e

SLAC-PUB-1549 (Rev.)
STAN-CS-75-L82
February 1975
Revised December 1975
Revised July 1976

AN ALGORITHM FOR FINDING BEST MATCHES
IN LOGARITHMIC EXPECTED TIME

Jerome H. Friedman
Stanford Linear Accelerator Center
Stanford University, Stanford, Ca. 94305

Jon Louis Bentley
Department of Computer Science
University of North Carolina at Chapel Hill
Chepel Hill, N.C. 2751k

Raphael Ari Finkel
Department of Computer Science
Stanford University, Stanford, Ca. 94305

ABSTRACT
An elgorithm and data structure are presented for searching

a file conteining N records, each descrited by kK resl valued keys,
for the m closest matches or nearest neightors to a given query
record. The computation required to organize the file is propor-
tional to kNlogN. The expected number of records examined in

each search is independent of the file size. The expected compu~
tation to perform each search is proportionsl to logN. Empirical

evidence suggests that except for very small files, this algorithm

is considersbly faster than other methods.

(Submitted to ACM Transsctions on Mathemstical Software)

Work supported in part by U.S. Energy Research and Development
Administration under contract E(043)515

The Best Mastch or Nearest Neighbor Problem

The btest match or nearest neighbor problem applies to data files
that store reccrds with several real valued keys or attributes. The pro-
tlem is tc find those reccrds in the file most similar to a query record
acccrding tc some dissimilarity or distance measure. Formally, given s
file of N records Ammo: of which is described by k real valued mwwwwwcﬁmmv
and 8 dissimilarity measure D, find the m closest records to a query
record (possibtly not in the file) with specified attribute values.

A data file, for example, might contein informestion on &ll cities
with post offices. Associated with each city is its longitude and lati-
ﬁrmm. If a letter is sddressed tc & town without s post office, the
closest town that has a post office might be chosen as the destinstion.

The solution to this prcblem is of use in meny applicstions. Infor-
mation retrieval might involve searching a catalog for those items most
similar to s given query item; each item in the file would be cataloged
by numericel attributes thet describe its characteristics. Classification
decisions can te made by selecting prototype features from each category
and finding which of these prototypes is closest to the record to be
classified. Multivariate density estimstion can be performed by cslcu-
lating the vclume about a given point ccntaining the closest m neighbors.

Structures Used for Associative Searching

One straightforward technique for soclving the best match or nearest

neighbor probtlem is the cell method. The k-dimensional key space is di-

vided intoc small, identically sized cells. A spiral search of the cells
from any query record will find the kest matches of that reccrd. Although
this procedure minimizes the numter of records examined, it is extremely
ccstly in space and time, especially when the dimensionality of the space

is large.

Burkhard and Keller [1] 2nd later Fukunagas and Narendra [2] des-
cribe heuristic strategies based on clustering techniques. These strate-
gies use the triangle inequality to eliminate some of the records from
consideration while searching the file. Although no calculations of ex-
pected performance are Presented, simulation experiments indicate that
these techniques permit a substantial fraction of the records to be
eliminated from consideration.

Friedman, Baskett, and Shustek [3] describe another strategy for
solving the nearest neighbor problem. It involves forming a projection
of the records onto one or more keys, keeping a linear list on those
keys, and searching only those records that match closely enough on one
of the keys. The method is applicable to a wide variety of dissimilsrity
measures and does not require that they satisfy the triangle inequality.
They were able to show that the expected computation required to search

e e o . | E o
the file with this method is proportional. to km~ N~ K .

Rivest [U4] shows the optimality of an slgorithm due to Eliss which
deals with binary keys. That is, each key tskes on only two values; the
distance function applied is the Hamming distance.

Shamos hwu employs the Voroni diagrem (s general structure for
searching the plane) to the best metch problem for the specisl case of
two keys per record (two dimensions) and Euclidean distance measure. He
precents two algorithms. One can search for best matches in worst case
omﬁwo®zvmu time, after a file organization thst requires storage propor-
tionel to N and computation proportional to N1og® The other algorithm
can perform the search in worst case O[logN] time, after a file organi-
zation that requires both storage and computation proportional to zm.

Unfortunately, these methods have not yet been generalized to higher

. -2 -

dimensionalities or more general dissimilarity measures.

Finkel and Ientley [6] describe a tree structure, called the quad

—tree, for the storage of composite keys. It is a generalization of the

tinary tree for storing data on single keys. Bentley [7] develops a
different generalization of the same one-dimensional structure; it is

termed the k=-d tree. In RIS mwvHonu Bentley suggests that k-d trees

could be applied to the best match problem.

This paper introduces an optimized k-d tree algorithm for the pro-
blem of finding best matches. This data structure is very effective in
partitioning the records in the file so that the average number of record
mxmnnddeOSmAHsz<ow<ma in searching the file for best matches is quite
small. This method can be applied with a wide variety of dissimilarity
measures and does not require that they obey the triangle inequality.
The storage required for file organization is proportional to N, while
computation is proportional to kNlogN. For large files, the expected
number of record examinations required for the search is shown to be in-
dependent of the file size, N. The time spent in descending the tree
during the search ic proportional to logN, so that the expected time re-
quired to search fOT best matches with this method is proportional to

logN.

Definition of the k-d Tree

The k-d tree is a generalization of the simple binary tree used for
sorting and searching. The k-d tree is a binary tree in which each node
represents a subfile of the records in the file and a partitioning of

that subfile. The root of the tree represents the entire file. Each

nonterminal node lhas two sons or successor nodes. These successor nodes

-3 -

represent the two subfiles defined by the partitioning. The terminal
nodes represent mutuslly exclusive smsll subsets of the data records,
which collectively form a partition of the record space. These terminal

subsets of records are called buckets.

