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Numerical Experiments With The Spectral Test:

Abstract

Fol louwingMarsagliaand Dieter, the spectral test for linear
congruential random number generators is developed from the grid or
lattice point model rather than the Fourier transform model, Several
modificat ions to the published algorithms were tried, One of these
ref inenients, which uses results from lesser dimensions to compute

higherdimensionat ones, was found to decrease the computation time
substantial ly. A change in the definition of the spectral test is

proposed in the section entitled “A Question of Independence”.

Background

The values of the LCRNG (Linear Congruentiat Random Number Generator)

X = aX + C mod m

i + |

when plotted on the x axis, | ie on a one dimensional grid. That is,
the difference hetueen any pair of them is a multiple of some integer ds

X - X =L J

for some integer L. dis 1 for a maximum period RNG, but is

\ . at least 2 if ¢ = 0 andmis a power of 2, Depending upon the number
theory underlying the choice of a, c, and m, it is possiblet hat

| not al | of the m/d grid points between 0 and m-1uill be generated,
If instead we plot consecutive pairs of values

- (x , x J), (<, x), ..., (x,x J}, ...
12 23 1+

as {x, yl) coordinates, we will get a two dimensional grid. This means
~ that the (vector) difference between any pair of points is the sum o f

integer multiples of tuo constant vectors, called basis vectors, which
.define the grid. To find these basis vectors, we have

X =a x + C - Km

1+] |

X = axtc- Mm

| jt J

for some i n tegers K and M, and so

(x , X ) - (x, x) =(L3 a L 8- (MK) m
j j +1 | i + |

= L a (1,a) - (M-K} (8, m)
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a sum of integermultiples of the basis vectors

dg (1, a and (8, m} .

Sim larly, if consecutive triplets are plotted in 3 space, we Wi 11
find a three dimensional grid with basis

) y

dl, a, a), B, m 8), and (8,08, ml .

| This pattern extends to n dimensions. We will call such agri d
basis F and denote its vectors by f,l<jsn,

We can regard an n dimensional grid as an x dimensional grid of
n - x dimensional grids and say that x of the n basis vectors

"connect" identical copies of the n - x dimensional subgrid
generated by the remaining n - x basis Vectors. This even

works when x = n, if ue define a zero dimensional grid to be
a point. (Try rereading this with n=2 or 3 and x=1 or 2.)

Note that the only way that these vectors, and thus the grid’s

structure, depend on the "increment" ¢ is in the value of 3, the
smal lest difference between RNG outputs. lfc is chosen so that

dis greater than 1, ueuwill only generate every dthsubgrid on
the one dimensionalygr id generated by

2 3

(1, a, d [|] a [} cee) .

The only other effect of varying c¢c is to shift the entire grid
andt o change t he orde n which the grid points are generated.

There are infinitely many bases for a given grid, for
if cl and c are tuohasis vectors in an n dimensional grid, then

: we can rep | ace d by d- ¢ and sti | | reach the same points,
since wie can a lwaysreur i te

Kd + L ¢ as Ki(d-c)t (K+L} c .

We could repeat this process g times to replace d by d - qc, and

we could also involve other pairs of vectors, In the particular
° case of the basis

.

2

, d{l, a a), 8, m 8), and (8,8,m)

L we could reduce the pouers of a modulom by subtracting appropriate
multiples of the latter two vectors from the first.

4

i Now suppo se, for example, that we are examining the three dimensional
griclof some LCRNG. Ituil | | ie entirely within the cubicalr e gi on

0 < xX <m,0 cy <m, B<z<n

- since al | of the RNG values are modulom,

he



We could imagine as a physical model a clear plastic cube containing
m/d dots (in one to one correspondence with the one dimensional

gricd)l. As ue rotate the cube in various Ways, we uii | see the dots
arranged in var i ous p lanargr ids, corresponding to various Choices of
bases.

If ie can orient this cube so that al | of the points fal | in a few

widelyseparated planes, ue should be dissatisfied with the RNG that
put them there, since the gaps betieen these planes represent large

regions of impossible triplets of consecutive outputs, Concomitantly,
these few planes would be undesirably crowded with the points t hat

should be occupying the intervening gaps. Thus, the widest
separation betueenn-1 dimensional subgrids is a measure of the
uniformity of the RNG, when its outputs are grouped n at a time,

The determination of this distance is the spectral test in n dimensions.

If the grid were a regular cubic one, there wouldbea basis of three

mutual ly perpendicular vectors of equal length. Since the whole grid
would contain m/d points, there would be about

1/3

(m/d)

L _—
points along each one dimensional subgrid, making the basis vectors about

1/73 2/3

RN, m

: in length. Unfortunately the {(unreduced} basis vectors defined by the
[LCRNG are anything but short and regular. In fact, they are so long

2

that they al | protrude from the cube of interest! (Assuming a > m as
Knut hetal recommend.)

In order- to resol ve such a grid into more widely separated, more
dense | ypopu | at edsubgrids, we must find shorter and more nearly
perpendicular basis vectors. We can do this with an algorithm
analogous to Euclid’s GCD--by replacing a given basis vector with
the "remainder" resulting from subtracting some other basis vector
from it as many times as ui | | minimize the remainder’s length, By
analogy with ordinary division, this number of possible subtractions
can be called the “quo ti ent” ¢, and can beconputed directly instead
of hy tedious iteration:

¢. cl

cl = round ( ---)

cd.d

where cl is the divisor, ¢ is the dividend, and ¢c - q d is the

remainder. cl is the component of the dividend par-al lel to the
divisor, divided by the length of the divisor, then final ly rounded
to the nearest integer.

This wi | | leave the remainder with the least possible component parallel
to the divisor, subject to the quotient being an integer to preserve

the grid,

5



Trad ition suggests that once ad visor is chosen,
it should be remaindered vith al ofthe ot her basi s vectors.

Eventual ly this process, callittheF process, wi I I get stuck when
al | quotients of pairs are zero. lt would be nice if, after all this
work, we could be sure that the resulting basis contained the vector
I inking the most Hidely separated subgrids. Unfortunately, example 8
wil I showuthishopeto be vain. W have, however, two more weapons.
The neater of them is another collection of n vectors, computed from
the basis, and called the dua! basis. We willdenote it byEand its
elements by e . They have the following magic property:

for 1 <i j£ n,

e ff =280 if i =» j, but
I]

e .f =1.

I

This means that the jth dual basis vector is perpendicular to the
n-1 dimensionalsubgrid copies connected by the jth vector of the
original basis, -andconveniently, the length of the dual vector is
just the reciprocal of the perpendicular separation between these

copies. Thus, to perform the spectral test, we need merely find the

shortest vector in the dual grid, (Technically, thereare many dual
gr ids corresponding to shifting al | of the points by any constant,
but the vectors betueen them, and hence the dual basi s, remain the
same.)

First te find the dual basis from its definition, by forming an n by
n matrix, f, whose rous are the original basis vectors. Then we

invert and transpose it to form the dual matrix e. Repeating this on
e gives f again, veri fying the dual i ty. Since subtracting the ith
vector from the jth in one basis corresponds to adding the jth to the

i th in the other basis, wewi | | sti | | have a basis if we run the F

process on the dual basis instead of on the original one. Call this
the E process. The recipe for the spectral test now might read:

- Compute the dual basis from the original grid basis, run the E
process unti | al | the dual vectors are of minimal length, and return

the reciprocal of the shortest. Unfortunately, there is no way to
| ) guarantee that the vectors are minimal when the E process gets stuck
. (example 2, n = 4).

