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Abstract

The following problem arises in connection with certain multi-

dimensional stock cutting problems:

How many non-overlapping open unit squares may be packed into
a large square of side o ?

Of course, if a is a positive integer, it is trivial to see that
cz2 unit squares can be successfully packed. However, if & is not an
integer, the problem becomes much more complicated. Intuitively, one
feels that for o = N + iC];_O » say, (where N is an integer), one should
pack N2 unit squares in the obvious way and surrender the uncovered
border area (which is about /50 ) as unusable waste. After all, how
could it help to place the unit squares at all sorts of various skew
angles?

In this note, we show how it helps. In particular, we prove that
we can always keep the amount of uncovered area down to at most propor-

tional to oz7/ L » which for large « is much less than the linear

waste produced by the "natural" packing above.
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Reproduction in whole or in part is permitted for any purpose of the
United States Government.
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If two non-overlapping squares are inscribed in a
unit square,then the sum of their circumferences is at most
4, the circumference of the unit square. As far as we know,
this was first published by P. Erdos and appeared as a problem
in a mathematical paper for high school students in Hungary.
A. Beck and M. N. Bleicher [1] proved that if a closed convex
curve C has the property that for every two inscribed
non-overlapping similar curves Ol and @2, the sum of the
circumferences of Gl and 62 is not greater than the circumferance
of C, then C is either a regular polygon or a curve of constant
width.

It is clear that one can inscribe k2 squares into

.a unit square so that the sum of their circumferences is LUk,

P. Erdos conjectured 40 years ago that if we inscribe k2 + 1
squares into a unit square, the total circumference remains at

most 4k. For k = 1, this is true as we have just stated.

D. J. Newman (2] proved the conjecture for k = 2 'but the general

case 1s still unsettled.
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Denote by f(4) the maximal sum of circumferences of
t non-overlapping squares packed into a unit square. The

conjecture we cannot prove is just f(kaﬂj = lk. In this

note we show f(£) > Lk for ¥ = k2 + o(k), (in fact,

2 7/11 ]

for

a = k° + [ck using Jjust equal squares). e do not know
as f(£) increases from Uk to 4k + 4 how large the jumps are

and where they occur.

Instead of maximizing the circumference sum of
packings of a unit square by ar'bitrary squares, we shall
work with the closely related problem of maximizing the area

sum of packings of an arbitrary square by unit squares.

For each positive real q, define

2
W(a) = a“ - sup [P]
&

where £ ranges over all packings of unit squares into a given
square S(a) of side o and |P| denotes the number of unit squares
in P.

Theorem.
(1) W(a) = 0(aT/1h)

Proof: We sketch a construction which will prove (1). As
usual, the notation f(x) = (Q(g(x)) will denote the existence
of two positive constants c¢ and ¢’ such that cg(x) < f(x) < c’g(x)
for all sufficiently large x.
We begin by packing S(a) with N2 ynit squares
which form a subsquare S(N) in the lower left-hand corner of

8/11] and ¢ is large.

S(a) as shown in Fig. 1, where N = [qa-q
The remaining uncovered area can be decomposed into two

rectangles, each having width B = ¢-N and lengths > N.
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Fig. 1

Nze‘xt, we pack a rectangle R(p, y) of sides Bandy

with » = a(a), p = Q(a¥?1) as follows
(a), B (a ) . Let n = [g]. Place

adjacent parallel rectangles R(l,n+1), each formed from n + 1

unit squares, tjijted at the appropriate angle 6s that all
R(1,n+1) 's touch both the top and bottom edges of R(g, ).

Furthermore = place these so that D = O(ag/ll) (see Fig

2).
Note that D’ — (‘)(au/ll) )
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An easy calculation shows that 6 = Q(a‘u/ll) and so, each

of the small shaded right triangles on the border of R has

area O(a_4/ll)
O(a7/ll) .

. The total area of the triangles is therefore

There are,in addition, two right trapezoids T with
base B and vertical sides D and D’ which have not been covered
up to this point. We next describe how to pack T.

Let m = [au/ll]. Starting from the right-hand side of
T, partition T into as many right trapezoids Tl,TQ,...,Tr

as possible, where the base of each Tk is m (see Fig. 3).
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. If the vertical
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Thus, r = Qo and X has area O(a
sides of Tk are ﬂk and nk%P let hk = [nk_ae/ll], Pack the
bottom subrectangle R(m,h ) of T, with mh, unit squares in
the natural way (as shown in Fig. 4) and let T; denote the

remaining uncovered subtrapezoid of Ty -
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Now, for sk = [n.]- h, pack T, with rectangles
R(1,s,+1) as shown in Fig. 4, Here, each R(1,s,+1) touches
both the top and bottom edges of Tk as well as the adjacent

R(l:sk'*'l)'s. As before, the uncovered border right triangles

*
on T, have total area m O(a"l/ll) = Q(a3/ll), The total area

of the triangular regions between adjacent R(l,sk+l)'s is also

just O(oc3/ll) since the sum of the angles at the top vertices

is a1y,

O(a3/ll).

Finally, the uncovered triangle X* has area

Since r = O(au/ll) then the total uncovered area

in T is just r o(a3/ll) + O(a6{}_}) = O(a7/ll).



Hence the total uncovered area of S(g) 1s Jjust

(‘1(&7/11) and the theorem is proved. .

The previously meptioned assertion that f(k2+ck7/ll) > Lk
follows immediately. It is rather annoying that we do not
at present have any nontrivial lower estimate for W(a). 1 4eeqd
we cannot even rule out the possibility that W(a) = O(1).
Perhaps the correct bound 1is O(ql/g),

In the same spirit the following questions can be
asked. Let C be closed convex curve of circumference 1. Inscribe
k non-overlapping curves in C which are all similar to C.

Denote by f(C,k) the maximum of the sum of the circumferences

of these curves. 1f C is a parallelogram or a triangle then
clearly f(G,Bg) = £. All that is needed is that C can be
covered with £° copies of C. e do not know for which figures
other cases of exact coverings are possible for other values

of k although for every k, there are C's which have an exact
covering into k parts, e.g., a rectangle. The following
questions can be posed: For which C is the growth of £(C, k)
the slowest? Could this C be a circle? Which C permit exact
coverings? Which C permit exact coverings with congruent curves
similar to C? For such C, let 1 < n, < n, < | be the integers
for which such an exact covering is possible. What can be

said about these sequences? For example, can nk = O(kgﬁ
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