In the case of one-dimensional searching, s record is represented
by a single key and & partition is defined by some value of that key.
All records in a subfile with key values less than or equal to the par-
tition value belong to the left son, while those with a larger value be-
long to the right son. The key variable thus tecomes a siscriminstor for

assigning records to the two subfiles.

In k dimensions, a record is represented by k keys. Any one of
these can serve as the discriminator for partitioning the subfile repre-
sented by a particular node in the tree; that is, the discriminating key
number can range from 1 to k. The original k-d tree proposed by Bentley
[7] chooses the discriminator for each node on the basis of its level in
the tree; the ~iscriminator for each level is obtained by cycling through
the keys in order. That is,

D=Lmod k +1
where D is the discriminating key number for level L end the root node
is defined to be at level zero. The partition values are chosen to be

random key values in each particular subfile.

This paper deals with choosing both the discriminator and partition
value for each subfile, as wel as the bucket size, t minimize the ex-
pected cost of searching for nearest neighbtors. This process yields

what is termed an optimized k-d tree.

The Search Algorithm

The k-d tree data structure provides an efficient mechanism for
examining only those records closest to the query record, thereby greatly
reducing the ccmputsticn required tc find the test matches.

The search algorithm 1s most easily described as a recursive pro-
cedure. The argument to the procedure is the node under investigation.
The first invocation passes the root of the tree as this argument. Avail-
able as & global array is the domain of that node; that is, the geometric
boundaries delimiting the subfile represented by the node. The domein of
the root node is defined to be plus and minus infinity on all keys. These
geometric boundaries are determined by the partitions defined at the nodes
above it in the tree. At each node, the partition not only divides the
current subfile, but it also defines a lower or upper limit on the value
of the discriminator key for each record in the two new subfiles. The
accrual of these limits in the ancestors of any node defines & cell in
the multidimensional record-key space containing its subfile. The volume
of this cell is smaller for subfiles defined by nodes deeper in the tree.
If the node under investigestion is terminal, then 21l the records in the
bucket are exsmined. A list of the m closest records so far encountered
and their ~issimilarity to the query record is always maintained as s
priority queue during the search. Whenever a record is exsmined snd
found tc be closer than the most distant member of this list, the list
is updated. If the node under investigation is not terminal, the recur-
sive procedure 1is called for the node representing the subfile on the
same side of the partitiocn as the query record. When control returns, s
test is made to determine if it is necessary to consider the records on

the side of the partitiom opposite the query record. It is necessary to

consider that subfile only if the geometric boundaries delimiting those
records overlap the ball centered at the query record with radius equal
to the dissimilarity to the mth closest record so far encountered. This
is referred to as the "bounds-overlap-ball" test. If the bounds-overlap-
ball test fails, then none of the records on the opposite side of the
partition can be among the m closest records to the query record. If the
bounds do overlap the ball, then the records of that subtree must be con-
sidered and the procedure is called recursively for the node representing
that subfile. A "ball-within-bounds" test is made before returning to
determine if it is necessary to continue the search. This test deter-
mines whether the ball is entirely within the geometric domain of the
node. If so, the current list of m best matches is correct for the en-
tire file and no more records need be examined. The bounds-overlap-ball
and ball-within-bounds tests are described in Appendix 1. Appendix 2
contains a detailed description of the complete search algorithm using

an algorithmic notation.

The Optimized k-d Tree

The goal of the optimization is to minimize the expected number of
records examined with the search algorithm. The parameters to be adjusted
are the discriminating key number and partition value at each non-terminal
node, and the number of records contained in each terminal bucket.

The solution to the optimization will, in general, depend upon the
distribution of query records in the record key space. Usually, one has
no knowledge of this distribution in advance of the queries. Thus, we
seek a procedure that is independent of the distribution of queries and
only uses information contained in the file records. Such a procedure
will be seen to be good for all possible query distributions but will not
be optimal for any particular one.

-6 -

A second restriction is that the solution values for discriminating
key number and partition value at any particular node depend only on the
subfile represented by that node. This restriction is necessary so that
the k-d tree can be defined recursively, avoiding a general binary tree
optimization. Such an optimization is known to be NP-complete [8] and
thus, very likely of non-polynomial time complexity.

Under these two restrictions, we can provide a prescription for
choosing the discriminating key and partition value at each nonterminal
node. The information provided to the search algorithm by the partition-
ing is the location of the partition and the identities of those records
that lie on either side. It is well known that information provided to
a binary choice is maximal when the two alternatives were equally likely.
Thus, each record should have had equal probability of being on either
side of the partition. This criterion dictates that we locate the parti-
tion at the median of the marginal distribution of key values, irrespec-
tive of which key is chosen for the discriminator.

The search algorithm can exclude searching the subfile on the opposite
side of the partition to the query record if the partition does not inter-
sect the current m-nearest neighbor ball. That is, if the distance to
the partition is greater than the radius of the ball. By definition, the
radius is the same along all key coordinates. Thus, the probability of
the partition intersecting the ball is least (averaged over all possible
query locations) for that key which exhibited the greatest spread or
range in values before the partitioning.

The prescription for optimizing the k-d tree, then, is to choose at
every nonterminal node the key with the largest spread in values as the

discriminator, and to choose the median of the discriminator key values

-7 -

as the partition. The optimum numter of records for each terminal bucket

is developed in the next section on anslysis of performsnce. Appendix 3

presents an algorithm that builds an optimized k-d tree according to this

prescription.

