence n, consecutive divisors with all
quotients 9.)

The process described above can be refined in several ways.



Ref inement 0

Scale up E, the dual basis, by a factor of m to avoid fractional
elements. In fact, most derivations of the spectral test regard
this integral dual basis as an automatic consequence of scaling
the grid basis clown by a factor of m to fit in the unit cube.

Ref i nenien t 1

One step of the E process, using e as divisor, can affect (shorten)
j

only those e for whichq is #8. Inthe F basis, only
i i

f can change, very occasionally growing longer (example 1}, (thus
j

increasing ¢ and thus the search length), Simi farly, one step of

the F process uill only affect certain f , and only one e
i i

A clever algorithm could save itself many square roots by
minding this.

For typical spectral tests (with n >2}, the E process produces
much more rap i cl | y convergent ¢ thanthe Fprocess, even though

the E process wi | | occasionally lengthen an f . A good algorithm
J

might retract any step which increased the exhaustive search vol ume,
or perhaps save up and return to the best bases if the 1 ast few
steps lengthen the exhaustive search just before getting stuck.

| t appears, houever, that at least for LCRNG grids, search volumes
hardly ever grow significantly. Thus, a version of the program wa s
modified to run each process unti | all of the quotients in 1ts matrix
were 0, and only then compute the c vector. This seemed to gain
‘about 20% over Dieter’s strategy of defining a process to bestuck
after n consecutive failures to beat the previous smallest sear ch

vo | unie .



Refinement 2

d must aluays divide m, and thus the entire grid basis, Therefore
the entire grid may, in effect, be scaled down by d if we take m
t 0 mean modu lus/d, instead of just the modulus,

Thus, the basis matrices are initialized:

f, the grid matrix e, m times the dual matrix

| |
| |
| |
|8 m B8 ... 0 | |-a 1 8 ... 8]
| | | [
| | I 2 |
| 8 @ m a |-a 8 1 ... 0]
l . =e + I l
| | ‘ n-l |
'8 8 B vee M I -a 0 0 [N l |

where, for efficiency, the powers of a are taken mod m.
Ref i nement 3

Of ten, the spectral test is desired for several consecutive n, in
which case there is the opportunity to use the considerably reduced
bases left over from the calculation in dimension n-1 to initialize
the bases in dimension n. In fact, this technique is so successful
that it is usual ly best to proceed incrementally from dimension 2,
even i f only one c(n)i s desired, (Omitting the irrelevant

exhaust i ve searches. ) The crossover point is between n=3 and n-4,
with a speedup factor of 2.5 typical for n=8,

The construction of the n dimensional bases from the
previous ones is: adjoin to the right of f a new column which

is (a mod m) times its leftmost column, then adjoin the row

f =]1000 ... m]|
n

tothe bot tom, say, of f, For e, adjoin to the bottom the row

| -a 0 0 ... 9| mod m

then to the right adjoin the column of all @s and a 1.




. ,,wv-w.fmr-a.‘

A strange fact, illustrated by example 2, is that in order to
profit from this incremental stratagem, one must interchange
the processes so that F is used in preference to E. |tisal s o

important to use the new vector, f as the first’divisor.
n

Al'l this is because n -1 very large numbers have been introduced
into the last column of f, and remaindering them by the n th
vector reduces them modmuhile any other operation on f or e
just sort of spreads these big numbers around, Note that this
incremental approach is not equivalent to starting with an n by n
matrix and reducing just the first vector pair, then the first
three, etc., since the F procéss would be stymed with only 88 to
use against the higher powers of a, while the E process would be
erroneously discouraged by rapidly growing ¢ from those huge

J

number s accumulating in the rightmost columns of f.

After several hundred experiments, the author has only once seen

this incremental method fai | to find the minimal vector before the
exhaustive search, Thiswas also the only time a final ¢ exceeded 1.
{(Examp I ¢ 8.) j

Refinement 4

In the tuo dimensional case, the E and F processes are equivalent,
since the e and f matr ices can be interchanged by negat inga row
and co | unn of each, and then swapping rows. These operations,

if performed simultaneously on each matrix, preserve duality and
cannot change anything about the shortest vector algorithms except
possibly the order in which divisors are investigated, But in two
dimensions there is only one possible first divisor, after whi ch
the divisors must al ternate anyway,

Thus, when n = 2, it is unnecessary to switch processes, or even
maintain the dual matrix and c , at least until the exhaustive search,

Even further simplification results from the observation that the
two dimensional spectral test on a and m will emulate Bradl ey’ s
refinement of Algorithm X (Knuth,4.5.2) for the gcd of a and m
-except that it wi |l | stop about half way through.

’
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Relation to the Serial Test

Both the spectral and serial tests investigate the uniformity

of a uhole period of n-tuples in an n dimensional cube, Byt

the serial test merely measures the density of points in subcubes,
while the spectral test, using the grid informatian, cifectively
tranforms these subcubes into a worst case orientation, so that,
up to size

at | east ha | f wou | d be empty and ha | f wou | d be proportionately too
ful 1. It seems paradoxical then, that the spectral test on

23 12 35

2 + 2 + 5 mod 2 could have the poor figure of merit .815 in
tuo cli mens i ons and the very good figure 2.78 in three, since a
generator flunking a low dimensional serial test should surely flunk
a hi gher one. (See figure of merit definition in Explanation of
Example Printouts section.1 The explanation is that, as n increases
the number of points in the cube remains m/d, and thus the distances’
betcreen the nearest points grow, roughly as

1/n 1 - In
d m

Thus, if we are to compare serial tests in several different dimensions,

. we must increase the size of the subcuhes in such a way as to preserve

their total number, else the point density counts will become unreliably
small.

Nou suppose ue have an LCRNG whose n dimensiona | maxi mum subgr id
separation is not much greater than for n - 1 dimensions.
{Occasionally they can even be equal; see examp | es 2 and 3, n = 4
thru 8.1 Suppose further that ue are serially testing this RNG in

n - 1 dimensions uith a subcube edge length only slightly smaller than
the grid separation, and that the subgrids are roughly parallel to
the faces of the subcubes. Then many subcubes will fit or nearly fit
betueen subyr i ds, causing severe density fluctuations, But when we
jump to n dimensions, the increase in subcube size Will mean that
suubcubes i | | no longer fit betieen the subgrids, thus drastically
improving the serial test result.
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A Question of Independence

One subtle difference between current formulations of the serial
and spectral tests is that the serial test is performed on
disjoint coordinate tuples, e g

(x , x ), (x, x), ...
12 34

while the spectral test is performed on overlapping ones, eg

(< , x ), O, x), ...
12 23

The former sequence is clearly preferable, since itis unbiased.

To modify the spectral test to use disjoint tuples, we
need merely determine the d of the one dimensional grid
resul ting from using only every nth RNG value.

