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Abstract

For finite graphs F and G, let N.(G) denote the number of

occurrences of FinG , 1.e., thenumber of subgraphs of G which

are isomorphic to F . If % and % are families of graphs, it is

| natural to ask them whether or not the quantities N,(G) rr FeF , are
| linearly independent when G 1s restricted to % . For example, 1f

. F = 1X, XK} (where K, denotes the complete graph on n vertices)

and #% 1s the family of all (finite) trees then of course y (T) = N (T) 1
— K1 07

for all Te4 . Slightly less trivially, if & = 18,2 n=1,2,3, -..}

(where 5. denotes the star on n edges) and % again 1s the family
of all trees then

ae m1
2. (-1) No (T) = 1 for all Tek .
n-1 n

It will be proved that such a linear dependence can never occur if

F is finite, no Fe¥ has an isolated point and&% contains all trees.

This result has important applications in recent work of L. Iovasz and

one of the authors [2].
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\ INTRODUCTION

| It 1s a trivial observation (in fact, almost a

} definition) that in any finite tree T, the number of

vertices of T always exceeds the number of edges of T by

exactly 3. In [1], it was asked to what extent this can

happen for graphs in general. That is, given a finite
family J of graphs G, when can there be a fixed linear

. dependence between the number of occurrences of the G ¢ &F

as subgraphs of a tree T which 1s valid for all finite* trees

I. In this paper, we answer this question. 1p particular,
this can never happen if none of the G ¢ J have isolated points;

© all graphs considered in this paper will be finite. For
Lerminology see [3].
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SCHUE NCTATION

For a graph G, we let V(G) and E(g) denote the

sets of vertices and edges of G, respectively, If H is a

labelled graph (i.e., with distinguishable vertices) and G

1s an unlabelled graph, we define Ne (H) to be the number of

occurrences of G in H, i.e, the number of ways a subset

of 1B(G)] edges can be selected from E(H) together with 1

vertices from V(H) if G has 1 isolated vertices, so that the

resulting subgraph of H 1s isomorphic to G. (of course, the

product of N, (H) and the order of the automorphism group of

T G 1s just BE. (H), the number of ways of embedding G into H

(considering G as labelled graph). For example, if g ang

i H are as shown in Fig. 1 then N,(H) = 28 and E,(H) = 112.

0 | TY Coe
Fig, 1

Note that if the isolated point 1s removed from

G to form G’ then No, (H) = 1b = = N.(H). Of course, in
general, if G is formed from a graph G’ having no isolated

points by adjoining 1 isolated points then

(1) Ng(H) = (VELEN
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THE MAIN RESULT

The primary result of this paper can be stated
as follows.

Theorem. Let J be a finite family of forests,* each having

no isolated points, and suppose there exist real numbers

An, F e J, and AQ such that the equation

(2) ) ARN (7) = A,
Fed

. is valid for all trees T. Then hy= 0 for all F ¢ J.
Remark. Since any subgraph of a tree is a forest then

} there 1s no loss of generality in assuming J 1s a family of

forests.

Proof: We may assume without loss of generality that

among all families for which an equation of the form (2)

is possible, & has the least number of elements. The basic

idea of the proof will be to construct a very large tree

W* for which one of the quantities Np(W*) 1s much larger

than all the others,’ thereby forcing its coefficient Ap to
be 0. However, this contradicts the minimality of [JF].

If T 1s a tree with a distinguished vertex v, we

let p(k) denote the tree formed from T by adjoining k disjoint

paths of length k to wv. (See Fig. 2). |

. l.e., acyclic graphs,
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Fig. 2

Similarly, if F is a forest with components 7 T
| 1° > ® LS J n

having distingnuisheq vertices1 respectively,
then F(X) denotes the forest with components Ik) (kK)

| seees TNT

We now define a (possibly empty) forest W = W(F)

with components Wi and distinguished vertices WwoeV(W,),
1 <1< t, as follows:

L (1) Some F e¢ J occurs as a subgraph of W(k) for some k.
| ) (ii) [E(W)] is minimal among all W satisfying (i).

Note that by (ii) no paths j.5ve Ww, in W,.
Define J’ to be the set (Fe: w(K) for some k).

Next, we choose s to be a large fixed integer,

depending only on J, to be determined later. For (large)
integers n, define no by

LK

n, = [nits I, 1 < k < s(s+t).
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#2 are finally ready to define the tree Wr <r (0)
1. W* will have a subset of 2s+t-1 vertices, called

special vertices, denoted by X =

_ (x, CI TR Y —- yreeesy 1)
and (Wyse wd,

2. For 1 $k gs, xk has nk paths of length 1 attached to
it.

3. For 1< k < s-1, yk has Sy paths of length
attached to 1t for 1< J < s.

bh. For 1 <k <t, wk h

risk Lh Ww °° Us (s+k-1)+; paths of length J
attached to it for 1 < J < s.

| >. Also attached to w,. jg5 5 copy of Wk with wk being the
- distinguished vertexof W,.

6. The special vertices are joined sequentially by

paths of length s, 1.e., between adjacent vertices in
the sequence (x, ..