Analysis of the Performance

The atorape required for file organfzatfon o properttonnl o the
file size, N. The discriminating key number snd partition value must be

(2)

stored for each nonterminal node of the k-d tree. The number of non-

terminal nodes is m - 1 where b is the number of records in each term-

insl bucket.

The computation required to build the k-d tree is easily derived.
At each level of the tree, the entire set of key values must be scanned.
This requires computetion proportionsl to kN. The depth of the tree is
logN, so the totsl computation to build the tree is proportional to
kNlogN. [Here we are solving the recurrence relstion ez = NHZ\M + kN,

which is well-known to have the solution Ty = O(kNlogN).]

The expected time performance of the search is not so easily derived.

It is most eeasily discussed in a geometric framework. Let Mw =

ﬁxwﬁwvw xHAmvv...xwﬁwvu represent the set of key values for the ith record
in the file. If the value of each key is plotted slong s coordinate axis,
then the set of key values for s record represents a point in a coordinate
space of k dimensions. The entire file is a collection of such points in

k-dimensicnal coordinate space. The query record can similarly te repre-

sented a5 « point, MW“ in thigs spuce. The best motch problem is then to

find the m closest points to the query point in this spsce bty the given

dissimilarity measure.

The performance of the algorithm may depend upon the total number
of records in the file, N, the dimensionality (number of keys), k, the
number of neasrest neighbors sought, m, the number of records in the
terminal buckets, b, the dissimilarity messure Uﬁmﬂmd~ employed, and the

distribution vﬁmu of the file records in the record key space.

Let msAMvv be the smallest ball in the coordinate space centered

q
-

nl ¥ thnt, exnetly contnline Lhe m elorenl polnte teo xc. That In,
q

- -
= <
5%y = (X] DBX) < DX, E)) (1)
where mw is the mth nesrest neighbor to mw. The volume
<BAMWV of this regicn is
—-
(&) = | &, (2)
s
Q
cscﬁpv

and the probabllity content of this region, csﬁmwvv is defined

as

]

ca%@v p(X) X, with 0 < cs?pv <1 (3)
ms?av

It can be shown [9] thet the probsbility distribution of :samv

follows a bets distribution, B(m,N); thst is,
- N m-1 N-m
vﬂcsv (o-1) (N-m) . h:Bu ﬁH-csu (w)
independently of the probability density function of the points, vAMJN

or the dlssimilarity meacure, ZAMNMJ. The cxpected valur of this dis-

tritution is

n

- m
Efu]] u, plu Jdu = &5 (s)
0

These results state thst any compact volume enclosing exactly m points
has probtatility content B\A2+Hv on the average.

To proceed further, we assume that the file size, N, is large
encugh so that msnmwv is small and thus the probatility distribution
UAMJ is approximately constant withie the region mEAmwv. In this case,

we can spproximate eqn 3 by

and from eqn 5

l 5 H .i
mﬁ<5Axa: mu,lw a .
q

Here w AMWV is the probstility density averaged over the small regio

mEAMNv. Note that it cen never bte zero.
Consider now the effect of the optimized k-d tree partitioning al-
gcrithm “escribed io the previous section. Choosing the median Insures
that each bucket will contain very nearly bt records, where b is the maxi-
mum btucket size. Choosing the key with the largest spread in velues at
each node insures that the geometric shape of these buckets will be
re=sonatly compsct In fact, the expected shape of these buckets is
hypercubical with edge length equal to the kth root of the volume cf the
space occupied by the bucket. The edges sre parallel to the coordinate
axes The effect of the optimized k-d tree partitioning, then, is to
divide the coordinate space into spproximately hypercubical subregions,
esch ccnteining very nearly the ssme number of records. From eqn T, we
heve thet the expected volume of such a bucket is
b 1

TR S
b

(8)

10

where MW is & point that locates the tucket in the coordinste space.

Consider now the smallest k dimensionsl hypercube with edges para-

-
1llel to the coordinste axes that completely contsins the region MBANQV.

. 7 . . .) .
The volume of this hypercube <5Axov is proporticnal to <BAx@\~ with pro

portionality constant, G(k), depending on the dissimilarity measure and

the dimenstonatbtly [10]. That s,
<s§ov (k) v (X (92)
and)
> G{k
BV (X)) == = (9v)
m q N+1 P A&@v

In order to calculate the average number of buckets examined by
the k-d tree searching algorithm descrited above, it
is necessary to calculate the average number of tuckets, mc overlapped
by the region msﬁmwv. This number will be bounded from stove by the

aversge number of buckets, L, overlapped by the smallest hypercube thst

contains msAmwv. This sverage number is
i e (X)) .

L = + 1 . 10

Al (10)

Here, mEAMWV is the edge length of the hypercube contsining qumwv and

cAMWV is the edge length of the hypercubicel buckets in the nelghbor-

hood. The edge length of 8 hypercube is the kth root of its volume;

c

from eqns 10, 9, and 8, we have
1

L=<1L={ mo?:f:w (11)
as an upper bound on the aversge number of buckets overlapped by the con
stant radius ball msAmwv. The number of records in each bucket is t, sc

that an upper bound on the average numbter of records exsmined, R, is

11 -

R <tvl = v:m sl X+ 1f . (12)

Two important results follow from this expression. First,
minimizing it with respect to b yields the result b=l; t¢c minimize
the (upper tbtcund cn the) number of reccrds examined, the terminal
buckets should each contain one recerd. With this provision, eqn 12

Voo mes
1
R<{[so?:x + :w. (13)

The second important result is that the expected number of records ex-
amined is independent of the file size, N, and the probability dis-
tribution of the key values, UC.G, in the record key space.