For i ns tance, in a ful | period LCRNG, d= 1, but if the modulus

is even, say a large power of 2, thevalues will bealternately
odd and even. Then the spectral test in two dimensions should

use 3 = 2, or equivalently, m/2 instead of m. Exanple 7 is a

case Hhere, in four dimensions, the maximal separation of subgrids
is quadrupled by this modification, thus drastically reducing
Knuth’s figure of merit (next section) from 4.47 to .0873. If

we use the actual modulus instead of m/d in the c{n) formul a,

this figure reduces to .818. In practice, theusercould destroy
this “resonance” in the last two bits of his RNG simply by discarding
every fifth value, assuming that his concern over cl4) arose from
using quadruples of values. A different way to look at it is that

Knuth’s figure of merit may be too sensitive for 1 arge values, and
that log modulus/e , the number of independent bits, would be
min

better. Unfortunately, thiswouldhaveto be multiplied by n for
compar i son between di f ferent dimensions.

10
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Explanation of Example Printouts

The examples below indicate how the spectral test behaves in several
interesting cases selected from the author’s experiments. Each
exampl e is specified by a coded sequence of letters and numbers; {pe
output, which was generated by slight variants of the MACSYMA
programs in the appendix, can be understood as follows:

Procedure spec(a, m, n, nn) performs the spectral test on t he LCRNG
with multip! ier a, modulus m, in dimensions n through nn,

In the leftmost column, an F indicates that the grid basis is used in
the fol lowing transformation: an E indicates that the dual basis is
used. The vector indicated by the second column is chosen as divisor,
and al | of the other vectors in that basis are “remaindered” by it,

as described earlier. |If all quotients are 8, no line is printed for
that cl i v i sor and another d i v i sor i s tr i ed The vector printed ou't
next consists of the ¢ , indicating the size of the exhaustive search

J

i f no further reductions were possible. The integer following is
the squared length of the shortest vector currently in the dual
basis. Finally, TRUE indicates a new low exhaustive search volume,
FALSE means no such luck. n consecutive divisor vectors without

a TRUE means that the process is stuck. When both are stuck, the

2
exhaustive search is performed, after which e , the square of the
min

truly minimal dual vector length is printed (abbreviate this quantity
d). On the next | ine are a, the multiplier: m, the modulus; n,
the dimension; and finally, Knuth’s figure of merit

n n/2

m{n/2) |

Whenboth processes are stuck,’ the exhaustive search rarely improves

.upon the current shortest vector,
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Example 8

Here a part icularly successful E process reduces c¢ (the search
vector) to one case: but for lack of a special check, it finds one
more useless E step and an equally useless F step. pNote that when d
(4th column) fails to shrink, the only ¢ vector entry (3rd column)
uhich can change is the one indicated by the 2nd column,
corresponding to the divisor vector,

(C8) spec (2654435783,2132,4,4) 8

E 4 13967335, 5959262, 5959262, 15852981 35512803584646 TRUE

E 1 (851839, 5359262, 5959262, 15852981 35512803584646 TRUE

E 2[116721, 120956, 816496, 2172061 666665718102 TRUE

E 3 (12611, 13868, 2066, 234681 7782610788 TRUE

E 4 [81, 84, 19, 153 325152 TRUE

E 115,384, 19, 151 328152 TRUE

E 205,719, 151 3251.52 TRUE

E 3(5,7 1,15] 328152 TRUE

E 41(1,1,0 01 13558 TRUE

E 118,10 01 13558 TRUE

E 208,10 01 13558 FALSE (Next three divisors =0+ sfuck try, F)
:3:;5[88' 1, 0,01 13558 FALSE (Its no use, butF finds one nonzerao quotient)
2654435789 4294367296 4 0.211203495

TIRE= 40024 MSEC.

(40 sec. Well, nobody said MACSYMA was designed for number crunching)

12
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Example 0, continued

Same problem using (slower) F process, which gets stuck after one step
and is rescued byE. Again, some time is wasted in the end trying

to reduce search to less than one case. Note that several elements

of the ¢ (search) vector can shrink in one step, even though

d doesn't change.

(CPB) SPEC (2654435789,2%32,4,4)8
F 11437552842, 541687612, 534854214, 5427929341 431964458348888964 TRUE

E 2 [3967335, 1585298, 4849577, 49215581 35512803584646 TRUE
F 2 [839086, 1585238, 4849577, 43215581 35512803584646 TRUE
F 1 [839888, 588582, 4587021, 49215581 35512803584646 TRUE
F 2 1839086, 588582, 1502064, 39288751 35512803584646 TRUE
L3 Wu‘lﬂoﬁ,iﬁf 2 1502064, 38423081 35512803584646 TRUE
F 1 [83938%6,588 c>82,93881 33452561 35512803584646 TRUE

F 2 [5174953, 363326, 534[541. 20199701 13532031745394 TRUE

F '* J417292 363326, 534041, 15822951 13532031745394 TRUE

F 10417382, 363326, 517959, 5555671 13532031745394 TRUE

F 3 [9?2&_, 81199, 115757, 944011 675882938706 TRUE

4 148720, 73941, 115757, 944011 675882938706 TRUE

1 (48728, 65388, 115757, 932621 675882938706 TRUE

2 148356, 65537, 114965, 454433 666665718102 TRUE

4 [44078,64352, 74139, 454431 666665718102 TRUE

1 (31884, 45381, 43130, 32046) 331544488820 TRUE

2 (383, 443, 350 3131 31640830 TRUE

3 [383, 421, 353.1‘35] 31640830 TRUE
4
1
3
4
3
4

n

1133, 421, 313, 1353 31640830 TRUE
{133, 418, 193, 1401 31640830 TRUE
{133, 394, 193, 551 31640830 TRUE
(127, 394, 55, 551 31640830 TRUE
(19, 35, 6, 61 479910 TRUE
(19, 34, 6, 61 473910 TRUE

1018, 13, 6, 61 479910 TRUE

3 (18, 12, 6, 61 479310 TRUE

4 (18, 8, 6, B] 479910 TRUE

23, 8, 6, 61 479910 TRUE

3 (3,7, 6,6)473918 TRUE

4 [1, 0, 1, 1113558 TRUE

1 El, 0, 1, 11 13558 FALSE

21(8,7,8, 11 13558 TRUE

3 (@8, B, 0, 13 13558 FALSE

1[0, 0, 0, 13 13558 FALSE

2[00, 0, 0, 11 13558 FALSE

31(8,0 0,1] 13558 FALSE

4 [0, 0, 0, 11 13558 FALSE

13558

2654435789 42945167296 4 08.211283435

TIME= 128120 MSEC.