( 1 EER EY erga Wes cen wy)
are placed paths of length s.

This completes the construction of wx,
In Fig. 3 we

: illustrate the structure of W*.
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By hypothesis, we have

FeJ

tor all n. However, since by the definition of JF’, no

Fe J - J occurs as a subgraph of W(k) for any k, then
it 1s not diff%.yit to see that No(W*(n)) = 0 for these F

2

provided we have chosen s and n sufficiently large. .ence,
we have

(3) 3 Aplg(Wx (n)) = aj
Fc?

tor all sufficiently large n, 71¢ jg important to note that

by the minimality assumptions we have made, any embedding Of

any F € J’ into W* must use all the edges of all the We, l1<¢ic¢t
in W*, again, provided s and n are snffsa:. -
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Fact. For any distinct F, F’ ¢ J’, either

_g3
x \ In S

Np (W*)/Ng,(We) > n°

or

Lg
S

Np p (W*)/Ng(Ww) > n

for n sufficiently large.

For suppose the Fact holds. gince we must have

| F|> 1, then there is some element F* ¢ J such that

_g3
S

Np(W%)/N,(0%) > n

for all F e¢ J'-{F*},By (3) we have

(4) fx +) (a TTT| Fe’ Z(F*) a Fx

" But as n » wo, gll terms in (4) tend to zero except

| Apx which is nonzero 'by hypothesis. This contradiction
L

would then prove the theorem.

Proof of Fact: Let F and F’ be two distinct elements of JF’.

Partition the components of F into three classes: LE fhe

- set of stars, 1.e., trees with at most one vertex of degree > 2;

F5, the non-stars which are star-like, i.e., trees with

at most one vertex of degree >3; and Fas the non-star-like trees,
i 1.e., those having at least two vertices of degree > 3.
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Define F.F, and F, in an analogous way for F’.
1° 2 | 3 As we

have noted earlier, Fy must consist of t trees TI, .
1 ) N t

where Tk is formed from w by adjoining a (nonempty!) set
4

of paths to wk (with a. similar remark applying to Fs).
We need one more concept. A weak attachment

a of F to W* 1s formed as follows
"A vertex Us 1s selected

from each component C,

P i of F. These u, are mapped by an
injection o into the set of special vertices of W* with

the restrictions that:

.

X. f ] 1

3 for some j] 1f Cs e F.,
. a (uy) = y; for some J if C; e Fp

Ww, ] 1
; for some J it C, € Fa.

A weak attachment 5 of p to §* is said to be proper if g
can be extended to an embedding of F into W*,

We let

|a| denote the number of ways a can be extended to an
. 1 *

embedding of F Into W*. yoo that in a proper weak attachment
a of F to Wx,

u; must be a vertex of Cs of maximal degree

it C4 € FLU FS. Define the sequence 7t(q)= (T.,7T
as follows: be  (s+t)

number of paths of length 1 leaving
u, for

= 1 < k < s | :

number of paths of length j leaving uy for au
Ty — i! = Jy

where k — bs+j for 1 <¢ Jj <s5,1 < / < s-1

number of paths

of length j leaving Us por a(u,) ow
. —

where kK = s%4(m-1)g4jfor 1 «¢ oo
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It 1s then clear that

s(s+t) -

kK=1

where K.,K;, ..., will denote constants depending on s and not

on n. The sequences t(¢) can be linearly ordered as follows.

F =

or T(a) (Ty0 Tos ves Tg (gp) and

T(a’) = (T1000 ve 0 Th 44): we define
T(a’”)> 17(a) if either:

s(s+t) S(s+t)

(1) ) Ty > ) Tx 5 or

s(s+t) s(s+t)

(11) ) Tye = ) vn, and T(a’) is lexicographically

greater than v(q), 1.e., for some m, Ty = 7 for 1< k <m and
k -—

4

Tm > Th *

B F

We let rl )=(« entlE ey) denote a maximal sequence T(q)
in this ordering as o ranges over all proper weak attachments

of F to W*¥., The proof of the Fact will dependon the following

assertion.

I i.
Co F F S

Claim: 1f r(F") > 7 (F) then Ny (W*)/N (Wx) > n® for n
} sufficiently large,

Proofof Claim: gsyppose r(F) > oF), It is easily seen that

(6) S(s+t), Hy | sgt ’; ££) fF)Np (WX) > J ( (77) ) > KX m n.B = pid Tg 1 dq Kk
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On the other hand, it is not hard to show that

3  s(s+t (F)

(7) Np (W5)< K, i ooLs] K .