1 As Knuth has observed (3.3.4, ex. 22, 23), a good strategy is to

| maintain both bases, andsuitch from E to F when E gets stuck, simply
by interchanging the two matrices with respect to the remaindering
operat ion. Then, if F gets anywhere, return to the E process. When
F getsstuck, the algorithmquits, even though F's dying attempts may

| have unstuck E. Sad to say, after all of this there is still a slim
chance that the shortest vector left in the dual basis is not the

shortest expressible as &@ sum of integer multiples of dual vectors

(al though the author has never seen this except in cases where the

i matrices vere first transformed by an experimental process which wa s
neither E no F. Remember to see example 8.) Thus we resort to the
ul ti mate weapon: exhaustive search.



Fortunately, Coveyou and MacPherson have shown that i f an integer
combination of the vectors e,I<j< n, is to be of minimal

length, the coefficient of e cannot exceed

c = [le | i |]
] min J

i n magn i tude, there e is the shortest e and f jsthejth vector
min | j

of the dual! basis (in this case the dual of the dual, i.e. the

current basis for the LCRNG grid). Thus if e is the square
matrix with basis vectors as rows, we must minimize the l engt h

of the vector ze over al lnonzero vectors of integers z with

lz | < le |.
J J

We can om it those z which are merely the negatives of ones already
tr i ed, for a total search of

.
(2¢c +1)2c¢c + 1)...2¢c +1)-1

| 2 n

4 ;
. cases. Fortunately, only one ¢ hasever been as large as 2 in

the author's experience with the combined E and F strategy, (We have
been Using stuck to mean n consecut ive fai lures to reduce the sear ch
vo I ume, rather than n - 1, hence n, consecutive divisors with all

quotients 8.)

The process described above can be refined in several ways.



Ref inement 0

Scale up E, the dual basis, by a factor of m to avoid fractional
elements. In fact, most derivations of the spectral test regard
this integral dual basis as an automatic consequence of scaling
the grid basis clown by a factor of m to fit in the unit cube.

Ref i nenient 1

One step of the E process, using e as divisor, can affect (shorten)

J

only those e for which gq is =8. In the F basis, only

f can change, very occasionally growing longer (example 1), (thus
J

increasing ¢ and thus the search length), Simi larly, one step of

the F process ui ll only affect certain f , and only one e .

| J

A clever algorithm could save itself many square roots by

minding this.

{ For typical spectral tests (with n >2}, the E process produces
much more rap i cl | y convergent ¢  thanthe F process, even though

- the E process wi | | occasionally lengthen an f. A good algorithm
J

might retract any step which increased the exhaustive search vol ume,

~ or perhaps save up and return to the best bases if the 1 ast few
steps lengthen the exhaustive search just before getting stuck.

| t appears, however, that at least for LCRNG grids, search volumes
hardly ever grow significantly. Thus, a version of the program was
modified to run each process unti | all of the quotients in 1ts matrix

were 0, and only then compute the c¢ vector. This seemed to gain
‘about 20% over Dieter's strategy of defining a process to be stuck
after n consecutive failures to beat the previous smallest sear ch
vo | unie.



Refinement 2

d must always divide m, and thus the entire grid basis, Therefore
the entire grid may, in effect, be scaled down by d if we take m
t 0 mean modu lus/d, instead of just the modulus,

Thus, the basis matrices are initialized:

f, the grid matrix e, m times the dual matrix

2 n-|

|] 1 a a . . . a | | m 2g 8 ...0 |
| | |
| | |

| |
| | | 2 |

° p=] b

| | | n-| || 8 8 BB ... m -d 0 0 +... 1 |

where, for efficiency, the powers of a are taken mod m.

Ref i nement 3

Of ten, the spectral test is desired for several consecutive n, in
which case there is the opportunity to use the considerably reduced
bases left over from the calculation in dimension n-1 to initialize

the bases in dimension n. In fact, this technique is so successful

that it is usual ly best to proceed incrementally from dimension 2,
even i f only one c (n)i s desired, (Omitting the irrelevant
exhaust i ve searches.) The crossover point is between n=3 and n-4,
with a speedup factor of 2.5 typical for n=8.

The construction of the n dimensional bases from the

previous ones is: adjoin to the right of f a new column which

n-|I

is (a mod m) times its leftmost column, then adjoin the row

f =| 000... m |
Nn

tothe bot tom, say, of f, For e, adjoin to the bottom the row

n-|

then to the right adjoin the column of all 8s and a 1.



A strange fact, illustrated by example 2, is that in order to
profit from this incremental stratagem, one must interchange
the processes so that F is used in preference to E. tisals o

important to use the new vector, f as the first'divisor.
n

Al'1 this is because n -1 very large numbers have been introduced
into the last column of f, and remaindering them by the n th
vector reduces them modmuhi le any other operation on f or e
just sort of spreads these big numbers around, Note that this

incremental approach is not equivalent to starting with an n by n
matrix and reducing just the first vector pair, then the first

three, etc., since the F process would be stymied with only 88 to
use against the higher powers of a, while the E process would be

erroneously discouraged by rapidly growing ¢ from those huge
J

number s accumulating in the rightmost columns of f.

After several hundred experiments, the author has only once seen
this incremental method fai | to find the minimal vector before the

exhaustive search, Thiswas also the only time a final c¢ exceeded 1.
(Examp I e &.) j

- Refinement 4

In the tuo dimensional case, theE andF processes are equivalent,
since the e and f matr ices can be interchanged by negat ing a row

and co | umn of each, and then swapping rows. These operations,
| if performed simultaneously on each matrix, preserve duality and

cannot change anything about the shortest vector algorithms except

5 possibly the order in which divisors are investigated, But in two
dimensions there is only one possible first divisor, after whi ch

| t he divisors must al ternate anyway,

. Thus, when n = 2, 1t 1s unnecessary to switch processes, or even
maintain the dual matrix and c¢ , at least until the exhaustive search,

Even further simplification results from the observation that the
two dimensional spectral test on a and m will emulate Bradl ey’ s
refinement of Algorithm X (Knuth, 4.5.2) for the gcd of a and m,

-except that it wil | stop about half way through.

3



Relation to the Serial Test

Both the spectral and serial tests investigate the uniformity
of a whole period of n-tuples in an n dimensional cube, But
the serial test merely measures the density of points in subcubes,

whi le the spectral test, using the grid informatinn, cifectively
tranforms these subcubes into a worst case orientation, so that,
up to size

le |
min

at | east ha | f wou | d be empty and ha | f wou | d be proportionately too
ful I. It seems paradoxical then, that the spectral test on

23 12 35

2 + 2 + 5 mod 2 could have the poor figure of merit .815 in
tuio cli mens i ons and the very good figure 2.78 in three, gince a
generator flunking a low dimensional serial test should surely flunk
a hi gher one. (See figure of merit definition in Explanation of
Example Printouts section.1 The explanation is that, as n increases
the number of points in the cube remains m/d, and thus the distances’

| betcreen the nearest points grow, roughly as

1/n 1 - In

| d nm
|.

Thus, if we are to compare serial tests in several different dimensions,
. we must increase the size of the subcuhes in such a way as to preserve

their total number, else the point density counts will become unreliably
- small.

Now suppose we have an LCRNG whose n dimensiona | maxi mum subgr id
separation is not much greater than for n - 1 dimensions.

(Occasionally they can even be equal; see examp | es 2 and 3, n = 4
thru 8.1 Suppose further that ue are serially testing this RNG in
n - 1 dimensions with a subcube edge length only slightly smaller than

the grid separation, and that the subgrids are roughly parallel to
the faces of the subcubes. Then many subcubes will fit or nearly fit
betieen subgri ds, causing severe density fluctuations, But when we
jump to n dimensions, the increase in subcube size will mean that |
siubcubesti| | no longer fit between the subgrids, thus drastically

improvingthe serial test result.



A Question of Independence

One subtle difference between current formulations of the serial

and spectral tests is that the serial test is performed on

disjoint coordinate tuples, eg

(x , x J), x, x), ... }
12 34

while the spectral test is performed on overlapping ones, eg

(x , x), be, x), ...
12 23

The former sequence is clearly preferable, since itis unbiased.