I'I'II'I'I'I'I'I'I-n'I'I'l'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'l'l'l'l'l'l'l'l'l'l

13



Examplel

An example where the E process 4ets spyck with the search vol ume at
3307 cases, rescued by F, but only down to 314 cases, The first step
achieving d = 1509 is remarkable for several reasons. 1583 uiilturn
out to be the shortest squared length, (eadingtoaspectacul ar ¢ ()
of 8.27. Weirder is the fact that it managed to simultaneously reduce
d and increase the search volume.

(Courtesy of David Hoaglin, Harvard Statistics Dept.)

(C1) spec(253634132,2131-1,6,6)8

E 6 1104749768, 170403637, 170403637, 170403637, 170403637, 88878182}

E 5 252264117, 23037399502827771 TRUE
41033803, 41833383, 41833883, 20465004, 212095401 1683772988642814

E 4 (19188858, 16574916 T R U E
E 310612718,996752, 16574916, 9462745, 8266495, 85672371 274727840407065 TRUE
E 2 [235476, 150306, 318236, 569053, 497115, 5152891 993514549513 TRUE
E 110146487,28347, 21816928, 191048, 1979981 146738794278 TRUE
E 6 [7824,15303, 412248636031, 373421 5219487568 TRUE
E 5 1148, 289, 2227142143, 19458, 128521 1522250787 TRUE
E 4 [148, 28329, 42229155, 25885324 TRUE
E 3 (148, 289, 207, 110, $85322431 TRUE
E 2 (76, 116, 186,10, 155545824 TRUE
E 1 (18, 31, 528, 73, 1243953 TRUE
E 6 I[6, 19, 15,121, 331910250 TRUE
13, 61 3882 TRUE
E 5I[6, 19, 17, 3, 3, 61 3882 TRUE
E 4 [6, 19, 17, 9, 3, 61 3882 FALSE
E 3104, 12, 1, 5 2 4)1593 TRUE
E 2 4,1, 1, 5 2, 41 1593 TRUE
E 1 Cl, 1, 1, 5 2, 41 1593 TRUE
E 6 [1, 1, 1, 5 2, 11 1593 TRUE
E 5 [1, 1, 1, 5 3, 11 1509 FALSE
E 4 [1, 1, 1, 3 3, 11 1509 TRUE
E 2 (1, 2, 1, 3, 3, 11 1509 FALSE
E 6 (1, 2, 1, 3, 3,11 1509 FALSE
F 3 (1, 1, 1, 1, 1,13 1509 TRUE
E 2101, 1, 1, 1, 1, 11 1509 FALSE
F211, 1, 1, 1, 1, 111589 FALSE
F 101, 1, 1, 1, 1, 11 1509 FALSE
F 6 (1, 1, 1, 1, 1, 1)1589 FALSE
F5 [1,1, 1,1, 1, 11 1583 FALSE
1509

253634132 2147483647 6 X.2686827
TIME= 339425 MSEC. (Long exhaust i ve search, )

1k



Example 1, continued

Same problem, same process, byt it somehow avoids getting stuck by
cycling forwards through matrix of divisorg "ovsgad of backward

These qualities of large test value, many approach sequences, %.v.a’
large final search are all associated with highly isotropic grids.

E@@I104743768,5PEC (253634132, 2431-1,6,5) 8
7170483637, 170403637, 170403637, 170403637, 88@78182)

23983 7388%02827771 TRUE

1 48732

E or4s7306, 3377125, 377125, 977155 8e5056) 954773265689 AU
E 3 (160332, 3736186, 977125, 977125, 585056) 954773265689 TRUE
E411208709,202026,421579, 321579, 1662171 103413054855 TRUE
EGIS5490, 1528302, 72252 . 242151, 1251621 58637107354 TRUE
E 6 (2798, 38273,563963,3197, 33076, 57509 12379232699 TRUE
E1063,R4, 1669,35191965, 7691 31315685  TRUE
E 2 163118, 568, 66, THA76 TRUE
E 3 (63, 18,18, 668, 35476 TRUE
E 4 [B63, 228,56, 6633456 TRUE
E 5 [24, 722, 18, 66, 35476 TRUE
E 6 [24, 74, 3, 3 5083 TRUE
E 1 (3, 4,4, 3, 31 SP89TRUE
E 2 13, 2,541, 115,1859 TRUE
E 3 I3, 52, 1, 13, 1859 FALSE
E 4 13, 2, 51, 113,1859 TRUE
E 5 I3, 54, 1, Pt 1859 TRUE

1, 2, 11 1853 FALSE
E112, 5 3 1, 2, 11 1853  FALSE
E 2102, 1, 2,1, 1, 11 1593 TRUE
E3 (2,1, 2,1, 1, 13 1533 FALSE
E o (111, 2,34, 1, 2 1593 FALSE

, 1, 11 1593 TRUE
E 3501014,01,1, 1, 1,1,11 1533 TRUE

17

E 2 (I, 11, 1 1593 FALSE
1, 1, 11 1589 FALSE

FLll, 1, 1, 1, 1, 11 1509 FALSE

1509

253634332 2147483647 © 8.2686827

TIME= 314353 MSEC.
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Example 2

Somewhat unfortunate effects of using E process in incremental mode
(on somenhat unfortunate multipl ier distributed by, IRM),

Here, e nre using the leftover matrices, as in Refinement 3,

but, contrary to suggest ion, w e are still using E instead of, % ,
Note the large search vectors created -in the transition to.restn,
About three times as many steps are required for n =6 in incremental
Emode than are required for doing n = 6 directly (not shown),

Had E got ten stuck earl ier, F probably would have helped immensely.

For ti =2, the equivalence of the E and F processes will mean that
the F processwil | rarely, if ever, find a nonzero quotient after
the E process gets stuck.

(c2) spec(B5533,2131,2,5)8
E 2 CI, 01 2147221544 TRUE
E101, 01 2147221544 FALSE
2147221544

65533 2147483643 2 3.1412093

E 1 (2, 778833,46338] 2147221544 TRUE
E 2 [8,0, 101 118 TRUE

E 3 18,0,11118 TRUE

E21(8,0 1] 118 FALSE

E 31[8,0 11 118 FALSE

118

65533 2147483648 3 2.58824806F -6
E1[21, 879, 1465655, 101 118 TRUE
E2(2],0, 1465655, 101 118 TRUE
E 3021, 0, 5 103 118 TRUE

E 4 (21, 0, 5 101 !18 FALSE
E1100,0,5, 103 116 TRUE

E 4 (8, 0, 5 2] 116 TRUE

E 218,08, 5 2 116 FALSE

E 3(8,n, 1, 23 116 TRUE

E 4 (8,0 I, 11 116 TRUE

E 308,01, 11 116 FALSE

E 4 (9, 0, 1, 11 116 FALSE

F 1100, 0, 1, 13 116 FALSE

F21I8, 0, 1, 11 116 FALSE

116
65533 2147483648 4 3.89211674E-5

16
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21 [473, 2319,6, 3855068, 7842552, 103116 TR
TRUE JE