Although derived here in a somewhat obtuse fashion, these results
can be easily understood intuitively. If the goal is to minimize the
accumulated coverage of all the buckets overlapped by any region, then
the partitioning should be as fine as possible. This is accomplished
by making each bucket as small as possible.

The independence cf the number of overlapped buckets to file size
and distribution of key values is & direct consequence of the prescription
for cptimizing k-d trees. This prescription partitions the k-dimensional
record space so that each terminal bucket has the same properties as the
region, msﬁmwvv containing the m best matches. Namely, each contains
a fixed number of records (b and m, respectively) and their geometrical
shapes are ressocnstly compact. As a result, the dependence of the buc-
ket volumes on total file size and distribution of key values is identi-
cal to that fur the regicn asﬁmwv e ntaining the m tegt metches . An the
file size cr the lccel key density increases, the bucket veclumes and the
volume ccntasining the m best matches shrink at exactly the same rate,

leaving the number of cverlepped buckets, ﬁ. constant.

- 12 -

The constancy of the number of records examined as file size in-
creases implies that the time required to search for best matches is
logarithmic in file size. The k-d tree is a balanced binary tree. Thus,
the time required to descend from the root to the terminal buckets is
lcgarithmiec in the number of ncdes,which is directly prepeorticnel to the

.o The amount of backtirackling in the tree o proportional to

e

]
*.. which we tinve den

trated Lo be Independent of N.o Thue, the expeeted
search time for the m best matches to a prespecified query record is pro-
portional to logN.

Dissimilarity Measures

The derivations of the preceding section make no explicit assumptions
concerning the particular dissimilarity measure, wﬁx.nu. eamplcyed. There
are, however, some implicit assumptions tha* are now discuzsed.

A dissimilnrity measure is defined as

(14)

=2
>
3
n
=
>~
H
—
>
=
-
=
=
=
=
—

k . .
where the k + 1 arbitrary functions F and ﬁmwwuuwu are required to satisfy

the basic properties of symmetry

r,(x,y) = £,(y,x) 15 1<k (198)

and monctonicity
F(x) = Fly) ifx>y (15t)

'z y> X)

r?,i > :.?ri it or 1<t <k (15¢)

Hd
v
<
v
23

k

jo12 are called the ccordinate distance functicns;

The k functions, mwwaV%vw

they define the one-dimensional distance along each cccrdinate. Sins-e the

- 13 -

spread in coordinate values is defined to be the average distance from
the center, the ith coordinate distance function should be used to
estimate the spread in the ith key values during the construction of the
optimized k-d tree. (These coordinate distance functions also appear in
the bounds-overlap-ball and ball-within-bounds tests described in Appen-
dix 1.) To this extent, the construction of the k-d tree depends upon
the particular dissimilarity measure employed. It is not necessary that
exactly these functions be used in building the k-d tree. The purpose
of the spread estimation is to order the key numbers. Any set of func-
tions that ylelds the sswme ordering we the coordinate distance functions
will serve jJust es well. For example, 1if the coordinate distance func-
tions are all identical, that is, WMAxu%v = f(x,y) for 1 < i <k, then
the linear function P(x,y) = _xuz_ can be used to estimate the spread in
key values.

The properties of the dissimilarity measure enter into this algorithm
directly through the bounds-overlap-bell end ball-within-bounds tests (see
Appendix 1). These tests require only two properties of a dissimilarity
measure. First, the dissimilarity between two points, UAMw« , must be
nondecreasing with increasing linear distance, [X(1)-Y(1)|, along any co-
ordinate. Second, a partial dissimilarity baesed on any subset of the co-
ordinates must be less than or equal to the actual dissimilerity based
on the full coourdinate set. The form required for a dissimilarity measure
by egn 14, together with the restrictions of eqn 19, usre wul'tlelent to
gusrantee both of these properties.

A dissimilarity measure 1s sald to be a metric distance if, in

addition to symmetry and monotonicity (eqns 14-15¢), it obeys the tri-

angle inequality

(X, ¥) + D(Y,Z) 2 D(X,Z). (16)

- 14 -

The most common metric distances are the vector space p-norme

1
r
Kk P
kv . .
wn?ﬂ = hM [x(1) - v(i)|P . (17)
11
Of these, the most commcnly used sre:
p = 1l: taxiceb or city block distance

p = 2: Fuclidesn dlstance

maximuwn coordinate distance

el
"

That is,

max
i

[x(1) - Y(1)| . (18)
k

o
IA

<
Since the separate coordinate distance functions are identical for these

A

distances, the linesr distance function, f(x,y) = |x-y|, cen be used to

(3)

estimate the key spresds for ©building the k-d tree. For the special
case of the p = co distance (eqn 18), the gecmetric constant G(k) (egns
9a and 13) is unity, and the inequality of eqn 13 beccmes an equality.
For this pesrticulsr distsnce, we cen therefore calculate the expected
number of records exsmined (instead of an upper bound on the ex-

pected number) as a function of the number of btest mstches, m, and numter

ol keys, ko
1
- K

B (k) = (' o+ Dt (19)

Note that for m=l, wooﬁw~wv = of, The numter of buckets cverlapped by a

ball of constent volume decreases with increasing p, so the p = o result

serves as a lower bound for all vector space p norms.

- 15 -

There is an assumption that is implicit in the results of the pre-
vious section. It is that the search algorithm examines the buckets in
optimal order; that is, in order of increasing dissimilarity from the
query record. It is not clear how close the k-d tree search algorithm
comes to this ideal. Since this inefficiency is purely geometrical, it
cean e abaorbed int o the geomet 1?..73:..:,3:.;“A_ﬁv. fin eqna 12 and 1 3,
leaving the general conclusions unchanged. However, to the extent that
this inefficiency does exist, eqgn 19 is overly optimistic (as it assumes
G(k) = 1) and thus, eqn 19 represents a lower bound even for the p = co
distance.