To modify the spectral test to use disjoint tuples, we

need merely determine the Jd of the one dimensional grid
resul ting from using only every nth RNG value.

For i ns tance, in a ful | period LCRNG, d= 1, but if the modulus
is even, say a large power of 2, thevalues will bealternately
odd and even. Then the spectral test in two dimensions should

use 3 = 2, or equivalently, m/2 instead of m. Exanple 7 is a
case +here, in four dimensions, the maximal separation of subgrids
is quadrupled by this modification, thus drastically reducing
Knuth’'s figure of merit (next section) from 4.47 to .873, If
we use the actual modulus instead of m/d in the c{n} formul a,

this figure reduces to .818. In practice, theusercould destroy
th i s “resonance” in the last two bits of his RNG simply by discarding
every fifth value, assuming that his concern over c(4) arose from
using quadruples of values. A different way to look at it is that

Knuth’s figure of merit may be too sensitive for large values, and
that log modulus/e , the number of independent bits, would be

min

better. Unfortunately, thiswouldhaveto be multiplied by n for
compar i son between di f ferent dimensions.

i
{

.

10



Explanation of Example Printouts

The examples below indicate how the spectral test behaves in several
interesting cases selected from the author's experiments. Each

example is specified by a coded sequence of letters and numbers; {pe
output, which was generated by slight variants of the MACSYMA
programs in the appendix, can be understood as follows:

Procedure specl(a, m, n, nn) performs the spectral test on t he LCRNG
with multiplier a, modulus m, in dimensions n through nn,

In the leftmost column, an F indicates that the grid basis is used in
the fol lowing transformation: an E indicates that the dual basis is

used. The vector indicated by the second column is chosen as divisor,
and al | of the other vectors in that basis are “remaindered” by it,

as described earlier, [If all quotients are 8, no line is printed for
that cl i v i sor and another d i v i sor i s tr i ed. The vector printed out
next consists of the ¢ , indicating the size of the exhaustive sear ch

J

i f no further reductions were possible. The integer following is
the squared length of the shortest vector currently in the dual
basis. Finally, TRUE indicates a new low exhaustive search volume,
FALSE means no such luck. n consecutive divisor vectors without

a TRUE means that the process is stuck. When both are stuck, the

2

{ exhaustive search is performed, after which e |, the square of the
min

truly minimal dual vector length is printed (abbreviate this quantity
- d}). On the next | ine are a, the multiplier: m, the modulus; n,

the dimension; and finally, Knuth’s figure of merit

Nn n/2
e n

min

m{n/2) |

Whenboth processes are stuck,’ the exhaustive search rarely improves
upon the current shortest vector,

11



Example 8

Here a particularly successful E process reduces c {the search
vector) to one case: but for lack of a special check, it finds one
more useless E step and an equally useless F step. Note that when d
(4th column) fails to shrink, the only c¢c vector entry (3rd column)
which can change is the one indicatedby the 2nd column,
corresponding to the divisor vector,

(C8) spec (2654435783,2132,4,4)8
E 4 13967335, 5959262, 5959262, 15852981 35512803584646 TRUE

E 1 (851839, 5359262, 5959262, 15852981 35512803584646 TRUE
E2[1168721, 120956, 816496, 2172061 666665718102 TRUE
E 3 (12611, 13868, 3P66, 234681 7782610788 TRUE
E 4 [8], 84, 19, 153 325152 TRUE
E 115,84, 19, 151 328152 TRUE
E2I[5,7 19, 151 3251.52 TRUE

E 35,7 1,15] 328152 TRUE
E 4 (1,1,0 01 13558 TRUE
E1108, 1, 0, 01 13558 TRUE

E 2108, 1, 0, 01 13558 FALSE (Next three divisors = 0 = stuck ry, F)

ct 1, 0, 01 13558 FALSE (Its no use, butF finds one nonzero quotient)
2654435789 4294367296 4 0.211203495

TIRE= 40024 MSEC.

(40 sec. Well, nobody said MACSYMA was designed for number crunching)

LC

12



Example 0, continued

Same problem using (slower) F process, which gets stuck after one step
and is rescued byE. Again, some time is wasted in the end trying
to reduce search to less than one case. Note that sever al element s

of the = (search) vector can shrink in one step, even though

d doesn’t change. .

(COB) SPEC (2654435789,2132,4,4)8
F 1[437552842, 541687612, 534854214, 5427929341 431364458348888964TRUE
E 2 [3967335, 1585298, 4849577, 49215581 35512803584646 TRUE
F 2 [839086, 1585238, 4849577, 43215581 35512803584646 TRUE
F 1 [833886, 588582, 4587821, 49215581 35512803584646 TRUE
F 2 1839086, 588582, 1502064, 39288751 35512803584646 TRUE

FL 3R8RAARESLE82 1502064, 38423081 35512803584646 TRUE
F 1 [839026,588582,938813, 33452561 35512803584646 TRUE

F 2 [5174953, 363326, 534B41, 20199701 13532031745394 TRUE
F RJI41729A2 363326, 534041, 15822951 13532031745394 TRUE
F 10417302, 363326, 517959, 5555671 13532031745394 TRUE

F 3 [93262, 81199, 115757, 944011 675882938706 TRUE
F 4148720, 73941, 115757, 944011 675882938706 TRUE

F 10485720, 65388, 115757, 932621 675882938706 TRUE
F 2148356, 65537, 114965, 454433 666665718102 TRUE
F 4[44078,64352, 74139, 454431 666665718102 TRUE
F 1031884, 45381, 43130, 32046] 331544488820 TRUE
F 2 (383, 443, 350, 3131 31640830 TRUE

F 3 [3083, 421, 358,195] 31640830 TRUE
F 4 1133, 421, 313, 1353 31640830 TRUE

F 10133, 418, 193, 1401 31640830 TRUE
F 3133, 394, 193, 551 31640830 TRUE

F 410127, 394, 55, 551 31640830 TRUE
F 3018, 35 6, 6] 479910 TRUE
F 41010, 34, 6, 61 473910 TRUE
F 1019, 13, 6, 61 479910 TRUE

F 3 (18, 12, 6, 61 479310 TRUE
F 4 (10, 8, 6, Kh] 479910 TRUE
F2I(3, 8 6, 61 479910 TRUE
F 3 (3, 7, 6,6)473919 TRUE

{ F 4 (], 0 1, 1113558 TRUE
{ F 1 EL 0, 1, 11 13558 FALSE

F2I(8,0,8, 11 13558 TRUE

_ F 3 [8,B, 0, 13 13558 FALSE

| F100, 0, 0, 13 13558 FALSE
F208, 0, 0, 11 13558 FALSE
E 3(8,0 0,1) 13558 FALSE
E 418, 0, 0, 11 13558 FALSE
13558

> 2654435789 42945167296 4 8.211283495
TIME= 128120 MSEC.

15
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Example

An example where the E process gets giyck with the search vol ume at

3307 cases, rescued by F, but only down to 314 cases, The first step
achieving d = 1509 is remarkable for several reasons. 1583 uiilturn
out to be the shortest squared length, leadingtoaspectacul ar c¢ (8)
of 8.27. Weirder is the fact that it managed to simultaneously reduce
d and increase the search volume.

(Courtesy of David Hoagl in, Harvard Statistics Dept.)