E
E 3 [473 10 389495
, s 7847 jre
E 41[473,10, 3854352, 788%;2% 0], 116 TRUE
E 1 (18, 10, 3854952, 1927326 | |« TRUE
E 2 (18, 0, 1338 é§52103 11g TRUE
E 3 (18, 0. 19 0101 116 [RUE
E 4 (19, 0, 192 O3 116 TRUE
E 1 I8, 0. 473%g83001 116 TRUE
473GRG,10) 116 TRUE
E 3@, 0[8:32(515232582.5.55, 101 116 IRUE
E 3 (0,8, 196408, 101 116 TRUE
E 4 I[8, 0, 1164D827801 116 TRUE
28603, 101 116 TRUE
E 3108, 0 14053, popp3 103 116 TRUE
E 4 (8, 0, 14853, 2030 101 116 TRUE
E 3 (8, 0, 3450, 7030, 101 116 TRUE
E 4108, 0, 3450, 1720, 101 116 TRUE
E 3 (8, 0, 0844’ 1720, 103 116 TRUE
E 4 (8,0, ::44. 417, 18] 116 TRUE
E 3 18, 0, 203, 447 103 116 TRUE
E 4 (8,8, 208, 105, 101 116 TRUE
E 518,74, 2085, 105 101 116 FALSE
E 3108, 0, 47, 105, 401 116 TRUE
E 4108, 0, 47, 18 18) 116 TRUE
E 508, 0, 47, 18 181116 FALSE
E i [[%. (()), i, ;8,1180]3 116 TRUE
, 0, 4, 2 TRU
E 5108, 0 4 2 11161$'RUEE
E 1108, 0, 4 2 116.PALSE
E 3 (8, 0, 1, 2, 11 116 TRIE
E 4 (8, 0, 1, 1, 1]
) ] El ’ 116TRUE
E 508, 0 1, 1, 1 1 116FALSE
E 118 8,1, 1, 11 j15 FALSE
E 208,81, 1, 11 1y FALSE
E 318,82, 1, 1, 11 115 FALSE
E 4 [0,8,1, 1, 13 34 FALSE
F 51008,8, 1, 1, 13 115 FALSE
Fe1 00, 0, 1, 1, 1] 116 FALSE
F3718, 0.1.] 11 116 FALSE
(@, 0: 1,1, 13 116 FALSE
116

65532 7147483648 5 3.662332E-4

TTIME= 256209

SEC.
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Example 2, cont inued

E Works best non-i ncremen ta | 1 'y. For this particular multiplier of
65533, the cl of 116, which is such a disaster for n = 3, persists
| apparently through n =3, foruhichit gets 5, veryrespectable cl(9) of
3.00. (The author lacked thepatience for the 1893 case final search,)
For n = 10, d <B4, " Thisdoesnotmean thati tisagood idea to gobble
O-tuples from thibaqenerator andthendiscard a few in some pat tern.
To analyret he effecteof t hi s performthe spectral test on the grid
basiscuhoce first vector skips the powers of a corresponding to the
cliscardedvalues, Moreprecisely, i f you propose to discard the 3rd
and 7th value out of ever-y eight, delete the 3rd and 7th rows and
columns from the eight dimensional basis matrices, of course, if you
are just discarding every other value, you could just run the regtular

2
test ona instead of 3.

(CB2) <pec(65533,2121,8,8)8

E8f1d10647,5 5835 335553%5533, 65533, 65533, 65533, 18707] 4294574098 TRUE
E6 (10647, 65533, 6538365533, 65533, 65533, 23328, 18787] 4294574898 TRUE
E 5 (18647, 65533, 65533, 65533, 21402, 23328, 18787) 4294574999 TRUE
E 4 4, 27, 65538, 65536, 25364, 21482, 23328, 187071 4294574090 TRUE
10, 8, 9, 71 746 TRUE
E 3 14, 27, 5, 6, 10, 8, 9, 71 746 TRUE
E 2 (1,8, 2, 2, 4, 3, 3, 33 116 TRUE
E 108,08, 2, 2, 4, 3 3 31 116 TRUE
E 8 [P, 0, 2, 2, 4, 3, 3, 23 116 TRUE
E 7 08,0, 2, 2, 4 3, 3, 21 116 FALSE
E6 (8, 8, 2, 2, 4, 3, 3, 2] 116 FALSE
ES (@, a8, 2, 2,1, %, 3, 21116 TRUE
E4 (0, 8, 2, 1,1, 3, 2, 21 116 TRUE
E3 (8. 8. 1. 1.1 7 2,21 1168 TRUE
EZ2 10, 8, 1, 1, 13,21116 FALSE
[ E 8 [8,8,1, 1, 1, 3,3, 1] 116 TRUE
E 7 (8,0, 1, 1, 1, 3,1, 11 116 TRUE
E 6 (08, 00 1, 1, 1, 1, 1, 11 116 TRUE
E 5108, 0 1, 1, 1, 1,1, 13 116 FALSE
[ E 808,08, 1, 1, 1, 1. 1, 13 116 FALSE
E 710,01, 1, 1, 1, 1,11 116 FALSE
E 610@,8, 1, 1, 1, 1, 1, 11 116 FALSE
FslB, o 1, 1, 1, 1, 1, 11 116 FALSE
- Fa418,B8,1,1,1, 1,1, 11 116 FALSE
Es @, o, 1, 1, 1, 11 116 FALSE
2

, 1, 11 116 FALSE

lv
1,1,11 116 FALSE
1
1, 1, 11 116 FALSE

65533 2147483648 8 0.34220817
TIME= 484930 MSEC,
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Example 3

The F process in
transitions to ne .

(C3) spec (65533,2131,2,8)8

F 1 U, 8) 2147221544 1R
F 21, 01 2147221544 FALSE

2147221544
65533 2147483648 2 3.1412093

F3I(0,0, 103 118 TRUE
F1108,0, 41 118 TRUE

F2(p, 0, 11 118 TRUE
F108, 0, 11 118 FALSE
F 208,08, 11 118 FALSE
E 308, 0, 11 118 FALSE
118
65533 2147483648 3 2.5PB400GE-G
F 418, 8,5, 18) 11g 10
FLoial el 1l 0 g e
F 218,91, 11716 pacse
3 18,8, 1, 11 116 FaLSE
E 3109, 9, 1, 11 116 False

6
F5100,8, 4, 4, 101 116 TRUE
F 1 (8,0,1, 1, 21 116 TRUE
F 1, 1, 21116 FALSE
F 3 18,0 1,1, 11 116 TRUE
Fal8,0,1, 1, 11 116F ALSE
F 1 (8,8, 1, 1, 11 116 FALSE
F218,0 1, 1, 11 116 FALSE
E 4 (0,0, 1, 1, 1J116  FALSE
EGIB, 0, 1, 1, 11 116 FALSE
E3108,0 1, 1, 11 116 FALSE

116

65533 2147483648 5 3.552332E-4
F 6 (9, 0, 2, 5,1, 191 11

F1 18, o, 1, 2, 1, 4} 1166'|:I|;{I?JléE
F218, 9, 1, 1, 1, 11 118 TRUE
F 3 1o, o, 1, 1, 1, 11 1is FALSE
Feé6 (g, g, 1, 1, 1, 11 118 FALSE
E3 (8, 9, I, I, 1, 11 116 FALSE

116
65533 2147483648 g 3.75614B4BE-3

(6 is shorter than 4 or 5!