Simulation Results

Several simulations were performed to gain insight into the perfor-
mance of the algorithm and to compare it to the performance predicted by
egn 19. The results are presented in Figures 1 and 2. For each simu-
lation, a file of 8192 sets of record keys was generated from a normal
distribution with unit dispersion matrix. A similar set of 2000 query
record keys was generated and the number cf record examinations required
to find the m best matches was averaged over these 2000 queries. The
statistical wuncertainty ¢ f these averages is quite small, being arcund
two percent in the worst cases.

Figure 1 shows how the average number of record examinations required

to find the best match (m=1) varies with dimensionality (number of keys per

record). Results are shown both fcr the p=2 (Euclidean) and the p=w vec-
tor space norm::. The a¢ 1id line repregents eqn l9 which predict:! the
expected number for the p = w metric (R = mx?

The btehsvicr of the slgerithm corresponds closely to that discussed

in the previous section. For low dimensionality (k < mvu the p=oc results

strongly exhibit the mw dependence. These simulation results indicate
that, at least for m=l, the k-d tree search algorithm is not far from
optimal. For those dimensionalities (k < 6) where N = 8192 appears to
be big enough for the validity of the large file mmmcavnwo:~ﬁrv the simu-
lation results for p = o lie no more than 20% above that predicted by
eqn 10.

The Bucl tdean d lstance results shown in Figure 1 confirm that the
performance of the algorithm for lower p-norms is not as good as for
p=co. The increase in expected number of records examined is not severe,
but becomes more pronounced for the higher dimensionalities. 1If a dis-
tance is to be chosen mainly for rapid calculation, the p=c distance is
a good choice.

Figure 2 shows how the number of records examined depends on the num-
ber of best matches sought. The average number of record exsminstions re-
quired to find the corresponding number of best matches fcr both the
Euclidean and p=co norms is displayed along with the prediction of egn 19
(solid line). The average number of records examined rises with increasing
number of best matches slightly more slowly than linearly. One would in-
tuitively expecti the increase to be linear since tho expected volume of
the m-nearest neightor ball grows linearly with m. The average number of
overlapped cells, therefore, should increase similarly. This is approxi-
mtely borne out by the results shown. Figure 2 also shows that the effect
of the non-optimality of the search algorithm becomes more pronounced for
a larger number of best matches. If it lo assumed that 8192 records s
large encugh so that the large file assumption is valid even for m=2% in
four dimensions, then Figure 2a shows that the inefficiency is 184 for

m=l and 50% for m=25.

Implementation

The above discussion has centered on the expectednumber of recordsex-

acined as the scle Criterion for performance evaluation of the algorithm.
Thislss the advantage that evaluation Is independent of the deta i g of
implementation and thecomputeruponwhichmea lgo vl thm 1s executed . A |-
though the computational requirements of the algorithm are strongly related
tc the number of reccrds examined, there are other considerations as well.
These considerstions include the computation requiredtobuildthek-d
tree and the overhesd computetion requliredtoscarchthetree.

The computstion required to build the k-d tree is pruporticnal to
kNlcglN, as previcusly stated. This is illustrated empirically in Figure
3 where the actual computation (5) per record needed to build the tree is
shown as a function of the total number of records for several values of k.

The overhead required to search the tree is dominated by the bounds-
overlap-tall calculstivn. This calculation must be performed at cach
ncn-terminal ncde visited in the search. As described in Appendix 1,
it involves calculating the dissimilarity from the query record to the
closest toundary ¢f the subfile under consideration. The coordinate dis-
tances are compared one key at a time; if the boundary is far from the
test point, the subfile can be excluded quickly on the basis of only a
few keys. If, on the other hand,the boundary is close tu the test point,
then oo way Lo necessgry Lo cxmubne most or g 0 of he keyis . I the
bounds do fn toet oyerdnsp the ba 11, the o o Tikeys are fnebeded and 4 he
test becumes ss expensive as a full dissimilarity calculation. This
suggests that if a subtfile is very likely to overlap the ball, it should
simply be investigated and the bounds-overlap-ball calculation omitted.

This situation is most likely to occur near the bottom of the tree where

- 18 -

the file records are closest to the query record. Therefore, it may be
profitable to increase the bucket sizes even at the expense of increasing
the number of record comparisons.

W i1 honerecordper bucke t, a boundg-overlap-tell calculation must
be made for each file record close to the query record near the bottom of
the tree. With several records per bucket, a bounds-overlap-ball calcu-
lation need only be performed once for each bucket. Since the records in
a bucket are relatively close together, it is very likely that if one of
them passes the test, most or all will pass. It is then more couputation-
ally efficient to have larger bucket sizes even though this increases
the number of records examined.

This speculation is confirmed in Figure k4. Here the computation re-
quired for finding best matches is shown for various bucket sizes. In-
creasing the bucket size from one record per bucket considerably improves
the performance of the search. This improvement is approximately constant
for bucket sizes from 4 to 32.

Although Figure 4 shows results for only a few situations, other
simulations (not shown) verify that this behavior is coumpletely indepen-
dent of dimensionality, k, number of best matches, m, and number of file
records, N.

