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Abstract

The following problem arises in connection with certain multi-

dimensional stock cutting problems:

How many non-overlapping open unit squares may be packed into

a large square of side OQ 7

Lo Of course, if & is a positive integer, it is trivial to see that
2 .

®& unit squares can be successfully packed. However, if a is not an

| integer, the problem becomes much more complicated. Intuitively, one
feels that for a = N + - » say, (where N is an integer), one should

| pack N~ unit squares in the obvious way and surrender the uncovered
.

border area (which is about Q/50 ) as unusable waste. After all, how

could it help to place the unit squares at all sorts of various skew

- angles?

. In this note, we show how it helps. In particular, we prove that

i we can always keep the amount of uncovered area down to at most propor-

tional to al!1 » which for large « is much less than the linear
waste produced by the "natural" packing above.

This research was supported in part by National Science Foundation
grant GJ 36473X and by the Office of Naval Research contract NR OLL-L02.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.



| ON PACKING SQUARES WITH EQUAL SQUARES
by

P. Erdos

Stanford University
and

The Hungarian Academy of Sciences

and

R. L. Graham

Bell Laboratories

Murray Hill, New Jersey

If two non-overlapping squares are inscribed in a

unit square, then the sum of their circumferences 1s at most

Lh, the circumference of the unit square. As far as we know,

this was first published by P. Erdos and appeared as a problem

- in a mathematical paper for high school students in Hungary.

A. Beck and M. N. Bleicher [1] proved that if a closed convex

y curve C has the property that for every two inscribed

1 non-overlapping similar curves C, and C., the sum of the
circumferences of C, and C, 1s not greater than the circumferance

L of C, then C is either a regular polygon or a curve of constant
; width.

= It is clear that one can inscribe k? squares into

‘a unit square so that the sum of their circumferences is 4k.

P. Erdos conjectured 40 years ago that if we inscribe kZ +1

squares into a unit square, the total circumference remains at

most 4k. For k = 1, this is true as we have just stated.

D. J. Newman [2] proved the conjecture for k = 2 'but the general

case 1s still unsettled.



| | Denote by f(f) the maximal sum of circumferences of
| { non-overlapping squares packed into a unit square. The

conjecture we cannot prove 1s just £(k“41) = kk. In this
note we show f(4) > Lk for 1 = Kk + o(k), (in fact, for
a = k° + [ex/11; using just equal squares). We do not know
as f(£) increases from4k to Uk+ 4 how large the jumps are

and where they occur.

Instead of maximizing the circumference sum of

packings of a unit square by ar'bitrary squares, we shall

work with the closely related problem of maximizing the area

sum of packings of an arbitrary square by unit squares.

For each positive real ¢g, define

Wa) = a - sup [P|

where { ranges over all packings of unit squares into a given

square S(a) of side a and || denotes the number of unit squares

in .

Theorem.

- (1) Wa) = (a1)

{ Proof: We sketch a construction which will prove (1). As
. usual, the notation f(x) = Q(g(x)) will denote the existence

of two positive constants c¢ and c¢’ such that cg(x) < f(x) < c’g(x)

~ for all sufficiently large x.

We begin by packing S(a) with NZ unit squares
~ which form a subsquare S(N) in the lower left-hand corner of

S(a) as shown in Fig. 1, where N = [a-a] and q 1s large.

The remaining uncovered area can be decomposed into two

rectangles, each having width 8 = @g-N and lengths > N.
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Fig. 1

Next, we pack a rectangle R(B, y) of sides Bandy
with y = Qa), 8 = 0 11 as follows4 (a), B ( ) Let n = [Bp]. Place
adjacent parallel rectangles R(1,n+1), each formed from n + 1

| unit squares, tilted at the appropriate angle 6s that all

i R(1,n+l) 's touch both the top and bottom edges of R(g, 7).
Furthermore place these so that D = (a? 11) (see Fig )
Note that D/ — 0a 11) |
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An easy calculation shows that 6 = O(a =H/11) and so, each
of the small shaded right triangles on the border of R has

area ala". The total area of the triangles 1s therefore

ala’. }
There are, 1n addition,two right trapezoids T with

_ base B and vertical sides D and D’ which have not been covered

up to this point. We next describe how to pack T.

Let m = [0 ¥/ 117. Starting from the right-hand side of
T, partition T into as many right trapezoids T19Tns eee, T,

as possible, where the base of each Tk is m (see Fig. 3).
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. Fig. 3

Thus, r ~ (a1) and Xhas area 0(a®/11y. If the vertical

sides of Tk are The and T+, let hk = Ma? 111. Pack the
bottom subrectangle R(m, hy) of T, with mh, unit squares in

*

the natural way (as shown 1n Fig. 4) and let Ty denote the

remaining uncovered subtrapezoid of Ty»
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Fig. 4

*

Now, for sk = [TN ]- h, pack T, with rectangles

R(1,8,+1) as shown in Fig. 4. Here, each R(1,s,+1) touches
both the top and bottom edges of Tk as well as the adjacent

R(1,s,+1)'s. As before, the uncovered border right triangles
¥*

of the triangular regions between adjacent R(1,8,+1)'s is also

just aad since the sum of the angles at the top vertices

1s 0a, Finally, the uncovered triangle X* has area
a(t), Since r = Aa) then the total uncovered area
in T 1s just r 0(a3/11) + a(a®/11) = aay,
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| Hence the total uncovered area of S(a) is Just

| Ala’) and the theorem is proved. B
| The previously mentioned assertion that £ (kK sek 7/11) > lk
| follows immediately. It 1s rather annoying that we do not

at present have any nontrivial lower estimate for W(a). 14ceg

| we cannot even rule out the possibility that W(a) = 0(1).
Perhaps the correct bound is 0(a1/2y,

In the same spirit the following questions can be

asked. Let C be closed convex curve of circumference 1. Inscribe

k non-overlapping curves in C which are all similar to C.

Denote by f(C,k) the maximum of the sum of the circumferences

of these curves. If C is a parallelogram or a triangle then

clearly £(C, 2°) = 4. All that is needed is that C can be

covered with f° copies of C. ye do not know for which figures
other cases of exact coverings are possible for other values

- of k although for every k, there are C's which have an exact

covering into k parts, e.g., a rectangle. The following

questions can be posed: For which C is the growth of f(C,k)

| the slowest? Could this C be a circle? Which C permit exact
coverings? Which C permit exact coverings with congruent curves

similar to C? For such C, let 1 < n, <n, < | be the integers

for which such an exact covering 1s possible. {hat can be

sald about these sequences? For example, can nk = o(k°)?
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