155 secs so

;(rtlcremental mode, same a = 65533,
n

far)

19
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Fl118]8,09, &, 3, 1, 3, 181116 TRUE
F 218, 8,1, 1, 1, 1, 11 116 TRUE
F3108, 0o 1, 1, 1, 1, 11 116 FALSE
F 41008,8, 1, 1, 1,1, 11 116 FALSE
Fl(e, o, 1, 1, 1, 1, 11116 FALSE
1, 1,1, 11 116
E afl@,08, 1, 1, 1, 1, 13 116 FALSE
116 1, 1, 3, 11 116 FALSE

65533 2147483648 7 B.0364987356

F lgl@.poe, s %, 1, 33 10M6 TRUE
F2le, 0, 1, 1, 1, I, 21 11GTRUE
F 3 (8,0, 1, 1, 1, 1, 21 116 FALSE
F a4 (8,08,1, 1, 1, 1, 1. 11 1I6TRUE
F 6@ 0,1, 1, 1, 1, 1, 11 116 FALSE
F 710, 0 1,1, 1,1,1,11 116 FALSE
F 1108, 8,1, 1, 1, 1,1, 1116 FALSE
F2i18,8, 1, 1, 1, 1,1, 11116 FALSE
E 5108, 0 L, 1, 1, 1, 1, 11 116 FALSE
E 6100, 00 1, 1, 1, 1, 11 116 FALSE
E 710, 0 1, 1, 1, 1,1, 1116 FALSE
B30, o 1, 1, 1, 1, 11 1le FALSE
116 1,1, 1, 1, 36 FALSE

65533 2147483648 8 (0.34220817
(Approximate time: 700 sec.)

20



Exampie 4

A particu | arlygocdmultiplicator from an extensive search
Note helpful E on n = 4.

Janssens,

by F.
(C4)

spec

(1638613,2132,2,5) 8

F 11(318,152)656552647776 7 RUE

F 2 CI,13)4934260282 TRUE
F1101,1]4934360252 TRUE

493436028
1698613 4294967296 2 3.R89232

1 (5011, 1239,
3103, B,

1 (2,3, 6] 7352472 TRUE

MIAN AN

3112382, 343, 79273) £68481 298 TRUE
1845} 148955560 TRUE

2 (6,36, 2.81K735450F TRUE
[6]22257546 TRUE

2 [1, 2, 01 2162658 TRUE

3 18, 1, 01 2162558 TRUE

1 08, 1, ) 2162558 FALSE

2 [8, 1, BIZ162558 FALSE
2162558

1698613 4294367296 3 3.1015612

F

F

F 24 588, 6, g
F3 (2, 2,6, I
Fa (1,1, 2, 13
LI, o1, 1, 1)
E 210@8 1, 1, 11
€®1de, 1, 1, 11

4 1333,173,19, 8051 G430R2

TRUE

1 [329, 158, 19, 1351 631758 TRUE

84994 TRUE
84572 TRUE
84572 TRUE
84572 TRUE
62910 TRUE
»2918 FALSE

1638613 4294367296 4 4.547254

F S (79, 26, 83, 39, 183] 33490 TRUE
F 1 (65,22, 3, 32,131 279% TRUE
F 2 [2, 72, 3, 10 , 2 29% TRUE
F 310, 5 2,3, 11 15110 TRUE
Fa [1, 1, 1, 2, 11 #2824 TRUE

FS (L, I, 0, 2, 1l 824 FALSE

F 111, 1, 1,1, RI627n TRUE

F 2@, 1, 8, 8, 01 4124 TRUE

F 308, 1, 8, 8, 01 424FALSE
F4 (8, 1, 8, B, 034224 FALSE
FS [0, 1, 8, 9, 01 4224 FALSE

E 3.[0, 1, 8, 9, 0] 4224 FALSE
E4-00, 1, @, 8, 8)4224 FALSE

E 2 (08, 1, 8, 8, 03 4224 FALSE
422

1690613 4234967296 5 1.421178
TIME= 121136 MSEC.
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Example §

Incremental F node on an old standby,

(CS) cpec(SM1S,2025,0,8)8
F 1 [24567628, 1484535) 48263765833184842 TRUE
F 2 (334427, 625432p) 1149883663925584 TRUE
F 1 116576, 821 28229371184810 TRUE
F 2 125, 144] 868180541344 TRUE
F 1 07, 21 783779383465 TRUE
F 2108, 1] 22073865098 TRUE
1 18, 11 22978365098 FALSE
20878865098
B517578125 34359738268 2.8187232

(36863, 41197, 99637) 992767
(L2957, 2362, 1819) J37007:0-30 TRUE
(1142, 2362, '£43) 13720733399 TR
(15, S1, 1471 180R94474 TAUE

(15, 5,'9) 188694474 TRUE

(2,2,'3] 14523926 TRUE

(1, 2, 3] 14523926 TRUE

(1, 1. 8] 18274746 TAUE

[, 1. 8] 18274746 FALSE

[, 1, 8] 18274745 FALSE

18274746

38517578125 34359738308 2 4. @15092]

W WN=WN LW

4 [H4 52, 407, 1179) 1299614 TRUE
1[4, 6, 12, 311 1398614 TRUE
2 01,3, 4, 15) 233602 TRUE

3 0L, 203, 1) 163714 TRUE

4 08, 1, 3, 11 163714 TRUC
108, B, 2, 11 169714 TRUE
208, B, 1, 11 163714 TRUE

4 18, B, 1, 11 167758 FALSE
208, 0,1, 11 167558 FALGE
167558

305175781 05 34353738365: 4 4.0322757

T T T M

B-b 1104, 22, 34 139 087122884 TRUE
1104, 22, 34, 33, 271 2664 TRUE
F 3 (1, 85, 7,78 31 42752 1RyE

F4 (1,0, 2, 0, 13 5344 TRUE
F 51,0, 2, 0,115844 FpLSE
F 1l (g, 1, 0, 13 5344 TRUE
F 2.9, o, 1, 0, 13 5844 FalSE
F4 I9,0, 1, 0,03 5844 TRUE
F 1l (9, 1, 0, 01 5844 FaALSE
5844 8, 1. 0, 035844 pplSE