Compariscn to Other Methods

T o lyg Pows method w Ithver b ledexpected pert crwance tot

vur

Hles, nuwmbe 1o of bes « my tehes, and nuwber of tile

records is the sorting algorithm of Friedman, Baskett and Shustek [3].
This algorithm has been shown to yield a considerable improvment over

the brute force method (linear search over all the records in the file)
for a wide variety of situations. Figure 5 shows the computation (CPU

- 19 -

milliseconds per query) required by this sorting slgorithmand the k-d
tree algorithm (using buckets of sixteen records) for increasing file size.
Alsc shown is the average numker of records examined under the k-d tree

nethed. The rate ol increase of this average withinereasing file size
indicates hcw nesr it is to the asymptotic limit where the large file as-
sumption is valid. The results in Figure % show that in two dimensions
near-asymptotic tehavicr occurs even for files as small as 128 records.
In four dimensicns, the asymptotic linmit appears reasonably close for
file sizes greeter then 2000. In elght dimensions, the lLimit [s not near
for files of 16000 records. Even for this case, however, the increase
in average number of reccrds examined with file size is only slightly
faster than logarithmic.

The logsrithmic behavior of the cversll computation as the file
size increases is illustrated for the k-d tree algorithm in Figure 9,
except that for eight dimensions the increase is slightly mmmﬁmn.on

Comparison of Figure 3to Figure 5 shows that the preprocessing compu-

tation involved in building the tree is not excessive. The fraction of

canputation spent on preprocessing decresses with Incressing dimensionality.

When the number of query records is the same as the number of file records,
preprccessing represents about 25% of the total computation for two di-
mensions, while for eipht dimensions thet fraction s between three snd

five pereent .

n hauy been 1w

The computution required by the sorting ulportt
1 1
. k 1-k
mwu to be proporticnal to WEW N w. Although this is much worse than
logN, the sorting algorithm introduces very little overhead so that for

very small files, it is faster than the k-d tree algorithm. For larger

files, however, the k-d tree algorithm is seen to havea clear computational

(7)

advantage, especially for higher dimensions.

Implementation on Secondary Storage

Efficient operstion of the k-d tree algorithm doesnot require that
all of the terminal buckets reside in fast memory. During the preproc-
essing, these data can be arranged on an external storage device so that
records in the same bucket are stored together. Buckets close together
in the tree can be stored similarly. Since the search algorithm examines
a sma L] number of bucketson the average, there will be few accesses to

(8)

the external storage for each query. For extremely large files, it
is not even necessary that the entire k-d tree reside in fast memory.
Only the top levels of the tree need to be in fast memory; the lower

levels can be stored on an external device under an arrangement that

keeps non-terminal nodes close to their sons.

ACKNOWLEDGMENT
Helpful discussions with F. Baskett, M.G.N. Hine, C.T. Zahn,

and J.E. Zolnowsky are gratefully acknowledged.

APPENDIX 1

This appendix describes algorithms for the bounds-overlap-ball and
ball-within-bounds tests discussed in the text.

The purpose of the bounds-overlap-ball test is to determine if the

geometric boundaries delimiting a subfile of records overlap a ball cen-

¢ ered ntthe query record w fthradiusrequa 1 to the diostmtlnrity Lo the mth

- o -
¢ logestrecord sotar encount ored . Tha b1 g, = I xs.xcv where xz m 1 he

query record and mw is the mthbest match so far encountered in the search.
The technique employed is to find the smallest dissimilarity between the
bounded region and the query record. If this dissimilarity is greater
than r, then the subfile can be eliminated from consideration. This mini-
mal dissimilarity is determined as follows: 1f the query record's jth key
is within the bounds for the jth coordinate of the geometric domain, then
the jth partial distance is set to zero; otherwise it is set to the co-
ordinate distance Mu (eqns 14, 15) by which the key falls outside the do-
main in that coordinate. If any of these coordinate distances is greater
than the radius of the neighborhood, then there is no overlap between the
domain and the neighborhood. If the sum of coordinate distances exceeds
M-HAHV (egn 14), there is no overlap. The test can terminate with failure
aanoon no the partial num of coordinate distancen exceeds mvwﬁnv. In
the special case of the p=oo vector space norm, this technique reduces
to testing whether any of the distances is greater than the radius and,
if so, failing.

The ball-within-bounds test is simpler. Here the coordimate distance
from the query record to the closer boundary along each key 1s in turn

compared to the radius, r. The test fails as soon as one of these co-

ordinate distances is less than the radius. The test succeeds if all

of these coordinate distances are greater than the radius.
Descriptions of these tests in an algorithmic notation are presented
in the next appendix.
APPENDIX 2
This appendix presents the k-d tree search algorithm in analgorith-

mic notation.

xnﬁbuxu. "key values of' the query record"

PQD[1:m], "priority queue of the m closest- distances en
countered at. any phase of the search. PQp[1]
is the distance to the mth nearest neighbor so

far encountered."

muzﬁwnsu“ "priority queue of the record numbers of the
corresponding m best matches encountered at

any phase of the search"
w+hwnxu. "coordinate upper bounds"
B_[1:x], "coordinate lower bounds"
discriminator [1:I], "discriminator at each k-d tree node"

partition [1:I]; "partition value at each k-d tree node"
"I is the number of internal nodes"
"initialize" BQD[1:m] « ; B [1:k] « oo; B [1:k]e- o
"search" SEARCH(root.) ;
procedure SEARCH(node);
local p,d, temp;
if node is terminal
bagin
(examine records in bucket(node), updating FQD, IQR);

Aif BALL WITHIN BOUNDS then done else return

end’
d ¢« discriminastor[node]; p « partition[node];

- 27 -

"recursive call on closer son"
if X[dl<p
q
bheng i n
temp f'w+ﬁmuh m+mmu «D;
SEARCH(leftson(node)); w+hmu ttemp;
end

else begin

temp T,wumaum muﬁgu &« p;

