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Abstract

For finite graphs F and G, let N(G) denote the number of
occurrences of Fin G , i.e., thenumber of subgraphs of G which
are isomorphic to F . If ¥ and & are families of graphs, it is
natural to ask them whether or not the quantities NF(G)r FeF , are

linearly independent when G is restricted to % . For example, if

F o= {Kl’KE} (where K = denotes the complete graph on n vertices)

and & is the family of all (finite) trees then of course y (7) -y (T) 1
K
1 -

K7

) for all Tek . Slightly less trivially, if & = {%f n=1,2,3, ...}

(where Sn denotes the star on n edges) and % again is the family

of all trees then

T (-1t N, (T) =1 for all Ted
n-1 n

It will be proved that such a linear dependence can never occur if

F is finite, no FeF has an isolated point and % contains all trees.

This result has important applications in recent work of L. ILovdsz and

one of the authors [2].
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INTRODUCTION

It is a trivial observation (in fact, almost a

definition) that in any finite tree T, the number of

verticeg of T always exceeds the number of edges of T by

exactly 3. In [1], it was asked to what extent this can
) happen for graphs in general. rhat ig, given a finite
family F of graphs G, when can there be a fixed linear
the G ¢ J

. dependence between the number of occurrences of

as subgraphs of a tree T which is valid for all finite* trees

T.  In this paper, we answer this question. 1n particular,

this can never happen if none of the G ¢ § have isolated points;

* ALl graphs considered in this paper will be finite. P
; or
Lerminology see [31].



T H

SCME NCTATION

For a graph G, we let V(G) and E(G) denote the
sets of vertices and edges of G, respectively, If H is a
labelled graph (i.e., with distinguishable vertices) and G
is an unlabelled graph, we define NG(H) to be the number of
occurrences of G in H, i.e,, the number of ways a subset
of |E(G)| edges can be selected from E(H) together with i

vertices from V(H) if G has 1 isolated vertices, so that the

resulting subgraph of H is isomorphic to G. f course, the

.product of_‘NG(H) and the order of the automorphism group of

G 1is just EG(H)’ the number of ways of embedding G into H
(considering G as labelled graph). For example, ;¢ g and

H are as shown in Fig. 1 then NG(H) = 28 and EG(H) = 112.

IGY S <

Fig, 1
Note that if the isolated point is removed from

; 1 i
G to form G’ then Ng,(H) = 14 = 5 No(H). Of course, in

general, if G is formed from a graph G’ having no isolated

points by adjoining i isolated points then

(1) NG(H) _ (!V(H)IEIV(G')IvNG,(H)



THE MAIN RESULT

The primary resu}t of this paper can be stated
as follows.
Theorem. Let J be a finite family of forests,* each having
no isolated points, and suppose there exist real numbers

Ap, F e J, and A0 such that the equation

(2) ) AaN(T) = A
Fed

is valid for all trees T. Then A, = 0 for all F ¢ ¥,
Remark. Since any subgraph of a tree is a forest then
there is no loss of generality in assuming J is a family of
forests.

Proof: We may assume without loss of generality that

among all families for which an equation of the form (2)

is possible, J has the least number of elements. The basic

idea of the proof will be to construct a very large tree

W* for which one of the quantities Np(Ww*) is much larger

than all the others,' thereby forcing its coefficient Ay to

be 0. However, this contradicts the minimality of [JF].

If T is a tree with a distinguished vertex v, we
let T(k) denote the tree formed from T by adjoining k disjoint

paths of length k to wv. (See Fig. 2).

*
1.e., acyclic graphs,



Fig. 2

Similarly, if F is a forest with components T

l’.."Tn

having distinguisheq vertices Vis oV respectively,
then F(K) denotes the forest with components Tik) (k)
Iy &0y n .