26 34353738268 5 8.33996696

S
N
hdl
3
i
~d
00
—

22
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F 6 (26, 13, 28, 23, =8, 78} LR244 TRUE
F1oIzo, 11, 5, & G, 1) n844 TRUE
F 2oz, 1L, 6, 3,8, 1) Ls44 TRIE

F 2o, 2,4, 1, 1, 11 30098 TRUL
F4 01, 1,2, 1,1, 11 . TRUE
FSoa, 1, 2,1, 1, 1] TRUL
Foog, 1, 20 1, 1, 1) 2598 FALSGE
Flote, 1, 2,1, 8, 1) 2508 TRUL
F21a, 1,8, 1, 8, 0 592 TRUE

F 3, 1,8, 1,8, 8] 2492 FALSE
F5[a, 1,8, 1, 8, 0] 2592 FALSE

E 4 08,1, 8, 1, 8, B} 2692 FALZE
2592

38517578105 3435973383058 6 2.619105¢9
F 7049, 2,7, 11,1, 8, 291 586 TRUE
Fl e, 2,1, 2,0, 8, 21 583 TRUE
F 2oL, 2,1, 8, 8, 8, 1) 598 TRUE
F3 0, 1,1, 8,08, 8, 1) %83 TRUE
Fa4 (L, 1, 1,8, 0,0, 1] 508 FALSE
F5 1, 1,8, 8 8, a 1] 585 TRUE
Fe 1, I, 8, 8,8, 8, 1) 583 FALSE
F 7 01,1, 8,8, 8, 8, 1] 508 FALGE
F2 0, 1,8, 078, 0, 1] 588 FALGE
F 30, b, 8, 8,8, 8, a1 S TRUE
Fa 1, 1, 8, 08,08, 0, 8] 505 FALSE
FSOOL, b, B, 8, 8, BB Ras LALGE
F 6 11, 8,8 8,8, 0, 8 P8 ThE
F o7 00, a, 8,8, 68, 0, 8] 585 FALLE
F 4 (1, 0, 4, 0,8, 0, 0] 538 IALSE
F S5 11, a, a, 8, 8, A4, d] “08 FALSF
E 7 01, B, 8, 8, 9, B, B] 595 FALSE
E - (L, 2, 8, 98, 8, 9,

- A} SRS FALSE
508
30517578125 342353738268 7 B8.48020G18

n

F 8 12, 9,19, 2, 7, 7, 1, 221 B3 TRUE
Flo[2, 2, 3,1, 2,2, 1., Bl S9p% TRUE
FZ2oE, 0,0, 1, 2,1, 1, 1) 838 TRUE
F 303, 2, 1, 0, 2,01, 1, 1) 5p¢ FALSE
Fa4a 02,21, 1.1, 1,1, 11 508 TRUE
FS [, 2, 1,1, 1,1, L, 1) %95 TRUE
Fe 0, n, 1, 1,1, 1,1, 1) $8% TRUE
F7 0, a, 1,1,1,1, 1, 11 583 FALSE
F & [1, A, 1, 1, 1, 1, 1, 11 478 FALSE
Folotl, 8, 1, 1, 1,1, 1, 1] 478 FALSE
F.2 U, ., 0,1, 1,1, 1, 1) 472 FALSE
F-a (1, @, 1, 1, 1,1, 1., 1) 478 FALSE
FS (1, 8, 1,1, 1,1, 1,11 478 FALSE
Fo Ity a1, 1,1, 1,1, 11 478 FALSE
E 7 0e, 0,1, 1, 1,1, 1, 1) 414 TRUE
F 308, 0, 1, 1, 1, T, 1, 11 414 FALSE
FS e, n, 1,1, 1, 1, 1, 1) 414 FALSE
£ & [, 0, 1,1, 1,1, 1, 11 414 FALSE
E 7 1008, n, 1, 1, 1, 1,1}, 1] 414 FALSE
414

38517575125 343593738308 8 3.478082
TIME= 745783 MSEC.
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Examptle 6

A variation of the brogeram uhich doesn't bather to compute search
volume vector except hen E or F process gets stuck, uwhere stuck

is defined to te all quotients 8, rather than n consecutive failures
to reach 3 neu tou cemrech volume., From this data it appears that
BEE3Z e the noret multiplier in a bad neighborhood.

(C6) for a:68533-16 ctep & thru 65533+16 do spec(a,2131,2,5)8
F O, 8] 138773268 TRUE
E [, 8] 135703368 FALSE

2135727365

65517 147483648 2 3, 10435837

YOU HAVE RUIN OUT OF LT S SPACE. DO YOU WANT MORE®
TYPE ALL; NOME: OK; A LEVEL-NO., OR THE NAME OF ASPACE.
list;

TA 9383 NMSEC,

(MACSYMA-BREAK)

kdgnamalloc:not(dgnama!!oc);

TRUE

+-exit:

EXITED FROM THE BREAK (Ahh, interactive languages)
Folo, B, 1) 131766 IRUE

!
E 19, 0, 11 121706 FALOE
1317660
65517 DLA4T483648 2 0. 0020961 74

F I8, 1, 8, 8) 24622 TRUC

E (A, 1, 0, 8] 2427 FALSE
34622

GESL/7 DLAZARERAE 4 2, 75450945

FoIL, 1, 8,8, 8) 2186 TRUE
E (L, 1, @, 8, 8] 3186 FALSE
31e6

65517 D147483648 5 1, 21786923

FOOL, 8] 143555280 TRUE

E (1, ) 144555588 FALSE
2163555449

B5526 147483048 2 2.1358467

F I8, 8, 11 15126 TRUE

E 18, A, 11 15126 FALSE

15126

B5520 147482048 3 2,628R475E-73

F U4, o, 1, 1] 15106 TRUE
E [0, 0, 1, 11 18120 FALSF
1516

6550 1A TGRS 4 0.505, 17

Foie, 0, 1, 8, a1 2790 TRUC
E 18, 8, I, 8, 91 277 FALSE
2796

65525 2147483048 C 1.913203817
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F (1, 0: 2147221544 TRUE
E [1, 87 2147221544 FALSF

