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Abstract

A crucial lemma in recent work of the author (showing that k-term

arithmetic progression-free sets of integers must have density zero)

stated (approximately) that any large bipartite graph can be decomposed

into relatively few "nearly regular" bipartite subgraphs. 1p this

note we generalize this result to arbitrary graphs, at the same time

strengthening and simplifying the original bipartite result.
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We show that, for n sufficiently large, every graph with n

vertices can be partitioned into k classes (x independent of n )

in such a way that the resulting-partition exhibits strong regularity

properties. An earlier version of this result for bipartite graphs

was extremely useful 1n proving that every set of positive integers of

positive upper density contains arithmetic progressions of every length

[1]. Similarly, the present version finds applications in other extremal

problems of combinatorial nature. To state the result in more precise

terms, we need a few definitions.

WhenG = (V,E) is a graph and when A , B are disjoint subsets’

of wv, we denote by e(4,B) = e, (A,B) the number of edges of G with

. one endpoint in A and the other in B . In addition, when A and B

are nonempty, we also define

a(4,B) = Rat
] (The number d(A,B)is the density of edges between A and B .)

The pair (A,B)is called s-regular if

XchA, YB, |x| > ela] 5 |¥] > ¢lB]

imply

| a(x,¥) - a(4,B) | <e

otherwise the pair 1s called s-irreqular. By an equitable partition of

a set V, we shall mean a partition of V into pairwise disjoint

classes Co?Cqr ev esCy such that all the Ci's with 1 < i < k have

the same cardinality. The class Co may be empty; we shall refer to

it as the exceptional class. LetG = (V,E) bea graph withn vertices.

An equitable partition of Vv into classes CqrCps ++ 5Cy will be called



s—regular 1f the cardinality of the exceptional class Co does not

exceed en and if at most ek® of the pairs (CysCy) with
1 < s <t < k are s-irregular.

Trivially, every partition of V into me-point classes is s-regular

for every ¢ . We shall prove that for every ¢ there 1s an integer M

such that every sufficiently large graph admits an s-regular partition

intok classes with k <M . In fact, we may also prescribe a lower

bound m on the number of classes; then, of course, M becomes a

function of ¢€ and m .

In the proof, we shall use the "defect form" of Schwarz inequality: if

m n

D2 x, = 2 2 x, +8 (m <n)
k=1 k=1

"then . ,n n

z x 2 (2s) ' eT) .
We shall also use the fact that the density 4(X,Y) behaves in a rather

continuous fashion. More precisely, if

cx , Yc , IK >a, ¥] > (1-8)]y|

and 0 < 8 < 1/3 then some trivial computations show that

lax ,Y) - 4(X,Y)| < 68

and that

a(x, 1)" -4(X,Y)°] < 126 .

With every equitable partition P of the vertex-set of G into

classes Cy5Cyy--Cy (Co being the exceptional class), we shall

assoclate a number called the index of P and defined by

ind P = = 5 5 A(CqrCy)” }
k~ s=1 t=st+l



The crucial part of our argument 1s contained in the following statement.

Lemma. Let G = (V,E) be a graph with n vertices. Tet P be an

equitable partition of V into.classes Cy?Cys Co FI the exceptional
class being Cy . Let ¢ be a positive integer such that

WES eo0e™?
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If more than ek pairs (CsCy) in 1 < s <t < k are s-irregular

then there is an equitable partition Q of V into 1+ kh™ classes,
the cardinality of the exceptional class being at most

n

Col + 5
0 LX

and such that

: e”
ind Q > ind P + 0

Proof. For each s-irregular pair (CC, ) inl< s <t< k , choose

sets X = X(s,t) and Y = ¥(s,t) such that

Xcco 5» Yoo, , |x] > ele |, lx] > fc |

and

|a(x,Y) -d(C,,Cy) | > £

In each C; » those sets define the obvious equivalence relation with
k-1

at most 2 classes; the equivalence classes will be called the atoms.

Set

1 .

m= |x lel] (1 <ic<k) .
Trivially, we may choose a collection Q of pairwise disjoint subsets

of V such that
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(1) every member of Q has cardinality m ,

(ii) every atom A contains exactly| |A|/m] members of Q ,

(111) every class Cs contains exactly L|c,|/m] members of Q .

Note that

k .

Liesl /m) = 4 (1 <1i<k)

and so every class C1 contains exactly EK members of Q ; in fact,

we may assume that Q has exactly Kl members. The collection Q

may be considered to be an equitable partition of V , the cardinality

1ts exceptional class being at most

n
+ + — .

[Col +m < [c N;

It remains to be shown that

e?
ind Q > 1nd P + 53

, For this purpose, label all the members of Q which are contained

in some C_ (L<s <k) as Cc (1) with i running from 1 to q = 4 .

For each s , define

- » q

Coq = U C (1) .
i=1

Then x 2
cl > Je| m > CATE - F=

and so

ac”, ce -ac 0)? &jd s’ £) B s’ £) | < 50

whenever 1 < s <t < k . Now, the Schwarz lemma implies

ly



== _—

q 5
1 . 2 *  * 2 2 e”

q  i=1 j=1

The last inequality can be greatly improved whenever the pair (CysCy)

happens to be s-irregular. In this case, we shall make use of the

sets X = X(s,t) and Y = Y(s,t) introduced above. Let X, be the

largest subset of X that partitions into members of Q . Evidently,

1x. | > |X] fn > |x|(1 - 2&5)ol! — 100

We shall set

I IS RAS| » = [EL 5) |
Without loss of generality, we may assume that

x r x r
Xx =uc (ic x and Y = uc.) cy

i=1 j=1

We have

* £ * £

1x | > xl (2 - % ) , IY)> vi (2 - = )
and so

* _*

j |a(x7,Y) - 4(X,Y)| < I

Hence

* _¥ * * c

la(x",Y) -a(c, cf > £ :

D 2
Using the defect form of Schwarz inequality (with n=q , B=7T

* _* * *

and 8 = rea (x »Y ) -r-a(c, Cy)) we obtain
2 2

q q *. 01 ] AN 2 * € Tr

q i=1 j=l q -r

, 5h€ £

> d(C ,,C,) “5 t1g :

p)



Finally, we have

k k
: 1 9
ind > = 1 : Ny 2v2 5 2 (53 Dac, cm)

k k 2 Ly1

e?

as desired.

Theorem. For every positive real e gpg for every positive integer m
there are positive integers N and M with the following property:

| for every graph G with at least N vertices there 1s an e-regular
partition of G into k+l classes such that m < k <M .

Proof. Let s be the smallest integer such that

S -—

1 > 600e™” S >m and s > £ |

Define a sequence £(0),£(1),f(2),... by setting £(0) = s and

£(t+1) = £()uf(t)

for every t . Let t be the largest nonnegative integer for which

- there exists an equitable partition P of V into 1+ f(t) classes

such that

0
te

ind P > 0

and the size of the exceptional class does not exceed

1
enf 1 - —/———

( = ) |



(Such a partition certainly exists for t = 0 . Since ind P < 1
- 2

for every partition P , the integer t is well defined.) By our

lemma, and by the maximality of t , the partition P is E-regular.

Hence we may set M = £(1L 107) . End of proof.

It would be interesting to decide whether the same statement holds

when the requirement that at most ek- pairs (C ,C,) be e-irregularS

is replaced by the stronger requirement that no pairs (¢ ,Cy) beS

s—irreqgular.
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