To see this, wc consider F as 4 labelled forest and we show

that

. (5+) 2 F)W*p(W) <K3 Jn
k=1

for a suitable constant Ko = Ka(s),

First, the non-star-like trees in F
L 3 can only be

embedded into the W, parts
1 i P of W* and, since the total number

_ of proper weak attachments of Fy to Wx 1s 'bounded by a

function of s, then the embedding of the non-star-]ike trees
' -~ 4

- of J’ contributes 5 factor of at most 1, SF SY) kn, where

g ’ , kes ’41T (B) = (7 Co
2.1] Ts (s4t) ) 1s a (maximal) sequence derived

f k hment f
] rom some proper weak attachment fg or F, Np—

Next, consider an embedding of a star-like tree

T ¢ Fy which 1s not a star. Suppose T is formed by
adjoining mk paths of length k

J 9 Pp J , 1 <k <8, to the "center"
vertex u. Although it may be possible to embed T into W*

] t ee X (e.
by mapping u onto some * € J, when at most two of the
Mm, k > 2, are nonzero), when this 1s done we must use

edges 1n one of the paths of length s connecting x
1 to adjacent

spec lal vertices of' W¥, and | there are at most
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S

~1 ) m,Ke n, k= such embeddings, However, this factor is
negligible comparedto the corresponding factor of

S

2
Kg n 5 which we obtain 1f we em'bed T by mapping u onto

S

some y, €Y since

_g? -1
nt fm-1 oo go m(l+s ) mn(1+s ) -1
3 1 lf

1/2
> Kg In

| provided s has been chosen sufficiently large for F and
n 1s sufficiently large.

Finally, we consider a star S € Fy, say, consisting
h £1 h 1 101] :

of m paths o engt adjoined to a vertex u If m >3
then 1n any embedding of F into W*,u must be mapped onto

some vertex in XU Y since these are the only available

) vertices of degree >3. However, since n/n. oo as
n -»«o then the dominant contribution will certainly come

from the embeddings which map u onto some X, € ¥ (in fact

, the smaller the index 1, the better). If m ¢ 2 then there
are many ways of' embedding S into W*, for example, so that

u does not map onto a special vertex of Wx, Again, however,
the dominant term clearly comes from those embeddings

which take u onto some special vertex x c X
5 :

l

Thus, all except a negligible fraction of the

embeddings of I' into W* arc extension; Of proper weak
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attachments ao of F to Wx, Note that if g and g are proper
weak attachments of F to Ww and T(a’)> 7(q) then by definition,
either

s(s+t) S(s+t)
CT | |\ ,

Lo Tk? > Tx

or s(s+t) s(s+t)

! = some m < s(s+t),3 Ti ) Tye and for < |
r= < k, and Tt’

Ty Tk for 1 < m / oD T
In the first case,

s(s+t) , s(s+t) _, -k“esl Te, Bey ngs= K ‘Nn ‘Nn| - 9

1453 (5%)) > Kn
= 9

_ s(s+t)
1/2s

> Kon A

for s and n sufficien y large. In the copg case
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s(s+t) (sit |T S+

[1% *k=1 xr 2(578), ok

zS(s+t) m-1 ~k
= k=1 °° ZIT, S S (s+t -
= Kg n k | n K=1'k . ken Js K

s(s+t)
But vos. k

x5 -m
- 2 (7, +1)s = rT gd, 7H
K=m m

and RS S(s+t)~k oo
) T, Ss -m \

K=m+1

< T,.s8" 4 og M-L/2

Hence, in either case,

re) vr [5(s4t)~ (8) n K k “M_,.-m-1/2 2| n S -28 -28k=1 K Ji k > Kp 0m >K,. n°11

3
1/s®

> Kiq n
But since there are at most K

192 = Ky (s) proper weak
attachments of F to W* then by (5)(8), and the definition of
(7) we have

(9) S(o+t) 7)E_(W* |

p( ) < Ki 3 JL n,
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Hence, from (7) and (9), we have

(F7)s(g+t) = s(s+t) (F) 3k T A

> Ky) I n, a, > 1/8k=1 k=

for n sufficiently large and the Claim is proved.

“From the preceding discussion it is not difficult

. B ’ . .
| to see that if 7(F) _ oF ) then F and F’ are isomorphic
- which contradicts the hypothesis that they are distinct

| elements of J’. Therefore, we must have (F) £ (F") and
so the Fact always holds, provided s 1s sufficiently large.

This completes the proof of the theorem.

CONCLUDING REMARKS

As we have seen 1n Eg. (1), when F has isolated

) points then NF (T) can be written as

(9) Np(T) = P(n)ng, (T)

where P(n) 1s a polynomial (depending on F) in n = |v (T)] and

F’ has no 1solated points. However, such an expression, valid
for all trees 7, can always be written in the form
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(10) P(n)Ng,(T) =) ApNg(1)
Fed, (a)

where Jp, (d) consists of all those forests which can be

formed by adjoining exactly d = dcg P(n) additional edges

to F'. This follows by the observation that

11 (n-1-|E(F")] _(11) PEED, (1) =) wg, mmr)
Fedp, (d)

since the-left-hand side of (11) can be interpreted as

counting the number of ways of selecting a copy of F’ in

T together with d additional edges of T. po; example, if

F’ is the forest shown in Fig. 4(a) then

(12) (n-4)N_,(T) = Ny (T) +4N, (T) + en, (T) + 3. (1): 2 3 I

where the Fy are given inp Fig. 4(p).

F F

-@ (4)
] Fig. 4

We remark that if J is allowed to be infinite

then nontrivial linear dependences among the Np(T), F ¢ J,

can exist. For example, if 5, denotes the star with k edges,
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