2147221544
65533 2147483648 2 3.1412093

F (B, 5, 11 118
v g, TRUE
]]5]8[0, 0, 11 118 FALSE

65533 2147483648 3 2.58B24B96E-6

g §§° 0, 1, 11 116 TRUE
115 0, 1, 11 116 FALSE
65533 2147483648 4 3.39211874E—5

E [8, 0, 1,1, 13 116 TRUE
116 I, 11 116 FALSE

65533 2147483648 5 3,550330F-4
F {1, 01 2146697320 TRUE
E 1, 03 2146697320 FALSE

2146697320
65541 2147483648 2 3.1404424

F 19, 0, 11 726 TRUE
E 8, 0, 1] 726 FALSE

726
85541 2147483648 3 3.81568716E-5

F (8, g), 1, 11 726 TRUE

E (9, 1
796 v 1] 726 FALSE
65541 2147483648 4 1.2111924E-3
F, o 1, 1 13

) o 726 TRUE
248, g, I, 1, 1) 726 FALSE

65541 2147483648 5 0.034810489
F [1, 03 2141984744

! TRUE
E C, 03 2141984744 FALSE

2141984744
65549 2147483648 2 3.13354826

F (8, g8, 1] 79233 TRUE

E 18, 8,11 79238
29238 FALSE

65549 2147483648 3 9.75169825€-3
F 18, 0, 1, 1129238 TRUE

B3B8 0, 1, 13 29238 FALSE

65549 2147483648 4 1.96442376

513[21., L L 1, 01 5132 TRuE
1, 01 5132 RALSE

65ME9 2146483648 5 4.6247172
MSEC.
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Example 7

(Program nmodified as in Exanple 8)., Another good Janssens number but
look what happens if we use m/4 instead of mfor n =4 in 2nd set!

soas to consider only independent tuples. Tukin every 4th poin t
quadruniecthelengthofthegridvectoruwhich was %r connect1
the most widely separated subgrids--the worst poss1ble outcone. In
the dozen or so other cases (ried, the degradation uas much less sevare.

ng

(C7) spec(1664525,2132,2,64)%

F [1, 13 4938916874 TRUE

E 1, 11 4938916874 FALSE
4338916874

1664525 4294967296 2 3.61261544

F EI, 0, 01 2322494 TRUE
E (1, 0, 01 2322434 FALSE

2322494
1664525 4234367236 3 3.4519195

F (8, 1, 1,01 63712 TRUE

E [8, 1, 1,03 63712 FALSE
63712

1664525 4234967236 4 4.6639335
TIME= 52365 MGEC,

(CB7) spec (1664525,2130,2,4) 8
F [1, 03 310518218 TRUE 3
ECI, 01 310518218 FALSE (Th s data really applies to mod 2 .)

310518218
1664525 1073741824 2 0.90852543

F (8, 1, 8] 412832 TRUE 39
51[2%.321, 01 412832 FALSE (Th s data really applies to mod 2 .)
1664525 1073741824 3 1.0347817

F (8, 0, 0, 113382 TRUE 32
]3::92[;(;. 0, 0, 13 3982 FALSE (This data really applies to nod 2 ,)
1664525 1073741824 4 0.072873961

_ TIME= 44372 MSEC.

(C37) 3982x16;

TIME= 6 MEC
(037) 63712
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Exanple 8

Sone pathology of increnmental F node, For a = 663608301, n = 7, E
tried toheat d = 390 and tripled the exhaustive search instead,

On the next case, a = 663608303, n = 7, E manages to wn. Later,

when a = 663608933, n = 7, we have a serious failure of E to find

the smal lest d. Instead, for the first time in the author's experience,
a 2 appears in the final search vector, and the (very) exhaustive
search actual ly finds a smller do In the final case, a =663608941,
{a multiplicator constructed by Dieter to haveagoodtwodimensional
serial test}), n = 7, we have another minor msstep ofE.Note unlucky
7. Actual ly, these problems are just hard to find for small n. The
underlying cause of this pathology is that, were it not forthe
inefficiency, we would be better off hunting a smalldusingEfirst,
then trying to reduce the search with F.lItis an empirical fact that
Fincreases d far nore rarely (if at all) than E increases the search
vo lume. Wien the author tried to run Eand F alternately until both
were stuck, they fell into a period 2 oscillation modifying one

vector in the case a = 663608333, n = 6, In an effort to see what
woul d happen anyway on the case n = 7, the author mmnually intervened
to stop the n = 6 loop. Sonewhat unfortunately, due to the additional
reduction of the n = 6 bases, this "ping-pong" variation wasnever
confronted with the matrix which led E to create the

(1,1, 1, 2, 1, 1, 13, but instead F cane right up withfivelsand
two Os and d = 442,

(C8) FOR A 663608901 STEP 8 DO SPEC(A,2132,2,7);
F [9, 13 3397158986 TRUE

E (8, 1) 3397158986 FALSE

3397158986

663608901 4234367236 2 2.4848827

F [1, 0, 01 1490074 TRUE

E El, 0, 03 1490074 FALSE
1490074

663608901 4294967296 3 1.77394824

F [8, 0, 1, 01 13408 TRUE

£ (8, 0, 1, 01 13408 FALSE

13408

663608901 4294967296 4 0.20655603

F {8, 1, 0, 0, 03 1078 TRUE
E 8, 1, 0, 0, 03 1078 FALSE

1078
663608901 4294967296 5 0.046761183

F {0, 1, 1,0, 0, 01 1078 TRUE
E [8, 1, 1, 0, 0, 01 1078 FALSE
1078

663608901 4294967296 6 1.50728331

Fd, o0, 1, 0, 0, 0, 01 330 TRUE
E (1, 1, 1, 0, 0, 0, 01 390 FALSE
390

663608901 4234967296 17 1.28868447
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F [8, 11 626928730 TRUE

E [8, 11 626928730 FALSE
626928730

663608909 4294967296 2 0.45857269

; F {1, 0, 03 465630 TRUE

' E [1, 0, 01 465630 FALSE

465630

663608909 4294967236 3 00303877604

F [1, 1, 1, 03 53172 TRUE

E El, 1, 1, 0l 53172 FALSE
53172

663608909 4234967296 4 3.2484476

F (8, 8, 8, 1, 11 6314 TRUE
E (8, 0, 0, 1, 11 6314 FALSE

6314
663608909 4294967296 5 3.8823978

E {1, 0, 1, 1, 0, 03 1406 TRUE
1406 I, 0, 01 1406 FALSE

663608909 4294967296 6 3.34421745

E (1, 1, 1, o, 1, 1, 11 996 TRUE

{ F [, 1, 1, 8, 1, 0. 1l 534 TRUE
L E 01, 1, 1, 8, 0, 11 534 FALSE
I, 8, 11 534 FALSE

- o34
[ 663608909 4294967296 7 3. 8709251

=

F [1, 03 3236682938 TRUE
E Cl, 8] 3236682938 FALSE

3236682938
663608933 4294967236 2 2.367501

F (8, 0, 13 311352 TRUE
E (8, 0, 13 311352 FALSE
311352
T 663608933 4294967296 3 0.16943623

F I8, 1, 0, 8] 13562 TRUE

E (8, 1, 0, 01 13562 FALSE
13562

663608933 4294367296 4 0.21132812

F [, 1, 1, 1, 01 7298 TRUE
E (1, 1, 1, 1, 03 7298 FALSE
7298

663608933 4294967296 5 5.5763277
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E (1,0, 0, 0, 0, 13 958 TRUE
958 0, 0, 11 958 FALSE