We now define a (possibly empty) forest W = W(JF)

with components Wi znd distinguished vertices wieV(W, )

1 (1< t, as follows:

b

(1) Some F ¢ J occurs as a subgraph of W (k) for some k

(11) IE(W)l is pinimal among all W satisfying (1).
Note that by (i1) no paths jg5ve w in W
i it

Define J’ to be the set [FeS:E;w(k) for some k).

Next, we choose s to be a large fixed integer,
depending only on ¢, to be determined later.
P g Y J For (large)

integers n, define nk by
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#2 are finally readqy to define the troe Wr S )

1. W* will have a subset of 2s+t-1 vertices, called
special vertices, denoted by X =
- ! {Xl: . -‘JXS}, Y = {yl,...,ys_

and {wy,...,w ],
2. For 1 <k <s, xk has nk paehs of length 1 attached to
it.
3. For 1< k < s-1, yk has nkS+J paths of length ]
attached to it for 1< j < s.
4,
For 1 < k <%, wk has s (s+k-1)+; Paths of length j
attached to it for 1 < j < s.
5. Rlso attached to w, ig 5 copy of Wk with wk being the
distinguished vertex of W, .
6. The special vertices are joined sequentially by
paths of length s, i.e., between adjacent vertices in
the sequence
d (lecachs,y?)' ""yS-l’wl’ , ""wt)
are placed paths of length s.
This completes the construction of W, .
In Fig. 3 we

illustrate the structure of W*.

1)



Fig. 3
By hypothesis, we have

}jAFNF(w*(n)) = A,

FeF
for all n. However, since by the definition of J’, no
F e J - JF occurs as a subgrapn of W(k) for any k, then
(it is not difflcult to see that Ny(Wf(n)) = 0 for these F
provided we have chosen s and n sufficiently large. Hence,

we have

(3) Z Al (W*(n)) = 4
FeJ’

for all sufficiently large n, ¢ ;g important to note that

by the minimality assumptions we have made, any embedding of

any F € J' into W* must use all the edges of all the Wi, 1<K t

in W*, again, provided s and n are snffin:-

B4



- Partition the components of F into three classes: Fqs

Fact. For any distinct F, F’ ¢ J’, either

3

-3
N (W% )/, (W) > n®

or

_3

el

N, (W*)/Ng (W*) > n°

for n sufficiently large.

For suppose the Fact holds. Since we must have

| ¥ ] > 1, then there is some element F* ¢ J’ such that

3

Np (%) /Mgy (%) > n®

for all F e J'-{F*]). By (3) we have

(4) - E; . (NF(W*) ) By

; F\N_ (WF))™ N_ (W¥) *
regiey ) T (T

But as n -»w®, all terms in (4) tend to zero except

Apyx which is nonzero 'by hypothesis. This contradiction

would then prove the theorem.

Proof of Fact:

Let F and F’ be two distinct elements of JF’.

the

set of stars, i.e., trees with at most one vertex of degree > 2;

F2, the non-stars which are star-like, i.e., trees with

at most one vertex of degree >3; and , the non-star-like trees,

i.e., those having at least two vertices of degree > 3.
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Define FI, F, and F, in an analogous way for F’,
3 As we

have noted earlier, F3 must consist of t trees TI1, .
g o Ty

where Tk is formed from Wk by adjoining a (nonempty!) set
14

of paths to wk (with a. similar remark applying to ng

We need one more comcept. . .. _iiochment

a of F to W* is formed as follows
A vertex 4y is selected

from each component C,
P 1 of F. These U, are mapped by an

injection o into the set of special vertices of W* with

the restrictions that:

X, f ] ]
y for some j if C; e Fy,

G(Ui) = yjfor some Jj if C, e Fy,

w. for some j if Cie g

J 3°

A weak attachment ; of § to y* is said to be proper if g

can be extended to an embedding of F into W,
We let

laldenoﬁe the number of ways q can be extended to an
! ! *
embedding of F into W, Note that in a proper weak attachment
a of F to wx,
u; must be a vertex of C. of maximal degree

if Cy e F1LV’F9‘ Define the sequence t(a) = (14,7
17 2,-..,TS(S+t) )

as follows:

number of paths of length 1 leaving
us for
a(uy) = %, 1 <k <s,

number of paths of length j leaving uy for a(u
i
where k = fs+j for 1< j <s,1 < £ < s-1

3

number of paths J '
of length 3 1eaving by po o( )

2
Where k = g *(m_lls—‘} fOI‘ 1 ¢ )

P
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It is then clear that
s(s+t) -
lal <Ky [ nF
k=1
where KO’Kl""’ will denote constants depending on s and not

on n. The sequences t(g¢) can be linearly ordered as follows.

For t(aq) = (Tl,Tg,...,T and

s(s+t))
T(a’) = (Ti’Té""’Té(s+t))’ we define
T(a’) > 7(a) if either:

S{§+t) s(s+t)
(1) 2; T > E: Tk 5 or
k=1 k=1
s(s+t) s(s+t)
(ii) }: T = E: T, and T(q’) is lexicographically

k=1 k=1
greater than 7(q), i.e., for some m, Té = T, for 1< k < m and
T& > T
We let T(F>=(T£F),.-.,Té?g+t)) denote a maximal sequence T(q)

in this ordering as o ranges over all proper weak attachments
of F to W¥. The proof of the Fact will depend on the following
assertion.
I -g3
e F F S
Clain:  1£ +(F) 5 o(F) e Ngs (W¥)/Ng (%) > n®  for n
sufficiently large,

. [
Proof of Claim: guppose (¥ ) 5 oFl 1t s easily seen that

(6) s(s+t), "k s(s+t g
e (60) " 1)) > k)

k=1
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On the other hand, it is not hard to show that

(F)

- s(s+t
(7) N (W¥) < K, (ﬂ )nTK
kel K

To see this, wc consider F as 5 1gbelleq forest and we show
that

s%i+t) TéF)
Ep (W) <Kq n,
k=1

for a suitable constant K3 - KS(S)‘

First, the non-star-like treces in r
3 can only be

i h .
embedded into the Wy Parts of yx and, gince the total number
of proper weak attachments of F3 to W* is 'bounded by a

function of s, then the embedding of the non-star-like trees
' ~ 4
of J’ contributes g, factor of at most Kus $55t) T
nk where
k=s"+1

’
4
is a (maximal) sequence derived

N 4
TB)=(1, ,...

<4 ,TS(S+t))
from some proper weak attachment g of F, fo

Next, consider an embedding of a star-like tree

T ng which is not a star. Suppose T is formed by

adjoining mk paths of length k , 4 g to the "center"
2 !
vertex u. Although it may be possible to embed T into W*

by mapping u onto some Xy € X (e.g when at most two of the

*

L k > 2, are nonzero), when this is done we must use
edges 1n one of the paths of length s connecting x.
1 to adiacent

spee Lal vertices of' wx, and
b-c ’ s0, there are at most
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S

-1

- m
K5 n, k;; K such embedd%ngs, However, this factor is

negligible compared to the corresponding factor of

s

K% mk

K( n 5 which we obtain if we em'bed T by mapping u onto
s

D

some y, € Y since

2
-~ -1
nma/g?—l S K7 om(1l+s }/ém(1+s )-1

1/2
>K8n
provided s has been chosen sufficiently large r . g . 4
n is sufficiently large.
Finally, we consider a star S e Fy, say, consisting
of m paths of length 1 adjoined to a vertex u. If m >3

then in any embedding of F into W*, u must be mapped onto

some vertex in XU Y since these are the only available

vertices of degree >3. However, since nk/nk+1 0 as

n -« then the dominant contribution will certainly come

from the embeddings which map u onto some X, € X (in fact

2

the smaller the index i, the better). If m < 2 then there

are many ways of' embedding S into W*, for example, so that
u does not map onto a special vertex of Wx, Again, however,
the dominant term clearly comes from those embeddings
which take u onto some special vertex x c X
5 .
!
Thus, all except a negligible fraction of the