(C1) spec (253634132,2131-1,6,6)8
E 6 1104749768, 170403637, 170403637, 170403637, 170403637, 88878182]
E 5 (25224117, 23037399502827771 TRUE

41033803, 41833383, 41833883, 20465004, 212095401 1683772988642814
E 4 [18]1&£5858, 16574916, T R U E
E30612718,396752, 16574916, 9462745, 8266495, 85672371 274727840407065 TRUE
E 2 (235476, 150306, 318236, 569053, 497115, 515298) 993514549513 TRUE
E1[14487,28347, 218189248, 191048, 1979981 146738794278 TRUE
E 6 [7824,15383, 412248636031, 373421 5219487568 TRUE
E 5 1148, 289, 22274482143, 19458, 128521 1522250787 TRUE

E 4 [148, 28329, 42229155, 2543324 TRUE
E 3 (148, 289, 207, 110, $85322431 TRUE
E 2 [76, 116, 186,10, 155545824 TRUE
E 1 (18, 31, 583, 73, 1243953 TRUE
E 6 I[b, 19, 15,121, 3319,10250 TRUE

13, 61 3882 TRUE

E 5 (6, 19, 17, 3, 3, 61 3882 TRUE
E 4 [6, 19, 17, 9, 3, 61 3882 FALSE
E 3104, 12, 1, 5, 2 4)1593 TRUE

. E 2 104,1, 1, 5, 2, 41 1593 TRUE

| E 1 Cl, 1, 1, 5 2, 41 1593 TRUE| E 6 (1, 1, 1, 5, 2, 11 1593 TRUE
E 5 [1, 1, 1, 5, 3, 11 1509 FALSE
E 4 [1, 1, 1, 3, 3,11 1509 TRUE
E 2 [1, 2, 1, 3, 3, 11 1509 FALSE

- E 6 (1, 2, 1, 3, 3,11 1509 FALSE
F 3 (1, 1, 1, 1, 1, 13 1583 TRUE
E211, 1, 1, 1, 1, 11 1509 FALSE
F201, 1, 1, 1, 1, 111589 FALSE
F 1 01, 1, 1, 1, 1, 11 1509 FALSE
Foe (1, 1, 1, 1, 1, 111589 FALSE

.F 5 (1,1, 1,1, 1, 11 1583 FALSE
1509

253634132 2147483647 6 X.2686827

TIME= 339425 MSEC. (Long exhaust i ve search, )

1h



Example 1, continued

Same problem, same process, put it somehow avoids getting stuck by
cycling forwards through matrix of divisotsg isvsgad of backward

| These qualities of large test value, many approach sequences, And!
large final search are all associated with highly isotropic grids.

| E®OI104743768,5PEC (2536364132, 2431-1,6,5) 8
| © 170483637, 170403637, 170403637, 170403637, 88078182]

2

E 20487308, 337M, 377125, 077155 6e5e56] 954773265080TIE 02/1 TRUE
E 3 (160382, 373/186, 977125, 977125, 585056] 954773265689 TRUE
E4[128709,2082225,4821579, 321579, 1662171 103413054855 TRUE
ESIS5490, 15283802, 72252 + 242151, 1251621 58637107354 TRUE
E 6 [2798, 38273,569963,3197, 33076, 575099) 12379232699 TRUE
E1063, K4, 1669,35191965, 7691 31315685 TRUE
E 2 163118, 563, 66, BH/6 TRUE
E 3 [63, 18,18, 668, 35476 TRUE
E 4 [63, 228,56, 6633456 TRUE
E 5 [Z4, 22, 128, 66, 35476 TRUE
E 6 [24, 74, 3, 3 5083 TRUE
E 1 [3 4,4, 3, 8 5883 TRUE
E 2 13, 2,54, 115,1859 TRUE
E 3 I[3, 52, 1, 13, 1859 FALSE
E 4 13, 2, 51, 113,1853 TRUE
E 5 I[3, 51, 1, Bi 1859 TRUE

1, 2, 11 1853 FALSE
L E1102, 5 3 1, 2, 11 18539 FALSE

E212, 1, 2, 1, 1, 11 1593 TRUE
E33 02,1, 2,1, 1, 13 1533 FALSE
Ee (Il), 2 31, 1, ® 1593 FALSE

1, 1, 11 1593 TRUE

E 3501114,1,1, 1, 1,1,11 1533 TRUE
E 2 (I, 11, 1, 1 1593 FALSE

1, 1, 11 1589 FALSE
" F if1, 1, 1, 1, 1, 11 1509 FALSE

1509

253634332 2147483647 © 8.2656827
TIME= 314353 MSEC.
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Example2

Somewhat unfortunate effects of using E process in incremental mode

(on somewhat unfortunate multiplier distributed by, IRM),
Here, rie nre using the leftover matrices, as in Refinement 3,
but, contrary to suggest ion, we are still using E instead of.F ,

] Note the large search vectors created -in the transition tc.restn,
: About three times as many steps are required for n = 6 in incremental

| E mode than are required for doing n= 6 directly (not shown),
Had E got ten stuck earl ier, F probably would have helped immensely.

For ti =2, the equivalence of the E and F processes will mean that
the F processwi| | rarely, if ever, find a nonzero quotient after
the E process gets stuck.

(c2) spec (B5533,2131,2.5)8
E 2 CI, 01 2147221544 TRUE
E101, 01 2147221544 FALSE
2147221544

65533 2147483643 2 3.1412093

E 1 (2, 778833,46338) 2147221544 TRUE
E 2 (8,0, 101 118 TRUE
E 3 18,08,1]111&8 TRUE

E2(8,0 1] 118 FALSE
E 38,0 11 118 FALSE
118

65533 2147483648 3 2.5BB24B926E-6

E1021, 879, 1465655, 101 118 TRUE
E2([Z1,0, 1465655, 101 118 TRUE
E3021, 0, 5 103 118 TRUE
E 4 [Z1, 0, 5 101 [18 FALSE
E1108,8,5, 103 116 TRUE

| E 4 (8, 0, 5, 2] 116 TRUE
L E 2 (8,08, 5 I] 116 FALSE

E 3(8,d, 1, 23 116 TRUE
E 4 [8, 0, I, 11 116 TRUE
E 31(08,0 1, 11 116 FALSE

E 4 (8, 0, 1, 11 116 FALSE
F 1108, 0, 1, 13 116 FALSE
F 2108, 0, 1, 11 116 FALSE

© 116

65533 2147483648 4 3.09211674E-5
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E 2 [473, 23106, 3855068, 7842552, 16 TR
E 3 [473, 10, 754385495 19% a TRUEIEE 410473,10, 3854352, TTS " 116 TRUEE 1 (18, 10, 3854952, 192732 TR

E 2 (18, 0, 13283486213 11 TRUE
E108, 0, 475¥E830%01 116 TRUE

4736GR5,18) 116 TRUE

E 3 18,9, 196483 101 116 TRUE
E 4 8, 0, 11648821601 116 TRUE

28603, 101 116 TRUE
E 3108, 0, 14053, 2gpp3 103 116 TRUE
E 4 18, 0, 14853, 2030, 101 116 TRUE
E 3 [8, 0, 3450, 7030, 101 116 TRUE
E 418, 0, 3450, 4720, 101 116 TRUE
E 3 (8, 0, 844, 4720 103 116 TRUE
E 418, 0, 344, 447 18] 116 TRUE
E 3 [8, 0, 208, 497, 103 116 TRUE

E 508,0,208, 105 101 116 FALSE
E 318, 0, 47, 105, 401 116 TRUE

N E 4 (68, 0, 47, 1g 10) 116 TRUE |
E S508, 0, 47, 18, 181116 FALSE
E 3 [8, 0, 4 18 103 116 TRUE

L E 5108, 0, 4 2 1 116 TRUEE1108, 0, 4 2 S
CE 310, 0 1, 2 11 ITBTROES

E 1 18, 4, 1, 1, 11 116 FALSE
E 2 18.8.0, 1, 11 gy; FALSE
E 3 108,9, 1, 1, 11 1) FALSE

F 5 08,8, 1, 1, 13 116 FALSE
F108, 0. 1, 1, 1) 116 FALSE
F37108, 0.1.1 11 116 FALSE

8, 0: 1,1, 13 116 FALSE
116

65533 7147483648 5 3.552332E-4
“TIME=25R209 MSEC.
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Example 2, cont inued

E Works best non-i ncremen ta | | y. For this particular multiplier of
65533, the cl of 116, which is such a disaster for n = 3, persists

| apparently through n=3,foruhichit gets 5 veryrespectanble c(9) of
| 3.00. (The author lacked thepatience for the 18933 case final search,)

For n = 10, d<B4, "This doesnotmean thati t isagood idea to gobble
-tuples from thibSaqenerator andthendiscard a few in some pat tern.
To analyret he effecteaof t hi s perform the spectral test on the grid
basic tihooe first vector skips the powers of a corresponding to the

cliscardedvalues., Moreprecisely, |i f you propose to discard the 3rd
and /th value out of ever-y eight, delete the 3rd and 7th rows and

columns from the eight dimensional basis matrices, of course, if you
are just discarding every other value, you could just run the regular

2

test ona instead of 3.