SEARCH(rightson(node)); B_[d] « temp;

epd),

"recursive call on farther son, if necessary"
ir xnh& <

then begin
temp « B_[d); B_[d] « p;

if BOUNDS OVERLAP BALL then SEARCH(rightson(node));

B [d] « temp;
end

else begin
temp Tm+m&h B,(a] «p;

if BOUNDS OVERIAP BALL then SEARCH{ leftson(node)) :

w+ﬁmu t-temp;
erd',
“see if we should return or terminate"

if BALL WITHIN BOUNDS tbep..dove. /lsa netawn.),

end;

—

- 24 -

logical procedure BALL WITHIN BOUNDS;

begin
local 4;

for d « 1 step 1 until k do

if COORDINATE DISTANCE (d, xnﬁ&, B [4]) < pap[1]
or COORDI NATE DISTANCE (4, x._h al | :.fﬁ Aol 1]
then ret urn(fa lse);

return(true);

endr

logical procedure BOUNDS OVERLAP BALL;

begin

local sum, d;

sum to;

for d « 1 step 1 until k do
if xo_w: < B_[4d]

then begin 'lower than low bcundary"

sum ¢ sum + COORDINATE DISTANCE E%nm&_ B [a]);
if DISSIM(sum) > PQD[1] then return_ (true);

end

elnc 1If x;ﬁmg > :+h;w

then begin "higher than high boundary"

sum ¢ sum + COORDINATE DISTANCE nyaﬁ&\ m%&f.
if DISSIM(sum) > PQD[1] then return_ (true);
end'

return (false);

The procedures DISSIM (x) snd COORDINATE DISTANCE (j,x,y) are the FOOTNOTES

functions F(x) and mqunwv thet appear in the definition of the dissim- (1) A record involves fetching the record keys from memory,

ilarity messure (eqn 14). calculating the dissimilarity to the query record, comparing it

te the dissimilerity to the mth closest record so far encounter-
APPENDIX 3

This appendix presents a description in an algcrithmic notation of ed, snd if necessary, updeting the list of m <losest records.

the procedure for constructing an optimized k-d tree for best match file (2) since the k-d tree 1s a complete binery tree, it is not necessary
b to store pointers to the sons of each nonterminal node [11].
searching.
BULILD TREE (entt t1le) v The nprend of voluen nlong ench key enn be entimnted by enl-
root ¢ BUI TREE (ent tre o)
d d RUILD TREE (file); culating the trlmmed varisnce of the key values. The trimming in-
node procedure H

sures that the estlmste is robust against extreme outliers.

egin

. () Asymptotic behavior can be determined empirically by observ-
locel j,d, maxspread, p;

ing the rate of incrrease of the av b of records exsmined
if SIZE(sutfile) =< b then return(MAKE TERMINAL(file)); 8 e average number

»ith *ncressing file size. This is illustrated in Figure 5.
mexspread « O;

(5) All simulations were performed on an IEM 370/168 computer. AlL

for j « 1 step 1 until k dc "find ccordinate with greatest spread”

£ SPREADEST(j,fil)} > maxspread programs were coded in FORTRAN IV and compiled with the IBM FORTRAN
i J,file) :

» ondmummav compiler with optimization level two.

then begin
maxspread « SPREADEST(j,file);

(6) The behavior for eight dimensions will, of course, become logarith-

mic for large enough file sizes.

d « j;
4 (7) The compsrison in Filgure 5 is for the best match (m=l) since this is
end;
g the most nosmod application. The incresse in computation for lasrger
end; ;
- k

() m grows as m for the sorting algorithm, while for k-d tree algor-
p « MEDIAN(d,file);

return MAKE NONTERMINAL(d,p,BUILDTREE(LEFT SUBFILE(d,p,file)),BUILDTREE
(RIGHTSUBFILE(d,p, T1le)); best matches, the crossover file size st which the performance of

Ithm, Il grows nesrly linearly with m. Thus, for large numbers of

end;
. the two algorithms is comparable will incresse.
The procedure SPREADEST (j,sutfile) returns the estimated jth key & pa

8 Inspection of Figure shows that for bucket size of 16 records,the
value spread for the reccrds in the sutfile represented by the node, using (8) pe _ 8 5 < s

average number of buckets accessed is 1.56, 6.2% and 75.0 for two
the wth coordinste distance functicn The procedure MEDIAN (J,subfile) g ’ ,

four, and eight dimensions, respectivel for totsl file size of
returns the median of the jth key velues. MAKE TERMINAL and MAKE NONTERMINAL 4 8 4 D Y

16000 records. Increasing the bucket size t: 32 records (not shown) re-
are procedures that store their parameters ss values of a node in the k-d

duces the aversge numter of accesses for eight dimensions to 4.0 while
tree and return a pointer to that node.

o6 increasing the total computation required for the search ty only 84.

27

REFERENCES

[1] Burkhard, W.A. and Keller, R.M. Some approaches to best match file FIGURE CAPTIONS

searching. Com. of ACM, Vol. 16 (April 1973), 230-236.