663608333 4294367296 6 1.0578767

Fc, i, 1, 1, 1, 13
BATL, 1, 1, 2, 1,11,, 11 746 TRWUSE

663608933 4294967296 7 1.99709308
F {1, 03 1606825210 TRUE

E Cl,03 1606825210 FALSE

1606325210
663608941 4294967296 2 1.17532684

F I[1, 0, 01 477530 TRUE

E [1, 0, 01 477530 FALSE

477530

663608941 4294367236 3 (.321832295

F A, 0, 0, 01 45014 TRUE
B5014 0, 0, 03 45814 FALSE

663608941 4294967296 4 2.3281182

F (8, 0, 0, 0, 11 2582 TRUE
B582, 0, 0, 0, 1] 2582 FALSE

663608341 4294367296 5 0.41517307

E [1, 0, 1, 0, 0, 01 788 TRUE
788 0, 0, 01 788 FALSE

663608341 4234367236 6 0.58873131

E [8, 0, 0, 0, 0, 1, 8) 333 TRUE
338 0, 1, 11 338 FALSE

663608941 4234367236 7 0.78096013



r—

Program Listing

tine: translate:modedeclare({value(better),value(tr)],boolean,
Ea, ap,modulus,n, i, j,k,g9,d,mm,nn,pl, integer)$
radprodexpand: f a | se$

spec (a, modulus,n,nn) t = (d:mm: (axmodulus)?(2xn), scalarmatrixp: false,

fimodulusxe: ident(n-1), ap:1,

for k thru n-ldolelk,1}:-f[1,k]l:ap,apiratdisrep(rat(axap))),

ell,11:modu I us,

for nin thru nn do block (mm: mmk (axmodulus) 42,

e: transpose (addrou{transpose (addrou(e,ematrix(l,isn-1,-ap,1,1))),

ematrix(l,n,1,1,n))),

f:addrou(transpose (addrow(f: transpose(f),apxf(l1]1)),
ematrix(l,n,modulus,1,n)), '

scalarmatrixptap:ratdisrep(rat(axap)),

cireverselz:reverse(g:ematrix(l,n,8,1,1) (11)),

t, if tr{'f,’e) or tr(’e,’f) then go(t) else ktn,

u, if (z[k):z{k)J+1l)>c(k) then golu), '

v, if (k:k+l)>n then dimin{d,{btz.e).transpose(b))else

(z[k]:-clk],gotv)},
W, if {kik-1}>8 then golu) else
print(a,modulusyn,ev((print(d)x%pi)t(n/2)/modulus/gamma(n/2+1),numer))))s

tr(ff,eel:=for j do (i:l+remainder(i,n),

gg: (g: (vfrev(ff)) [il).b:transposel(g),

for k thru n do alkl:entier{vflkl.b/gg+l/2),
qlil:@, if ¥z and better{) then {(mm:p,return(true))
else if j=n then return(false))$

better (}:=({]l,ee::substinpart((q.ve) [11+velil,ve:eviee),i),

ff::vf-transposelql.y,

for k thru n do d:min(d,elk]. transposelelk])),

p:l, for k thru n do (clkl:isgrt(entier (dxfIkl.transpose(f[k])/modulus?2)),
p: (2xc (kT+1)%p),

print(ff, i,c,d, is{p<mm)))$

Notes

Thi s was done over the ARPANET on the MT MACSYMA System to
which | am indebted both for the language and the machlne time,

The first three lines are optional. They turn on the tiner and
mke type declarations for efficiency.

2
d and mm are best e and search volume so far.

min
scalarmat ri xp: unfortunately, MACSYMA can regard a1 by 1 matrix
asascalar, but not vice versa.

f: the grid basis matrix, e: the dual, ap: consecutive powers of
a mod m., nodulus is a special variable such thatratdisrep(rat(x))
is the residue of least magnitude nod nodulus.

transpose (addrow (transpose(addrow...: MACSYMA lacks an addcolumn.
reverse is a fast way to copy a | ist of Os. amma (n/2+1):
pedantry for (n/2)!. %i: n. substinpart(e,r,i):replaces ith

row of e with r, evaluating r first,
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The Mdified Program

tine: translate:modedeclare(lvalue(better),value(tr)],boolean,
{a, ap,modutus,n, i, j,k,gg,d,mm,nn,pl, integer) §
radprodexpand: f a | se$

spec (a, modulus,n,nn):= (d: mx (axmodulus)? (2%n), scalarmatrixpr false,
f:modulusxe: ident{n-1), ap:1,
for k thru n-1 dolelk,11:-f [1,k):ap, ap:ratdisrep(rat{axap)}),

ell,1]:modulus,
for n:n thru nn do block (mm:mmx{axmodulus)?2,

e: transpose (addrou(transpose (addrou(e,ematrix(l,itn=1,-ap,1,1)}),
ematrix(l,n,1,1,n})),
f: addrou ( transpose (addrow ( f: transpose (f),ap(11)},
ematrix(l,n,modulus,1,n}),
scalarmatrixp:ap:iratdisrep(rat(akxap)),

cireversel(z:reverse(q:ematrix(l,n,8,1,1) [1]1)),
t, tr{'f,’e), if tr(’e,’f) then golt) else k:n,

u, if (zlk):szlkl+l)>clk] then golu),
v, if (ktk+1)>n then d:min(d, (b:z.e).transpose(b)) else (zlkl:~-clk],golv)),

W, if (ktk=-1)}>8 then golu} else
print(a,modulus,n,ev({print(d)*x%pi)*t{n/2) /modulus/gamma(n/2+1),numer))))$

tr(ff,ee):=(for 7 thru n do (i:l+remainder(i,n),

gg: (g: (vfiev(ff)) [il).b:transposelq),

for k thru n do glkl:entier(vflkl.b/gg+1/2}),

qlil:B,if g#z then (j:1, ee:: substinpart((qg.ve) [11+velil,vesev(ee),i),
ffrivf-transposelql.g)),

i f better () then (mm:p, true) ) 8

better (}:=(for k thru n do dimin(d,elk].transpose(elk]}},
p:1, for k thru n do (c[k]:isqrt(entier(d*f[k].transpose(f[k])/modulus?Z)).

p: @xclkl+1)*p),
print(ff,c,d, is{p<mm))}$

Note

Since both of these versions use the F process incrementally, it is
usual Iy best to start with n =2,  To convert either versiontothe
E process, just change the line beginning

_tr{ff,ee):t= ... to read tr lee, ff) ...
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