(CB2) <pec(B5533,2121,8,8)8
E811d10647,5 5853533655538%5533, 65533, 65533, 65533, 18787) 42945749898 TRUE
E 6018647, 65533, 65388365633, 65533, 65533, 23328, 18797] 42945748989 TRUE
E 5 [18647, 65533, 65533, 653533, 21402, 23328, 18787] 4294574899 TRUE
E 4 4, 27, 655387, 65536, 5364, 21482, 23328, 187071 4294574090 TRUE

10, 8, 9, 71 746 TRUE
E 3 14, 27, 5, 6, 10, 8, 9, 71 746 TRUE

E 2 (1,8, 2, 2, 4, 3, 3, 33 116 TRUE
E 108,80, 2, 2, 4, 3, 3, 31 116 TRUE
E 8 [B, 0, 2, 2, 4, 3, 3, 23 116 TRUE
E 7 (8,8, 2, 2, 4, 3, 3, 21 116 FALSE

EB 10,0, 2, 2, 4, 2, 3, 2) 116 FALSE
ES (8, a, 2, 2, 1,3, 3,2) 116 TRUE
E 4 (0, B, 2, 1, 1, 3, 2, 21 118 TRUE
E308. 8. 1.1.1 2 2, 21 118 TRUE
E 2 10, 8, 1, 1, 13, 21116 FALSE
E 8 (8,08,1, 1, 1, 3,3, 1) 116 TRUE
E 7 (8,08, 1, 1, 1, 3,1, 11 116 TRUE
E 6 (08, 0, 1, 1, 1, 1, 1, 11 116 TRUE
E 58, 0 1, 1, 1, 1,1, 13 116 FALSE

| E 8008,8, 1, 1, 1 1 1, 13 116 FALSE
E 7 (@,0 1, 1, 1, 1, 1,11 116 FALSE
E 6108,8, 1, 1, 1, 1, 1, 11 116 FALSE
F518, 0 1, 1, 1, 1, 1, 11 116 FALSE

- F4108,8,1,1,1, 1, 1, 11 116 FALSE
F3f(@, o 1, 1, 1, 1, 1, 11 116 FALSE
F2(0,8, 1, 1, 1, 1,1,11 116 FALSE
F108, 0 1, 1, 1, 1, 1, 11 116 FALSE
F&804,8, 1, 1, 1, 1,1, 11 116 FALSE
116

65533 2147483648 8 0.34220817

TIME= 484930 MSEC,
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Example 3

The F process in incremental mode, same a = 65533,
transitions to next n. Note nice, small

(C3) spec (B55332,2131,2.8)8

EN 2147221544 TRUE: 0147221544
2147221544 FALSE
655332 2147483648 2 3.1412093

F 308,08, 103 118 TRUE
F108, 0 41 118 TRUE
F2(8, 0, 11 118 TRUE
F108, 0, 11 118 FALSE
F 218,89, 11 118 FALSE

E 308, 0, 11 118 FALSE
118

65533 2147483648 3 '.508B.408PB6E-8

F408, 8, 5, 10) 115 TRUE
Fle, 9,1, 11 11g TRUE

‘ F 2 (9, a, 1, 11 918 FALSE
F318, 8, 1, 11 116 FALSE
~ 1 (8, a, 1, 11] 116 FALSE

| E318 8. 1 1]’ y ’ 116 :

E418, P, 1. 1) 116 race
116

05533 2147483648 4 3.0921 1674E-5

F 5108.9, 4, 4, 101 116 TRUE
F 1 08,0,1, 1, 21 116 TRUE
F 2108, 0. 1, 1, 21116 FALGE
F 3 100,0 1,1 11 116 TRUE
Fa41008,8,1, 1, 11 116F ALSE
F 1 08,8, 1, 1, 11 116 FALSE
F2108,0 1, 1, 11 116 FALSE
E 4 (0,0, 1, 1, 11116 FALSE
E S5(8, 0, 1, 1, 11 116 FALSE
E 308,01, 1, 11 116 FALSE
116

65533 2147483648 5 3.652332E-4

F&6 (8, 0, 2,5, 1, 18] 11
F118, 0, 1, 2, 1, 4] 116 tne
F 219,98, 1, 1, 1, 1] 116 1ayt
F318, 0, 1,1, 1, 1) 116 FALSE
F6 (0, 9, 1, 1, 1, 1] 118 FALSE
£3 (8, 9, 1, 1, 1, 11 116 FALSE
65533 2147483648 6 3.75614B4BE-3

(6 is shorter than 4 or §! 155 secsso far)
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F118[8,00, 8, 3, 1, 3, 18)116 TRUE
F218, 8,1, 1, 1, 1, 11 116 TRUE
F308, 0 1, 1, 1, 1, 11 116 FALSE
F 4 08,8, 1, 1, 1,1, 11 116 FALSE
Fle, o, 1, 1, 1, 1, 11116 FALSE

1, 1,1, 11 116

E 3i@,8, 1, 1, 1, 1, 13 116 FALSE -
116 1, 1, 3, 11 116 FALSE

| 65533 2147483648 7 8.B36987356
F ig(e,00,8, 5, 5, 1, 3,3 10M6 TRUE
F2Il8,08, 1,1, 1 l,, 21 116 TRUE
F 3 (9, 9, 1, 1, 1, 1, 21 116 FALSE
F 4 (8,08,1, 1, 1, 1, 1, 11 1IGTRUE
F 6108, 8, 1, 1, 1, 1, 1, 11 116 FALSE
F 7108, 00 1, 1, 1, 1,1, 11 116 FALSE
F108, 8, 1, 1, 1, 1,1, 1X16 FALSE
F2108,08, 1, 1, 1, 1,1, 11116 FALSE
E5108, 0, 1, 1, 1, 1, 1, 11 116 FALSE
E618, 0, 1, 1, 1, 1, 11 1116 FALSE
E 7 (8, o 1, 1, 1, 1,1, 1116 FALSE
E8108, o 1, 1, 1, 1, 11 1le FALSE
116 1, 1, 1, 1, 36 FALSE

65533 2147483648 8 (0.34220817

i (Approximate time: 700 sec.)

|
.
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Exampie 4

A particu | arlygocodmultiplicator from an extensive search

by F. Janssens. Note helpful E on n = 4.