cmbeddings of I' into W* arc extensiony; Of proper weak
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attachments o of F to W*, ,
Note that if ¢ and g’

weak attachments of F to w* are proper

and 7T(q’) > 7(a) then by definition,

either
5(s+t) s(s+t)
— ) _
Tk > }: Tk
k=1
or

T = }: T, @nd for some m < s(s+t),

L
k=1
s(s+t) s(s+t)
\’
-
k=1 k=1

Ty = Tk for 1 < m< k, and 7’

In the first case,

s(s+t)

n
K
k=1 7 éll ?

A\

14x8(s+t)
2 K9n k=1 Tk

Lo s(s+t)

s

> Ky gn II
k=1
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7! s(s+t)
H n, 'k s ’ s(s+t) , -k
k =1 Tx 2 TS
_ = =1
k= > K9 n n k
zS(s+t)_ m-1_ -k
- k. p k=1 K r?k:lTkS ZS£§+t)Tés_k
s(s+t) *n
But v,k
) xS -m
L 2 (ﬁn+1)5, T g™ 4 g™
k=m
and  S(s+t) s(s+t)
_k _ e
Ekas < T sT™ oy ZJ /2 -k
k=m
kK=m+1
< 7,87 4 g M-L/2
Hence, in either case,
S%%+t) ot [S(s+t) .
(8) n K k -m_,_-m-1/2 2
‘ n s =28 -2s
k=1 K kgl k> Ky on > K. n®
11
3
1/s"
> Kll n
But since there are at most X
= S) proper weak

12 ~

Kin
attachments of F to W* then by (5)&%), and the definition of

T(F) we have
S(S+t) TéF)

(9) EF<W*) <‘K13 kji nk
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Hence, from (7) and (9), we have

s (WM (W6) 3 Wy, (3% /2, ()

(F7)

s(e+t) T s(s+t) (F) 3

X T. 8

> Ky ]I nk( Ak o> 15
k=1 K= k

for n sufficiently large and the Claim is proved.

“From the preceding discussion it is not difficult
to see that if t(F) - (F’) then F and F’ are isomorphic
which contradicts the hypothesis that they are distinct
elements of J’. Therefore, we must have 7(F) £ +(F") ang
so the Fact always holds, provided s is sufficiently large.

This completes the proof of the theorem.

CONCLUDING REMARKS

As we have seen in Eq.(l)’ when F has isolated

points then NF(T) can be written as

(9) Ng(T) = P(n)Ng, (T)

where P(n) is a polynomial (depending on F) in n =[V(T)] and
F’ has no isolated points. However, such an expression, valid

for all trees T, can always be written in the form



g

-

(10) P(n)N

where dJ,(d) consists of all those forests which can be
formed by adjoining exactly d = dcg P(n) additional edges

to F'. This follows by the observation that

(11) (EEON, () < Y g, ey
Fed, (d)

since the-left-hand side of (11) can be interpreted as
counting the number of ways of selecting a copy of F’ in
T together with d additional edges of T. g4, example, if

F’ is the forest shown in Fig. 4(a) then

(12) (n-M)Ng, (T) = 2NFl (T) +4NF2(T) + 2N, (T) + 3NF4(T)
3

where the F, are given in Fig. Lib).

v T 01 A

£

/

F 5
@) ()

Fig. &

F, -,

3 Y

We remark that if F is allowed to be infinite

then nontrivial linear dependences among the Np(T), F ¢ J,

can exist. For example, if S, denotes the star with k edges,
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then frop F = amwuwupumh...w We have

(13) ) (-1)% g (1)
k=1 k

for all treeg T.

P—— A g . oo
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