FIGURE Variation of the average number of records exsmined

[2] Fukunaga, K., and Narendra, P.M. A Branch and bound algorithm for
with dimensionality (number of keys per record) for

computing k-nearest neighbors. IEEE Trans. Comput., C2h Awwdwvu

constant file size. Results are shown for the Euclidean
750-753.
(p=2) and p=w metrles. The solid line 1s the pre-

(3] Friedman, J.H., Baskett, F., and Shustek, L..J. An algorithm for
dletton of eqn 19 for the pea metrle.
finding nearest neighbors. IEEE Trans. Comput., C-24(197))
FIGURE 2 Variatlon of the average numbter of records exsmined
1000-1006 .
with number of best matches sought for several dimen-
[4] Rivest, R. On the optimalily of Eliss' algorithm for performing
sionslities. Results sre shown for the Euclidean

best match searches. Proceedings IFIP Congress 74, Stockholm,

(p=2) and p=m metrics. The solid lines are the pre-
Sweden (August 1974), 678-081.
dictions of eqn 19 for the p=co metric.
[5] Shemos, M.I. Computational Geometry. Conference record of Seventh
FIGURE 3 Computation per file record required to tuild the k-d
Annual ACM Symposium of Theory of Computing, Albuquerque, N.M.,
tree as a function of total file size for several
(Mey 7, 1975).
dimensionalities.
mmu Finkel, R.A. and Bentley, J.L. Quad trees - a data structure foar
FIGURE 4 Computation required for the btest match search as a
retrievel on composite keys. Acta Informatica 4(1)(1974),1-9.

function of terminal bucket size.
[7] Bentley, J.L. Multidimensional binary search trees used for associ-
FIGURE Computation required for best match searching as s
ative searching. Com. of ACM, Vol.18 (Sept.1975), 509-517.

function of total file size for both the sorting and

{8] Hysfil, L., and Rivest, R.L., Constructing optimal binary decision
k-d Lree nilportthms at gevernl dlmensionalitlen.

trees is NP-complete. Information Processing letters, Vol. Y,

Also shown is the variation of the average number of
(May 1976), 15-17.
records examined with tctal file size. Terminal

[6] Fukunage, K., and Hostetler, L.D., Optimization of k-nearest neighbor
buckets of 16 records were used with the k-d tree

density estimates. IEEE Trans. Info. Theory, IT-19 (1973), 320-326.

algorithm.

(10] Pizer, S.M., Numerlcs). Computing and Mathematical Anslysis, Scilence

Research Associates, Palo Alto, Ca., 1975, pp 88, eqn 87.
(117 Knuth, D.E., The Art of Computer Programming, Vol. 1, Addison-Wesley,

Menlo Park, Cs., 1969, p LOL.

28 29

AVERAGE NUMBER OF RECORDS EXAMINED

T P DT T

pu—

[|
8192 Records

© Euclidean Metric
O p=0o0 Metric

| _ _ |

Ll

]

Ll

Ll

2 4 6 8 10

NUMBER OF KEYS (dimensionality)

Fipure

286840

AVERAGE NUMBER OF RECORDS EXAMINED

60

50

40

30

20

Two Keys per Record
8192 Records

O Euclidean Metric
O p=® Metric \Q
o

] | | _

S 10 15 20
NUMBER OF BEST MATCHES

2u

25

2606842

AVERAGE NUMBER OF RECORDS EXAMINED

200

150

100

50

I [[I I
Four Keys per Record 0
8192 Records 0

o0 Euclidean Metric
aop=® Metric

o o\
O ea

5 10 15 20 25
NUMBER OF BEST MATCHES

2668A)

Figure 2b

AVERAGE NUMBER OF RECORDS EXAMINED

600

400

200

[[[
Six Keys per Record
8192 Records

O Euclidean Metric
Q p=® Metric 9
o m\%/

5 10 15 20 25
NUMBER OF BEST MATCHES

2668A4

Figure 2c¢

MILLISECONDS PER FiIL= REC=RD

08 .

0.

0.

0.

6

4

2

1] | T T TTTIT T __|___:_ 1
Euclidean Metric
2 Two Keys per Record
4 Four Keys per Record 8
— 8 Eight Keys per Record 8
_ 8
8
3 8
4 4
4 > 2 2
_ 4 4 g °
) 2
11 Lol Ll
102 103 104

TOTAL NUMBER OF RECORDS IN FILE

2668BA7

Figure 3

MiI= SECSNDS PER QUERY

70

60

S50

40

30

20

Co

8

2 2

pd 1

T T TTTT]
Euclidean Metric

2 2 2

Lot rpald

2 Two Keys per Record (X 10)
8 Eight Keys per Record

NUMBER OF RECORDS PER BUCKET

5 10

Figure U

50

266845

MILLISECONDS PER QUERY

2.5

2.0

QO
wl
] T T T T — 50 = w
Euclidean Metri = <
i etric < 30 T _ T wooAMH
— jzo._Amv\m per Record 404 Euclidean Metric >
O Sorting Algorithm wn > 251 Four Keys per Record 1250 Ll
0 k-d Tree Algorithm Q @ , . | N
9 : % w o Sorting Algorithm m
| ® Ave. Records Examined B 3 S oo L o0 k-d Tree Algorithm 1200 &
30 o) O
[T mm e Ave. Records Examined mm
& “ 5L H15° o
— -120 a ©
(' O @
L =
® O |0} — 100 @&
s (@]
w =
[=2 N S
— 10 = J sl 150 =2
L = W
% = b)
| L 1l L4l Lo m QI = _wm_umu:_pO_OO L _m_OFO_O:_MOOOP 0] m
102 03 10 = M

TOTAL NUMBER OF RECORDS IN FILE

2668408

Figure ba

TOTAL NUMBER OF RECORDS IN FILE

~
°
°
-
-

Figure 5b

MILLISECONDS PER QUERY

300

250

200

150

100

50

0

ﬁﬂl LI T T T 7771 _—

Euclidean Metric

Eight Keys per Record
O Sorting Algorithm

e Ave. Records Examined

T | L33l |

— 0 k-d Tree Algorithm —

500 1000 5000 10000
TOTAL. NUMBER OF RECORDS IN FILE

Figure 4e

3000

2500

2000

1500

1000

500

AVERAGE NUMBER OF RECORDS EXAMINED

268049