(C4) epec (163BGI3,21432,2.5)8
F 10318, 1521656552647776 7 RUE y
F 2 C1, 13)4934260282 TRUE

F101,1) 4934360252 TRUE

4334360282
1698613 4294967296 2 3.683923246

F 31112382, 343, 2a273) 56848] 298 TRUE
F 1105811, 139, 1848) 148955560 TRUE
F 2 16,36, 2.81 K(7354581 TRUE
F 3 [3, 6, 1812225754 TRUE
F 1 02,3, 6] 7352462 TRUE
F2 [1, 2, 01 2182558 TRUE
F 3 (8, 1, 01 2167558 TRUE
F108, 1, B) 2162558 FALSE
E 2 [8, 1, BIZ1B2558 FALSE
2162558

1690613 4294367296 3 3.1015612

F 4 1333, 173,19, 8051 B490R2 TRUE
F 1[329, 158, 19, 1351 £31758 TRUE
F 2 [4 58, 6, 81 84994 TRUE
F3 [2, 2,6, 11 84572 TRUE
F4 (1, 1, 2, 13 84577 TRUE
FT 0, 1, 1, 11 84572 TRUE

E 2 08, 1, 1, 11 62910 TRUE
| €2B1d8, 1, 1, 11 62918 FALSE

1630613 4294367296 4 4.547254

FS [79, 26, 83, 39, 183) 33490 TRUE
F 1 [65,22, 3, 32, 131 27994 TRUE
F 2 12, 72, 3, 10 , 2172299 TRUE
F301, 5 2, 3, 11 15110 TRUE
F4 [1, 1, 1, ~, 11 &5234 TRUE
FS (1, 1, 1, 2, 11 8824 FALSE

JEL IL, 1, 1, 1, BIGDTE TRUE
F 2 (8, 1, @, 8, 01 4124 TRUE
F308, 1, 8, 8, 01 4,24FALSE
F 4 (8, 1, 8, 8, 03 4224 FALSE
FS [o, 1, d, 9, 01 4224 FALSE
E 3.08, 1, 8, 8, 8] 4224 FALSE
E 4-08, 1, 8, 8, 814224 FALSE
E 2 (9, I, 8, 8B, 03 4224 FALSE
4224

1690613 4234967296 5 1.421178
TIME= 121136 MSEC.
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Example §

Incremental F mode on an old standby.
(C5) “pec {STS I1M25,2,8) 8
F 1 [24567628, 1484825) 48263765833184842 TRUE
F 2 (334427, 625438) 1149882667992550% TRUE
F 1 116576, 8211 28229871184818 TRUE
F 2 125, 144] 868180541344 TRUE
F117, 21 78377938346 TRUE
F 2 18, 1] 22075885098 TRUE
F 1 18, 11 22078865098 FALSE
22875865098

38517578125 34359738268 2 2.8147232

F3IB4RAR, 41187, 99637) 992767 00
FL Uo97, 2362, tela) 1a7oayydi TRUE
F 2 (1142, 2362, 543] 15729733389 1HF 3 15, Sl, 147] 180694474 TRUE
F 1 115, S, 9] 188634474 TRUE
F 2 (2, 2, 3] 145233926 TRUE
F 3 Il, 2, 31 14523936 TRUE
F101, 1, 8] 18274746 TRUE
F 3 01, 1, 8) 10274746 FALSE
E 1 (1, 1, 9) 108274745 FALGE
18274746

i 38517578125 34359738368 2 4.915897]
Fa [14 | 52, 487, 1179) 1298614 TRUE

F104, 6, 12, 311 1390614 TRUE
F 2 [1, 2, 4, 15] 223687 TRUE

. F301, 2, 3, 11 169714 TRUE
F408, 1, 3, 11 169714 TRUE
F108, 8, 2, 11 1689714 TRUE
F 208, 8, 1, 11 163714 TRUE
F 4 (8, 8, 1, 11 167758 FALGE
F 208, 0,1, 1] 167558 FALGE
167558

30517573]25 34353738365: 4 4.0322757

Bb (184, 22, 34 138 287122664 TRUE
) 1104, 22, 34 33, 271 £2664 TRUE
F231, 85, 7. 8, 31 42752 TRUE
F 4 [1,0, 2, 0, 13 5344 TRUE
F5 (9,0, 2, 0,115844 FALSE
F 1 (8, 1, 0, 13 5344 TRUE
F 2-108, 0g, 1, 0, 13 5844 fpISE
F 4 18,0, 1, 0,035844 TRUE
F 1 (8, 1, 0, 01 5844 FALSE
5844 8, 1, 0, 03 5844 FalSE
38517578106 34353735468 5 8.33996696
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F 6 (25, 13, 28. 23, 4B, 76) G244 TRUE
F 1 025, 11, G5. &, G, 11 5844 TRIE
F202, 11, 5, 3, 6, 1) “add TRIE
F200, 2, 4, 1, 1, 1) 3098 TRUE
Fog (1, 1, 2,1, 1, 11 22908 TRUC
FSom@, 1, 2,0, 1, 11 2699 TRUL

F618, 1, 2,1, 1, 11 2598 FALGE
Flote, 1, 2,1, 8. 1) 2598 TRUC
F209, 1,8, 1, 0, A 2592 TRUE
F308, |, 8, 1, 8, 8 7592 FALGE
FS (a, 1, a, 1, a, 0] 2692 FALGE
E 4 (8, 1, A, 1, 8, B] 7597 FALGE
2697

30517573106 34359728305 6 2.61910889

| F704, 2, 7, 11.1, 8, 23] &8G TRUE
F106, 2,1, 2.08, 8, 2) 58% TRUE
F 2 IL, 2,1, 8. 8, 8, 1) 538 TRUE
F301, 1,1, 8, 8, 8, 1) 588 TRUE
F 4 (1, 1,1, 8, 8, @, 1] 58% FALSE
F511, 1, 8, 8, 8, a 1] 588 TRUE
F 6 fl, |, 8, 8,8, B, 1] 583 FALSE
F 7 (1, 1, 9,8, 8, 8, 1] S38 FALSE

| F201, 1,8, 8-8, 0, 1] SP8 FALGE
F300, tH, 8, 8, 8, 3, A S38 TRUE
Fa 11, 1, 8, 0, 8, 0, 0] B08 FALSE
FSU, 1, 8, a, 8, 0, 8) Ws | ALLE

. Fe ofl, a, @, a, 8, 0, 3 498 Thi
F 7 01, a, 8, a, 8, 0, 8) 55 FALSE

: F 4 (1, 0, a, a, a, #4, 0] S38 ALGE
FS Il, a, 4, a, 9, A, ad] Sas FALSE

. E 7 01, PB, 8, 8, 8, 8, 8B] ©95 FALSE
EC (Ll, A, &, 8, 8, 8, 8] 508 FALSE
508

| RSL 7578105 34259725702 7 8. 4R070G1SS

F& 12, 9, 10, 2, 7, 7. 1. 221 93 TRUE
Fl o[2, 0, 3 1, 2,0, 1, 6B] 5p2 TRUE

| FZ, oh, 1, 2,1, 1, 1) 805 TRUE
F302, 2,0, 1, 2,0, 1, 1] 582 FALSE
F 4 [2, 2.1, 1.1, 1, 1, 11 508 TRUE

. Fs oq, 2,0, 1, 1,0, L,Y ses TRUE
Fe [l, a, 1, 1.1, 1,1. 1) 58% TRUE
F701, a, 1, 1,1, 1, 1. 1] 588 FALSE

| F811, A, 1, 1, 1, 1, 1, 1] 478 FALSE
F Lol, 8, 1, 1, 1, 1, 1, 1] 478 FALSE

. F.2 lh, Aa, 1, 1, 1, 1, 1. 1) 478 FALSE
F-4 (1, 0, 1, 1, 1, 1, 1.1) 478 FALSE
FS (1, a, 1, 1, 1,1, 1, 11 475 FALSE
Fool, a, 1, 1,1, 1.1, 1) 478 FALSE

. E70, 0,1, L110, 1.1) 414 TRUE
F308, a, 1, t, 1, 1, 1, 1] 414 FALSE
Foe, a, 1, 1, 1, 1, 1, 11 414 FALSE
ES 10, 0, 1, 1, 1,1, 1, 1) 414 FALSE
E 7 (8, A, 1, 1, 1, 1, 1. 1] 414 FALSE
414

30517578125 34359738368 8 3.4780807
TIME= 745783 MSEC.
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Example G

A variation of the program hich doesn't bother to compute search
volume vector except uhen £E or F process gets stuck, where stuck
is defined to te all quotients 8, rather than n consecutive failures
to reacha nen lau ced ch volume, From this data it appears that
bLH32 ie the noret multiplier in a bad neighborhood.

(CE) for aifG523-16 ctep & thru 65533416 do spec (a, 2131,2,5) 8Fol, 8] IAS723268 TRUE
| E [1, 8] DI357°3368 FALSE

213572036

65517 147483648 0 3. 12455837

YOU HAVE RUIN OUT OF LT ST SPACE. po vou WANT MORE?

list;

TA S383 NSEC,

(MACSYMA-BREAK)

“dynamal Tocinot (dynamal toc)
TRUE

+-exit:

EXITED FROM THE BREAK (Ahh, interactive languages)Fa, 0, 11 131766 RUE
. E (3, A, 11 121706 FALGE

131760

ESS7 147480048 BA.00°796174

S FoI8, I, 0, 8] 24627 TRUE
E (A, 1, 8, 8) 2400 FALSE

34RD

| GEOL ULa7485048 4 2756509345
| Fol, 1, 8, 8, 8B) 2186 TRUE

e (IL, 1, a, 8, 8] zip5 FALSE
3186

" S517 DL47482648 § 1,3] 7869273

| Fol, 8] 143555588 TRUE
_ E (1, A) 144555888 FALSE

2143550540

6555 147483048 © 2. 1358467

Fo[8, 8, 11 15126 TRUE
E 18, &, 1] 15126 FALSE
15126

LS520 147480048 3 3. 628B475E -7

Fog, a, 1, 13 IS126 TRUE
Eo, 0, 1, 11 151m FALCE
151.6

EOLL 1474572045 4 0.575,1087

Fig, a, 1, 8, 81 279, TRUE
E 8, 8, |, 8, p1 279% FALSE
279K |

65525 2147483048 © 1.81323817

2h



F (1, 0: 2147221544 TRUE

E [1, 8] 2147221544 FALSF
2147221544

65533 2147483648 2 3.1412093

F [B, 2.11 118
E [8, 0, 11 118 FALSE118

65533 2147483648 3 2. 5PP24PREE-E

r ie, 0, 1, 1) 116 TRUE
Tig 0, 1, 1) 116 FALSE
65533 2147483648 4 3.89211674E-5

E (8, 0, 1, 1. 13 116 TRUE
116 I, 11 116 FALSE

65533 2147483648 5 3.552332 -4
F {1,01 2146697320 TRUE
E [1, 03 2146697320 FALSE
2146697320

65541 2147483648 2 3.1404424

F 8, 0, 1) 726 TRUE» 0, 11 726
} Ne FALSE

65541 2147483648 3 3.81568716E-S

F 2, 8, 5 11 726 TRUE
E5541 2147483648 4 1.2111924E-3

Erde! 0, 1, 1, 11 726 TRUE» By,1, 1, 1] 726 FALSE

| 65541 2147483648 5 0.034810489
F [1, 03 2141984744

© EQ, 03 2141984744 [RUE
_ 2141984744

65549 2147483648 , 3 13354826

§ 19, g, 29238
29238 FALSE

65549 2147483648 3 9.75169825E-3
F (8, 0, 1, 1129238 TRUE
E3AB8 0, 1, 13 29238 FALSE

65549 2147483648 4 | 96442376

E 4 LL 1, 01 5132 TRUE
I, 01 5132 FALSE

GPMEO 2146483648 5 4 6247172
MSEC.
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Example 7

(Program nodified as in Exanple 6). Another good Janssens nunber but

look what happens if we use m/4 instead of m for n = 4 in 2nd sgt’
soas to consider only independent tuples. Tikin every 4th point
quadruiedthelengthofthegridvectorwhich was afready connecting
the nost widely separated subgrids--the worst possible outcone. In

the dozen or so other cases tried, the degradation uas much less severe.

| (C7) spec (1664525,2132,2,4)8F [1, 13 4938916874 TRUE
E [1, 11 4938916874 FALSE |
4338916874

1664525 4294967296 2 3.61261544

F El, 0,01 2322494 TRUE
E (1, 0, 01 2322434 FALSE
2322494

1664525 4234367236 3 3.4519195

F (8, 1, 1,01 63712 TRUE
E [8,1, 1,03 63712 FALSE
63712

1664525 4234967236 4 4.6639335

TIME= 52365 MSEC,

: (C87) spec (1664525,2130,2,4)8
L F [1, 03 310518218 TRUE 31

210518218 y app to mod2

| 1664525 1073741824 2 0.90852543
F (8,1, 8] 412832 TRUE 30

EL 01 412832 FALSE (Th s data really applies to mod 2 .)
~ 1664525 1073741824 3 1.0347817

F [B,0, 0, 113382 TRUE 39

Ee 0, 0, 13 3982 FALSE (This data really applies to mod 2 ,)
1664525 1073741824 4 (.072873961

_ TIME= 44372 MEC

(C37) 33982x16:;
TIME= 6 MSEC

(037) 63712
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| Exanple 8

Sone pathology of incremental F node, For a = 663608301, n = 7, E
tried tobeat d = 390 and tripled the exhaustive search instead,
On the next case, a = 663608303, n = 7, E manages to wn. Later,
when a = 663608933, n = 7, we have a serious failure of E to find

| the smal lest d. Instead, for the first time in the author's experience,
a 2 appears in the final search vector, and the (very) exhaustive
search actual ly finds a smaller di In the final case, a =663608941,
(a multiplicator constructed by Dieter to havea goodtwo dimensional
serial test), n = 7, we have another minor misstep ofE. Note unlucky
7. Actual ly, these problems are just hard to find for small n. The
underlying cause of this pathology is that, were it not forthe

inefficiency, we would be better off hunting a smalldusingEfirst,then trying to reduce the search with F.Itis an empirical fact that
Fincreases d far nore rarely (if at all) than E increases the search
vo lume. Wien the author tried to run Eand F alternately until both
were stuck, they fell 1nto a period 2 oscillation modifying one
vector 1n the case a = 663608333, n 6, In an effort to see what

would happen anyway on the case n = 7, the author mmnually intervened
to stop the n = 6 loop. Somewhat unfortunately, due to the additional
reduction of the n = 6 bases, this "ping-pong" variation wasnever
confronted with the matrix which led E to create the

[1, 1, 1, 2, 1, <1, 13, but instead F came right up with fivelsand
two Os and d = 442.

(C8) FOR A 663608901 STEP 8 DO SPEC(A,2132,2,7);
F [@, 13 3397158986 TRUE
€ (8, 1] 3397158986 FALSE
3397158986

663608901 4234367236 2 2.4848827

F {1, 0, O01 1490074 TRUE
E EI, 0, 03 1490074 FALSE

| 1490074663608901 4294967296 3 1.77334624

F [B, 0, 1, 01 13408 TRUE

i £ (8, 0, 1, 01 13408 FALSE
13408

663608901 4294967296 4 0.20655603

" F[8, 1, 0, 0, 03 1078 TRUE
= E (8, 1, 0, 0, 03 1078 FALSE

1078

663608901 4294967296 5 0.046761183

3 F {8, 1, 1, 0, 0, 01 1078 TRUE
E (8, 1, 1, 0, 0, 01 1078 FALSE
1078

663608901 4294967296 6 1.50728331

Fda, o, 1, 0, 0, 0, 01 330 TRUE

E (1, 1, 1, 0, 0, 0, 0 390 FALSE
390

663608901 4234967296 7 1.28868447
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F [8, 11 626928730 TRUE
E (8, 11 626928730 FALSE
626928730

663608909 4294967296 2 0.45857269

F [1, 0, 03 465630 TRUE
E [1, 0, 01 465630 FALSE

| 465630
663608909 4294967236 3 00303877604

F [1, 1, I, 03 53172 TRUE
E El, 1, 1, 01 53172 FALSE
53172

663608909 4234967296 4 3.2484476

F (8, 8, 8, 1. 11 6314 TRUE
E (8, 0, 0, 1. 11 6314 FALSE
6314

663608909 4294967296 5 3.8823978

E {1, 0, I, 1, 0, 03 1406 TRUE
1406 I, 0, 01 1406 FALSE

663608909 4294967296 6 3.34421745

E [1, 1, 1, 0, 1, 1, 11 996 TRUE

1 F (1, I, 1, 8, I, 0, 11 534 TRUEE (1, I, 1, 8, 0, 11 534 FALSE
— l, 8, 11 534 FALSE

L534

| 663608909 4294967296 7 3. 8709251

F [1, 03 3236682938 TRUE
E Cl, B)] 3236682938 FALSE
3236682938

663608933 4294967236 2 2.367501

F (8, 0, 13 311352 TRUE
E [d8, 0, 13 311352 FALSE
311352

* 663608933 4294967296 3 0.16943623

F [8, 1, 0, 9] 13562 TRUE
E [(8, 1, 0, 01 13562 FALSE
13562
663608933 4294367296 4 021132812

F [1, I, 1, 1, 01 7298 TRUE :
E (1, 1, I, 1, 03 7298 FALSE
7208

663608933 4294967296 5 5.5763277
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r

E (1, 0, 0, 0, 0, 1} 958 TRUE
058 0, 0, 11 958 FALSE

663608333 4294367296 6 1.0578767

FC, i, 1, 1, 1, 13
BAT, 1, 1, 2, 1,11,, 11 746 TRUEE h

663608933 4294967296 7 1.99709308

t

| F [1, 03 1606825210 TRUE
E Cl,03 1606825210 FALSE
1606325210

663608941 4294967296 2 1.17532684

F [1, 0, 01 477530 TRUE
E [1, 0, 01 477530 FALSE
477530

663608941 4294367236 3 (. 321832295

F Ad, 0, 0, 01 45014 TRUE

E5014 0, 0, 03 45014 FALSE

663608941 4294967296 4 23281182

F (8, 0, 0, 0, 11 2582 TRUE
L R582, 0, 0, 0, 1] 2582 FALSE

| 663608341 4294367296 5 0.41517307E [1, 0, 1, 0, 0, 01 788 TRUE
788 0, 0, 01 788 FALSE

663608341 4234367236 6 0.58873131

E [8, 0, 0, 0, 0. 1. 8) 338 TRUE
338 0, 1, 11 338 FALSE

663608941 4234367236 7 0.78096013



Program Listing

tine: translate:modedeclare(lvalue(better),value(tr)]),boolean,
Ea, ap,modulus,n,i, j,k,gg,d,mm,nn,pl, integer)$
radprodexpand: f a | se$

spec (a, modulus,n,nn) t= (d:mm: (axmodulus)? (2xn), scalarmatrixp: false,
] femocduluske: ident(n-1), ap:l,

for k thru n-ldoflelk,ll:-f{l,kl:ap,ap:ratdisrep(rat(axap))),
| ell,1]:moduI us,

for nin thru nn do block {mm:mmk(akxmodulus)2,
e: transpose (addrou (transpose (addrou(e,ematrix(1,itn-1,-ap,1,1)))},

ematrix(l,n,1,1,n)}),
f:addrou (transpose {addrou(f: transpose (f),apxf(l1])),

ematrix(l,n,modulus,1,n)),
scalarmatrixptap:ratdisrep(ratlaxapl),
c:reversel{z:ireversel(g:ematrix(1,n,0,1,1) [11)),
t, if tr(*f,’e) or tr(’e,’f) then go(t) else ktn,
u, if (z[kl:zIkl+1}>clk) then gow), |
v, if (k:ik+l}>n then dimin{d,{btz.e).transpose(bl))else

(z[k): -clk], golv)},
Ww, if {k:k-1)>8 then golu) else

print (a,modulusyn,ev (print (d)x%pil)t(n/2) /modulus/gamma{n/2+1),numer))))$

tr(ff,ee):=forj do (i:l+remainder(i,n), |
gg: (gs (vfrev(ff)) [il).b:transposel(yg),

L for k thru n do alkl:entier{vfikl.b/gg+1/2),
| qlil:B, if g#z and better{) then {(mm:p,return(true))

. else if j=n then return(faise)}$

| better ():=({],ee::substinpart((q.ve) [11+velil,ve:ieviee),i),
ff::vf-transposelql.qg,
for k thru n do dimin(d,elk]. transposelelkl)),

p:l, for k thru n do (clkl:isgrt(entier (dxf lk]. transpose (f[kl)/modulus?2)),
.~ p: (2xc [kT +1) xp),

print{(ff, i,c,d, is{p<mm})))$

Not es

Thi s was done over the ARPANET on the MT MACSYMA System to
which | am indebted both for the language and the machine time,

The first three lines are optional. They turn on the timer and
make type declarations for efficiency.

2

d and mm are best e and search volume so far.
min

sca larmat ri xp: unfortunately, MACSYMA can regard a1 byl matrix
asascalar, but not vice versa.

f: the grid basis matrix, e: the dual, ap: consecutive powers of
a mod m, modulus is a special variable such thatratdisrep{rat(x})
1s the residue of least magnitude nod modulus.

transpose (addrow (transpose(addrow...: MACSYMAlacks an addcolumn,
reverse is a fast way to copy a | ist of Os. amma (n/2+1):
pedantry for (n/2)!. %i: mn, substinpartle. ri): repiaces ith
row of e with r, evaluating r first,
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The Mdified Program

tine: translate:imodedeclare(lvalue(better),value(tr)],boolean,
fa, ap, modutus,n,i, j,k,gg9,d,mm,nn,pl, integer) $
radprodexpand:f a | se$

spec (a, modulus,n, nn): = (d: mm (akmodulus)?t (2%n), scalarmatrixpr false,
| fimodulusxe: ident (n-1), ap:l,

for k thru n-1 dolelk,1l:-f [1,k):ap, ap:ratdisrep(rat{akap)}),
ell, 1] :modulus,
for n:n thru nn do block (mm:mmk(axmodulus)t2,
e: transpose (addrou (transpose (addrou(e,ematrix(1,itn~1,-ap,1,1)}),

ematrix(l,n,1,1,n}}),
f: addrow ( transpose (addrow ( f: transpose (f},ap*(11}},

ematrix(l,n,modulus,1,nl)),

scalarmatrixptapiratdisrep(rat (axap)),
ctreverse(z:reverse(g:ematrix(l,n,8,1,1)[11)},
t, tr('f,’e), if tr(’e,’f) then golt) else kin,
u, if (zlk)l:zlkl+l)>clk] then golu),
v, if (kik+l)>n then dimin(d, (b:z.e),transpose(b)) else (zlk):~-clk],golv)),
wy, if (kik=1)>8 then golu} else

print(a,modulus,n,ev({print(d)*x%pi)*(n/2)/modulus/gammaln/2+1),numer))))$

tr(ff,ee):=(for 7 thru n do {i:l+remainder(i,n),
gg: (gs: (vfreviff)) [il).b:transpose(g),
for k thru n do glkl:entier(vf(kl.b/gg+l/2),

| qlil:B,if g#z then (j:1, ce:: substinpart((qg.ve) [11+velil,vesev(ee),il,ffi:vf-transposelql.gl),
i f better (} then (mm:p, true) ) 8

| better (}:=(for k thru n do d:min(d,elk].transpose(elk])},p:l, for k thru n do (clkl:isgrt(entier(dxf(kl.transpose(f[kl)/modulust2)),
p: (2xclk]+1}xp),

print(ff,c,d, is{p<mm})))$

~ Note

Since both of these versions use the F process increnentally, 1t 1s
usual ly best to start with n =2, To convert either version tothe
E process, just change the line beginning

tr{ff,ee):= ... to read tr (ee, ff) ..,
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